144 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Quadrotor Aggressive Deployment, Using a Quaternion-based Spherical Chattering-free Sliding-mode Controller

    Get PDF
    International audienceThis paper introduces a non-conventional approach for autonomous multi-rotor UAV deployment, in which a quadro-tor is aggressively launched through the air with its motors turned off. A continuous quaternion attitude trajectory is proposed to safely recover the vehicle into hover mode. Then, an operator then could take the command or continue a desired mission in autonomous mode. The controller is a chattering-free sliding mode algorithm based on the geometrical properties of quaternions and axis-angle rotations. Lyapunov theory is used to analyze the system stability. The proposed methodology is validated in real world indoor and outdoor experiments

    Trajectory Tracking Control of a Four Rotor Unmanned Aerial Vehicle Based on Continuous Sliding Mode Controller

    Get PDF
    In this paper, a nonlinear Continuous Sliding Mode control (CSMC) application is presented for trajectory tracking control of a four rotor unmanned aerial vehicle (UAV) called the Quadrotor, also known as micro helicopter. The proposed controller is tested with different time-varying reference routes to provide a stable flight for position control. To show the effectiveness of the designed CSMC, well-tuned PI controller is also applied to quadrotor for the same routes. The current position of the quadrotor is taken from accelerometer, gyroscope and ultrasonic sensors. The experimental results show that the CSMC is adequate to dealing with parameter uncertainties occur in the system dynamics while flying and has satisfactory performance in terms of robustness against to disturbances and error elimination when it compared with PI controller

    Design of a neuro-sliding mode controller for interconnected quadrotor UAVs carrying a suspended payload

    Get PDF
    summary:In this study, a generalized system model is derived for interconnected quadrotor UAVs carrying a suspended payload. Moreover, a novel neural network-based sliding mode controller (NSMC) for the system is suggested. While the proposed controller uses the advantages of the robust structure of sliding mode controller (SMC) for the nonlinear system, the neural network component eliminates the chattering effects in the control signals of the SMC and increases the efficiency of the SMC against time-varying dynamic uncertainties. After the controller design is carried out, a comprehensive stability analysis based on Lyapunov theory is given to assure the asymptotic stability of the system. Finally, extensive numerical simulations with detailed comparisons are used to verify the effectiveness of the proposed controller

    Avoiding contingent incidents by quadrotors due to one or two propellers failure

    Get PDF
    With the increasing impact of drones in our daily lives, safety issues have become a primary concern. In this study, a novel supervisor-based active fault-tolerant (FT) control system is presented for a rotary-wing quadrotor to maintain its pose in 3D space upon losing one or two propellers. Our approach allows the quadrotor to make controlled movements about a primary axis attached to the body-fixed frame. A multi-loop cascaded control architecture is designed to ensure robustness, stability, reference tracking, and safe landing. The altitude control is performed using a proportional-integral-derivative (PID) controller, whereas linear-quadratic-integral (LQI) and model-predictive-control (MPC) have been investigated for reduced attitude control and their performance is compared based on absolute and mean-squared error. The simulation results affirm that the quadrotor remains in a stable region, successfully performs the reference tracking, and ensures a safe landing while counteracting the effects of propeller(s) failures

    Robust Control Methods for Nonlinear Systems with Uncertain Dynamics and Unknown Control Direction

    Get PDF
    Robust nonlinear control design strategies using sliding mode control (SMC) and integral SMC (ISMC) are developed, which are capable of achieving reliable and accurate tracking control for systems containing dynamic uncertainty, unmodeled disturbances, and actuator anomalies that result in an unknown and time-varying control direction. In order to ease readability of this dissertation, detailed explanations of the relevant mathematical tools is provided, including stability denitions, Lyapunov-based stability analysis methods, SMC and ISMC fundamentals, and other basic nonlinear control tools. The contributions of the dissertation are three novel control algorithms for three different classes of nonlinear systems: single-input multipleoutput (SIMO) systems, systems with model uncertainty and bounded disturbances, and systems with unknown control direction. Control design for SIMO systems is challenging due to the fact that such systems have fewer actuators than degrees of freedom to control (i.e., they are underactuated systems). While traditional nonlinear control methods can be utilized to design controllers for certain classes of cascaded underactuated systems, more advanced methods are required to develop controllers for parallel systems, which are not in a cascade structure. A novel control technique is proposed in this dissertation, which is shown to achieve asymptotic tracking for dual parallel systems, where a single scalar control input directly affects two subsystems. The result is achieved through an innovative sequential control design algorithm, whereby one of the subsystems is indirectly stabilized via the desired state trajectory that is commanded to the other subsystem. The SIMO system under consideration does not contain uncertainty or disturbances. In dealing with systems containing uncertainty in the dynamic model, a particularly challenging situation occurs when uncertainty exists in the input-multiplicative gain matrix. Moreover, special consideration is required in control design for systems that also include unknown bounded disturbances. To cope with these challenges, a robust continuous controller is developed using an ISMC technique, which achieves asymptotic trajectory tracking for systems with unknown bounded disturbances, while simultaneously compensating for parametric uncertainty in the input gain matrix. The ISMC design is rigorously proven to achieve asymptotic trajectory tracking for a quadrotor system and a synthetic jet actuator (SJA)-based aircraft system. In the ISMC designs, it is assumed that the signs in the uncertain input-multiplicative gain matrix (i.e., the actuator control directions) are known. A much more challenging scenario is encountered in designing controllers for classes of systems, where the uncertainty in the input gain matrix is extreme enough to result in an a priori-unknown control direction. Such a scenario can result when dealing with highly inaccurate dynamic models, unmodeled parameter variations, actuator anomalies, unknown external or internal disturbances, and/or other adversarial operating conditions. To address this challenge, a SMCbased self-recongurable control algorithm is presented, which automatically adjusts for unknown control direction via periodic switching between sliding manifolds that ultimately forces the state to a converging manifold. Rigorous mathematical analyses are presented to prove the theoretical results, and simulation results are provided to demonstrate the effectiveness of the three proposed control algorithms

    RISE-Based Adaptive Control with Mass-Inertia Parameter Estimation for Aerial Transportation of Multi-Rotor UAVs

    Full text link
    This paper proposes an adaptive tracking strategy with mass-inertia estimation for aerial transportation problems of multi-rotor UAVs. The dynamic model of multi-rotor UAVs with disturbances is firstly developed with a linearly parameterized form. Subsequently, a cascade controller with the robust integral of the sign of the error (RISE) terms is applied to smooth the control inputs and address bounded disturbances. Then, adaptive estimation laws for mass-inertia parameters are designed based on a filter operation. Such operation is introduced to extract estimation errors exploited to theoretically guarantee the finite-time (FT) convergence of estimation errors. Finally, simulations are conducted to verify the effectiveness of the designed controller. The results show that the proposed method provides better tracking and estimation performance than traditional adaptive controllers based on sliding mode control algorithms and gradient-based estimation strategies

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Control design for UAV quadrotors via embedded model control

    Get PDF
    In this paper, a control system for unmanned aerial vehicles (UAVs) is designed, tested in simulation by means of a high-fidelity simulator, and then applied to a real quadrotor UAV. A novel approach is proposed for the control design, based on the combination of two methodologies: feedback linearization (FL) and embedded model control (EMC). FL allows us to properly transform the UAV dynamics into a form suitable for EMC; EMC is then used to control the transformed system. A key feature of EMC is that it encompasses a so-called extended state observer (ESO), which not only recovers the system state but also gives a real-time estimate of all the disturbances/uncertainties affecting the system. This estimate is used by the FL-EMC control law to reject the aforementioned disturbances/uncertainties, including those collected via the FL, allowing a robustness and performance enhancement. This approach allows us to combine FL and EMC strengths. Most notably, the entire process is made systematic and application oriented. To set-up a reliable UAV attitude observer, an effective attitude sensors fusion is proposed and also benchmarked with an enhanced complementary filter. Finally, to enhance the closed-loop performance, a complete tuning procedure, encompassing frequency requirements, is outlined, based on suitably defined stability and performance metrics
    • …
    corecore