
HAL Id: hal-02283712
https://hal.archives-ouvertes.fr/hal-02283712

Submitted on 4 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quadrotor Aggressive Deployment, Using a
Quaternion-based Spherical Chattering-free

Sliding-mode Controller
Hernan Abaunza, Pedro Castillo Garcia

To cite this version:
Hernan Abaunza, Pedro Castillo Garcia. Quadrotor Aggressive Deployment, Using a
Quaternion-based Spherical Chattering-free Sliding-mode Controller. IEEE Transactions on
Aerospace and Electronic Systems, Institute of Electrical and Electronics Engineers, In press,
�10.1109/TAES.2019.2937663�. �hal-02283712�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/228095618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02283712
https://hal.archives-ouvertes.fr


1

Quadrotor Aggressive Deployment, Using a
Quaternion-based Spherical Chattering-free

Sliding-mode Controller
Hernán Abaunza and Pedro Castillo

Abstract—This paper introduces a non-conventional approach
for autonomous multi-rotor UAV deployment, in which a quadro-
tor is aggressively launched through the air with its motors
turned off. A continuous quaternion attitude trajectory is pro-
posed to safely recover the vehicle into hover mode. Then, an
operator then could take the command or continue a desired
mission in autonomous mode. The controller is a chattering-free
sliding mode algorithm based on the geometrical properties of
quaternions and axis-angle rotations. Lyapunov theory is used
to analyze the system stability. The proposed methodology is
validated in real world indoor and outdoor experiments.

Index Terms—Quadrotor, Sliding Mode, Hand-launching, De-
ployment, Launching, Quaternion

I. INTRODUCTION

IN the near future, UAVs will be capable of performing
impressive tasks that involve very complex maneuvers.

Looking towards such future, some progress has already been
made by proposing techniques for performing agile flights. For
instance [32] proposed an approach to navigate a quadrotor
while avoiding collisions using stereo vision. [33] addressed
the problem of identifying obstacle shapes using a real-time
guidance algorithm. [22] introduced a solution for tracking
aggressive trajectories for obstacle avoidance. Agile flight
for fixed-wing autonomous aircraft has also been studied,
including autonomus navigation in [6] and [20], and collision
avoidance as presented in [48] and [30].

In [2], an approach for landing a quadrotor on a moving
platform in the presence of disturbances was proposed by
means of an adaptive dynamic surface control technique. A re-
lated approach was presented by [29], where a controller based
on invariant ellipsoids was proposed for landing a quadrotor
on a ship deck. In [26], researchers performed flights that
involve high accelerations and angular velocities by employing
visual-inertial sensors. [28] and [11] proposed algorithms for
estimating the vehicle states and generating trajectories for
flying through narrow gaps at different inclinations.

In many real-world applications, quickly deploying rotor-
craft can sometimes be difficult and time-consuming, often
requiring clear and flat spaces to initialize the vehicles. For
instance, in firefighting, security, or rescue scenarios where
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fast response is essential, objects around the deployment area
(like tall grass or debris) could hinder the initial steps of any
mission. Other activities like outdoor sports such as hiking,
climbing, or biking could lack of an appropriate surface to
place the vehicle.

An intuitive and fast deployment could be to just hand-
launch the vehicle. Some expert hobbyists do it manually
with advanced piloting skills; nevertheless, they usually do
so with a close to zero attitude and/or with the motors
turned on. However spinning propellers could be hazardous
for the launcher, and the vehicle itself. For safety reasons,
therefore, quadrotor hand-launching should be performed with
the motors switched off. Launching a drone in this manner and
autonomously recovering while in the air is a real problem that
has not been totally solved.

Only a few works have addressed related approaches.
For instance, [17] employs reinforced learning to stabilize
a quadrotor, among their experiments the authors throw the
vehicle by hand. However, aggressive hand-launch analysis,
detection and recovery are not addressed in their work, instead,
2150 iterations of their learning algorithm are required to
stabilize the vehicle.

Similarly, in [10] the authors propose an approach to recover
a quadrotor from free-fall conditions detected by an acceler-
ation threshold. Their approach uses quaternions to compute
recovery rotations, once recovered, visual odometry is used
to stabilize the vehicle position. In this work the motors are
already rotating before launching, and accelarated aggressively
after the condition is validated for attitude stabilization.

In both works, [17] and [10], no analysis of the drone
launching is proposed. In addition, the experiments were
done with motors turned on, reducing the control problem
challenge and allowing a simpler attitude regulation. From
an aerodynamic analysis, when launching a rotorcraft with
motors turned on, some aerodynamic phenomena appear; for
example, the air body resistance is increased (greater drag
force), reducing the translational launching velocity. Moreover,
as each rotor is turning (even in slow angular velocities), a
passive trim of the angular speed is introduced into the system,
imposing an aerodynamic attitude rate compensation.

In this paper, a solution for this problem is proposed by
introducing recovery and control algorithms formulated on
quaternion and sliding mode methodologies. This technique
provides on one hand, an analysis of the launching condition.
On one hand, an aggressive attitude trajectory to autonomously
recover the quadrotor rotational stability is proposed. On the
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other hand, a nonlinear controller capable of quickly tracking
this trajectory is developed. The recovery and launching de-
tection algorithms are computed by only employing inertial
sensors allowing the system to be used either in indoors,
outdoors, or GPS-denied environments. Continuous functions
are defined instead of state machines to activate the motors
and switch between recovery and mission-specific attitude
references, giving a more precise description of the system
and simplifying its implementation.

Sliding mode control (SMC) has been studied in the last
decades by some eminent authors. Some of the most relevant
works that established the basis of sliding mode control theory
are [42]-[24]. Works like [8] and [46] provide theoretical and
practical grounds for SMC. As many authors have remarked,
SMC approaches use discontinuous functions (such as the
sign function) to ensure convergence of the system states
to a desired manifold in finite time. This fact induces an
aggressive switching response on the control input, known as
chattering effect, which in the real world can damage actuators.
For this reason, researchers have been studying alternative
approaches such as fractional order systems [45] and [34],
high-order sliding mode controllers [25]-[35], or by ensuring
asymptotic convergence around the sliding manifold by means
of continuous functions such as sigmoids [3]-[9].

Each of the previous approaches have advantages and draw-
backs as remarked by [43]. Fractional order control is complex
to tune, and is not straightforwardly free from chattering.
High-order SMC is more difficult to implement with little
advantages. While continuous functions reduce the robustness
of the closed-loop system against external disturbances.

Quaternion techniques have been addressed in other works.
For instance, an introduction to unit quaternions and some
applications to aerial systems are presented in [1]-[21]. [41]
presented an autonomous attitude recovery controller for
spacecraft based on a quaternion feedback linearization tech-
nique. [16] designed a robust quaternion-based sliding mode
algorithm for tracking attitude spacecraft trajectories. [14] and
[13] proposed optimal control techniques for quadrotors based
on quaternion attitude error equations. Some of the first works
that have combined sliding mode theory with quaternion-
based models were [5], [27] and [4], where attitude sliding
mode controllers based on the kinematic quaternion equations
of a general rigid aircraft were introduced. However, the
previous works have applied quaternions to other techniques,
not exploring the advantages of sliding mode approaches.

Until very recently, most sliding mode control algorithms
for quadrotors were based on the classical dynamic equations
based on Euler angles, which drag some complications such
as nonlinear equations, singularities, and gimbal lock effects.
To deal with these problems, some works like [44] have
proposed model-free sliding mode controllers that partially
ignore the vehicle behavior in order to simplify the control
design procedure. Other works like [12] and [19] employed
sliding mode algorithms to compensate external disturbances,
but consider conservative assumptions such as small angle
rotations and slow movements to design the control equations.

More recent contributions like [18] and [31] proposed con-
trollers based on fractional sliding modes applied to quadrotors

using quaternion-based models. [15] developed a quaternion-
based bounded attitude controller using saturation functions.
[37], [49], and [47] presented modified algorithms which
diminish the chattering effect of the sliding mode, with ap-
plications to quadrotor vehicles.

Nevertheless, most works found in the literature have ap-
plied sliding mode controllers on quadrotors to classical flight
missions. In this work, we propose a new and challenging
scenario, where a good performance of the sliding mode
controller is needed to successfully recover a quadrotor from
an aggressive launch. Also, this work proposes spherical
sliding mode technique, which instead of using the typical sign
function, a unitary sphere is used to control a sliding manifold
on a 3-D space using direction axes. Sigmoid functions are also
employed such that the algorithm becomes chattering-free. In
our best knowledge, this is the first work that specifically
conceives an aggressive handlaunch deployment approach for
a quadrotor when motors are turned off.

The rest of the paper is organized as follows: The quadro-
tor rotational and vertical dynamic equations are presented
in Section III. A quaternion-based spherical chattering-free
sliding mode controller is developed in Section IV, while
the recovery attitude trajectory is detailed in Section V. A
continuous automatic detection and switching technique is
proposed in Section VI for the aggressive launching scenario.
Real world experiments are presented in Section VII.

II. PROBLEM STATEMENT

Consider a scenario in which a quadrotor is aggressively
launched through the air with its motors turned off. Since the
vehicle starts to fall by the effects of gravity, it describes a
pseudo-parabolic trajectory with an unknown orientation and
initial velocity. Under these conditions, a recovery strategy
must be proposed to stabilize and recover the vehicle such that
a user can easily operate it after deployment. Such deployment
technique should include the following characteristics:
• The quadrotor starts from the ground, with the motors

turned off.
• An operator manually launches the vehicle.
• The initial attitude and velocity conditions are unknown.
• Inertial sensors detect the launching acceleration.
• The drone is recovered autonomously into a stabilized

hover mode.
• Once the vehicle is recovered, the operator can use a

joystick or any other input signal to execute a mission.
To deploy a quadrotor with such technique, a stabilization

and control strategy will be developed. Recovery and control
algorithms for the attitude and altitude dynamics will be
designed as illustrated in Figure 1. This proposal will be
detailed in the following sections.

III. QUADROTOR QUATERNION MODELING

The conception of the deployment strategy starts with the
quadrotor dynamic model which will consider the rotational
and translational equations as separate systems. Euler’s theo-
rem of rotation states that any 3-dimensional rotation can be
defined by its magnitude ϑ in radians, and its axis of rotation
symbolized by a unit vector ~n ∈ R3.
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Figure 1: Recovery and control diagram, the proposed algorithms will be developed in the following sections.

Figure 2: Quadrotor free body diagram. Considering the pro-
pellers produce a total thrust force in the body’s vertical axis,
and a torque vector in R3.

Considering the quadrotor free-body diagram from Figure
2, the rotation quaternion from the inertial I to the vehicle’s
local frame B is defined as

q := e~nϑ/2 = cos(ϑ/2) + ~n sin(ϑ/2) = q0 + ~q, (1)
where q0 ∈ R and ~q = [q1 q2 q3]T represent the quaternion
components. Inversely, the axis-angle representation of a ro-
tation can be computed using a quaternion-logarithm as

~ϑ = ~nϑ = 2 ln q ∈ R3, ~̇ϑ = ~Ω , (2)
where ln(·) is given by

ln q =

{
~q
||~q|| arccos(q0), ||~q|| 6= 0,[
0 0 0

]T
, ||~q|| = 0.

(3)

Introducing Newton’s equations of motion, the rotational
and vertical dynamics of a quadrotor are given by

ẋ=f(x,u, t)=

[
f1(q, ~Ω, ~τ , t)
f2(z, ż, Fth, t)

]
=


1
2q ⊗ ~Ω

J−1(~τ − ~Ω× (J~Ω))
ż

Fth cos (ϑxy) /m+ ~g

, (4)

where the system state x = [q, ~Ω, z, ż]T is given by the vehicle
attitude quaternion q, its angular velocity ~Ω = [Ωx,Ωy,Ωz]

T ,
the altitude z, and its vertical speed ż. The control inputs
u = [~τ , Fth]T are defined by the total thrust force Fth =∑4
i=1 fi, Fth ∈ R and the total torque ~τ ∈ R3.
The quaternion product is symbolized by ⊗, the body

mass and inertia matrix are denoted by m and J =
diag([Jxx, Jyy, Jzz]) respectively. The gravitational accelera-
tion is symbolized as ~g := [0 0 − g]T with g ≈ 9.81[m/s2],
m defines the vehicle mass, and t represents the time, see [1].
ϑxy denotes the angle between the vertical axes of I and B,
and its cosine is computed as

cos (ϑxy) =
(
q ⊗ [0 0 1]T ⊗ q∗

)
· [0 0 1]T . (5)

Remark 1: Let q1 and q2 be two quaternions such that
q1 := cos(ϑ/2) + ~n sin(ϑ/2),
q2 := cos((ϑ+ 2π)/2) + ~n sin((ϑ+ 2π)/2),

then, q1 and q2 represent the same orientation, with the
difference that q2 takes an additional 2π rotation around ~n,
furthermore, q1 = −q2.

In order to design independent attitude and altitude con-
trollers, (4) is divided into two separate subsystems as

f1(q, ~Ω, ~τ , t) =
d

dt

[
q
~Ω

]
=

[
1
2q ⊗ ~Ω

J−1(~τ − ~Ω× (J~Ω))

]
, (6)

and

f2(z, ż, Fth, t) =
d

dt

[
z
ż

]
=

[
ż

Fth cos (ϑxy) /m+ ~g

]
. (7)

IV. CONTROL STRATEGY

Consider that (7) is straightforwardly stabilized by defining
a proportional-derivative controller for the net thrust force as

Fth:=


−kpz(z − zd)− kdz ż +mg

cos(ϑxy)
if cos(ϑxy) > 0 ,

Fmin otherwise
(8)

where zd denotes the desired altitude, kpz, kdz ∈ R+ are
positive gains, and Fmin > 0 defines a minimum constant
thrust. Note from (5) and (8) that if an attitude controller
takes the vehicle thrust vector to a vertical orientation, then
cos (ϑxy) =

(
q ⊗ [0 0 1]T ⊗ q∗

)
· [0 0 1]T → 1.

Therefore, if the vehicle inclination ϑxy is equal or greater
than 90◦, Fth will be left at a minimal value to reduce the
risk of accelerating downwards. Once the rotational controller
recovers, the thrust force will close the altitude dynamics loop.
A. Attitude Control Formulation

An attitude controller will be now developed to track any
desired orientation for system (6).

Define a function Γ : R3 → R3, which bounds any
vector into a sphere (see Figure 3), respecting its original
direction and modifying its magnitude in terms of a continuous
arctangent function as

Γ(~k) := k̂
2

π
tan−1

(
||~k||

)
. (9)

Figure 3: Spherical bounding of a 3-D vector, its bounded
magnitude is defined by an arctangent function.
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Lemma 1: Given any vector ~k, Γ(~k) is bounded by a unitary
sphere and it holds

sign(Γ(~k)i) = sign(~ki), (10)
for every component i = x, y, z of both vectors.

Proof 1: Computing the normalized vector of Γ(~k), it yields

Γ(~k)

||Γ(~k)||
=

k̂ 2
π tan−1

(
||~k||

)
2
π tan−1

(
||~k||

) = k̂, (11)

therefore, ~k, and Γ(~k) share the same direction, and since the
magnitude of the former is defined by an arctangent function
with a positive definite argument, it holds

0 < 2
π tan−1

(
||~k||

)
< 1. � (12)

Theorem 1: The attitude subsystem (6) of a quadrotor
converges asymptotically to the quaternion origin qO = 1 +
[0 0 0]T by means of ~τ = [τx, τy, τz], with

τx =− 2
π (kpxϑx + kd2xΩx) tan−1(||~σ||)/||~σ|| (13)

− JzzΩyΩz − JyyΩyΩz − kd1xΩx,

τy =− 2
π (kpyϑy + kd2yΩy) tan−1(||~σ||)/||~σ|| (14)

− JxxΩxΩz − JzzΩxΩz − kd1yΩy,

τz =− 2
π (kpzϑz + kd2zΩz) tan−1(||~σ||)/||~σ|| (15)

− JyyΩxΩy − JxxΩxΩy − kd1zΩz,

where kpx, kpy, kpz, kd1x, kd1y, kd1z, kd2x, kd2y, kd2z ∈ R rep-
resent positive control gains, ~ϑ = [ϑx, ϑy, ϑz]

T = 2 ln(q), and

~σ =

kpxϑx + kd2xΩx
kpyϑy + kd2yΩy
kpzϑz + kd2zΩz

 . (16)

Proof 2: Define a Lyapunov candidate function as

V1 =
1

2
~σ · ~σ → V̇1 = ~σ · ~̇σ, (17)

where ~σ ∈ R3 is a sliding manifold such that
~σ = K1

~Ω +K2
~ϑ ,

~̇σ = K1(J−1~τ − J−1~Ω× J~Ω) +K2
~Ω ,

(18)

where Kj ∈ R3×3, j = 1, 2, ..., are positive diagonal matrices.
Note from Lemma 1 that asymptotic stability for (17) is
reached if

~̇σ = −K3Γ (K4~σ) . (19)
Introducing (19) into (18), yields

~τ = −JK−1
1 K3Γ

(
K4K1

~Ω +K4K2
~ϑ
)

−JK−1
1 K2

~Ω + ~Ω× J~Ω ,
(20)

propose K3 = K1J
−1, Kp = K4K2, Kd1 = K−1

3 K2, and
Kd2 = K4K1, (20) is finally expressed as

~τ = −Kd1
~Ω− Γ

(
Kp

~ϑ+Kd2
~Ω
)

+ ~Ω× J~Ω. (21)

Finally, the derivative of (17) is expressed as
V̇1 = (K1

~Ω+K2
~ϑ) ·(K1(J−1~τ−J−1~Ω×J~Ω)+K2

~Ω). (22)
Introducing (21), it yields

V̇1 = −
(
K1

~Ω +K2
~ϑ
)
· Γ
(
K4

(
K1

~Ω +K2
~ϑ
))
. (23)

From Lemma 1, it is clear that (23) is negative definite
for all K1

~Ω + K2
~ϑ 6= 0, therefore forcing the system to

asymptotically converge to the manifold ~σ = K1
~Ω+K2

~ϑ→ 0.
Note that since the system converges asymptotically towards

~σ → 0, it is safe to say that an arbitrary ~ε = [εx εy εz]
T with

εx, εy, εz > 0, can be defined such that there exists a time
tε > 0 where for each vector component i = x, y, z the system
dynamics reach σ(tε)i ≤ εi such that for every t > tε, it holds

σ(t)i =
(
K1

~Ω(t) +K2
~ϑ(t)

)
i
< εi (24)

Propose a positive-definite function and its derivative as

V2 =
1

2
~ϑ · ~ϑ → V̇1 = ~ϑ · ~Ω. (25)

Introducing the behavior of ~Ω relative to the sliding manifold
from (18) into (25) yields

V̇2 = ~ϑ ·K−1
1

(
~σ −K2

~ϑ
)
. (26)

from (23) and (24), it can be inferred that tε can be defined
as the instant when the system states will be bounded by ~ε =
[εx εy εz]

T , such that

V̇2 = ~ϑ ·K−1
1

(
~σ −K2

~ϑ
)
< ~ϑ ·K−1

1

(
~ε−K2

~ϑ
)
. (27)

if matrices K1 and K2 are selected such that K−1
1 K2 > 0,

and ~ε < K2
~ϑ, then it is ensured that V̇2 < 0 for all ~ϑ, ~Ω 6= ~0

after t > tε.
Ensuring that that ~Ω and ~ϑ asymptotically converge to zero

and following (1), then q → qO. Expanding the components
of every axis from (21), it yields (13), (14) and (15). �

Since the controller is based on (9), which employs a
continuous arctangent function to define its magnitude, the
algorithm yields a chattering-free behavior on the system.
This makes it smooth for small attitude errors, yet strong for
achieving large rotations, also reducing actuators fatigue.

V. ATTITUDE TRAJECTORY FORMULATION

An aggressive deployment implies the vehicle could be
launched at any possible initial attitude. Thus it must be
recovered from such conditions to a hovering state before
handing over the baton to the user. To address this problem,
a combination of two attitude references is proposed.

A. Recovery Trajectory

Firstly, to stop the vehicle from falling, its thrust vectors
must compensate the gravitational acceleration as fast as
possible. The representation of the vertical axis of the inertial
frame I with respect to the body’s coordinate system B can
be defined by a unit vector nβz ∈ R3 as

nβz = q∗ ⊗ nz ⊗ q, (28)

where nz := [0, 0, 1]T

Introducing the definitions of dot and cross products be-
tween two vectors, and widely known trigonometric expres-
sions into (1) the shortest rotation between nβz and the vertical
axis of the quadrotor can be computed as

qb :=

√1 + nβz · nz
2

+
nβz × nz
||nβz × nz||

√
1− nβz · nz

2

 , (29)

since qb is computed using vectors expressed in B, the
recovery trajectory quaternion is completed by adding the
vehicle’s rotation with respect to I as

qr = q ⊗ q∗b . (30)

see Figure 4.
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Figure 4: Shortest quaternion recovery rotation

B. Mission Specific Reference

Once the vehicle is recovered, the desired orientation might
follow any reference according to the mission requirements.
Some tasks like position holding or translational trajectory
tracking, would define it in terms of a high-layer position
control. Other applications like emergency response or out-
doors video capture could require a human operator, whatever
the case, the mission attitude reference is independent from
the aggressive hand-launching deployment challenge. For re-
peatability and ease of performing experiments, in this work a
human is considered to pilot the quadrotor in semi-autonomous
mode by defining a desired orientation qusr provided by a
joystick.

Following Remark 1, the vehicle initial attitude might have
either a positive or negative representation, one of them with
an additional 2π rotation. This phenomenon might cause
undesired behavior on the vehicle. To tackle this problem, the
user input is complemented by changing its sign by defining

qj := sign(π − 2 ln(qje))qusr, (31)

where qje = q∗usr ⊗ q symbolizes the rotation difference
between the vehicle attitude and the user input.

C. Attitude Reference Combination

Once the recovery and user attitude references are defined,
they are combined by the following function

qd := qr ⊗ qξr ⊗ qj ⊗ qξj , (32)

where qξr and qξj are quaternions that enable and disable qr
and qj as needed, and are derived from (1) as

qξr := e−γR ln(qr), (33)

and
qξj := e−(1−γR) ln(qj), (34)

where 0 < γR < 1 is a scalar number which changes its value
as needed to activate or deactivate each reference.

Remark 2: If γR → 0, then qξr → 1 + [0 0 0]T , while
qξj → q∗j , and in consequence qd → qr, inversely, if γR → 1,
then qξj → 1 + [0 0 0]T , while qξr → q∗r , thus qd → qj .
γR will be defined as a function of the vehicle’s acceleration

in the following section.

VI. CONTINUOUS SWITCHING STRATEGY

When the quadrotor is launched aggressively without any
thrust from the propellers, the accelerometers display near-zero
value. This condition does not provide sufficient information
to accurately estimate the vehicle attitude. Nevertheless, the
acceleration signal can be used to detect the moment in which
the quadrotor is deployed as Figure 5 illustrates.
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Figure 5: Acceleration profile example during manual recovery

A. Control Terms Switching

A continuous switching technique is proposed to activate
and deactivate the attitude terms from (21) when the ac-
celerometer measurements drop by defining

γa :=
1

2
(tanh (βa(||~a|| − αa)) + 1) , (35)

where ~a represents the acceleration vector, βa > 0 is a tuning
gain, and αa denotes the acceleration threshold from which
free-fall condition is considered.

Note γa → 1 if ||~a|| > αa , and
γa → 0 if ||~a|| < αa ,

(36)

such that the attitude controller is rewritten as
~τ =−Kd1

~Ω−Γ
(
γaKp2 ln (q∗d ⊗ q) +Kd2

~Ω
)
+~Ω×J~Ω, (37)

notice when the vehicle is in free-fall, the attitude values are
ignored and only the angular speed is regulated. Otherwise,
the controller will track the desired rotation defined by qd.

B. Attitude Reference switching

Following a similar path, two scalar variables dependent on
the vehicle attitude and angular velocity are proposed as

γϑ :=
1

2
(tanh (βϑ(||2 ln(qre)|| − αϑ)) + 1) , (38)

and
γΩ :=

1

2

(
tanh

(
βΩ(||~Ω|| − αΩ)

)
+ 1
)
, (39)

where qre := q∗r⊗q represents the rotation difference between
the quadrotor attitude and the recovery quaternion from (30).
βϑ, βΩ > 0 are tuning parameters, and αϑ, αΩ symbolize the
angle error and angular velocity thresholds to consider the
vehicle as stabilized in hover mode.

Then, both terms from (38) and (39) are combined as

γR(t) := tanh

(
βR

∫ t

t0

γϑγΩdt

)
, γR(t0) = 0, (40)

where t0 defines the time when the quadrotor starts waiting
to be launched and βR > 0 is a tuning parameter.

Since (37) will stabilize the vehicle’s attitude to the recovery
values, then ∃ t such that ∀ t > th when the quadrotor attitude
follows ||2 ln(qre)|| < αϑ and ||~Ω|| < αΩ. Therefore, (40)
behaves as

γR ≈ 0 for t0 < t < th ,
γR → 1 for t > th .

(41)
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Remark 3: (32), (40), and (41) imply that the attitude
reference will be defined by the recovery trajectory before
th, and by the user-defined input after th.
C. Motor Activation

Considering a symmetrical quadrotor, the force fi for each
motor can be computed using (8) and (37) as

f1

f2

f3

f4

 =
1

4 l


2 2 l l
−2 −2 l l
−2 2 −l l

2 −2 −l l



τx
τy
τz
Fth

 . (42)

The relation between the thrust force and angular speed ωi
of each motor (see Figure 2) can be computed using blade
element theory as

fi = CT ρπr
3ω2

i , (43)
where CT denotes the aerodynamic thrust parameter, ρ rep-
resents the air density, and r symbolizes the propeller radius,
see [23]. Inversely, the angular speed can be computed as

ωi =
√
fi/(CT ρπr3). (44)

It is a common practice to consider the aerodynamic pa-
rameters in (44) as a constant ki u 1

CT ρπr3
. Simplifying the

relation between the propeller force and speed as
ωi u

√
fi/(ki) . (45)

Since the motors are activated with a continuous function,
damage from current peaks and sudden angular accelerations
can be avoided. An expression to automatically activate the
motors when the quadrotor is being tossed is proposed as

γµ(t) := tanh

(
ζµ

∫ t

t0

(
tanh

(
βµ(||~a|| − αµ)

)
+ 1
)
dt

)
, (46)

where ζµ, βµ > 0 are tuning parameters, and αµ denotes
the acceleration threshold from which aggressive tossing is
considered. Therefore (45) can be rewritten as.

ωi u γµ(t)

√
fi
ki
. (47)

Defining time tl as when the quadrotor is lauched such that
||~a|| > aµ. Considering γµ(t0) = 0, then (46) follows

γµ ≈ 0 for t0 < t < tl ,
γµ → 1 for t > tl .

(48)

D. Altitude recovery
Since the launching conditions are initially unknown, the

vehicle might be far from the desired altitude when the attitude
is being recovered. To smoothen the vehicle behavior, an
altitude recovery trajectory has to be designed.

Define tz0 as the time when the quadrotor is recovered in
hover mode, which is determined according to

γR(t) < 0.5 for t ∈ [ t0 , tz0 ],
γR(t) ≥ 0.5 for t > tz0 .

(49)

tzf defines the time when the altitude reference reaches a value
defined by the pilot zusr. If that zd(t) > zusr for all tz0 < t <
tzf , and z0 denotes the initial altitude reference, determined
as

z0 = max{z(tz0), zmin, zusr}, (50)
where zmin and z(tz0) symbolize the minimum safety altitude,
and the measured height at tz0 respectively, then the altitude
recovery trajectory is computed as

zd(t) :=

{
z0 −

∫ t
tz0

vzr(ς)dς ∀ tz0 ≤ t ≤ tzf ,
zusr otherwise ,

(51)

where vzr(ς) > 0 is the desired descent speed.

VII. EXPERIMENTAL VALIDATION

Multiple tests have been performed using the proposed
strategy on a Parrot ARDrone2 quadrotor. The algorithm was
coded using the FL-AIR framework [38]. In some experiments,
the vehicle was launched with the propellers pointing down-
wards, others while rotating over its three x (roll), y (pitch),
and z (yaw) axes. Due to paper length limitations, only two
scenarios are illustrated in this manuscript. However the reader
is encouraged to watch more tests on-line at the following
video link: https://youtu.be/b52e7K9BHYs

The controller parameters are manually adjusted, and the
final values are introduced in the following table:
αa = g/2 βa = 10 αθ = π/4
βθ = 10 αω = π/4 βω = 10
αµ = 2g βµ = 10 ζµ = 10
βR = 10 kpz = 0.6 kdz = 0.25
Kp = diag

(
[3.5 3.5 2]

)
Kd1 = 0.065 I3×3 Kd2 = 0.5Kd1

Table I: Controller parameters for real world tests.

A. First launching test: Single axis rotation
The first test consisted on launching the vehicle horizontally,

smoothly rotating over its z (yaw) axis, for illustrating how
the activation and recovery scheme stabilizes the quadrotor.

The quadrotor was set in the ground with its motors turned
off, all the initial conditions were set to zero. The algorithm
begins computing the controller from t = 0s. At t ≈ 4s, an
operator grabs the vehicle from the ground, then proceeds to
launch it at t ≈ 7s.

The switching terms computed using equations (35), (40),
and (46) are depicted in Figure 6. Note that the system detects
a launching, activates the motors with γµ, then between 7.3s <
t < 8.1s free-fall condition is detected by γa. At t ≈ 8.5s the
vehicle is stabilized horizontally, this is detected by γR and
the command is passed to the pilot. Finally, the quadrotor is
landed, and all the variables are reset to the initial conditions,
preparing for a new deployment.
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Figure 6: Automatic detection values during launching, re-
covery and landing for motor activation, enabling control
parameters, and passing the command to the operator.
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Figure 7 illustrates the recovery quaternion computed by
(30), while the user-defined reference from (31) is depicted
in Figure 8. Note the sign of the quaternion changes around
t u 8s, because of the vehicle rotation over its yaw axis, the
definition of qj ensures the shortest rotation is tracked.
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Figure 7: Autonomous recovery quaternion, computing the
shortest rotation required to stabilize the vehicle.
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Figure 8: The user-defined reference is ignored during the
launching, but enabled once stable hovering is achieved.

Following (32), the recovery and user-defined references are
combined, resulting in the total desired orientation qd, which
is illustrated in Figure 9. Note by comparing Figures 7 to 9
that qd is similar to qr that before t u 9s, but then it follows
the reference given by qj with a smooth switch.
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Figure 9: The recovery quaternion and user-defined references
are combined by (32) which smoothly switches from one to
the other according to the launching and recovery conditions.

Figures 10 to 13 depict the attitude quaternion response
during the first experiment. Figure 10 illustrates the real part
of q and qd, symbolizing the cosines of the total rotation.
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Figure 10: q0 component response, the peak indicates two
complete rotations are performed during the deployment,
accomplishing stabilization afterwards.

Figures 11 to 13 represent the rotation around the x, y,
and z axes. Note the vehicle starts its launching far from
the reference in the x and y axes but recovers in-flight. The
rotation around the z axis is tracked by the recovery quaternion
and then smoothly switched to the user reference.
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Figure 11: q1 (x axis), the attitude values oscillate during
the deployment, indicating an adjustment of the orientation
to achieve stable hovering.
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Figure 12: q2 (y axis), displaying an aggressive rotation when
recovering the drone, then a smooth attitude tracking.
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Figure 13: q3 (z axis), oscillations indicate the vehicle rotates
twice over this axis before achieving recovery.

Although the control algorithms are based on a quaternion
approach, Figure 14 depicts the equivalent Euler yaw angle to
better illustrate the vehicle’s behavior. Note its rotation reveals
the passing through two discontinuities during the test. This
is avoided by the algorithm’s quaternion formulation.
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Figure 14: Equivalent yaw angle, revealing discontinuities
when two 360◦ rotations are completed.

The altitude and vertical velocity responses are depicted in
Figure 15. The altitude is measured using an ultrasonic sensor
and a Kalman filter is implemented to improve the position
signal and estimate the vertical speed.

Time [s]
0 2 4 6 8 10 12 14 16 18 20

A
lt
it
u
d
e
va
lu
es

[m
]
a
n
d
[m

/
s]

-4

-2

0

2

4

6

8

10

12

14

z
zd
ż

Figure 15: Altitude and vertical speed response, the quadrotor
smoothly descends to the desired height after recovery.

Note the position reference follows a ramp descend the
vehicle to the user-defined altitude (in this case zusr = 0.5m)
once it is recovered in hover mode. At t u 17s the vertical
reference lands the vehicle, preparing for a new deployment.

B. Second launching test: Multiple axis rotation
The second experiment was performed to prove the recovery

algorithm under extreme deployment conditions. Here, the
vehicle was launched while rotating multiple times over all of
its three axes, passing through vertical inclinations, and even
pointing its propellers downwards at some times. This kind
of deployment has been tested multiple times, successfully
recovering the vehicle.

Figure 16 illustrates the launching detection timing by
the switching parameters from (35) and (46). The quadrotor
rotational response is represented in Figures 17 to 20.
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Figure 16: Detection terms performance, a) Tossing detected,
starting motors. b) Free fall detected. c) Recovery achieved.
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Figure 17: Quaternion q0 component response, each change
of sign indicates a 3600 rotation during deployment.

Time [s]
0 1 2 3 4 5 6 7

q
1
re
sp
o
n
se

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

q1
qd1
qr1
qj1
qusr1

Figure 18: Quaternion q1 component (over the x axis), the
vehicle is first inclined, then rotates aggressively during the
recovery stage.
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Figure 19: Quaternion q2 component (response over the y
axis), note how the combined rotation qd pulls the vehicle
attitude towards zero.
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Figure 20: Quaternion q3 component (z axis), signaling the
vehicle also spins three times before stabilizing successfully.

For illustration purposes, Figures 21 to 23 depict the equiv-
alent Euler angles computed from the previous quaternions.
Due to the nature of this type of attitude representation,
some undesired effects are revealed such as discontinuities
and sudden changes in the signals.

Notice how the magnitude of the simultaneous pitch and
roll rotations, along with their oscillations indicate the vehicle
is aggressively rotated such that it passes through vertical,
horizontal, and upside-down poses. Nevertheless, at the end,
the proposed algorithm successfully recovers the quadrotor.
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Figure 21: Equivalent roll angle response (rotation over the x
axis), reaching almost 150◦ in multiple occasions.
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Figure 22: Equivalent pitch angle response (rotation over the
y axis), approaching vertical poses of 90◦ several times.
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Figure 23: Equivalent yaw angle (rotation over the z axis),
revealing multiple 360◦ turns before stabilizing.

VIII. CONCLUSION

An aggressive deployment strategy for a quadrotor was pro-
posed in which the vehicle is launched with its motors turned
off. In order to activate the vehicle in-flight, a continuous
recovery trajectory was proposed employing unit quaternions.
The vehicle thrust vector is aligned from any attitude to the
vertical axis using the shortest rotation.

The proposal considers that once the vehicle is recovered,
the desired orientation might follow any reference according
to the mission requirements. This reference is introduced in a
continuous switching equation. The control the control terms
are also smoothly switched according to the vehicle sensors,
seamlessly combining the recovery attitude with the reference
required by the mission.

A quaternion-based chattering-free spherical sliding mode
controller was proposed using Lyapunov theory to robustly
track the aforementioned trajectory. Real-world experiments
were executed for its validation, displaying a very good
repeatable performance.

The proposed strategy can be implemented in real-world
applications where a quadrotor (or another kind of multicopter)
could be launched with its motors switched off, without
needing a ground surface, and reducing its starting deployment
time, which could be very valuable in urgency scenarios.
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