
Safety-critical system development requires an
explicit design to manage component failures
and unanticipated conditions of abnormal inter-

action between system components as hazards that
affect the safety and reliability of the system. The
potential effects of residual hazards in the operational
system context must be reduced to an acceptable
level of risk. System reliability focuses on providing
continued operational capability in spite of failures.
System safety focuses on unsafe conditions because of
failures and unpredicted interactions between system
components.

Researchers in reliability and safety have devel-
oped techniques for the component level and system
level. For example, methods have been proposed to
perform system-level hazard analysis, such as Fault
Tree Analysis (FTA) [Ref. 3], Hazards and Operability
Analysis (HAZOP) [Ref. 4], and Failure Modes and
Effect Analysis (FMEA) [Ref. 5]. In addition, these
compositional approaches are proposed based on the
component level, such as Failure Propagation Transfor-
mation Notation (FPTN) [Ref. 6], Hierarchically Per-
formed Hazard Origin and Propagation Studies (Hip-
HOPS) [Ref. 7], Component Fault Trees (CFT) [Ref.
8], and Fault Propagation and Transformation Calculus
(FPTC) [Ref. 9].

These techniques have been applied in the real
world to safety-critical systems for many years. According
to our experience in applying hazard analysis methods
on different types of systems, these hazard analysis tech-
niques cannot describe the dynamic error behavior of
the system, system states and the transitions of the sys-
tem, and error propagations among system components.
Because of this, traditional hazard analysis techniques
depend on decomposition of the system with respect to
the hierarchy of failure effects, rather than the system’s
architectural model. The overall goal of this research is to
develop procedures that augment existing hazard analysis
techniques with error propagation information and state
machines to support modeling and analyzing dynamic
error behavior.

The increasing complexity and criticality of mod-
ern computing systems are driving the need for en-
hanced hazard analysis methods. A major objective of
our research is to create a deeper safety analysis in the
engineering practice by augmenting the recent hazard

Augmenting a Hazard Analysis Method with Error
Propagation Information for Safety-Critical Systems

by Fryad M. Rashid and John D. McGregor
Clemson, South Carolina

analysis technique, System-Theoretic Process Analysis
(STPA), with the specification of error propagation and
dynamic support contributors. This augmentation is
used to support modeling dynamic error behavior of the
system during hazard analysis, and to identify potential
internal failures of the major components during appli-
cation of STPA.

The significant contribution of this work is a meth-
od to augment STPA with error propagation information
and dynamic support contributors. This will allow us to
identify additional hazards based on different criteria for
existing application examples, identify additional unsafe
control actions in different analyses, identify general and
specific causes for the unsafe control actions, and blend
safety constraints with the system’s architecture to build
a safe product. The proposed method is used to help
stakeholders or safety analysts during hazard analysis to
consider error behavior of a component, which may lead
to inadequate control actions, and to verify each path in
the form of three-way interactions among components
in the feedback control loop to analyze the trace of
each hazard that may lead to an accident. We illustrate
the method by describing several scenarios and model
Scenario 1 by using the Architecture Analysis and De-
sign Language (AADL) supported by the Open Source
Architectural Tool Environment (OSATE) to develop a
safety architecture representation.

Background
In this section, we give background on recent hazard
analysis approaches, error ontologies that provide infor-
mation about error types, and architecture fault model-
ing that helps us understand error propagation.

Systems-Theoretic Process Analysis (STPA)
 STPA is a top-down hazard analysis approach built
on the Systems-Theoretic Accident Model and Process
(STAMP). The major idea behind this approach is to
investigate an accident before it occurs. The main goal
is to identify potential causes of accidents — that is,
scenarios that may lead to losses — so they can be con-
trolled or eliminated in the system design or operations
before damage happens. Simply put, it provides sce-
narios to control and mitigate the hazards in the system
design. The method consists of four steps to provide
scenarios [Refs. 10-12]:

 Journal of System Safety, Summer/Fall 2018 31

1.	 The stakeholder establishes fundamental analyses to
identify accidents and the hazards associated with
those accidents.

2.	 The stakeholder designs a feedback control loop
for the system to identify major components such
as sensors, controllers, actuators and the controlled
process.

3.	 The stakeholder identifies unsafe control actions
that could lead to hazardous states. The stakeholder
can use the control table to identify unsafe control
actions and can translate it to corresponding safety
constraints.

4.	 The stakeholder identifies causal factors for the
unsafe control actions. The safety analyst determines
how each hazardous control action could occur by
identifying the process model variables for the con-
troller in the feedback control loop and analyzing
each path to find out how each hazard could occur.

Error Ontology
The error ontology, defined in the Error Annex for
AADL, represents error types in a hierarchical struc-
ture to support hazard analysis. It provides the concept
of error type to characterize the types of errors to be
propagated. The ontology presents an error event for
an activated fault type and presents an error behavior

state for each failure mode type. The error type can be
described as a categorical label to characterize the type
of error declarations in error propagations, error events,
error behavior states, error flows and error containment.
Also, the label is used to characterize condition dec-
larations for state transitions, detections and outgoing
error propagations. Stakeholders can use error types to
describe how the components could fail and to associ-
ate with error events. For instance, the effect of a sensor
failure might be that it dispatches an incorrect read-
ing (value error), it misses a reading (item omission)
or it does not provide any readings (service omission).
These effects can be caused by various factors, such as
overheating, radiation and low power. The error ontol-
ogy classifies errors into six major error types, including
service errors, value errors, timing errors, replication er-
rors, concurrency errors and access control errors [Refs.
1 and 13]. We give a brief description of error ontology
in Table 1.

Architecture Fault Modeling
Architecture fault modeling and analysis supports auto-
mated safety, reliability and security analyses from the
same architecture model to ensure consistency across
analysis results. The AADL error model annex sup-
ports a bottom-up safety analysis method to support

Error Type Description
Service Errors Represent errors that are related to delivering service for items. Service

errors differ from omission errors, which represent no service delivered
for the items, and commission errors, which represent unexpected service
provided for the items.

Value Errors Represent errors that are related to the value domain of a service. Value
errors differ from value errors for individual service items such as incor-
rect value, value error for sequence of service items such as bounded
value change, and value errors related to the service as a whole like out
of calibration.

Timing Errors Represent errors that are related to the time domain of a service. Timing
errors differ from timing errors for individual service items like early/late item
delivery, timing errors for sequence of service items like rate errors, and tim-
ing errors related to the service as a whole like early/delayed services.

Replication Errors Represent errors that are related to delivery of replicated services. For
example, replicated service items delivered for one recipient or to multiple
recipients.

Concurrency Errors Represent errors that are related to the behavior of concurrent systems,
such as executing tasks concurrently to access shared resources. Here,
errors are distinguished between race condition errors, and mutual exclu-
sion errors.

Access Control Errors Represent errors that are related to the operation of access control ser-
vices, such as authentication and authorization errors.

Table 1 — Error Ontology of Major Error Types.

32 Journal of System Safety, Summer/Fall 2018	

architecture fault modeling by enabling annotation of
an architecture model with fault occurrence, result-
ing failure, and fault propagation behavior to address
dependability concerns in safety-critical systems. This
approach can support architecture fault modeling at
three levels of abstraction [Refs. 1 and 15]:

•	 Fault propagation across the system: Fault propaga-
tion and its impact on the system, its operational
environment and among components within a sys-
tem. This level supports safety analysis in the form
of hazard identification and fault impact analysis.

•	 Fault and recovery behavior of components: Fault
identification and its occurrence, its manifestation
in the component as a failure mode, the effect of
incoming propagation on failure mode, the propaga-
tion of failure mode and incoming propagation as
outgoing propagation, and the ability of the compo-
nent to detect and recover itself. This level supports
safety analysis in probabilistic reliability and avail-
ability analysis.

•	 Compositional abstraction of fault models: Related
to the fault models of the system components to
abstract the fault model of the system. This level
supports safety analysis in scalable compositional
fault analysis.

Method
We extend each step in the STPA technique with error
propagation information and dynamic error behavior. In
addition, we add a final step to merge safety aspects of
the system into the system’s architecture. The steps are:

1.	 Identify hazards using different criteria. This step
involves identifying accidents based on the system
operational context. The error ontology provides
guidance in identifying hazards.

2.	 Build control structures with contributors. This step
includes the construction of a feedback control loop
with finite state machines for describing dynamic
behavior of the system and adds error propagation
specifications across the system to analyze the trace
of the hazards that may lead to accidents.

3.	 Identify unsafe control actions using tracing. This
step helps to identify unsafe control actions based
on error propagations tracing. It identifies the
error behavior of a component that can lead to
inadequate control actions that could become an
unsafe action. This step also helps to identify any
error flow for which a corresponding safety con-
straint needs to be created to mitigate identified
hazards.

4.	 Identify specific causes. This step helps to identify
causes for the unsafe control actions in the feedback

control loop system. Generally, it needs to select the
component first and then specifically look for the
causes which relate internally and externally to the
component.

5.	 Develop safety architecture. Safety architecture is
implemented based on the safety constraints identi-
fied in the previous step. It blends safety aspects of
the system into the overall system architecture.

We created this augmentation to help the stake-
holder or the safety analyst identify and evaluate dys-
functional behavior of the system during hazard analysis.
The main goal of analyzing the behavior of the system
is to identify hazardous control actions by considering
the specification of error propagations across the system,
and operating states of the system, which can have an
effect on control actions. Using the characteristics of
event-driven models and error propagation information
in the safety analysis can assist in providing an effec-
tive way to annotate and assess all possible paths in the
feedback control loop system to identify hazards. In this
method, steps 1 through 4 can identify the source of
errors as hazardous situations and their impact on the
other components during the operational environment
of the system. Step 5 helps to enhance the safety of the
system by feeding the identified hazardous situations or
propagated error events into the system’s architecture to
absorb unsafe actions. Here, we describe the augmented
process by using several scenarios and examples to sup-
port our method.

The heart of the STPA approach is a feedback
control loop to analyze the safety of the system. We
want to improve the method to support deeper safety
analysis for system development. Figure 1 shows the
feedback control loop with error propagation and
finite-state machine models. Figure 1 consists of four
component types: sensors, controllers, actuators and the
controlled process. These components have incoming
and outgoing ports used to send and receive data or
information about different types of error events. The
connections among components represent the nominal
control flow, as well as the error propagation path. The
error propagation path follows port connections from
sensors to controllers, controllers to actuators, actuators
to the controlled process, and controlled process to the
sensors. First, the sensors measure the values of attri-
butes and send them to the controller. Each sensor has
two states, operational and failed. Second, the control-
ler acquires information about the state of the process
from measured variables and controlled variables, and
uses this information for initial action by manipulating
controlled variables to maintain the operational pro-
cess within predefined limits. The controller is used to
regulate the process variables and send commands to

 Journal of System Safety, Summer/Fall 2018 33

the actuator. The controller consists of a process model,
which is used to present variables and their values. The
controller has two states: normal and error. The normal
state shows the status of the variables in normal opera-
tion. The error state shows abnormal values of the vari-
ables. Third, the actuator follows the controller instruc-
tions to execute commands. The actuator has two states,
operational and failed. Fourth, the controlled process is
used to show processes inside the controller. The error
flow passes errors inside the component from an incom-
ing port to an outgoing port [Refs. 1 and 2]. In Figure 1,
we show three scenarios to support our method.

Scenario 1
Scenario 1 begins with the sensor in the operational

state. The failed state is entered when the sensor de-
tects an internal failure. This means that the sensor
becomes a source of error propagation. In this scenario,
we show how error propagates from the sensor to the
actuator, and becomes hazardous to the system. In the
event that the sensor detects an internal failure, the
sensor will be a source of error events. The error con-
tinuously affects the normal operational state of the
sensor. If the sensor is able to recover, the error will
not propagate to the next component. But, if the sen-
sor does not recover, the error propagates through the
outgoing port and along the propagation path to the
controller. The controller receives the error through
its incoming port and puts it in the process model to
process. In this case, the process model does not under-

Normal State

Error State

In Out

O
pe

ra
tio

na
l

Fa
ile

d

In
O

ut

O
perational

Failed

In
O

ut

In Out

Error Flow

Process model

Error Flow 1
(Scenario 1)

Error Flow 2
(Scenario 2)

Error Flow 3
(Scenario 3)

Controlled ProcessS
en

so
r

Controller
A

ctuator

System

Port

Error Propagation

Propagation Condition

Transition

Error Event

Error Flow

Error Propagation Path

Figure 1 — Feedback Control Loop Augmented with Error Propagation and Finite State Machines.

34 Journal of System Safety, Summer/Fall 2018	

stand the propagated error because it holds the value
of the difference between the observed value and the
specified value. For that reason, the propagated error
becomes an error event, which may lead to changing
from the normal state to the error state. If the control-
ler is able to handle the error event and would not be
hazardous to the system, the controller will automati-
cally go back to its normal state. But, if the controller
is not able to solve it, the situation could become haz-
ardous for the system, such as sending an inadequate
or ineffective command to the actuator. The actuator
acts based on orders from the controller. Therefore, the
actuator will execute an inadequate action. This kind of
action can be considered an unsafe control action be-
cause it is made based on propagated error. If we want
to diagnose the cause of the unsafe action, we must go
back to the system controller because we expect that
the controller did not control the process. However, in
this situation the controller does not have any faults.
In this case, we must go back a step further to find
the specific or exact cause of the fault. We must then
analyze the component interactions in the feedback
control loop system in a three-way interaction, rather
than a two-way interaction. Finally, we show that the
propagated error from sensor to actuator has three
important effects in the system. First, it affects the state
of the sensor itself. Second, it affects the decision of the
controller. Third, it affects the actuator to perform inef-
fective action. This illustration allows us to identify the
source of the hazard by back-tracing for the error.

We provide an example to support this scenario
and show how our method helps to identify additional
informative features to predict hazardous situations for
an existing application example in References 2 and 13.
For example, what will happen if the sensor in adaptive
cruise control (ACC) estimates the incorrect values for
speed and distance of the car in front of its car (e.g., the
sensor estimates that it is close enough, but in reality, it
is not) during driving because of an internal failure? Basi-
cally, when the component has an internal failure, the
result is propagation. These two values are propagating
through the outgoing port of the sensor and along the
propagation path to the controller for processing. The
controller receives these two values from the incoming
port and puts them into the process model for computa-
tion. As a result, the controller is performing an incor-
rect computation because it received incorrect values or
abnormal data. The result of the computation is that an
incorrect command is sent to the actuator. In this situa-
tion, the ACC system warns the driver to apply the brake
because the car is too close to the car in front of it. If the
driver does not perform that action, the system will do so
automatically. Either way, an accident will occur because

the car is performing an unacceptable action based on a
decision made with incorrect values. In this case, either
the driver or the system will apply the brakes in the
middle of the road, and the car may be hit by the vehicle
behind it. Finally, people may be harmed because of
propagating error events from the sensor to the actuator.
The result of this example extends the result of Refer-
ences 2 and 13. The following example details the results
when using our method:

•	 Step 1: Error ontology identifies the wrong estima-
tion as incorrect values. The hazard is “incorrect
estimation values for the car from the ACC system.”

•	 Step 2: Feedback control loop system has been built
from the sensor to the actuator as shown in Figure
1, which is error flow 1 (Scenario 1).

•	 Step 3: The unsafe control action is that “system
applies the brake in the middle of the road.” The
safety constraint for the unsafe action is that “the
system must not apply the brake when it has incor-
rect values.”

•	 Step 4: The general cause for the unsafe control ac-
tion is that “the sensor has internal failure” and the
specific cause is “propagating incorrect values as an
error event from sensor to actuator.”

•	 Step 5: This is shown in the developed safety archi-
tecture subsection shown in Figure 2.

Scenario 2
Scenario 2 begins with the controller in the normal
state. The error state is entered when the controller
detects an internal failure. The generated error does not
propagate outward; it stays within the controller. Differ-
ent types of errors propagate through the outgoing port
to the actuator, instead of the generated error. For ex-
ample, the controller generates an (out of range) error,
but it sends a (no data) error to the actuator because
the controller is unable to handle containment errors.

In the case of internal failure, the controller be-
comes a source that generates errors for the next compo-
nent. The generated error affects the normal operational
state continuously. If the controller is able to recover ,
the error will not propagate. But, if it is not able to re-
cover, the controller changes the the error to another
type and then propagates it through an outgoing port
and along the propagation path to the actuator. In this
hazardous situation, for each propagated error the actua-
tor is executing a different type of unacceptable action
because the controller is a complex system that has many
variables with many types of errors. For instance, if these
errors are generated in the controller (i.e., “stuck value”
error, “out of range” error or “out of calibration” error),
the actuator is performing an unacceptable action for the

 Journal of System Safety, Summer/Fall 2018 35

transformed error (i.e., no value, bad value, or incorrect
value) because the controller changed the type of the un-
handled error. After that, the controlled process receives
the propagated error from the actuator as an inadequate
or ineffective action through the error propagation path,
and then the error passes through the error flow inside
of the controlled process to the outgoing port. The inad-
equate or ineffective action of the actuator is not able to
control processes within a predefined limit in the con-
trolled process. Therefore, the output of the controlled
process would be an incorrect or inaccurate measure-
ment — or would have a feedback delay. For example, if
the input of the controlled process has a delayed opera-
tion, its output certainly would have a feedback delay.
These are events contributed to the system hazard be-
cause of error propagations.

Finally, we illustrated that the propagated error
from controller to controlled process has three important
effects on the system. First, it affects the controller deci-
sion. Second, the actuator performs an inadequate action.
Third, it affects the controlled process by selecting the in-
appropriate process for the action. This illustration allows
us to identify the source of the hazard by back-tracing for
the error.

The following example supports Scenario 2: We
have an automated door control system for a train in
Reference 2. We need to extend the same example to
improve the safety of the system from better to best. For
instance, what would happen if the controller in an au-
tomated door control system for a train (ADCST) sends
“0” value instead of “1” value because of internal failure
to select the doors to open, and to allow people to move
out when the train is stopped completely at the station
platform? Certainly, if the controller has an internal fail-
ure, it produces an internal error. The error becomes an
event and leads to changing the normal operational state
of the process model to the error state. If the controller
is able to handle the error event, it is not going to be a
hazardous situation. The controller will autonomously go
back to its normal state. But if it is not able to handle the
error event, the error will be transformed into an outgo-
ing propagation type from controller to actuator, such as
the actuator getting a “0” value error instead of a “1.” As
a result, the actuator will perform the wrong action. For
example, it might select the right-side doors processes in
the controlled process to execute instead of the left side
doors. This can definitely lead to people being harmed
because the system guides people in the wrong direction.
Our method can be expanded to add the following infor-
mation for the (ADCST) example in Reference 2.

•	 Step 1: Error ontology identifies wrong selection
as incorrect values. Now, the hazard is “wrong side
selection to open the doors at the station platform.”

•	 Step 2: Feedback control loop has been built from

the controller to the controlled process as shown in
Figure 1, which is error flow 2 (Scenario 2).

•	 Step 3: The unsafe control action is that “system
selects right side doors to open instead of left side:
That is an unsafe action.” The safety constraint for
the unsafe action is that “the system must not open
the doors when it has incorrect values.”

•	 Step 4: The general cause for the unsafe control
action is that “the controller has an internal failure,”
and the specific cause is “the propagating trans-
formed error event from controller to controlled
process.”

•	 Step 5: Space constraints for this document do not
allow us to show the developed safety architecture
for this example.

Scenario 3
Scenario 3 begins with the actuator in the operational
state. The failed state is entered when the actuator
detects an internal failure. The actuator receives a com-
mand from the controller through the incoming port,
but the command is not executed as the controller
intended because of the actuator’s internal failure. The
result of the internal failure is propagation of an error.
The actuator produces an error internally. The gener-
ated error affects the received commands because the
error event results in changing the operational state to
failed state. If the actuator is able to solve this problem,
it does not impact the controller’s command. If the
actuator is not able to handle the problem, this could
become a hazardous situation. This situation impacts
the actuator’s output, such as having a delay in opera-
tion — in other words, a timing error. The delayed
operation directly affects the controlled process be-
cause the timing error passes through the error flow to
the output port. The output of the controlled process
becomes an input to the sensor, but it has a feedback
delay because of propagating the timing error. At the
same time, the output of the sensor becomes an input
to the controller, but it also has a feedback delay due to
propagating the timing error. Therefore, the propagated
error from the actuator to the sensor has three impor-
tant effects on the system: First, it affects the actuator
state. Second, it affects the controlled process by hav-
ing a delayed time to select the appropriate process for
the action. Third, it affects the sensor by having de-
layed time to obtain measured values. This illustration
allows us to identify the source of the hazard by doing
the back-tracing for the error.

As an example for this scenario, we use the real
safety-critical embedded system for a medical device
— the pacemaker. The pacemaker is used to regulate an
abnormal heartbeat. It has two main essential tasks: sens-
ing and pacing. In pacing, it paces the heart in case the
heart’s own rhythm is irregular or too slow. In sensing,

36 Journal of System Safety, Summer/Fall 2018	

it monitors the heart’s natural electrical activity. If the
pacemaker senses a “normal” heartbeat, it will not stimu-
late the heart. Now, according to our method, we need
to specify major components of the pacemaker, such as
the controller (DCM: Device-Controller Monitor), the
actuator (PG: Pulse Generator), the controlled process
(heart) and the sensor (electrode/lead) [Refs.14 and 15].
We can connect the components as shown in Figure 1.
Our illustration starts from the actuator to the sensor’s
output as shown in Figure 1 error flow 3 (Scenario 3:
PG g heart g electrode/lead). If the sensor detects that
the heart needs pacing, the DCM sends the command to
the PG to send a pulse to the heart. The PG receives the
command, but it is not executed directly because it has
an internal failure. In this case, the produced error inside
the PG continuously affects the normal operational state
of the PG and directly impacts the DCM’s command.
If the PG is able to solve the error, no hazardous situa-
tion would result. But if it is not able to solve the error
the situation will be hazardous for the patient. It means
that some errors may occur in the pacemaker, such as
a timing error (delayed service or late delivery) for this
situation, causing the patient’s heart not to get delivered
therapy. The timing error leads to a lack of control of the
heart rate. This feedback delay of the heart becomes an
input to the sensor. The sensor sends this status to the
controller. The controller process model makes a com-
parison between the sensing value and the threshold
value to correct this problem. If the controller decides to
send another command based on different values to the
PG to send one more pulse to the heart, the problem will
not be solved because the heart gets another late deliv-
ery of therapy. The health of the patient is not going to
be better because of accumulating late delivery therapy,
which does not help to increase the slow heart rate.
Therefore, the internal failure of the PG directly impacts
the patient’s heart because of timing error propagation
from actuator to the sensor. The result of this example is
shown as follows:

•	 Step 1: Error ontology identifies timing errors, such
as late delivery. Now the hazard is “The pacemaker
is not working properly.”

•	 Step 2: The feedback control loop has been built
from the actuator to the sensor as shown in Figure 1
which is error flow 3 (Scenario 3).

•	 Step 3: The unsafe control action is that “The pace-
maker does not provide an electrical pulse when it’s
required.” The safety constraint for the unsafe action
is that “The pacemaker should provide an electrical
pulse whenever needed.”

•	 Step 4: The general cause for the unsafe control
action is that “The actuator has an internal failure,”

and the specific cause is “the propagation timing
error from the actuator to the sensor.”

•	 Step 5: Space constraints do not allow us to show
the developed safety architecture for this example.

Develop Safety Architecture
Step 5 is the development of safety architecture (the
proposed method) and is used to feed the previous
steps into the system’s architecture to absorb the un-
safe control actions, identify hazards in the early system
design, provide safety requirements for each hazard
and provide specific causes for each unsafe action. In
fact, developing the safety architecture is directly com-
bined with the hazard analysis process and architecture
design efforts. In this section, we examine Scenario 1
for the ACC system’s architecture. The Architecture
Analysis and Design Language (AADL), supported
by Open Source Architectural Tool Environment
(OSATE), is used to develop the STPA pattern, and
to augment it with error propagation information and
dynamic behavior contributors. We record the informa-
tion, such as error events, propagated errors, states, and
transitions in the error model (EMV2) for the major
components. The numbers in Figure 2 are equal to the
steps shown as follows:

1.	 The sensor’s internal failure is recorded as an error
event. It changes the operational state of the sen-
sor to a failed state. This failure affects the sensor’s
reading values as incorrect values for the car in front
(e.g., incorrect speed and incorrect distance).

2.	 The result of internal failure is the propagation
of incorrect values for the speed and the distance
throughout the event port and the propagation path
to the controller for processing.

3.	 The controller receives these two values from
the incoming port and starts making computa-
tions. But the controller does not understand the
propagated incorrect values. For that reason, the
propagated error becomes an error event and re-
sults in changing the normal state of the controller
to an error state. The result of the computation is
that an incorrect command is sent to the actuator
because the controller received incorrect values or
abnormal data.

4.	 The command is sent to the actuator through the
control flow, as well as through the propagation path.

5.	 The actuator receives the command. Then, the sys-
tem warns the driver to apply the brake because the
car is close enough to the car in front of it, which is
not actually true. If the driver does not perform that
action, the system will automatically do so. Either
way, an accident will occur because the car is per-

 Journal of System Safety, Summer/Fall 2018 37

forming an unsafe action based on a decision made
with incorrect values. In this case, either the driver
or the system will apply the brakes in the middle of
the road, and the car may be hit by the vehicle be-
hind it.

6.	 The result of the ACC system example is feeding
into the Error Model Annexes (EMV2) such as
hazard, type of failure, unsafe actions and/or safety
constraints.

7.	 The controlled process incoming port is going to be
the sink or destination of the error.

Discussion
In this section, we illustrate the new capabilities of this
method:

1.	 The method helps eliminate unsafe situations
through the dynamic structure of the system. The
operation of the system is useful because it produc-
es errors that can be traced back to causes.

2.	 The method is able to identify potential internal
failures of the major components in the feedback
control loop system to reduce the potential effects
of residual hazards in the operational system con-
text.

3.	 The method is able to show the effect of unsafe in-
teractions, based on the three-way communication
format among components and back-tracing for the
error.

4.	 The method helps reduce dependence on human
experts in organizations and/or companies to identi-
fy extra hazardous situation behavior for the system.

5.	 The method can predict important informative
features, such as finding additional hazardous situa-
tions for the existing application examples.

6.	 Through the method, we are able to answer the fol-
lowing research questions for safety-critical systems:

	 •	 RQ1) How can we improve safety of the system
by augmenting a hazard analysis method with
error propagation information?

	 •	 RQ2) How can we analyze the internal failures of
the components and show the effect of the other
components during the hazard analysis process?

	 •	 RQ3) How can we identify dysfunctional behav-
iors of the components during the hazard analysis
process?

	 •	 RQ4) How does this hazard analysis method sup-
port dynamic error behavior?

Conclusion and Future Work
We have concluded that this method is different from
STPA in using error propagation information and finite
machines for the feedback control loop to visualize the
actual behavior of the system during hazard analysis.
Therefore, this method found unsafe control actions
based on dynamic error behavior; it found specific haz-
ards based on error ontology; and it found specific causes
for the unsafe control action based on three-way inter-
actions and back-tracing for the error when the STPA
does not find them for the same example. This does
not mean that this method is a replacement for STPA.
However, it more effectively analyzes the elements of a
safety-critical system. Finally, this method can assist the
safety analyst or the stakeholder during STPA to analyze

component error behavior
events
 Send_info : error event;
transitions
 Send_CMD: Normal_State -[Send_info]-> Error_State;
end component;

component error behavior
events
 Internal_Failure : error event;
transitions
 Send_info: operational -[Internal_Failure]-> Failed;
end component;

error propagations
 Controlled_Action : in propagation[incorrectSpeed,
 incorrectDistance];
 Feedback : out propagation[incorrectSpeed,
 incorrectDistance];
flows
 f1 : error sink Controlled_Action;
end propagations;

properties
 EMV2::hazards =>
 ([crossreference => “H:Incorrect estimation values for the car in front in the ACC system”;
 failure => “Internal failure of the sensor”;
 phases => “Scenario1: Propagating incorrect values as an error event from sensor to actuator”);”;
 description => “UCA: System apply to brake in the middle of the road which is unsafe action”;
 comment => “Safety Constraint:The system must not apply the brake when it has inorrect values”;
])
 applies to Failed;

component error behavior
events
 Receive_CMD: error event;
transitions
 Unsafe_Action : operational -[Receive_CMD]-> Failed;
end component;

error propagations
 Receive_Info : in propagation[incorrectSpeed,
 incorrectDistance];
 Send_CMD : out propagation[incorrectSpeed,
 incorrectDistance];
flows
 Err_Passing : error path Receive_Info -> Send_CMD;
end propagations;

Receive_Info

 Send_CMD

Controller

Receive_Info

Unsafe_Action

Feedback

Controlled_Action

ControlledProcess

Send_Info

Providing_info

Sensor Actuator

ACC_System_Level.impl

error propagations
 Send_info: out propagation[incorrectSpeed,
 incorrectDistance];
flows
 Scenario_1 : error source Send_info [incorrectSpeed,
 incorrectDistance];
end propagations;

1

2

7
6

5

4

3

Figure 2 — Developed Safety Architecture for the ACC System Example.

38 Journal of System Safety, Summer/Fall 2018	

the component interactions in the feedback control loop
system in a three-way interaction, rather than a two-way
interaction, to identify the effect of the unsafe actions
on other components. The future direction of this work
is to add an advanced step in the error propagation
information into this method. That step would be a
composite error behavior state specification of a system
with regard to error behavior states of its subsystems or
components. For example, taking controller 1 and con-
troller 2 in parallel and putting them into the system to
determine how the system deals with propagating errors
for one or both of the controllers.

About the Authors
Dr. John D. McGregor is an associate professor emeri-
tus of computer science at Clemson University in
Clemson, South Carolina, a visiting scientist at the
Software Engineering Institute and a partner in Lu-
minary Software, a software/systems engineering con-
sulting firm. He regularly engages large software de-
velopment organizations at all levels from strategic to

References

1.	 Feiler, Peter, et al. “Architecture Fault Modeling and Analysis with the Error Model Annex, Version 2,” Technical
Report: CMU/SEI-2016-TR-009, Carnegie Mellon University/Software Engineering Institute, Pittsburgh, Penn-
sylvania, June 2016.

2.	 Leveson, Nancy. “An STPA Primer Version 1,” MIT Publications, Cambridge, Massachusetts, http://sunnyday.mit.
edu/STPA-Primer-v0.pdf, August 2013.

3.	 Baig Ahmed, et al. “Reliability Analysis Using Fault Tree Analysis: Review,” International Journal of Chemical Engi-
neering and Applications, Vol. 4, No. 3, June 2013.

4.	 Nolan, Dennis. Safety and Security Review for the Process Industries, Fourth Edition, Elsevier, Amsterdam, The
Netherlands 2015.

5.	 Mikulak, Raymond, et al. The Basics of FMEA, Second Edition, Taylor & Francis Group, Abingdon, U.K., 2009.
6.	 Fenelon, Peter, et al. “An Integrated Toolset for Software Safety Analysis,” The Journal of Systems and Software,

Vol. 21(3), pp. 279–290, June 1993.
7.	 Papadopoulos, Y. “Analysis and Synthesis of the Behavior of Complex Programmable Electronic Systems in Con-

ditions of Failure,” Reliability Engineering and System Safety, Vol. 71(3), pp. 229-247, Elsevier, 2001.
8.	 Kaiser B., et al. “A New Component Concept for Fault Trees,” Proceedings of the 8th Australian Workshop on Safety

Critical Systems and Software, Vol. 33, 37-46, ACM, 2003.
9.	 Wallace Malcolm. “Modular Architectural Representation and Analysis of Fault Propagation and Transformation,”

Electronic Notes in Theoretical Computer Science, 141(3):53–71, Elsevier, 2005.
10.	Abdulkhaleq, Asim and Stefan Wagner. “Integrating State Machine Analysis with System-Theoretic Process

Analysis,” LNI Proceeding of Software Engineering Workshop Band, Vol. P-215, pp. 501-514, Köllen Druck+Verlag
GmbH, 2013.

11.	Hommes Qi. “Applying STPA to Automotive Adaptive Cruise Control System,” MIT Publications, Cambridge,
Massachusetts, 2012.

12.	Leveson, Nancy. “Engineering a Safer World: Systems Thinking Applied to Safety,” MIT Press, Cambridge, Mas-
sachusetts, 2011.

13.	Feiler Peter. “Architecture-Led Safety Analysis of the Joint Multi-Role (JMR) Joint Common Architecture (JCA)
Demonstration System,” Technical Report: CMU-SEI-2015-SR-032, Carnegie Mellon University/Software Engi-
neering Institute, Pittsburgh, Pennsylvania, December 2015.

14.	National Heart, Lung, and Blood Institute. “Explore Pacemakers,” https://www.nhlbi.nih.gov/health/health-top-
ics/topics/pace, February 28, 2012.

15.	Standard Pacemaker. “Pacemaker System Specification,” Software Quality Research Laboratory (SQRL), Boston
Scientific, January 3, 2007.

tactical to the concrete. His research interests include
highly-reliable software-intensive systems, software
product lines, socio-technical ecosystems, model-driven
development and software/system architecture. He
serves on the program committee of six to 10 confer-
ences per year and researches, writes and practices stra-
tegic software engineering. His consulting has included
satellite operating systems, telephony infrastructure,
cell phones, software certification and software-defined
radios. His latest book is A Practical Guide to Testing
Object-Oriented Software (Addison-Wesley 2001).

Fryad M. Rashid is a Ph.D. student in Clemson
University’s Computer Science Department. He is do-
ing research in the Strategic Software Engineering Re-
search Group (SSERG). He is interested in developing
safety analysis methods for safety-critical systems, cyber-
physical systems and real-time embedded systems. He
has used AADL/OSATE for system development in
software/system architecture, and software verification
and validation.

 Journal of System Safety, Summer/Fall 2018 39

