5 research outputs found

    System software for the finite element machine

    Get PDF
    The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested

    Hardware Barrier Synchronization: Static Barrier MIMD (SBM)

    Get PDF
    In this paper, we give the design, and performance analysis, of a new, highly efficient, synchronization mechanism called “Static Barrier MIMD” or “SBM.” Unlike traditional barrier synchronization, the proposed barriers are designed to facilitate the use of static (compile-time) code scheduling for eliminating some synchronizations. For this reason, our barrier hardware is more general than most hardware barrier mechanisms, allowing any subset of the processors to participate in each barrier. Since code scheduling typically operates on fine-grain parallelism, it is also vital that barriers be able to execute in a small number of clock ticks. The SBM is actually only one of two new classes of barrier machines proposed to facilitate static code scheduling; the other architecture is the “Dynamic Barrier MIMD,” or “DBM,” which is described in a companion paper1. The DBM differs from the SBM in that the DBM employs more complex hardware to make the system less dependent on the precision of the static analysis and code scheduling; for example, an SBM cannot efficiently manage simultaneous execution of independent parallel programs, whereas a DBM can

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed
    corecore