17 research outputs found

    Model transformation for multi-objective architecture optimisation for dependable systems

    Get PDF
    Model-based engineering (MBE) promises a number of advantages for the development of embedded systems. Model-based engineering depends on a common model of the system, which is refined as the system is developed. The use of a common model promises a consistent and systematic analysis of dependability, correctness, timing and performance properties. These benefits are potentially available early and throughout the development life cycle. An important part of model-based engineering is the use of analysis and design languages. The Architecture Analysis and Design Language (AADL) is a new modelling language which is increasingly being used for high dependability embedded systems development. AADL is ideally suited to model-based engineering but the use of new language threatens to isolate existing tools which use different languages. This is a particular problem when these tools provide an important development or analysis function, for example system optimisation. System designers seek an optimal trade-off between high dependability and low cost. For large systems, the design space of alternatives with respect to both dependability and cost is enormous and too large to investigate manually. For this reason automation is required to produce optimal or near optimal designs.There is, however, a lack of analysis techniques and tools that can perform a dependability analysis and optimisation of AADL models. Some analysis tools are available in the literature but they are not able to accept AADL models since they use a different modelling language. A cost effective way of adding system dependability analysis and optimisation to models expressed in AADL is to exploit the capabilities of existing tools. Model transformation is a useful technique to maximise the utility of model-based engineering approaches because it provides a route for the exploitation of mature and tested tools in a new model-based engineering context. By using model transformation techniques, one can automatically translate between AADL models and other models. The advantage of this model transformation approach is that it opens a path by which AADL models may exploit existing non-AADL tools.There is little published work which gives a comprehensive description of a method for transforming AADL models. Although transformations from AADL into other models have been reported only one comprehensive description has been published, a transformation of AADL to petri net models. There is a lack of detailed guidance for the transformation of AADL models.This thesis investigates the transformation of AADL models into the HiP-HOPS modelling language, in order to provide dependability analysis and optimisation. HiP-HOPS is a mature, state of the art, dependability analysis and optimisation tool but it has its own model. A model transformation is defined from the AADL model to the HiP-HOPS model. In addition to the model-to-model transformation, it is necessary to extend the AADL modelling attributes. For cost and dependability optimisation, a new AADL property set is developed for modelling component and system variability. This solves the problem of describing, within an AADL model, the design space of alternative designs. The transformation (with transformation rules written in ATLAS Transformation Language (ATL)) has been implemented as a plug-in for the AADL model development tool OSATE (Open-source AADL Tool Environment). To illustrate the method, the plug-in is used to transform some AADL model case-studies

    Dynamic model-based safety analysis: from state machines to temporal fault trees

    Get PDF
    Finite state transition models such as State Machines (SMs) have become a prevalent paradigm for the description of dynamic systems. Such models are well-suited to modelling the behaviour of complex systems, including in conditions of failure, and where the order in which failures and fault events occur can affect the overall outcome (e.g. total failure of the system). For the safety assessment though, the SM failure behavioural models need to be converted to analysis models like Generalised Stochastic Petri Nets (GSPNs), Markov Chains (MCs) or Fault Trees (FTs). This is particularly important if the transformed models are supported by safety analysis tools.This thesis, firstly, identifies a number of problems encountered in current safety analysis techniques based on SMs. One of the existing approaches consists of transforming the SMs to analysis-supported state-transition formalisms like GSPNs or MCs, which are very powerful in capturing the dynamic aspects and in the evaluation of safety measures. But in this approach, qualitative analysis is not encouraged; here the focus is primarily on probabilistic analysis. Qualitative analysis is particularly important when probabilistic data are not available (e.g., at early stages of design). In an alternative approach though, the generation of combinatorial, Boolean FTs has been applied to SM-based models. FTs are well-suited to qualitative analysis, but cannot capture the significance of the temporal order of events expressed by SMs. This makes the approach potentially error prone for the analysis of dynamic systems. In response, we propose a new SM-based safety analysis technique which converts SMs to Temporal Fault Trees (TFTs) using Pandora — a recent technique for introducing temporal logic to FTs. Pandora provides a set of temporal laws, which allow the significance of the SM temporal semantics to be preserved along the logical analysis, and thereby enabling a true qualitative analysis of a dynamic system. The thesis develops algorithms for conversion of SMs to TFTs. It also deals with the issue of scalability of the approach by proposing a form of compositional synthesis in which system large TFTs can be generated from individual component SMs using a process of composition. This has the dual benefits of allowing more accurate analysis of different sequences of faults, and also helping to reduce the cost of performing temporal analysis by producing smaller, more manageable TFTs via the compositionality.The thesis concludes that this approach can potentially address limitations of earlier work and thus help to improve the safety analysis of increasingly complex dynamic safety-critical systems

    An overview of fault tree analysis and its application in model based dependability analysis

    Get PDF
    YesFault Tree Analysis (FTA) is a well-established and well-understood technique, widely used for dependability evaluation of a wide range of systems. Although many extensions of fault trees have been proposed, they suffer from a variety of shortcomings. In particular, even where software tool support exists, these analyses require a lot of manual effort. Over the past two decades, research has focused on simplifying dependability analysis by looking at how we can synthesise dependability information from system models automatically. This has led to the field of model-based dependability analysis (MBDA). Different tools and techniques have been developed as part of MBDA to automate the generation of dependability analysis artefacts such as fault trees. Firstly, this paper reviews the standard fault tree with its limitations. Secondly, different extensions of standard fault trees are reviewed. Thirdly, this paper reviews a number of prominent MBDA techniques where fault trees are used as a means for system dependability analysis and provides an insight into their working mechanism, applicability, strengths and challenges. Finally, the future outlook for MBDA is outlined, which includes the prospect of developing expert and intelligent systems for dependability analysis of complex open systems under the conditions of uncertainty

    Integrating model checking with HiP-HOPS in model-based safety analysis

    Get PDF
    The ability to perform an effective and robust safety analysis on the design of modern safety–critical systems is crucial. Model-based safety analysis (MBSA) has been introduced in recent years to support the assessment of complex system design by focusing on the system model as the central artefact, and by automating the synthesis and analysis of failure-extended models. Model checking and failure logic synthesis and analysis (FLSA) are two prominent MBSA paradigms. Extensive research has placed emphasis on the development of these techniques, but discussion on their integration remains limited. In this paper, we propose a technique in which model checking and Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) – an advanced FLSA technique – can be applied synergistically with benefit for the MBSA process. The application of the technique is illustrated through an example of a brake-by-wire system

    Characterizing the Identity of Model-based Safety Assessment: A Systematic Analysis

    Full text link
    Model-based safety assessment has been one of the leading research thrusts of the System Safety Engineering community for over two decades. However, there is still a lack of consensus on what MBSA is. The ambiguity in the identity of MBSA impedes the advancement of MBSA as an active research area. For this reason, this paper aims to investigate the identity of MBSA to help achieve a consensus across the community. Towards this end, we first reason about the core activities that an MBSA approach must conduct. Second, we characterize the core patterns in which the core activities must be conducted for an approach to be considered MBSA. Finally, a recently published MBSA paper is reviewed to test the effectiveness of our characterization of MBSA

    Compositional dependability analysis of dynamic systems with uncertainty

    Get PDF
    Over the past two decades, research has focused on simplifying dependability analysis by looking at how we can synthesise dependability information from system models automatically. This has led to the field of model-based safety assessment (MBSA), which has attracted a significant amount of interest from industry, academia, and government agencies. Different model-based safety analysis methods, such as Hierarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS), are increasingly applied by industry for dependability analysis of safety-critical systems. Such systems may feature multiple modes of operation where the behaviour of the systems and the interactions between system components can change according to what modes of operation the systems are in.MBSA techniques usually combine different classical safety analysis approaches to allow the analysts to perform safety analyses automatically or semi-automatically. For example, HiP-HOPS is a state-of-the-art MBSA approach which enhances an architectural model of a system with logical failure annotations to allow safety studies such as Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA). In this way it shows how the failure of a single component or combinations of failures of different components can lead to system failure. As systems are getting more complex and their behaviour becomes more dynamic, capturing this dynamic behaviour and the many possible interactions between the components is necessary to develop an accurate failure model.One of the ways of modelling this dynamic behaviour is with a state-transition diagram. Introducing a dynamic model compatible with the existing architectural information of systems can provide significant benefits in terms of accurate representation and expressiveness when analysing the dynamic behaviour of modern large-scale and complex safety-critical systems. Thus the first key contribution of this thesis is a methodology to enable MBSA techniques to model dynamic behaviour of systems. This thesis demonstrates the use of this methodology using the HiP-HOPS tool as an example, and thus extends HiP-HOPS with state-transition annotations. This extension allows HiP-HOPS to model more complex dynamic scenarios and perform compositional dynamic dependability analysis of complex systems by generating Pandora temporal fault trees (TFTs). As TFTs capture state, the techniques used for solving classical FTs are not suitable to solve them. They require a state space solution for quantification of probability. This thesis therefore proposes two methodologies based on Petri Nets and Bayesian Networks to provide state space solutions to Pandora TFTs.Uncertainty is another important (yet incomplete) area of MBSA: typical MBSA approaches are not capable of performing quantitative analysis under uncertainty. Therefore, in addition to the above contributions, this thesis proposes a fuzzy set theory based methodology to quantify Pandora temporal fault trees with uncertainty in failure data of components.The proposed methodologies are applied to a case study to demonstrate how they can be used in practice. Finally, the overall contributions of the thesis are evaluated by discussing the results produced and from these conclusions about the potential benefits of the new techniques are drawn

    Towards Harmonizing Multiple Architecture Description Languages for Real-Time Embedded Systems

    Get PDF
    Abstract-The increasing complexity of real-time embedded systems requires appropriate methods and techniques to support the development including the specification and analysis of different architectural aspects. A large number of architectural description languages (ADL) have been proposed with varying focus and application domains. There is a need for harmonization of these ADLs. This can be from develoloping and understanding of how they differ or could be synergistically combined for increasing the overall development efficiency and fulfilling the ever increasing functional and non-functional requirements on a system. This paper addresses this issue and focuses on four different ADLs: EAST-ADL, AUTOSAR, AADL and Rubus. In this work we compare these ADLs, identify possible usage scenarios involving more than one ADL and discuss some of the underlying challenges. A representative industrial case study of a brake-by-wire system is used to support the work

    Augmenting a Hazard Analysis Method with Error Propagation Information for Safety-Critical Systems

    Get PDF
    Safety-critical system development requires an explicit design to manage component failures and unanticipated conditions of abnormal interaction between system components as hazards that affect the safety and reliability of the system. The potential effects of residual hazards in the operational system context must be reduced to an acceptable level of risk. System reliability focuses on providing continued operational capability in spite of failures. System safety focuses on unsafe conditions because of failures and unpredicted interactions between system components

    Dependability modeling and evaluation – From AADL to stochastic Petri nets

    Get PDF
    Conduire des analyses de sûreté de fonctionnement conjointement avec d'autres analyses au niveau architectural permet à la fois de prédire les effets des décisions architecturales sur la sûreté de fonctionnement du système et de faire des compromis. Par conséquent, les industriels et les universitaires se concentrent sur la définition d'approches d'ingénierie guidées par des modèles (MDE) et sur l'intégration de diverses analyses dans le processus de développement. AADL (Architecture Analysis and Design Language) a prouvé son aptitude pour la modélisation d'architectures et ce langage est actuellement jugé efficace par les industriels dans de telles approches. Notre contribution est un cadre de modélisation permettant la génération de modèles analytiques de sûreté de fonctionnement à partir de modèles AADL dans l‘objectif de faciliter l'évaluation de mesures de sûreté de fonctionnement comme la fiabilité et la disponibilité. Nous proposons une approche itérative de modélisation. Dans ce contexte, nous fournissons un ensemble de sous-modèles génériques réutilisables pour des architectures tolérantes aux fautes. Le modèle AADL de sûreté de fonctionnement est transformé en un RdPSG (Réseau de Petri Stochastique Généralisé) en appliquant des règles de transformation de modèle. Nous avons implémenté un outil de transformation automatique. Le RdPSG résultant peut être traité par des outils existants pour obtenir des mesures de sûreté de fonctionnement. L'approche est illustrée sur un ensemble du Système Informatique Français de Contrôle de Trafic Aérien. ABSTRACT : Performing dependability evaluation along with other analyses at architectural level allows both predicting the effects of architectural decisions on the dependability of a system and making tradeoffs. Thus, both industry and academia focus on defining model driven engineering (MDE) approaches and on integrating several analyses in the development process. AADL (Architecture Analysis and Design Language) has proved to be efficient for architectural modeling and is considered by industry in the context presented above. Our contribution is a modeling framework allowing the generation of dependability-oriented analytical models from AADL models, to facilitate the evaluation of dependability measures, such as reliability or availability. We propose an iterative approach for system dependability modeling using AADL. In this context, we also provide a set of reusable modeling patterns for fault tolerant architectures. The AADL dependability model is transformed into a GSPN (Generalized Stochastic Petri Net) by applying model transformation rules. We have implemented an automatic model transformation tool. The resulting GSPN can be processed by existing tools to obtain dependability measures. The modeling approach is illustrated on a subsystem of the French Air trafic Control System
    corecore