556 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Artificial Intelligence-based Smarter Accessibility Evaluations for Comprehensive and Personalized Assessment

    Get PDF
    The research focuses on utilizing artificial intelligence (AI) and machine learning (ML) algorithms to enhance accessibility for people with disabilities (PwD) in three areas: public buildings, homes, and medical devices. The overarching goal is to improve the accuracy, reliability, and effectiveness of accessibility evaluation systems by leveraging smarter technologies. For public buildings, the challenge lies in developing an accurate and reliable accessibility evaluation system. AI can play a crucial role by analyzing data, identifying potential barriers, and assessing the accessibility of various features within buildings. By training ML algorithms on relevant data, the system can learn to make accurate predictions about the accessibility of different spaces and help policymakers and architects design more inclusive environments. For private places such as homes, it is essential to have a person-focused accessibility evaluation system. By utilizing machine learning-based intelligent systems, it becomes possible to assess the accessibility of individual homes based on specific needs and requirements. This personalized approach can help identify barriers and recommend modifications or assistive technologies that can enhance accessibility and independence for PwD within their own living spaces. The research also addresses the intelligent evaluation of healthcare devices in the home. Many PwD rely on medical devices for their daily living, and ensuring the accessibility and usability of these devices is crucial. AI can be employed to evaluate the accessibility features of medical devices, provide recommendations for improvement, and even measure their effectiveness in supporting the needs of PwD. Overall, this research aims to enhance the accuracy and reliability of accessibility evaluation systems by leveraging AI and ML technologies. By doing so, it seeks to improve the quality of life for individuals with disabilities by enabling increased independence, fostering social inclusion, and promoting better accessibility in public buildings, private homes, and medical devices

    Teaching Chemistry to Students with Disabilities: A Manual For High Schools, Colleges, and Graduate Programs - Edition 4.1

    Get PDF
    Ever since it was first published, Teaching Chemistry to Students with Disabilities: A Manual for High Schools, Colleges, and Graduate Programs has served as a vital resource in the chemistry classroom and laboratory to students with disabilities as well as their parents, teachers, guidance counselors, and administrators. The comprehensive 4th edition was last updated in 2001, so the American Chemical Society’s (ACS) Committee on Chemists with Disabilities (CWD) thought it prudent to update such a valuable text at this time. In a changing time of technology, rapid access to information, accessibility tools for individuals with disabilities, and publishing, Edition 4.1 is being published digitally/online as an Open Access text. Having Teaching Chemistry to Students with Disabilities: A Manual for High Schools, Colleges, and Graduate Programs in this format will allow for widespread dissemination and access by maximum numbers of readers at no cost- and will allow the text to remain economically sustainable.https://scholarworks.rit.edu/ritbooks/1001/thumbnail.jp

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    Improving accessibility for people with dementia: web content and research

    Get PDF
    The Internet can provide a means of communication, searching for information, support groups and entertainment, amongst other services, and as a technology, can help to promote independence for people with dementia. However, the effectiveness of this technology relies on the users’ ability to use it. Web content, websites and online services need to be designed to meet the abilities and needs of people with dementia, and thus the difficulties that these users encounter must be explored and understood.The primary aim of this thesis is to investigate web content accessibility for People with Dementia and develop recommendations for improving current guidelines based on accessibility needs. The secondary aim is to support people with dementia having a voice within research through development of accessible ethical processes.Qualitative data were collected with a scoping study using questionnaires about everyday technology use (people with dementia and older adults without dementia); and in-depth interviews to explore difficulties and web accessibility issues. A document analysis was conducted on Web Content Accessibility Guidelines (ISO/IEC40500:2012) for inclusion of the needs of people with dementia followed by review of Web Usability Guidance (ISO9241-151:2008) to consider how gaps relating to the unmet accessibility needs for people with dementia could be met. The scoping study found that both people with dementia and older adults without dementia use everyday ICT to access the Web. Both groups described difficulties with web interface interactions, which refined the research scope to web content accessibility. The interview data with people with dementia (n=16) and older adults without dementia (n=9) were analysed using Grounded Theory techniques. It was found that both user groups experienced the same types of difficulties using the Web, but that dementia symptoms could exacerbate the difficulties from usability issues (older adults without dementia) into accessibility issues for people with dementia. Navigation was a key issue for both groups, with a range of web content design elements contributing to accessibility issues with navigation for people with dementia. The document analysis found that the accessibility guidance did not address all the accessibility issues encountered by people with dementia. However, the usability guidance did address many of the accessibility issues for web content navigation experienced by people with dementia. The research provides recommendations for improvements to web content accessibility guidelines including content from usability guidelines, and amendments to current guidelines and success criteria. A new ethical recruitment/consent process was developed and tested as part of the research process and is recommended for use in future research to support engagement of people with dementia.</div

    SHELDON Smart habitat for the elderly.

    Get PDF
    An insightful document concerning active and assisted living under different perspectives: Furniture and habitat, ICT solutions and Healthcare

    Training Needs and Development of Online AT Training for Healthcare Professionals in UK and France

    Get PDF
    Background: Assistive Technology (AT) solutions for people with disabilities has become part of mainstream care provision. Despite advantages of AT on offer, abandonment and non-compliance are challenges for healthcare professionals (HCPs), introducing this technology to clients. Studies of abandonment reveal that 1/3 of all devices provided to service users end up stored unused. Key need is training to make informed decisions about AT tailored to individual needs and circumstances. In an online survey undertaken by the ADAPT project, HPCs identified AT training needs and barriers. Currently, a programme is being developed aimed at introducing AT concepts and enhancing practices to a wide range of HCPs. Method: Survey questions explored gaps, availability, qualifications and barriers to AT training in England and France. A series of consultation meetings with ADAPT partners took place. An advisory group consisting of longstanding AT users and their formal/informal carers and HCPs (occupational therapist, speech and language therapist, psychologist and biomedical engineer) contributed to the discussions on survey findings, development and evaluation of AT training for HCPs, key content areas and means of delivery. Key results: HCPs had no AT specific qualifications (UK 94.6%; FR 81.3%) nor in-service AT training (UK 65.1%; FR 66.4%). They either did not know of AT courses (UK 63.3%) or knew that none existed (FR 72.5%). Barriers to AT training were mainly local training (UK 62.7%, FR 50%) and funding (UK 62.7%, FR 55.7%). Some training priorities were clearer for French HCPs – overall knowledge of AT devices (82.1%, UK 45.8%), customization of AT (65.3%, UK 30.1%), assessing patient holistically (53.4%, UK 25.3%), educating patient/carers (56.5%, UK 28.3%) (p < 0.001). Variances may be due to differing country-specific HCP education approach. A third of both groups highlighted also abandonment, client follow-up, powered wheelchair training and prescribing AT. To bridge gaps in knowledge and identified training needs of HCPs, the online interactive training programme starts by introducing foundations of AT, including definitions, types/uses of AT, legislation/policies and AT in practice. More specialist units build and expand on specific areas, e.g. AT for mobility, communication, assessment and evidence-based practice. The biopsychosocial model of Health and World Health Organisation’s (WHO) International Classification of Functioning, Disability and Health (ICF) framework underpin development of content. ICF shifts focus from disability to health and functioning, in line with a social model of rehabilitation. E-learning comprises existing videos, AT textbook material and bespoke animated presentations. Selfassessment and evaluation of training are embedded and learners receive certificate of completion. Training was piloted to a group of HCPs trainees and postregistration HCPs who commented on relevance of AT content, clarity, accessibility of presentation, and usefulness. Users found training very useful, especially legislation/policies and AT literature. Conclusion: Overall, survey results suggest that both UK and French HCPs’ training on AT solutions is limited and highly variable. There is need for crosschannel AT professional competencies, availability of work-based training and funding support. Development of online, interactive training aims to increase professional confidence and competence in this area as well as the evidence base for AT
    corecore