
Towards Harmonizing Multiple Architecture
Description Languages for Real-Time Embedded

Systems

Tahir Naseer Qureshi, Martin Törngren, Magnus Persson, De-Jiu Chen, Carl-Johan Sjöstedt
Division of Mechatronics, Department of Machine Design

KTH-The Royal Institute of Technology
Stockholm, Sweden

{tnqu, martin, magnper, chen, carlj}@md.kth.se

Abstract— The increasing complexity of real-time embedded
systems requires appropriate methods and techniques to support
the development including the specification and analysis of
different architectural aspects. A large number of architectural
description languages (ADL) have been proposed with varying
focus and application domains. There is a need for
harmonization of these ADLs. This can be from develoloping and
understanding of how they differ or could be synergistically
combined for increasing the overall development efficiency and
fulfilling the ever increasing functional and non-functional
requirements on a system. This paper addresses this issue and
focuses on four different ADLs: EAST-ADL, AUTOSAR, AADL
and Rubus. In this work we compare these ADLs, identify
possible usage scenarios involving more than one ADL and
discuss some of the underlying challenges. A representative
industrial case study of a brake-by-wire system is used to support
the work.

Keywords-Architecture description language (ADL); AADL,
EAST-ADL, AUTOSAR; Rubus; Complexity management;
embedded systems; model transformation.

I. INTRODUCTION

The complexity of embedded systems and their
development process has increased considerably during the last
few decades. A few of the contributing factors are increasing
number of software components distributed over a network,
their interaction, changing technology, increased non-
functional requirements such as safety, comfort, reliability,
changing and emerging roles of different stakeholders.

Different solutions and methods have been proposed to
handle different aspects of the existing complexity. Model-
based development (MBD) [1] in particular has gained the
attention from industry as well as researchers in the field of
embedded systems. Depending on context, there exist different
interpretations of model-based development. For example,
from control systems engineering point of view, the use of
Matlab/Simulink [2] models for design and analysis followed
by generation of an executable code for implementation is
considered as model-based development. In another context,
MBD can be the use of UML based graphical model for design
and use of some other language for implementation.

An Architectural Description Language (ADL) is one of the

solutions in model-based development. It exists in different
forms depending on the applied industrial or application
domain. According to IEEE 1471 standard [3], an architecture
is defined as:

 “The fundamental organization of a system embodied in its
components, their relationships to each other, and to the
environment and the principles guiding its design and
evolution”

While an architectural description is the specification of an
architecture, an ADL provides the syntax, either textual or
graphical, for an architecture description. The need for
expressing and describing architectures of real-time embedded
systems has been expressed for several decades. This need has
been especially motivated for system integrators, which have to
build a system out of a large number of functions and (software
and hardware) components. An example of an early ADL is
MetaH, which later evolved into the AADL (now standardized
by the SAE), [9].

Modeling languages like UML [4] or SysML [5] provides
some generic solutions for architectural descriptions. However,
specific solutions e.g. MARTE [6] targeting specific aspects of
a real-time system is emerging in the form of new UML
profiles. In addition there also exist proprietary ADLs e.g.
Rubus [7] 1, and domain specific ADLs, for example as part of
AUTOSAR [11] and the AADL [9].

Associated with the ADLs are tools for performing
different development activities including the specification of
an architecture using these ADLs, analysis of functional and
non-functional properties, synthesis etc. On one hand, some of
the activities are possible using the same tools used for
specifying architecture. For example, with OSATE [8], it is
possible to specify an architecture using AADL, as well as
perform some non-functional analysis. In contrast, additional
analysis is carried out by other external tools. For example,
Simulink for behavioral analysis of a system specified using
EAST-ADL [12]. In this case the required information is
transferred either manually or automatically from the
architecture description to the analysis tool and vice versa.

1 With Rubus, we refer to the architecture description language that is

used for high-level design (not the corresponding real-time
operating system).

Figure 1. Hypothetical relation between EAST-ADL (EA), AADL,

AUTOSAR and Rubus.
With the above-mentioned facts, the need for

harmonization (e.g. language combination, tools sharing,
model transformation for analysis etc.) is evident. For example,
automotive systems are today increasingly being developed
using ADLs, and those include at least AUTOSAR-ADL2 [11],
Rubus [7] and EAST-ADL [10]. For the same system, these
ADLs can be used with different focuses aspects and levels of
abstraction; it is therefore important to understand their
relations and how they potentially could be combined.
Moreover, since the ADLs often are developed in close
cooperation with research, they also come along for example
with advanced analysis capabilities. If ADL models could be
transformed into other representations with the relevant
properties maintained, it might be possible to reuse new
analysis features.

The presented work contributes towards the envisioned
harmonization. The relation between the four ADLs; EAST-
ADL, AADL, AUTOSAR-ADL and Rubus shown in Figure 1
is investigated. The different EAST-ADL (EA) levels
correspond to different abstractions. In particular a comparison
framework is used for a conceptual mapping of the four ADLs
and with the help of a case study, additional tool and analysis
relations are identified. The case study is a representative
industrial brake-by-wire system. This case study has also been
used in the ATESST [12], MAENAD [14] and TIMMO [13]
projects. Due to space limitation, the details are not included in
the paper. However, we would like to mention that this case
study covers all the levels of abstractions shown in Figure 1,
comprises of a large variety of constraints as well as a model
for the environment. While different parts of the case study
were specified, modeled and simulated using a few of the tools
related to the considered ADLs, some of the results were
obtained from other relevant information such as language
specifications. SystemDesk and TargetLink from dSpace [15],
Matlab/Simulink, OSATE and Rubus Designer are the major
tools used in the work.

The paper is organized as follows: A brief overview of the
comparison framework is presented in the next section
followed by the presentation of selection rationale in section
III. A description of the four ADLs is presented in sections IV -
VII. The comparison results are presented in section VIII. A
brief overview of the related work is presented in section IX.
Finally, the paper is concluded in section X.

2 Note that AUTOSAR is an automotive software architecture

initiative and that we here refer to the architecture description
means that are part of this initiative (and for the sake of brevity,
will use the term AUTOSAR- ADL).

II. COMPARISON FRAMEWORK

The comparison presented in this paper is a modification
of the framework defined in [16] to align with our objectives.
This modified version uses the same naming but different
usage for many of the attributes. According to the framework,
an ADL can be evaluated from two different aspects; the
modeling features and the tool support. The former aspect is
further categorized into components, connectors and
architectural configuration.

A few important aspects compared in the framework are as
follows:
 Industrial application for which an ADL was originally

developed and applied.
 Characteristics of the constituting components and

connectors such as independence from the platform on
which the components will be deployed and the type of
inter-component communications.

 Support for behavioral modeling and analysis, i.e. to
know the extent on the reliance on external tools as well
as built-in analysis within a specification tool.

 Similarly to the last point, the support for the specification
and analysis of non-functional properties is also
compared.

 From the overall architectural view, support for scalability
(i.e. if it is possible to scale the architecture for larger or
smaller platform or resources) and traceability between
different artifacts and requirements are considered.

 The tools associated with ADLs are compared for their
specification and analysis support and maturity.

Further clarification is provided in the table presented in the
results section in the form of questions associated for each
evaluated feature.

III. MOTIVATION AND SELECTION RATIONALE

ADLs provide multiple views/aspects of the system to
enable advanced analysis. They have been lagging in industrial
adoption compared to behavioral modeling approaches. The
reason are the challenges in deploying ADLs, including
maturing of tools and anchoring with respect to embedded
systems platforms (i.e. corresponding abstractions should be
possible to map to platform concepts in a sound way – and
tools that support this are required).

For real-time systems, several ADLs can be considered. A
brief motivation for the selection and exclusion of different
ADLs for the presented work are as follows:

 EAST-ADL and AADL cover a large number of artifacts
related to embedded systems, but remain at different levels
of abstraction.

 AADL has a long development history, stemming from
MetaH, and has further evolved including harmonization
efforts with respect to UML/MARTE [6]. Both EAST-
ADL and AADL are very interesting since the have been
closely aligned to a number of analysis methods and
theories, such as different types of safety and timing
analysis. EAST-ADL has incorporated concepts from
SysML and has also partly been aligned with MARTE.

 AUTOSAR-ADL and Rubus lie on the implementation
level. The latter can be seen as a light-weight alternative to
the former, with additional focus on specification and
handling of real-time requirements [7].

 HDLs – Hardware description languages, such as VHDL,
Verilog and SystemC, are evolving towards higher-level
abstractions (i.e. transaction level), including both
behavioral and structural abstractions. The main emphasis
so far has been on simulation-based analysis. Research
efforts mainly focus on the functional/behavioral
evaluation and not primarily on architecture.

 MARTE [6] is a UML profile dedicated to embedded real-
time systems. The MARTE profile is highly relevant but
indeed already (at least partially) aligned to both AADL
and EAST-ADL, and therefore not covered here.

 SysML – the OMG Systems Modeling Language [5] is a
UML profile specification of embedded systems and its
environment. It supports the specification of requirements,
system dynamics in terms of differential equations etc.
SysML is a generic approach, not dedicated to embedded
systems and also similar to EAST-ADL.

IV. EAST-ADL

EAST-ADL [10] evolved from the EAST-EEA and ATESST
projects and been extended and refined in the ATESST2 [12]
project. The EAST-ADL language has also been either adopted
or being considered in several other research projects including
TIMMO [13], EDONA [17] and CESAR [18]. It is partly
included as an annex in the recent MARTE standard [6]. The
purpose of EAST-ADL is to specify automotive embedded
systems at different levels of abstractions from different views,
providing a domain specific approach for separation of
concerns and information management between different
engineering disciplines. The four abstraction levels in EAST-
ADL are Vehicle level related to features and product
variations, Analysis level specifying higher level
functionalities, Design level related to the detailed design,
component allocation. This is further divided into Functional
Design Architecture and Hardware Design Architecture
specifying application and hardware architectures respectively,
and Implementation level which is the lowest level of the
architecture related to the final development phases and
standards such as AUTOSAR [11].

The language has separate packages enabling modular
system modeling. Extensions for modeling environment,
behavior, dependability, and timing etc. are also provided.
These extensions are allowed at different levels of abstraction
and enables the separation of the description of design function
behaviors and the specification of related constraints for such
behaviors like timing and safety.

EAST-ADL can be used with several tools. However, the
most commonly used tool for modeling using EAST-ADL is
PapyrusUML [19]. External tools are used for different kinds
of analysis such as simulation and safety analysis. Examples of
external tool usage scenarios include model checking using
SPIN [21] and error analysis using HIP-HOPS (Hierarchically

Performed Hazard Origin and Propagation Studies) [20]. The
latter is illustrated in [21].

V. AADL

AADL (Architecture Analysis and Design Language) [9]
was originally developed for avionics systems development,
and based on its predecessor MetaH. The focus of AADL lies
on the detailed architecture specification and verification. The
language can either be adopted as part of a top-down
development approach, supporting detailed architecture design
and integration analysis, or for reverse engineering efforts in
modeling and analyzing (changes to) legacy systems. The
language specifications [9] do not explicitly specify more than
a single level of abstraction (the entire system) or an implied
development approach. Similarly to EAST-ADL, it also has
core language constructs and the extensions namely error
modeling for dependability aspects of reliability, availability
etc., meta-model for XMI/XML annex for supporting additional
tools, graphical notation for graphical modeling, behavior
modeling, ARINC 653 to support the standard for aircraft
industry, UML2.0 profile to support the use of UML

The most common tool used for modeling with AADL is
OSATE (An Extensible Open Source AADL Tool
Environment) [8]. It is possible to perform resource and end-to-
end latency flow analyses, semantic analysis of modal system
as well as security level checking directly within the tool
environment. This is exemplified by the AADL consortium
with different case studies. In addition, tools such as Simulink
can be used for analyzing AADL models. One such example is
[23]. AADL has also been incorporated in the latest MARTE
standard [6]. The current evolution includes update of the
behavior, data modeling and ARINC annexures. AADL has its
own drawbacks, such as complex component compositions and
property ambiguity [24].

VI. AUTOSAR-ADL

AUTOSAR (AUTomotive Open System ARchitecture)
[11] is a standard for dealing with the ever-growing complexity
of automotive embedded systems. It provides a basis for
modular software architecture with standardized interfaces and
specifications of a run-time environment. Configuration
management, e.g. relocation of functionality from one
computation node to another at development time is also
supported by the AUTOSAR standard. The standard also
allows the use of commercial-off-the-shelf SW-components.

The result of the AUTOSAR effort is a framework and
methodology [25] for standardized automotive software and
hardware. A six-layered software architecture is a part of the
AUTOSAR framework. The layers are Application, Run Time
Environment (RTE) providing middleware functionality,
Service, ECU (Electronic Control Unit) Abstraction, Complex
Drivers, and Micro-controller Abstraction [26]. While the ECU
abstraction is the lowest layer, the Application is the highest
one. The AUTOSAR atomic software components are
categorized into application and infrastructure. While the
former is related to providing software functionalities such as
control algorithm etc. the latter is used for different services
related to an ECU. In addition a concept of virtual functional

bus (VFB) is also introduced to resolve control-related
integration problems. Furthermore, AUTOSAR supports two
possible communication types between its components: client-
server and sender-receiver.

For the description of architecture and its components
standard templates are provided such as [37] for software
components. These templates correspond to the ADL part of
AUTOSAR providing a means to specify and relate different
architectural entities.

Several types of tools are required and being adapted to
configure AUTOSAR-based embedded systems. A few
examples of the tools include, TargetLink and SystemDesk by
dSpace[15] for application modeling, code generation, and
system design. Similar tools are also provided by Vector [27].
Configuration of ECUs is carried out using tools such as
PICEA SUITE from Mecel AB [28].

AUTOSAR and its ADL are evolving with time. The latest
release, i.e. version 4.0, provides additional support for
dynamic scheduling and introduction of multi-core
architectural concepts. The current evolution includes
extensions to address non-functional aspects such as safety
(partial alignment to the forthcoming ISO/DIS 26262 safety
standard) and timing (findings from the TIMMO project –
TADL).

VII. RUBUS

Rubus [7] is an ADL for the specification of safety-critical
embedded system architectures. It originated from
BASEMENT [29] and has been used in many industries related
to both the automotive and avionics domain. Rubus has been
used as a real-time operating system for many years but now it
has an ADL layer on top of it. The main artifact of Rubus ADL
is its component model (CM). While the latest version i.e
RubusCMv3 is presented in [36], RubusCMv4 is under
development. A few of the objectives of Rubus are the support
for an overall system view and reasoning about different
aspects at a higher level of abstraction, separation of views
such as functional and temporal enabling the specification of
both real-time requirements and properties, early analysis due
to a formal syntax providing estimates of implementation
aspects such as memory consumption.

Similar to an atomic software component in AUTOSAR-
ADL, the basic artifact is a software circuit (SWC)3. A SWC
can have one or more associated behaviors, interfaces and
internal state data. The execution method followed by a SWC
is run-to-completion. It also uses the concept of composite (as
in AUTOSAR-ADL), which is a collection of SWCs where the
SWCs can be distributed into different computing nodes. In
contrast, a collection of SWCs called an assembly can only be
allocated to one single node. The concept of an overall mode of
a system can also be specified. Additional artifacts of
RubusCMv3 include items such as clock, interrupt or events,
down-sampling and precedence. In terms of timing
requirements deadline, offset and periodic jitter can be
specified. In contrast to AUTOSAR-ADL, Rubus provides a

3 Although the short form of an AUTOSAR software component and

a Rubus Software circuit is same, the concept is not the same.

relatively simple methodology, starting with functionality
design followed by the separation of data and control flows,
choice of an execution model i.e. time or event-triggering.

From analysis and tooling view, Rubus is supported by
dedicated tools namely Rubus Designer, Rubus Analyzer, and
Rubus Inspector for simulation and analysis provided by
Arcticus System AB [7]. A few of the examples of analysis are
end-to-end response time, overall stack size, effect of different
priority assignments etc. Furthermore, the tools are also
integrated with other higher-level analysis tool such as
Simulink and LabView. Due to this integration, it is possible to
perform co-simulation as well as utilization of automated code
generation features of the tools for a final platform-specific
implementation.

VIII. COMPARISON RESULTS

A comparison based on the framework discussed in section
II is shown in Table 1. A central commonality is that all ADLs
are based on the concepts of components with ports that
interact over connections. Components, ports and connectors
are provided with properties that together allow a structural
system description based on which certain analysis is possible.
For all ADLs, a basic emphasis is on the system structure with
essentially black boxes (components), where the contained
behavior would be expected to be expressed using different
formalisms (e.g. C code, a Simulink model, etc.). The ADLs
mainly capture so called execution behavior, which is related to
components execution timing and the method for sharing
resources. However, different types of components are
supported and with somewhat different assumptions on the
underlying models of computation and properties of interest.

It is only EAST-ADL which explicitly supports the
specifications of requirements, product features and variability.
Although AUTOSAR-ADL only covers a single level of
abstraction, it is the most complex and detailed. This is due to
its large variety of components including platform specific
ones. Tool support in general is not so mature for most of the
considered ADLs. From the architecture specifications
perspective, only OSATE is found to be mature. The
specification tools for other ADLs need further refinements
especially for stability. Because of Simulink’s dominating
position, most of the ADLs try to take a position with respect to
it, for example by developing mappings between ADLs and
Simulink. Therefore, it can serve to be a part of envisioned
harmonization. For example, using is as the common tool for
simulating behavior and code.

In addition to the above, it is also observed that the
combined coverage of the four ADLs considered is enormous
including multiple engineering disciplines and concerns related
to the development of embedded systems. Therefore, it is non-
trivial to cover all the harmonization possibilities in this paper.
Based on the comparison table and the experience from the
case study, a subset of different scenarios for language and tool
usage illustrated in Figure 2 are identified. One major
assumption for this scenario is that the development follows a
top-down EAST-ADL development methodology [30]. The
methodological choice is due to the higher abstraction levels
supported by EAST-ADL lacking in other ADLs. The

Figure 2. Language and tool usage scenarios.

Table 1: Comparison of Architecture Description Languages for Automotive Embedded Systems

Category Features Related Questions AADL EAST-ADL AUTOSAR-ADL Rubus

S
cop

e an
d

ap

p
licab

ility

Is it generic or specific
for an application
domain?

Generic. Initially
developed for avionics
system but now
applicable to
automotive as well.

Developed specifically
for automotive systems
but applicable in other
domains

Automotive specific
software architecture

Generic and applicable
to different application
domains.

S
u

p
p

ort for m
od

elin
g com

p
on

en
ts

C
h

aracteristi
cs

Are components
platform independent?

The components are
platform independent
but it is also possible to
specify platform related
components.

The components are
platform independent
but it is also possible to
specify platform related
components.

Depending on the usage
the components can be
both platform
independent and platform
specific.

The components are
platform independent
but require platform
specific attributes for
analysis. In

terfac
e

What is the point of
interface for a
component?

Ports and port groups. Ports and port groups. Ports and port groups. Port

T
yp

es

What are the different
kinds of instanstiable
components?

Software (data.
Subprograms,
subprogram calls,
threads, thread groups,
processes, pre-declared
runtime services) and
Execution (Processors,
Memory, buses,
devices).

Analysis function type
and prototype, design
function type (Basic
software function type,
local device manager,
hardware function type).
The hardware function
has sub-types of node,
power supply and
logical data bus)

Application Software,
Service, ECU abstraction,
Complex device driver,
Sensor Actuator.

Software circuit

B
eh

avior

How is the behavior
specified? Is it possible
to use external tools /
languages to define
behavior?

Basic behavior such as
modes is part of the
core language. For
additional behavior
description, AADL
behavior annex can be
used. External tools can
be used for generating
code an AADL
component.

Basic behavior such as
modes is part of the core
language. For additional
behavior description the
EAST-ADL behavior
extension can be used. It
is also possible to
associate external
models e.g. Simulink
file to EAST-ADL
components.

The fundamental
behavior entity of
AUTOSAR is a runnable
(smallest code fragment
provided by a
component). The code is
obtained by external
tools. In addition it is also
possible to define modes
of a system which in turn
can be used for different
configurations.

The behavior of a SWC
is specified by its
source code. The code
is obtained by external
tools. Similar to
AUTOSAR it is also
possible to define
modes of a system
which in turn can be
used for different
configurations.

C
on

strain
ts

How are different kinds
of constraints applied
to the components and
behavior? Is it possible
via ports? Do
additional constructs
exist?

Constraints are defined
as the properties of
different components.
The examples period
for execution, priority
or security level etc.
Additional constructs
can be provided by
developing additional
libraries.

Constraints are specified
either by requirements
or specific constructs
provided by the
extensions (e.g. timing
or safety). Additional
constructs can be
provided by developing
extensions.

It is possible to specify
execution constraints as a
part of the behavior
definition. For example a
constraint can correspond
to an RTE event for
triggering a runnable or
an inter-runnable variable
for data sharing.

Currently Rubus
supports timing
constraints i.e. deadline,
offset and periodic
jitter.

E
volu

tion

Is it possible to use
sub-typing mechanisms
for components and its

Sub-typing and
instances are possible

EAST-ADL explicitly
supports component
prototyping mechanism.

Sub-typing and instances
are possible

The library of the
components allows sub-
typing and instantiation

Category Features Related Questions AADL EAST-ADL AUTOSAR-ADL Rubus
features for systematic
evolution of the
architecture?

to some extent.

N
on

-
fu

n
ction

al
p

rop
erties

Which additional non-
functional properties
can be specified?

Security levels, priority,
timing and
computational
resources e.g. memory
and bandwidth.

Functional safety and
timing.

Timing. Timing

C
on

n
ectors

C
h

aracteristics

Does the language
provide any difference
between logical,
functional and physical
connectors?

AADL differentiates
between functional,
logical and parametric
connections

EAST-ADL have
different connectors for
logical, functional,
physical connections.

The connectors in an
AUTOSAR architecture
can be considered as
virtual as dependencies
between different ports is
handled by the RTE.

Rubus differentiates
between data and
triggering.

In
terfac

e Which kind of
interfaces is supported?

Event and data.
Sender-receiver, client
server and
communication channel.

Sender-receiver, client
server and mode-switch.

Data and trigger.

S
em

an
tics

Do the connectors
follow any specific
semantics?

Yes. The AADL
specifications specify
semantics for its
connections e.g.
immediate or delayed.

The EAST-ADL
specifications specify
semantics for its
connections e.g. one
size overwrite buffer.

The semantics are
inherited form the
associated ports.

The semantics are
inherited form the
associated ports.

T
yp

es

What are the different
kinds of connectors?

Port connections,
parameter connections,
access connection

Functional,
communication,
hardware and clamp
connectors.

There exists no
categorization of
connectors.

There exists no
categorization of
connectors.

N
on

-
fu

n
ction

al
p

rop
erties

Is it possible to specify
non-functional
properties such as end-
to-end time etc.?

Yes by defining the
end-to-end flows.

It is possible to use the
extensions to specify
non-functional
properties.

Not explicitly. Not explicitly.

A
rch

itectu
ral C

on
figu

ration
s

U
n

d
erstan

d
a

b
le

sp
ecification

s

Are the specifications
easily understandable?

Yes. Specifically with
the graphical support.

Yes. Specifically with
the graphical support.

Depending on the tool
used, the specifications
are understandable for
overall system
configuration.

With the graphical
support of the available
tool, the architectural
specifications are easily
understandable.

L
evels of

ab
stractio

n
s

How many and which
abstraction levels are
supported by the
language?

The design level and to
some extent the
implementation level.

All levels of abstraction
but with weak support
for the implementation
level.

Implementation level and
partially design level.

Implementation level
and partially design
level.

C
om

p
o

sition
ali

ty

Is it possible to specify
hierarchical
composition?

It is possible. This is
also described in [24]

Component typing and
prototyping is used for
this purpose.

The concept of
composition is provided
for this purpose.

A composite SWC can
be defined.

R
efin

em
en

ts an
d

T

raceab
ility

Does the language
provide any explicit
traceability support
between requirements
and different artifacts?
Does the language
provide any constructs
relating architectures at
different levels of
abstractions?

No support for
requirements
traceability and
architectural
refinements.

This is one of the main
features of EAST-ADL.

No explicit support for
requirements traceability
and architectural
refinements.

No explicit support for
requirements
traceability and
architectural
refinements.

S
calab

ility

Are the architectural
configurations
scalable?

Using the biding
mechanism, scalability
is obtained.

Scalability is dependent
on the selected
implementation
platform e.g.
AUTOSAR

Scalability is one of the
main features of
AUTOSAR.

Similar to AUTOSAR ,
Rubus components can
also be scaled for
different hardware
platforms

V
ariab

ility

Does the language
support handling of
variations and versions
of architecture
configurations?

To limited extent. It is
possible to specify
different configurations
and later use the
binding mechanism.

EAST-ADL supports
product line variations.
Although not explicit,
but the same support
can be used for function
variations.

No explicit support for
variations.

No explicit support for
variations.

N
on

-
fu

n
ction

al
p

rop
erties

Is it possible to
explicitly specify non-
functional properties
for overall architectural
configurations?

Depending on how a
system is perceived.
For example a
component can
correspond to a system

It is possible by utilizing
the same extensions
used for specifying non-
functional properties of
components and

Non-functional property
specifications are not
explicit. However, some
timing aspects are part of
a component behavior.

Rubus does not support
specification of non-
functional properties.

Category Features Related Questions AADL EAST-ADL AUTOSAR-ADL Rubus
of its own. connectors.

T
ool su

p
p

ort

T
ool

E
xam

p
le

s

What are the examples
of the tools for system
specification?

A few examples
include, OSATE,
STOOD and ASSERT.

Prototype tools like
PapyrusUML and one
by MentorGraphics.

DaVinci developer,
SystemDesk.

Rubus Designer is the
only tool available.

M
u

ltip
le view

s

Do the tools support
multiple views of an
architecture i.e. text,
graphical etc.?

It is possible to specify
an architecture using
graphical and textual
format.

In addition to graphical
and textual description
support, EAST-ADL
also supports different
views such as safety,
hardware and software.

It is possible to use both
graphical and textual
description. AUTOSAR
also provides separation
of hardware and software
architecture.

Only graphical
representation is
supported. No special
view is supported.

A
n

alysis su
p

p
ort

Is it possible to perform
analysis using the
specification tools or
additional tools are
required?

With OSATE, it is
possible to perform
analysis such as
security, flow etc.
Additional tools can
also be used.

EAST-ADL relies
entirely on external
tools i.e. no support
provided by the
architecture
specification tool.

Some simulation is
possible using the tools.
However, due to the
inherent AUTOSAR
complexity, analysis is
also complex requiring
external tools.

It is possible to perform
some timing analysis.
For behavior, Simulink
models can be linked to
Rubus SWC.

M
atu

rity

How mature is the tool
support?

The tool support for
AADL is quite mature
for analysis,
specification as well as
implementation.

EAST-ADL relies on
external tools for
analysis. However, the
transformation of
information between
specification and
analysis tools is at
prototype level and
therefore, not so mature.

The tool support is quite
mature for executing
AUTOSAR
methodology.

The tool support is
limited but mature
enough to support the
objectives of Rubus
based architectural
specification, analysis
and implementation.

identified scenarios are as follows:

 AADL support for EAST-ADL methodology in two ways.
Firstly, the AADL behavior annex can be used to specify
behavior of EAST-ADL components. On the other hand,
EAST-ADL models at design level can be transformed
into AADL for the analysis already supported by AADL
tools. Although, the two ADLs do not share the same
abstraction levels, the commonality mentioned at the start
of this section can be exploited for the transformation and
analysis.

 For additional functional and non-functional analysis, tools
such as Matlab/Simulink or HIP-HOPS can be used with
the help of model transformations between the tools and
ADLs similar to [21].

 AUTOSAR-ADL, Rubus and AADL an be considered as
three alternate implementation platforms It may be
required to transform Rubus models to AUTOSAR-ADL
if compliance to standards is required. On the other hand
AUTOSAR models can be transformed to Rubus models if
a simple or highly safety critical implementation is
required. The transformation will only be possible with a
restricted subset of AUTOSAR-ADL. The transformation
to Rubus can also lead to the use of analysis support by
dedicated Rubus tools for safety critical systems.

A few of the challenges to achieve the above mentioned
usage scenarios are the lack of concrete mapping between
different artifacts of ADLs, closed source code of the tools and
their meta-models, which restrict the model transformation for
analysis, lack of standard ways to represent results of different
analysis obtained from different tools.

IX. RELATED WORK

Architectural description languages have been surveyed and
compared by a number of researchers each with different
perspective and focus. In [16] a framework for classification
and comparison of different ADLs is presented. The
framework is divided into four main categories of components,
connectors, architecture configurations and the available tool
support. Each category has its own attributes such as
“Refinement and Traceability” for the category of architecture
configuration. A taxonomic survey of ADLs is also presented
in [31] where the classification is made on the classes of the
supported systems, inherent properties of the language and the
technology support provided. These two surveys provide a
good overview of different characteristic and comparison of
then existing ADLs.

In another effort [32], the authors surveyed different ADLs
developed for the design and implementation of micro-
architectures of processors from a model-based development
point of view.

A survey on different methods for modeling embedded
computer systems is presented in [33]. The main focus is on the
languages for embedded system design. The authors also
followed a model-based development approach for designing
embedded systems. The framework used in this work had five
categories of Contents, Design Context, Analysis Context,
Language, and Tools. Just like [16], the categories have their
own attributes covering aspects such as abstractions, details,
and the relations between these attributes. The survey resulted
in a comparison of 12 different ADLs.

With the passage of time, the different ADLs surveyed in
the above-mentioned work have either further evolved or
became obsolete. Moreover, the introduction of graphical
languages such as SysML [5], UML [4], tools such as

Matlab/Simulink [2] and the increasing number of disciplines
and views of embedded systems, different domain-specific
solutions have been proposed.

X. DISCUSSION AND CONCLUSION

In this paper, we have provided a comparison of four
architecture description languages related to real-time
embedded systems. In addition, we have also identified usage
scenarios and associated challenges possible while using the
considered ADLs. This work can be considered as a step
towards increasing the overall efficiency of the embedded
systems development process by utilizing the existing
formalisms and tools. A more fine grained mapping between
different ADLs, including aspects such extent of modularity
and scalability, support for different models of computations,
variability support, safety and security analysis can be
considered as the possible future extensions of the presented
work. These results are also the basis for our work in the
MAENAD [14] project targeting future solutions of full
electric vehicles. We are currently refining the EAST-ADL
behavior annex, developing tool specific extensions of the
behavior annex for a native representation of different tools,
mapping scheme between different ADLsand improvement of
current plug-ins for Simulink and HiP-HOPS [21]. The
additional analysis tools which are currently being addressed in
MAENAD are Modelica, UPPAAL, SPIN model checker,
SCADE [34], and MAST (Modeling and Analysis Suite for
Real-Time Applications) [35].

REFERENCES

[1] M. Törngren, D. Chen, D. Malvius, and J. Axelsson, "Model-Based
Development of Automotive Embedded Systems," in Automotive Embedded
Systems Handbook, N. Navet and F. Simonot-Lion, Eds. CRC Press, 2009, ch.
10, pp. 1-52.

[2] Mathworks. (2010, May) Matlab Website. [Online].
http://www.mathworks.com/

[3] IEEE, "IEEE Recommended Practice for Architectural Description of
Software-Intensive Systems -Description," IEEE Std 1471-2000.

[4] Object Management Group. (2010, May) Unified Modeling Language.
[Online]. http://www.uml.org/

[5] SySML. Systems Modeling Language. [Online]. http://www.sysml.org/

[6] Object Management Group, "UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems: Version 1.0," formal/2009-11-02,
2009.

[7] Articus Systems AB. (2010, Jul.) Articus Systems - The Choice for
Dependable Real-Time Systems. [Online]. http://www.arcticus-systems.com/

[8] The SEI AADL Team, "An Extensible Open Source AADL Tool
Environment (OSATE)," The Software Engineering Institute, Carnegie Mellon
University, 2006.

[9] SAE, "SAE Architecture Analysis and Design Language (AADL)," SAE
International Standard AS5506, 2004.

[10] ATESST Consortium, "EAST-ADL2 Domain Model Specifications,"
Project Deliverable D4.1.1
http://www.atesst.fr/home/liblocal/docs/ATESST2_D4.1.1_EAST-ADL2-
Specification_2010-05-03.pdf, 2010

[11] AUTOSAR. (2010) AUTomotive Open System ARchitecture. [Online].
http://www.autosar.org.

[12] Advancing Traffic Efficiency and Safety through Software Technology.
(2009) [Online]. http://www.atesst.org.

[13] TIMMO Consortium. (2010, May) TIMMO Websiite. [Online].

http://www.timmo.org/

[14] MAENAD Consortium (2011, May), MAENAD Website, [Online],
http://www.maenad.edu/

[15] dSPACE. (2009) dSPACE website. [Online].
http://www.dspaceinc.com/ww/en/inc/home.cfm

[16] N. Medvidovic and R. Taylor, "A Classification and Comparison
Framework for Software Architecture Description Languages," IEEE
Transactions On Software Engineering, vol. 26, no. 1, pp. 70-93, Jan. 2000.

[17] EDONA Consortium. (2010, Jul.) EDONA:Environnements de
Développement Ouverts aux Normes de l'Automobile. [Online].
http://www.edona.fr/home/index.htm.

[18] CESAR Consortium. (2010, Jul.) CESAR Project Website. [Online].
http://www.cesarproject.eu/

[19] CEA LIST. (2010) PapyrusUML. [Online]. http://www.papyrusuml.org/

[20] Y. Papadopoulos, J. A. McDermid, R. Sasse, and G. Heiner, "Analysis and
Synthesis of The behaviour Of Complex Programmable Electronic Systems In
Conditions of Failure," Reliability Engineering and System Safety, vol. 71, no.
3, pp. 229-247, Mar. 2001

[21] M. Biehl, C. DeJiu, and M. Törngren, "Integrating Safety Analysis into the
Model-based Development Toolchain of Automotive Embedded Systems," in
In Proceedings of the Conference on Languages, Compilers, and Tools for
Embedded Systems LCTES'10, Stockholm, 2010, pp. 125-131

[22] L. Feng, DJ. Chen, H. Lönn and M. Törngren, “Verfiying System
Behaviors in EAST-ADL2 with the SPIN Model Checker”, IEEE International
Conference on Mechatronics and Automation. Xi’an, China, August 4-7, 2010.

[23] P. Feiler, "AADL and Simulink," Software Engineering Institute, Carnegie
Mellon, 2006.

[24] S. Gérard, et al., "UML&AADL '2007 Grand Challenges," ACM SIGBED
Review, vol. 4, no. 4, pp. 1-17, Oct. 2007.

[25] The AUTOSAR Consortium, \AUTOSAR Methodology," Tech. Rep.
V1.2.1, R3.0, Rev 001,
http://www.autosar.org/download/AUTOSAR_Methodology.pdf, 2008

[26] The AUTOSAR Consortium, Layred Software Architecture," Tech. Rep.
V2.2.1, R3.0, Rev 001, 2008.

[27] Vector. (2010, Jul.) Vector [AUTOSAR-A Decision for the Future].
[Online]. http://www.vector.com/vi_autosar_solutions_en.html

[28] Mecel AB. (2010, Jul.) Mecel Website. [Online]. http://www.mecel.se/

[29] H. Hansson, H. Lawson, M. Strömberg and S. Larsson, "BASEMENT a
Distributed Real-Time Architecture for Vehicle Applications," Real-Time
Systems, vol. 11, no. 3, pp. 223-244, Nov. 1996.

[30] The ATESST2 Consortium, \Methodology Guidelines When Using
EASTADL2," Project Deliverable 5.1.1,
http://www.atesst.org/home/liblocal/docs/ATESST2_Deliverable_D5.1.1_V1.1
.pdf, June 2010.

[31] P. C. Clements, "A Survey of Architecture Description Languages," in
Eighth International Workshop on Software Specification and Design, 1996.

[32] W. Qin and S. Malik, "A Study of Architecture Description Languages
from a Model-based Perspective," in Proceedings of the Sixth International
Workshop on Microprocessor Test and Verification, 2005, pp. 3-11.

[33] J. El-Khoury, D. Chen, and M. Törngren, "A Survey of Modelling
Approaches for Embedded Computer Control Systems," Mechatronics Lab,
Department of Machine Design. Royal Institute of Technology., Stockholm,
Technical Report TRITA - MMK 2003:36, ISSN 1400 -1179, ISRN
KTH/MMK/R-03/11-SE, 2003.

[34] Esterel Technologies, SCADE website, [Online], http://www.esterel-
technologies.com/products/scade-suite/ , May 2011.

[35] MAST website, [Online] http://mast.unican.es/, May 2011.

[36] K. Hänningen, J. Maäki Turja, M. Nolin, M. Lindberg, J. Lundbäck and
KL, Lundbäck, “Supporting Engineering Requirements in the Rubus
Component Model”, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-
223/2008-1-SE, Mälardalen Real-Time Research Centre, Mälardalen
University, February, 2008.

[37] The AUTOSAR Consortium, “Software Component Templatee," Tech.
Rep. V3.3.0, R3.0, Rev 001.

