422 research outputs found

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Modeling and Control of Impedance Source Converters for Grid-Connected PV Systems

    Get PDF

    Model Predictive Control Technique of Multilevel Inverter for PV Applications

    Get PDF
    Renewable energy sources, such as solar, wind, hydro, and biofuels, continue to gain popularity as alternatives to the conventional generation system. The main unit in the renewable energy system is the power conditioning system (PCS). It is highly desirable to obtain higher efficiency, lower component cost, and high reliability for the PCS to decrease the levelized cost of energy. This suggests a need for new inverter configurations and controls optimization, which can achieve the aforementioned needs. To achieve these goals, this dissertation presents a modified multilevel inverter topology for grid-tied photovoltaic (PV) system to achieve a lower cost and higher efficiency comparing with the existing system. In addition, this dissertation will also focus on model predictive control (MPC) which controls the modified multilevel topology to regulate the injected power to the grid. A major requirement for the PCS is harvesting the maximum power from the PV. By incorporating MPC, the performance of the maximum power point tracking (MPPT) algorithm to accurately extract the maximum power is improved for multilevel DC-DC converter. Finally, this control technique is developed for the quasi-z-source inverter (qZSI) to accurately control the DC link voltage, input current, and produce a high quality grid injected current waveform compared with the conventional techniques. This dissertation presents a modified symmetrical and asymmetrical multilevel DC-link inverter (MLDCLI) topology with less power switches and gate drivers. In addition, the MPC technique is used to drive the modified and grid connected MLDCLI. The performance of the proposed topology with finite control set model predictive control (FCS-MPC) is verified by simulation and experimentally. Moreover, this dissertation introduces predictive control to achieve maximum power point for grid-tied PV system to quicken the response by predicting the error before the switching signal is applied to the converter. Using the modified technique ensures the iii system operates at maximum power point which is more economical. Thus, the proposed MPPT technique can extract more energy compared to the conventional MPPT techniques from the same amount of installed solar panel. In further detail, this dissertation proposes the FCS-MPC technique for the qZSI in PV system. In order to further improve the performance of the system, FCS-MPC with one step horizon prediction has been implemented and compared with the classical PI controller. The presented work shows the proposed control techniques outperform the ones of the conventional linear controllers for the same application. Finally, a new method of the parallel processing is presented to reduce the time processing for the MPC

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    A survey on capacitor voltage control in neutral-point-clamped multilevel converters

    Get PDF
    Neutral-point-clamped multilevel converters are currently a suitable solution for a wide range of applications. It is well known that the capacitor voltage balance is a major issue for this topology. In this paper, a brief summary of the basic topologies, modulations, and features of neutral-point-clamped multilevel converters is presented, prior to a detailed description and analysis of the capacitor voltage balance behavior. Then, the most relevant methods to manage the capacitor voltage balance are presented and discussed, including operation in the overmodulation region, at low frequency-modulation indexes, with different numbers of AC phases, and with different numbers of levels. Both open- and closed-loop methods are discussed. Some methods based on adding external circuitry are also presented and analyzed. Although the focus of the paper is mainly DC–AC conversion, the techniques for capacitor voltage balance in DC–DC conversion are discussed as well. Finally, the paper concludes with some application examples benefiting from the presented techniques.Peer ReviewedPostprint (published version

    Improved control for multilevel inverters in grid applications

    Get PDF
    Control systems for three-phase grid connected voltage source inverters (VSI) play an important role in energy transformation systems . They are expected to be stable, robust and accurate during steady state as well as different grid faults and disturbances like voltage sags or unbalanced conditions. Caused by increasingly rising grid standards and efficiency requirements the use of multilevel inverter systems in grid connected low voltage applications are getting more and more attention. Nevertheless, the use of these inverter types leads to increased complexity of the control system and the hardware components. This thesis presents an improved control scheme for multilevel inverters in grid applications. The system combines a robust and high-dynamic direct current control scheme called scalar hysteresisEn molts casos i, cada cop més, els sistemes de transformació energètica estan basats en convertidors en font de tensió connectats a la xarxa elèctrica trifàsica. Aquests convertidors necessiten de sistemes de control per controlar els fluxos energètics. Els sistemes de control han de ser estables, però també robustos i precisos durant el seu funcionament normal, però també en condicions on la xarxa pot presentar defectes, com curtcircuits, sots de tensió o desequilibris en la tensió. Degut a l'increment dels requeriments tècnics de connexió i d'eficiència energètica, els convertidors multinivell estan guanyant molt d'interès en aquest tipus d'aplicacions connectades a la xarxa tot i que el seu control i els seus components siguin més complexes. Aquesta tesi presenta un mètode de control per convertidors multinivell connectats a la xarxa elèctrica. El mètode combina la robustesa davant de canvis en el sistema així com una alta capacitat dinàmica per controlar el corrent injectat a la xarxa. El mètode presentat esta basat en l'anomenat Scalar Hysteresis Control (SHC) i incorpora un sistema feedforward que li permet seleccionar acuradament el punt de treball i seleccionar al millor estat de commutació en cada moment. La combinació del SHC amb el feedforward garanteix un comportament robust amb una alta dinàmica en totes les condicions de funcionament. El concepte bàsic del mètode feedforward proposat no usa sensors i està basat en detectar la tensió de l'inversor que inclou les components harmòniques. El mètode està basat en l'ús d'integradors generalitzats de segon ordre (second order generatlized integrators, SOGI) per tal de detectar les components harmòniques de la tensió de sortida de l'inversor. El sistema pot operar sense sensor de tensió, fins i tot en situacions de defecte de la tensió. Fins i tot, la informació extreta del SOGI es pot usar per altres llaços de control d'ordre superior com el control de la potencia usant les components simètriques. Per a determinar els millors estats de commutació de l'inversor amb el menor esforç s'usa en el mètode proposat en aquesta tesi un canvi de coordenades que usa valor enters. Aixo permet l'ús de relacions matemàtiques senzilles que es poden implementar fàcilment i que requereixen una menor potencia de càlcul. A més, el mètode és fàcilment generalitzable . En la tesi es presenten simulacions i resultats experimentals en convertidors multinivell de tres i cinc nivells per tal d'investigar i demostrar les funcionalitats del sistema de control proposat. Tant les simulacions com els resultats experimentals es realitzen en totes les condicions possibles de la xarxa elèctrica, estat estacionari, sots i distorsions harmòniquesPostprint (published version

    Non-PLL Direct Power Control for a Single-Phase Grid-Connected Three-Level Inverter

    Get PDF
    The growing demand for clean, reliable renewable energy generation has led to the widespread adoption of solar energy as a source of electricity. Technological advancement aiding to reduce the cost of solar photovoltaic (PV) panels, as well as improvement in power electronics and control strategies for solar PV systems have also contributed to the growing popularity. For grid-connected solar systems to adequately meet future demand and grid requirements, the system must be reliable, and not affected by instability or distortions on the power grid. In this thesis, a control strategy for single-phase grid-connected inverters that can synchronize to the grid without a phase lock loop (PLL) is proposed. The PLL is an important device that is relied on for the synchronization of solar PV systems to the electrical grid. However, the PLL has an inherently complex design and its performance is often negatively affected if the grid voltage has poor quality. In addition, eliminating the use of PLL for synchronization can avoid the issue of slow dynamic response, higher harmonics, and increased computation complexity. The real and reactive power of the single-phase, three-level neutral point clamped (NPC) inverter is controlled by using a direct power control (DPC) strategy. A novel method of computing the power components of the single-phase inverter is proposed and this technique further improves the precision of the power components calculated by compensating the frequency and phase deviation compensation. Finally, simulations are carried out by using MATLAB/Simulink to demonstrate the effectiveness of the proposed methodology

    Application of the cascaded multilevel inverter as a shunt active power filter

    Get PDF
    Abstract unavailable please refer to PD

    Study of the performance of fault-tolerant multi-level inverter included in shunt active power filter

    Get PDF
    Nowadays, the large number of shunt active power filters (SAPF) is installed in many grid networks to eliminate the source currents harmonics and enhance power quality. These filters are installed in different places according to the filtration requirements. The connection between SAPF and grid network has a negative effect during the open-circuit fault of the insulated gate bipolar transistor (IGBT) switch of the SAPF. This paper proposes the application of the new diagnostic method based on the trigonometric circle and mean value variations techniques to the early detection and precise location of the open-circuit fault of the IGBT switches, and the inclusion of the modified reconfigurable inverter topology to allow the perfect continuity of the filter currents, and improve the diagnostic of the open-circuit fault. A single-sided amplitude spectrum technique (SSAS) is applied on the source currents to get the THDi% value. The obtained simulation results prove, the great success of the proposed diagnostic method, the ability of the modified reconfigurable inverter to be adapted to the grid network, the short response time between the diagnosis and the reconfiguration process is about 7 ms which is very sufficient to guarantee the rapid continuity of the shunt active power filter

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems
    corecore