61,220 research outputs found

    Optimization of the air cargo supply chain.

    Get PDF
    Purpose: This paper aims to evaluate and optimize the various operations within the air cargo chain. It pursues to improve the efficiency of the air cargo supply chain and to provide more information to the decision-makers to optimize their fields. Design/methodology/approach: The method used is a process simulation modelling software, WITNESS, which provides information to the decision-makers about the most relevant parameters subject to optimization. The input for the simulation is obtained from a qualitative analysis of the air cargo supply chain with the involved agents and from a study of the external trade by air mode, given that their behaviour depend on the location. The case study is focused on a particular location, the Case of Zaragoza Airport (Spain). Findings: This paper demonstrates that efficiency of the air cargo supply chain can increase by leveraging several parameters such as bottlenecks, resources or warehouses. Originality/value: It explores the use of a simulation modeling software originally intended for manufacturing processes and extended to support decision making processes in the area of air cargo

    Toward optimal implementation of cancer prevention and control programs in public health: A study protocol on mis-implementation

    Get PDF
    Abstract Background Much of the cancer burden in the USA is preventable, through application of existing knowledge. State-level funders and public health practitioners are in ideal positions to affect programs and policies related to cancer control. Mis-implementation refers to ending effective programs and policies prematurely or continuing ineffective ones. Greater attention to mis-implementation should lead to use of effective interventions and more efficient expenditure of resources, which in the long term, will lead to more positive cancer outcomes. Methods This is a three-phase study that takes a comprehensive approach, leading to the elucidation of tactics for addressing mis-implementation. Phase 1: We assess the extent to which mis-implementation is occurring among state cancer control programs in public health. This initial phase will involve a survey of 800 practitioners representing all states. The programs represented will span the full continuum of cancer control, from primary prevention to survivorship. Phase 2: Using data from phase 1 to identify organizations in which mis-implementation is particularly high or low, the team will conduct eight comparative case studies to get a richer understanding of mis-implementation and to understand contextual differences. These case studies will highlight lessons learned about mis-implementation and identify hypothesized drivers. Phase 3: Agent-based modeling will be used to identify dynamic interactions between individual capacity, organizational capacity, use of evidence, funding, and external factors driving mis-implementation. The team will then translate and disseminate findings from phases 1 to 3 to practitioners and practice-related stakeholders to support the reduction of mis-implementation. Discussion This study is innovative and significant because it will (1) be the first to refine and further develop reliable and valid measures of mis-implementation of public health programs; (2) bring together a strong, transdisciplinary team with significant expertise in practice-based research; (3) use agent-based modeling to address cancer control implementation; and (4) use a participatory, evidence-based, stakeholder-driven approach that will identify key leverage points for addressing mis-implementation among state public health programs. This research is expected to provide replicable computational simulation models that can identify leverage points and public health system dynamics to reduce mis-implementation in cancer control and may be of interest to other health areas

    Modeling economic systems as locally-constructive sequential games

    Get PDF
    Real-world economies are open-ended dynamic systems consisting of heterogeneous interacting participants. Human participants are decision-makers who strategically take into account the past actions and potential future actions of other participants. All participants are forced to be locally constructive, meaning their actions at any given time must be based on their local states; and participant actions at any given time affect future local states. Taken together, these essential properties imply real-world economies are locally-constructive sequential games. This paper discusses a modeling approach, Agent-based Computational Economics, that permits researchers to study economic systems from this point of view. ACE modeling principles and objectives are first concisely presented and explained. The remainder of the paper then highlights challenging issues and edgier explorations that ACE researchers are currently pursuing

    Multi-agent knowledge integration mechanism using particle swarm optimization

    Get PDF
    This is the post-print version of the final paper published in Technological Forecasting and Social Change. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.Unstructured group decision-making is burdened with several central difficulties: unifying the knowledge of multiple experts in an unbiased manner and computational inefficiencies. In addition, a proper means of storing such unified knowledge for later use has not yet been established. Storage difficulties stem from of the integration of the logic underlying multiple experts' decision-making processes and the structured quantification of the impact of each opinion on the final product. To address these difficulties, this paper proposes a novel approach called the multiple agent-based knowledge integration mechanism (MAKIM), in which a fuzzy cognitive map (FCM) is used as a knowledge representation and storage vehicle. In this approach, we use particle swarm optimization (PSO) to adjust causal relationships and causality coefficients from the perspective of global optimization. Once an optimized FCM is constructed an agent based model (ABM) is applied to the inference of the FCM to solve real world problem. The final aggregate knowledge is stored in FCM form and is used to produce proper inference results for other target problems. To test the validity of our approach, we applied MAKIM to a real-world group decision-making problem, an IT project risk assessment, and found MAKIM to be statistically robust.Ministry of Education, Science and Technology (Korea

    An Agent Operationalization Approach for Context Specific Agent-Based Modeling

    Get PDF
    The potential of agent-based modeling (ABM) has been demonstrated in various research fields. However, three major concerns limit the full exploitation of ABM; (i) agents are too simple and behave unrealistically without any empirical basis, (ii) \'proof of concept\' applications are too theoretical and (iii) too much value placed on operational validity instead of conceptual validity. This paper presents an operationalization approach to determine the key system agents, their interaction, decision-making and behavior for context specific ABM, thus addressing the above-mentioned shortcomings. The approach is embedded in the framework of Giddens\' structuration theory and the structural agent analysis (SAA). The agents\' individual decision-making (i.e. reflected decisions) is operationalized by adapting the analytical hierarchy process (AHP). The approach is supported by empirical system knowledge, allowing us to test empirically the presumed decision-making and behavioral assumptions. The output is an array of sample agents with realistic (i.e. empirically quantified) decision-making and behavior. Results from a Swiss mineral construction material case study illustrate the information which can be derived by applying the proposed approach and demonstrate its practicability for context specific agent-based model development.Agent Operationalization, Decision-Making, Analytical Hierarchy Process (AHP), Agent-Based Modeling, Conceptual Validation
    corecore