
Compositional Dependability Analysis of Dynamic
Systems with Uncertainty

being a Thesis submitted for the Degree of

Doctor of Philosophy

in the University of Hull

by

Sohag Kabir BSc., MSc.

February 2016

1

Abstract

Over the past two decades, research has focused on simplifying dependability analysis
by looking at how we can synthesise dependability information from system models auto-
matically. This has led to the field of model-based safety assessment (MBSA), which has
attracted a significant amount of interest from industry, academia, and government agen-
cies. Different model-based safety analysis methods, such as Hierarchically Performed
Hazard Origin & Propagation Studies (HiP-HOPS), are increasingly applied by industry
for dependability analysis of safety-critical systems. Such systems may feature multi-
ple modes of operation where the behaviour of the systems and the interactions between
system components can change according to what modes of operation the systems are in.

MBSA techniques usually combine different classical safety analysis approaches to
allow the analysts to perform safety analyses automatically or semi-automatically. For
example, HiP-HOPS is a state-of-the-art MBSA approach which enhances an architec-
tural model of a system with logical failure annotations to allow safety studies such as
Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA). In this way
it shows how the failure of a single component or combinations of failures of different
components can lead to system failure. As systems are getting more complex and their
behaviour becomes more dynamic, capturing this dynamic behaviour and the many pos-
sible interactions between the components is necessary to develop an accurate failure
model.

One of the ways of modelling this dynamic behaviour is with a state-transition di-
agram. Introducing a dynamic model compatible with the existing architectural infor-
mation of systems can provide significant benefits in terms of accurate representation and
expressiveness when analysing the dynamic behaviour of modern large-scale and complex
safety-critical systems. Thus the first key contribution of this thesis is a methodology to
enable MBSA techniques to model dynamic behaviour of systems. This thesis demon-
strates the use of this methodology using the HiP-HOPS tool as an example, and thus
extends HiP-HOPS with state-transition annotations. This extension allows HiP-HOPS
to model more complex dynamic scenarios and perform compositional dynamic depend-
ability analysis of complex systems by generating Pandora temporal fault trees (TFTs).
As TFTs capture state, the techniques used for solving classical FTs are not suitable to
solve them. They require a state space solution for quantification of probability. This
thesis therefore proposes two methodologies based on Petri Nets and Bayesian Networks
to provide state space solutions to Pandora TFTs.

Uncertainty is another important (yet incomplete) area of MBSA: typical MBSA ap-
proaches are not capable of performing quantitative analysis under uncertainty. There-
fore, in addition to the above contributions, this thesis proposes a fuzzy set theory based
methodology to quantify Pandora temporal fault trees with uncertainty in failure data of
components.

2

The proposed methodologies are applied to a case study to demonstrate how they
can be used in practice. Finally, the overall contributions of the thesis are evaluated by
discussing the results produced and from these conclusions about the potential benefits of
the new techniques are drawn.

3

To my parents and beloved wife · · ·

4

Acknowledgements

The journey of the PhD is complete, the mission is at its end. But I admit that without
the blessings and protection of almighty Allah and support from many people the mission
could not have been achieved.

First and foremost, my heartfelt gratitude, profound indebtedness and deep respect go
to my supervisor Dr Martin Walker for his constant supervision, affectionate guidance
and great encouragement and motivation. His keen interest on the topic and valuable
advice throughout my study was of great help in completing the thesis. Without him the
achievement could never have come this far.

I am also very grateful to Professor Yiannis Papadopoulos for his support, enthusiastic
encouragement and insightful advice that helped me to shape this thesis. I would like to
thank Dr Darryl Davis, chair of my panel meetings, for his constructive criticisms and
insightful advice which contributed to the improvement of the overall project.

I would also like to thank all the staff members in the Department of Computer Science
especially Dr Neil Gordon, Dr Septavera Sharvia, Dr David Parker, Dr Leonardo Bottaci,
Simon Grey, Amanda Millson, Helen El-Sharkawy, Lynn Morrell, Jo Clappison, Sally
Byford, Adam Hird, Andrew Hancock, Mark Bell, and Mike Bielby, for their academic,
administrative and technical support. I also like to express my sincere gratitude to Dr
Marco Cattaneo for his expert opinion on the decision making process under uncertainty
and Dr Marco Paolieri for his help with the ORIS tool.

I would like to acknowledge and extend my heartfelt gratitude to my fellow col-
leagues, who made the PhD experience more bearable through their support and friend-
ship in good and bad times. I say thank you — Luis Azevedo, Dr Ernest Edifor, Dr Zhibao
Mian, Dr Lamis Farah Al-Qora’n, Ioannis Sorokos, Youcef Gheraibia, John Dixon, Sahar
Arshi, Seyed Sadegh Zadeh, John Stamford, Luis Torrao, Dr Lisa Moore, Tareq Aljaber,
Mohammad Al Khaldy, Qian Wang, Dr Jose Aizpurua, Dr Mustafizur Rahman, Dr Nidhal
Mahmud, and Dr Nabil Abu Hashish.

I would like to say a big thank you to all my friends and relations in Hull and abroad
who have supported me throughout my PhD in various ways: Ashraful Alam, Risalat
Mahmud, Badrul Haider, Enamul Haque, Mokhlesur Rahman, Syed Mohammed Has-
san, Khairul Bashar, Rizwan Ahmed, Tanzima Azad, Muksud Shanto, Rashedul Hassan,
Saif Hasib, Atiqul Islam, Fahad Ibrahim, Salman Buksh, Faisal Miaze, Masrurul Mowla,
Zuhair Yusuf, Ehtesham, and Sayed Al-Fazari. I wish to thank all other friends, class-
mates, and colleagues who perhaps deserve a credit for their help but aren’t listed here.

The entire PhD research was fully supported by a University of Hull PhD Scholarship.
I am very grateful to the University of Hull for this financial support without which the
dissertation would have been impossible.

Finally, I would like to give my deepest thanks to my parents, my wife, my brothers,
my sister, my in-laws and other relatives for their continued support and encouragement
throughout my study and for teaching me many useful lessons for life.

5

Author’s Declaration

I declare that the material contained in this thesis represents original work undertaken
solely by the author. The various aspects of the work covered in this material have been
presented in a number of international conferences and scientific publications.

The work on fuzzy set theory based quantification method for temporal fault trees in
Chapter 4 was presented in Kabir et al. (2014a); another article on this topic has been
extracted from this chapter and submitted for publication. The work on the conversion of
Pandora temporal fault trees into Bayesian Networks (Chapter 4) was presented in Kabir
et al. (2014b). The Petri Net based methodology for probabilistic evaluation of Pandora
temporal fault trees (Chapter 4) was presented in Kabir et al. (2015). Parts of the literature
review of the thesis (Chapter 2) have been published as a book chapter in Sharvia et al.

(2015).

6

List of Abbreviations

AADL Architecture Analysis and Design Language

BFS Behavioural Fault Simulation

CFT Component Fault Tree

CPT Conditional Probability Table

CTBN Continuous Time Bayesian Network

CTMC Continuous Time Markov Chain

DBN Dynamic Bayesian Network

DCCA Deductive Cause Consequence Analysis

DFT Dynamic Fault Tree

DSPN Deterministic Stochastic Petri Net

ELRAFT Efficient Logic Reduction Analysis of Fault Trees

FFPS Fuzzy Failure Possibility Score

FFTA Fuzzy Fault Tree Analysis

FIM Fuzzy Importance Measure

FLSA Failure Logic Synthesis and Analysis

FMEA Failure Modes and Effects Analysis

FMECA Failure Modes Effects and Criticality Analysis

FPTC Failure Propagation and Transformation Calculus

FPTN Failure Propagation and Transformation Notation

FSAP Formal Safety Analysis Platform

FTA Fault Tree Analysis

GSPN Generalized Stochastic Petri Net

HBN Hybrid Bayesian Network

HiP-HOPS Hierarchically Performed Hazard Origin & Propagation Studies

MBSA Model Based Safety Assessment

MCS Minimal Cut Set

MCSQ Minimal Cut Sequence

MOCUS Method of Obtaining Cut Sets

MTBF Mean Time Between Failure

MTTF Mean Time To Failure

MTTR Mean Time To Repair

RTN Real Time Network

SAML Safety Analysis Modelling Language

SEFT State Event Fault Tree

TFT Temporal Fault Tree

ViSSaAn Visual Support for Safety Analysis

7

Contents

1 Introduction 18
1.1 Field of Research and Problem Context 18
1.2 Motivation and Scope . 23

1.2.1 Challenges in MBSA . 23
1.2.2 Challenges in Quantitative Analysis of Dynamic Systems using

Pandora . 25
1.2.3 Challenges of Uncertainty . 26

1.3 Research Hypothesis and Research Questions 27
1.4 Research Objectives . 28
1.5 Assumptions . 30
1.6 Thesis Structure . 31

2 Background Study and Literature Review 33
2.1 Reliability Engineering and Model Based Safety

Assessment . 33
2.2 Classical Safety Analysis Techniques . 35

2.2.1 FMEA/FMECA . 35
2.2.2 Fault Tree Analysis: FTA . 38

2.2.2.1 Fault Tree Events and Gates Symbols 39
2.2.2.2 Qualitative and Quantitative Analysis of Fault Trees . . 40
2.2.2.3 Fuzzy Extension of FTA: FFTA 43
2.2.2.4 Dynamic Fault Trees: DFTs 46
2.2.2.5 Pandora Temporal Fault Trees 48

2.3 Failure Logic Synthesis and Analysis Approaches
to MBSA . 54
2.3.1 Failure Propagation and Transformation Notation 54
2.3.2 Failure Propagation and Transformation Calculus 56
2.3.3 Component Fault Trees . 58
2.3.4 State Event Fault Trees . 60
2.3.5 HiP-HOPS . 61

2.3.5.1 Overview of the Methodology 62
2.3.5.2 Annotation Phase . 62
2.3.5.3 Synthesis Phase . 64

8

2.3.5.4 Analysis Phase . 65
2.3.6 AADL . 67

2.4 Behavioural Fault Simulation Approaches to MBSA 70
2.4.1 FSAP/NuSMV . 70
2.4.2 AltaRica . 73
2.4.3 DCCA . 74
2.4.4 SAML . 75

2.5 Other Related Techniques in Reliability Engineering 77
2.5.1 Markov Models . 77
2.5.2 Bayesian Networks . 79
2.5.3 Petri Nets . 82

2.6 Discussion . 87

3 Dynamic Dependability Analysis 92
3.1 Introduction . 92
3.2 Dynamic Behaviour and Challenges in Dependability Analysis 92
3.3 Representation of Dynamic Behaviour 96

3.3.1 Representing Dynamic Behaviour with Mode Charts 96
3.3.2 Annotation of Mode Based Failure Behaviour of Components . . 99
3.3.3 Complexity of Mode Chart and Hierarchical Modelling 101
3.3.4 Application of temporal logic to mode charts 111

3.4 Modelling and Dependability Analysis Process using
HiP-HOPS . 115
3.4.1 The Annotation Phase . 116
3.4.2 The Synthesis Phase . 122
3.4.3 The Analysis Phase . 127

3.5 Case Study . 129
3.5.1 The System Architecture and the Static Hierarchy 131
3.5.2 Static Analysis of the EFCF Subsystem 132
3.5.3 Dynamic Analysis of the EFCF Subsystem 138

4 Quantitative Dependability Analysis under Uncertainty 150
4.1 Introduction . 150
4.2 Quantitative Dependability Analysis of Dynamic Systems 151
4.3 A Petri Net based Methodology . 152

4.3.1 Mapping of Basic Events to GSPN 153
4.3.2 Mapping of the Boolean Gates to GSPN 154
4.3.3 Mapping of the Temporal Gates to GSPN 156
4.3.4 Evaluating System Unreliability using PN based method 159
4.3.5 Importance Measures using the PN based Method 161

4.4 A Bayesian Networks based Methodology 162

9

4.4.1 Representation of time in Pandora TFTs 162
4.4.2 Conversion of Temporal Fault Trees into Bayesian Networks . . . 163
4.4.3 Evaluating System Unreliability using the BN based method . . . 169
4.4.4 Observation Based Analysis and Importance Measure using BN

based Method . 170
4.5 Fuzzy set theory based methodology . 173

4.5.1 Process of obtaining fuzzy failure possibility data for system com-
ponents . 174
4.5.1.1 Fuzzy numbers to represent the possibilities of Basic

events . 174
4.5.1.2 Domain expert evaluation and fuzzification of the opinion175
4.5.1.3 Aggregation of the opinion of the experts 178

4.5.2 Defuzzication and top event probability calculation 182
4.5.3 Fuzzy operators for TFT gates 183

4.5.3.1 Fuzzy operators for the Boolean gates 183
4.5.3.2 Fuzzy operator for the Temporal gates 185

4.5.4 Importance Measures in Fuzzy Set Theory based Approach 187
4.6 Case Study . 188

4.6.1 Fuel Distribution System of a Ship 188
4.6.2 Qualitative Temporal Fault Tree Analysis of the System 190
4.6.3 Quantitative Analysis using the PN based Method 193
4.6.4 Quantitative Analysis using BN based Method 197
4.6.5 Quantitative Analysis using Fuzzy Set Theory Based Methodology 205

5 Discussion and Evaluation 210
5.1 Evaluation of Contributions Against Objectives 210
5.2 Evaluation of Techniques . 214

5.2.1 Evaluation of the technique for dynamic system modelling and
dependability analysis . 215

5.2.2 Evaluation of the Quantitative Analysis Techniques 217
5.2.2.1 Petri Nets and Bayesian Networks Based Techniques . . 217
5.2.2.2 Evaluation of PN and BN based techniques against ex-

isting techniques . 220
5.2.2.3 Evaluation of Fuzzy Set theory based approach with

fixed value based techniques 222
5.3 Limitations and Future Research . 223

5.3.1 Reparability of Events . 223
5.3.2 Dynamic System Modelling and Analysis Technique 223
5.3.3 State Space Based Quantification Methods 224
5.3.4 Fuzzy Set Theory Based Method 224

10

6 Conclusion 226

11

List of Figures

Figure 1 – Representation of system behaviour as hierarchy of state machines
(Papadopoulos, 2000) . 23

Figure 2 – Fault Tree Analysis Steps (Vesely et al., 2002) 39
Figure 3 – Fault Tree Event Symbols . 39
Figure 4 – Fault Tree Logic Gate Symbols 40
Figure 5 – Example of a Fault Tree (Andrews, 1998) 41
Figure 6 – Graphical representation of Trapezoidal fuzzy number 44
Figure 7 – Fault Tree to illustrate the use of Fuzzy Set theory in FTA 45
Figure 8 – Functional Dependency (FDEP) Gate 47
Figure 9 – Spare Gate . 47
Figure 10 – Pandora’s PAND gate with n inputs (n≥ 2) 50
Figure 11 – Pandora’s POR gate with n inputs (n≥ 2) 51
Figure 12 – Pandora’s SAND gate with n inputs (n≥ 2) 51
Figure 13 – Example FPTN Module . 55
Figure 14 – Safety Analysis Process using Temporal-FPTN 56
Figure 15 – Example Real-Time Network Architecture 57
Figure 16 – Behaviour of FPTC Component 57
Figure 17 – Example Component Fault Tree 59
Figure 18 – Example State Event Fault Tree 60
Figure 19 – A generic overview of HiP-HOPS Technique 63
Figure 20 – Example of Standby Recovery System 64
Figure 21 – Conversion of FMEA from fault trees 66
Figure 22 – AADL Error Model Definition for Component with Error Propa-

gation . 68
Figure 23 – Error Propagations between Error Model Instances (Feiler and

Rugina, 2007) . 69
Figure 24 – Components of FSAP/NuSMV-SA Platform 71
Figure 25 – A NuSMV model for two-bit adder (Bozzano and Villafiorita, 2007) 72
Figure 26 – Injecting fault into the bit module 72
Figure 27 – Node Example in AltaRica: Switch (Point and Rauzy, 1999) . . . 73
Figure 28 – Example SAML model (Güdemann and Ortmeier, 2010) 76
Figure 29 – Simple example of Markov Model 77

12

Figure 30 – Non-repairable parallel system and Markov model of the system
(Mahmud, 2012) . 78

Figure 31 – Simple example of Bayesian Network 79
Figure 32 – Distribution of use of BNs in reliability Engineering (Weber et al.,

2012) . 81
Figure 33 – Two input OR gate and its BN model 82
Figure 34 – Basic components of a Petri Net 83
Figure 35 – Petri Net with inhibitor arc . 84
Figure 36 – Petri Net of a system with two identical repairable components . . 85
Figure 37 – Traceability graph of the system with two identical repairable com-

ponents . 85
Figure 38 – Petri Net showing nominal and failure behaviour 86
Figure 39 – OR gate and its PN model . 87
Figure 40 – PAND gate and its PN model . 87

Figure 41 – Twin engine aircraft fuel system 93
Figure 42 – Direction of fuel flow to engines in Mode 1 94
Figure 43 – Direction of fuel flow to engines in Mode 2 94
Figure 44 – Direction of fuel flow to engines in Mode 3 94
Figure 45 – Example of a mode chart . 96
Figure 46 – Mode Chart of the behaviour of the system in Figure 41 98
Figure 47 – Association between system architectures and modes 98
Figure 48 – Mode chart with active components listed in the modes 99
Figure 49 – Mode chart with failure modes and transitions to failure modes

from functional modes . 101
Figure 50 – Fault tolerant twin engine aircraft fuel system 104
Figure 51 – Classical Mode Chart for the failure behaviour ‘no fuel to left en-

gine’ of the system in Figure 50 . 105
Figure 52 – Hierarchical structure of the mode chart of Figure 51 110
Figure 53 – A simple railway crossing system 112
Figure 54 – Mode chart of a simplified railway crossing system 114
Figure 55 – Mapping from static architectural model to dynamic mode chart . . 116
Figure 56 – Architecture of twin engine aircraft fuel distribution system 118
Figure 57 – Fault tree generation process for any internal mode 124
Figure 58 – Aircraft Fuel Distribution System (Papadopoulos, 2000) 130
Figure 59 – First level of the static hierarchy of the fuel distribution system

(Papadopoulos, 2000) . 132
Figure 60 – Second level of the static hierarchy of the fuel distribution system

(Papadopoulos, 2000) . 132
Figure 61 – Component level decomposition of CD subsystem (Papadopoulos,

2000) . 133

13

Figure 62 – Component level decomposition of EFCF subsystem (Papadopou-
los, 2000) . 133

Figure 63 – Component level decomposition of RWD subsystem (Papadopou-
los, 2000) . 133

Figure 64 – Fault tree of the condition “no fuel to the port engine” 136
Figure 65 – Functional mode chart of EFCF subsystem 142
Figure 66 – Fault tree for the condition “no fuel to the port engine” in EFCF N

mode . 142
Figure 67 – Temporal fault tree for the condition “no fuel to the port engine”

in EFCF FTCF mode . 143
Figure 68 – Temporal fault tree for the condition “no fuel to the port engine”

in EFCF RTCF mode . 144

Figure 69 – Mapping of a basic event to a Petri Net 153
Figure 70 – Mapping of an n input AND gate to Petri Net 155
Figure 71 – Mapping of an n input OR gate to Petri Net 155
Figure 72 – Mapping of an n input PAND gate to Petri Net 157
Figure 73 – Mapping of a two input PAND gate to Petri Net 157
Figure 74 – Mapping of an n input POR gate to Petri Net 158
Figure 75 – Refined PN model of n input POR gate 159
Figure 76 – Mapping of a two input POR gate to PN model 159
Figure 77 – An example TFT . 160
Figure 78 – PN model of the TFT of Figure 77 161
Figure 79 – An interval-based Discrete time model in Pandora 163
Figure 80 – Division of mission time into n intervals 164
Figure 81 – Two input POR gate and its BN model 166
Figure 82 – Two input PAND gate and its BN model 167
Figure 83 – Two input AND gate and its BN model 168
Figure 84 – Two input OR gate and its BN model 168
Figure 85 – Bayesian Network of the TFT of Figure 77 169
Figure 86 – BN of two input Boolean OR gate 170
Figure 87 – Fuzzy numbers representing linguistic variables 177
Figure 88 – Overlapping between two triangular fuzzy sets 179
Figure 89 – Overlapping between two opinions in triangular form 180
Figure 90 – Overlapping between two opinions in trapezoidal form where Ãi

precedes Ã j . 180
Figure 91 – Fault Tolerant fuel Distribution System 189
Figure 92 – TFT of failure behaviour of Engine 1 193
Figure 93 – Petri Net model of the failure behaviour of the fuel distribution

system . 194

14

Figure 94 – Changes in average execution time with the change of value of
mission time and step size . 196

Figure 95 – Bayesian Network of failure behaviour of Engine 1 198
Figure 96 – Changes in system unreliability with the change of values of mis-

sion time and n . 202
Figure 97 – Changes in execution time with the change of values of mission

time and n . 202

15

List of Tables

Table 1 – A sample FMECA . 37
Table 2 – Fuzzy Failure Rates and Failure Probabilities of Basic Events of

Fault Tree of Figure 7 . 46
Table 3 – Temporal Truth Table for all gates in Pandora 52
Table 4 – Failure modes of Standby Recovery System 64
Table 5 – Failure Mode Expressions for Standby Recovery System 65
Table 6 – Set of conditional probability table of BN in Figure 31 80

Table 7 – Mode based failure behaviour of component 100
Table 8 – Mode based expressions of failure behaviour 101
Table 9 – Explanation of the name of the functional/degraded modes used in

the mode chart of Figure 51 . 106
Table 10 – Explanation of the name of the failed modes used in the mode chart

of Figure 51 . 107
Table 11 – Failure behaviour of components of twin engine aircraft fuel distri-

bution system . 118
Table 12 – Failure data for twin engine aircraft fuel distribution system 119
Table 13 – Mode based expressions of failure behaviour 120
Table 14 – Mode based failure behaviour of components of twin engine aircraft

fuel distribution system . 122
Table 15 – Tabular representation of mode chart 122
Table 16 – Failure data for output deviations of EFCF subsystem 134
Table 17 – Failure behaviour of the components of the EFCF subsystem 135
Table 18 – Mode based failure behaviour of components of EFCF subsystem . 139
Table 19 – Mode based failure data for the EFCF subsystem 140
Table 20 – Tabular representation of mode chart 142
Table 21 – Name and ID of the Basic events of the fault trees in Figures 66, 67,

and 68 . 145

Table 22 – Token removal and accumulation process in the PN model of a basic
event . 154

Table 23 – Importance ranking for the basic events of PN in Figure 78 162
Table 24 – Prior probability values for the basic events 169
Table 25 – Importance ranking for the basic events of the BN of Figure 85 . . . 172

16

Table 26 – Posterior probabilities of root nodes of the BN in Figure 85 173
Table 27 – Weighting scores for different experts (Rajakarunakaran et al., 2015) 176
Table 28 – List of Basic Events for the fuel distribution system 191
Table 29 – Minimal Cut Sequences to cause the failure of Engine 1 192
Table 30 – Failure rates of components of fuel distribution system 194
Table 31 – Unreliability of the fuel distribution system and average execution

time with different step sizes (SS) . 195
Table 32 – Importance ranking for the basic events of the fuel distribution sys-

tem according to the PN based method 197
Table 33 – Prior probabilities of root nodes for n = 20 and t = 20000 199
Table 34 – System unreliability and average execution time after 20000 hours . 200
Table 35 – Unreliability of the fuel distribution system for different mission

with different values of n . 201
Table 36 – Importance ranking for the basic events of the fuel distribution sys-

tem according to the BN based method 203
Table 37 – Posterior probabilities of root nodes for n = 20 and t = 20000 . . . 204
Table 38 – Weighting scores of six experts . 205
Table 39 – Linguistic variables with conversion scales 206
Table 40 – Expert Opinions on the Basic events 206
Table 41 – Aggregation of expert opinion in triangular fuzzy form for the basic

events . 206
Table 42 – Expert Opinion about the failure possibility of Pump 1 (P1) 207
Table 43 – Different parameters for aggregation process 208
Table 44 – Fuzzy possibilities of the first three MCSQs for omission of fuel to

engine 1 . 208
Table 45 – Fuzzy possibilities of the second three MCSQs for omission of fuel

to engine 1 . 208
Table 46 – Fuzzy importance ranking for the basic events 209

Table 47 – Comparison of system unreliability estimated by other approaches
with the unreliability estimated by the fuzzy set theory based approach . 222

17

Chapter 1

Introduction

1.1 Field of Research and Problem Context

Safety-critical systems have an intense effect on almost every aspect of our life (e.g.
manufacturing, communications, medicine, education, defence, financial, amusement,
research, etc.). Systems that fall into this category range from propulsion systems on
spacecraft to airbags in cars; however, they all share a common property — their fail-
ure has the potential to cause great harm to people. Therefore, dependability of critical
systems is a prime concern in modern society due to our increasing dependence on those
systems. Dependability is the capability of avoiding failures that are more frequent and
more severe than is acceptable, and thus dependability assessment should be carried out
early in the design phase to avoid unacceptable costs in terms of loss of life, environmen-
tal damage, and loss of resources by identifying and rectifying potential hazards as soon
as possible (Bernardi and Merseguer, 2007). The dependability of a system includes, but
is not limited to the following characteristics: safety, reliability, and maintainability.

One of the key goals in designing safety-critical systems is to identify potential risks
posed by such systems and then minimising the likelihood of these risks. This necessity
has led to the field of reliability engineering, which concentrates on making systems as
reliable and as safe as possible for the stakeholders. To make systems more reliable
the analysts have to understand the behaviour of the systems, i.e., how systems work
and how they may fail. Systems analysis is a process that allows reliability engineers to
understand how systems work and how they can fail by investigating the system behaviour
and potential causes of system failure, thereby allowing them to determine necessary
actions to prevent system failure (Vesely et al., 2002). There are generally two forms
of analysis. The first is qualitative analysis, which helps the analysts to determine the
necessary and sufficient causes or combinations of causes that can lead the system to
failure. The second is quantitative analysis, which helps to estimate the probability that
the system will fail after a specified amount of time given the probability of the basic
component failure. It also helps to determine which components or parts of the system
are more critical so analysts can put more emphasis on the critical components or parts

18

by taking necessary steps, e.g., including redundant components in the system model.
There are many widely used classical safety assessment methods available to assist

safety analysts in performing dependability analysis of systems. One such widely used
method is Failure Modes Effects and Criticality Analysis (FMECA). It was originally
specified in US Military Procedure MIL-P-1629 and then updated in MIL-STD-1629A
(US, 1980). It is an inductive analysis method that considers all possible combinations
of effects of a single component failure mode(s). This method also provides ways to
perform probabilistic analysis to determine criticality of failure modes. Another well-
established classical safety analysis method is Fault Tree Analysis (FTA) (Vesely et al.,
2002). It is possibly the most widely used method for evaluating safety and reliability of
static systems qualitatively as well as quantitatively. Static systems are those which only
experience a single mode of operation throughout the duration of their lifetimes, and thus
exhibit constant nominal and failure behaviours.

Fault trees utilise graphical representations based on Boolean logic to show logical
connections between different faults and their causes (Vesely et al., 2002). FTA is a de-
ductive analysis method, which means analysis starts with a system failure known as the
‘top event’ and works backwards to determine its root causes. From a fault tree, it is
possible to understand how combinations of failures of different components or certain
environmental circumstances can lead to system failure. After construction of a fault tree,
qualitative analysis is performed using Boolean logic by reducing it to minimal cut sets
(MCSs), which are a disjoint sum of products consisting of the smallest combinations of
failure events that are necessary and sufficient to cause the top event. It is worth noting
that inductive and deductive methods are often complementary and effective in different
circumstances. For example, inductive methods may be used to identify system hazards
or to verify the completeness of previously identified hazards; however, usually they are
not capable of considering complex failure scenarios. On the other hand, deductive meth-
ods cannot identify or verify system hazards, but they can systematically identify failure
scenarios containing a large number of independent failure modes.

All these classical techniques, regardless of their logical orientation (inductive, de-
ductive), are often primarily manual processes, i.e., performed manually either by a sin-
gle person or a group of persons to produce some comprehensive documents to satisfy
the safety requirements and to determine strategies to alleviate the effects of failures
(Leveson, 1995). Although these techniques can produce a significant amount of valu-
able knowledge about the system safety and reliability, due to their manual nature they
have some limitations. Firstly, in the manual process these analyses are performed based
on the informal knowledge of the failure behaviour of the systems, whereas the archi-
tecture of the system is modelled more formally; therefore these processes can result in
inconsistencies and discrepancies. Secondly, as the system grows in size, the manual na-
ture of the analysis process increases the risk of introducing error or producing incomplete
results. Moreover, the manual analyses are time consuming and expensive, therefore the

19

analyses are rarely carried out more than once even though the iterative process could
produce more valuable information. Finally, the informal nature of these analyses does
not allow a high degree of reusability of information, i.e., if a new analysis is required on
the previously designed system or the system design is changed a bit, then the analysis
is typically required to be started from the beginning meaning that it is difficult to reuse
materials from a previous analysis.

To overcome the above mentioned limitations, a new field of model-based safety as-
sessment (MBSA) has emerged (Walker et al., 2008). MBSA has attracted significant
interest in the industry and academia over the last twenty years. In MBSA, the analysts
perform their analyses on the design model of the system, which is created as part of
a model-based design process. As the analyses are performed on a more formal model
rather than a separate safety analyses model, it opens the avenue to automate part of the
safety analysis process, e.g., automatically generating fault trees. In MBSA, as the anal-
yses are performed on formal models, the analyses can be performed iteratively, which
helps to generate more results and new results can be generated if the system design
changes. This process is less time consuming and less expensive compared to manual
approaches and due to its more structured nature, the risks of introducing errors in the
analysis or producing incomplete results are reduced. Moreover, the MBSA techniques
provide a higher degree of reusability by allowing parts of an existing system model, or
libraries of previously analysed components, to be reused.

MBSA techniques can be classified into two broad categories (Walker et al., 2008)
based on their general underlying formalism and the types of analysis performed. The
first paradigm is called Failure Logic Synthesis and Analysis (FLSA) (Sharvia and Pa-
padopoulos, 2015) which focuses on the automatic construction of predictive system
analyses. These approaches are typically compositional, meaning that system-level fail-
ure analyses can be generated from component-level failure logic and the topology of the
system. In these approaches, the system-level analysis and assessment are broken down
into more manageable tasks, applied to individual components, and a system level fail-
ure model is then produced by composing the failure models of individual components.
The composition of individual component failure models is usually done by connecting
output deviations of a component to input deviations of other components. This compo-
sitionality lends itself well to automation and reuse of component failure models across
applications. In order to simplify and automate the synthesis process, several tools and
techniques such as Hierarchically Performed Hazard Origin & Propagation Studies (HiP-
HOPS) (Papadopoulos, 2012), Component Fault Trees (CFT), and the Failure Propagation
and Transformation Notation (FPTN) have emerged as part of FLSA. These techniques
usually combine different classical safety analysis approaches such as FTAs or FMEAs
to allow the analysts to perform safety analyses automatically or semi-automatically. Us-
ing the classical approaches, the FLSA tools or techniques can determine how a single
component failure or combinations of failures of different components or certain environ-

20

mental circumstances can lead to system failure. This information may be sufficient for
the analysis of some systems (static systems) but may not be enough for many systems
with complex architectures.

The second paradigm is called Behavioural Fault Simulation (Walker et al., 2008)
which focuses on behavioural simulation to automatically analyse potential failures in a
system. This development has led to a group of formal verification based approaches. The
techniques that fall into this category include the Formal Safety Analysis Platform/New
Symbolic Model Verifier (FSAP-NuSMV) (Bozzano and Villafiorita, 2007), AltaRica
(Arnold et al., 2000; Point and Rauzy, 1999), and Deductive Cause Consequence Analy-
sis (DCCA) (Güdemann et al., 2007; Ortmeier et al., 2005). These approaches generally
use state-event based formalisms and work by injecting possible faults into simulations
based on executable, formal specifications of a system and studying the effects of those
faults on the system behaviour. The results are then used by model checking tools to ver-
ify whether system dependability requirements are being satisfied or whether violations
of the requirements exist in normal or faulty conditions.

One important characteristic of systems with complex architecture is their dynamic
behaviour, i.e., the behaviour of the system (both nominal and potential failure behaviour)
can change according to what state or mode of operation the system is in. As the behaviour
of the system changes, functions and their failure modes vary, as do the flows between
components of the architecture and the potential deviations of those flows. Due to this
complex behaviour and the many possible interactions between the components, assessing
the effects of combinations of failure events is not enough by itself to capture the system
failure behaviour; in addition, understanding the order in which they fail is also required
for a more accurate failure model.

However, this dynamic system behaviour creates difficulties, e.g., in capturing sequence-
dependent behaviour for compositional FLSA techniques when using classical safety
analysis techniques like FTA or FMECA as their primary means of analysis (Bruns and
Anderson, 1993; Dugan et al., 1990; Papadopoulos, 2000; Walker and Papadopoulos,
2009). This is because of the absence of the concept of state in the classical safety analy-
sis techniques.

As FTA is the most widely used classical safety and reliability analysis technique and
the limitations of FTA are not new, there are already a number of different modifications
proposed to overcome those limitations. For example, the Dynamic Fault Tree (DFT)
(Dugan et al., 1992) approach is an extension of classical FTs. It introduces dynamic
gates such as Priority-AND (PAND), Functional Dependency (FDEP) and Sequential En-
forcing (SEQ) to capture sequence dependent behaviour. The primary focus of DFTs
is the quantitative analysis of the failure behaviour of the dynamic systems. DFTs are
usually quantified by converting them to equivalent Markov chains (MCs). Sequence-
dependent behaviour can then be readily modelled using Markov models, but the major
shortcoming of a Markov model is that for large and complex systems the Markov model

21

suffers increasingly from combinatorial explosion and is therefore difficult to construct
and analyse. Another problem of using MCs is that they perform the analysis based on
the exponential distribution of the failure rates of components, therefore components hav-
ing failure rates with any other distribution cannot be analysed with this method.

Pandora (Walker, 2009) is another extension of fault trees which introduces three tem-
poral gates and a set of temporal laws to allow qualitative analysis of dynamic systems.
It was created to allow the MBSA techniques to synthesise and analyse temporal fault
trees from the behavioural architecture of the dynamic systems instead of synthesising
and analysing classical fault trees. The primary intention behind creating this extension
of FTs was to perform qualitative analysis of dynamic behaviours of systems. Qualitative
analysis can produce important dependability related information about a system; how-
ever, quantitative analysis is also important to understand the probabilistic information
about the dependability of the system. Recently, some efforts have been made to quantify
Pandora temporal fault trees based on exponential failure rates of components.

However, those techniques do not consider uncertainty in failure data, uncertain com-
ponent behaviour, and components with non-exponentially distributed failure data. As the
outcome of quantitative analysis is entirely dependent on the precision of the numerical
values used in the analysis, if uncertainties are left unresolved then there is a chance of
producing misleading results. A significant amount of researches (e.g., (Tanaka et al.,
1983; Suresh et al., 1996; Ferdous et al., 2009; Tyagi et al., 2010)) have been performed
to address uncertainty in failure data in FTA. Researchers usually use fuzzy set theory
based methodology to capture uncertainty during the quantitative analysis of fault trees,
and they refer this method as fuzzy fault tree analysis (FFTA). Although a significant
amount of research has investigated how to use fuzzy set theory in classical FTA to en-
able it to perform quantitative analysis with limited quantitative data, limited researches
such as Li et al. (2012, 2015); Verma et al. (2006); Yang (2011) have been undertaken to
allow the same in dynamic fault tree analysis. The use of Bayesian Networks to perform
quantitative analysis of uncertainty in FTA and DFT is also found in the literature (e.g.,
Bobbio et al. (2001); Montani et al. (2008); Boudali and Dugan (2005)).

Another approach is to use an alternative representation of failure behaviour instead
of fault trees, one capable of better taking the concept of state into account. Conse-
quently, state transition formalism based methodologies, e.g., state machines, are increas-
ingly being used to capture dynamic behaviour of systems due to their simplicity. State
machines have been used in several techniques, including but not limited to: Architec-
ture Analysis and Design Language (AADL) (Feiler and Rugina, 2007; Feiler et al.,
2006b), FSAP/NuSMV-SA (Bozzano and Villafiorita, 2003), and AltaRica (Fan et al.,
2011; Rauzy, 2002). Some preliminary ideas on a hierarchical system modelling based
on state machines in HiP-HOPS are provided by Papadopoulos (2000) (see Figure 1) but
no guidelines were provided to show how the component annotations can be done and no
rules were formally defined to show how communications between different levels in the

22

Figure 1: Representation of system behaviour as hierarchy of state machines (Papadopou-
los, 2000)

hierarchy will take place. At present, the hierarchical model proposed by Papadopoulos
(2000) allows partial or local evaluation of the system, but the reliability evaluation of the
whole system is not enabled.

1.2 Motivation and Scope

1.2.1 Challenges in MBSA

It is clear that systems are getting more complex with the passing of time and their be-
haviour is becoming more dynamic. This complexity presents many challenges for the
analysts, making it difficult to perform meaningful analyses to evaluate the safety and re-
liability of such systems. Many of the techniques that are widely used for evaluating sys-
tem safety and reliability, such as FTA, are primarily manual, static approaches. MBSA is

23

an emerging field which provides tools and techniques to help automate these approaches.
But there exist many developments and challenges in this area. One such problem is that
of developing fault propagation models that link causes to effects. Another challenge is
optimisation of system architectures to meet requirements or to allocate requirements.

One of the state-of-the-art MBSA techniques that can resolve this is HiP-HOPS, which
combines fault trees (FTs) and FMEAs to allow a semi-automated safety analysis of com-
plex systems. In this technique, fault trees and FMEA are automatically generated from
topological system models that have been annotated with component failure behaviour.
Component failure behaviour is described as a set of Boolean expressions showing how
the deviations in the component outputs can be caused either by internal failure of that
component or corresponding deviations in the component’s input. As it uses both fault
trees and FMEA, analysts can benefit from the strength of both inductive and deductive
analysis approaches. This is the only tool that is considered to be capable of automatically
generating FMEA from fault trees (Grunske and Han, 2008). The capability of the HiP-
HOPS tool can be summarised as: “If we know the ‘structure’ of a system (model) and the

‘local failure behaviour of its components’ (IF-FMEAs) then we can mechanically derive

the ‘failure behaviour of the system’ (fault trees)” (Papadopoulos, 2000, p.86). The con-
tributions of the HiP-HOPS tool to the field of model based safety analysis are many and
the important ones are:

1. Fast algorithms for automatic generation of Fault Trees and Failure Modes and
Effects Analyses (FMEAs) as part of system dependability analysis.

2. Multi-objective optimisation of system architecture using genetic algorithms.

3. Novel algorithms for semi-automatic allocation of safety requirements to the system
components in the form of Safety Integrity Levels.

As already mentioned, Failure Logic based compositional MBSA techniques are not
typically capable of capturing sequence-dependent dynamic behaviour of systems be-
cause of their reliance on classical analysis approaches, e.g. FTA or FMECA. For this
reason, the application of HiP-HOPS is limited to static models of systems. However,
as mentioned earlier, State Machines or state–transition formalisms are increasingly be-
ing used in model-checking based MBSA approaches as a means for capturing dynamic
behaviour of systems. The question therefore is: how can state machines be integrated
into FLSA techniques (such as HiP-HOPS) to gain some of the benefits enjoyed by the
model-checking approaches, i.e., in terms of modelling dynamic behaviour? This is the
first motivation of this thesis.

The solution to this question requires the formulation of methodologies to annotate
system components with dependability related information using state-event based tech-
niques in addition to the Boolean logic based annotations, thus allowing dynamic analysis
based on these annotations. Such a solution should be generalisable to any compositional
MBSA tool or technique and should therefore contribute to the overall MBSA paradigm.

24

One issue with state machines is that it is not readily possible to analyse them directly.
They must first be translated to other representations, e.g. temporal fault trees or Bayesian
Networks, to facilitate meaningful analysis. Research has been performed to translate
state machines to classical fault trees, but such a transformation does not preserve the
sequence dependent behaviour of the system. However, recently, Mahmud et al. (2012)
have introduced ways of translating state machines into Pandora temporal fault trees.
Therefore, if state-based behavioural annotations could be incorporated in the MBSA
techniques, then Pandora temporal fault trees can be generated from the state machines to
show the failure behaviour of the system.

1.2.2 Challenges in Quantitative Analysis of Dynamic Systems using
Pandora

Pandora can be used to determine minimal cut sequences (MCSQs) of TFTs, which are
the smallest sequences of events that are necessary and sufficient to cause the top events,
analogous to minimal cut sets (MCSs) of classical fault trees. One of the advantages of
Pandora over other dynamic counterparts (e.g. DFT) is that it can perform qualitative
analysis, allowing it to provide useful insight into system failures with limited or absent
quantitative failure data, e.g., in the case of new system components. Moreover, the
technique is integrated well with model-based design and analysis. It has been shown by
Walker and Papadopoulos (2009) that Pandora logical expressions can be used to describe
the local failure behaviour of components and then enable compositional synthesis of
TFTs from systems models using popular modelling languages, e.g. Matlab Simulink,
EAST-ADL, or AADL, that have been annotated with Pandora expressions.

Pandora is different from Dynamic Fault Trees in that it was developed with an aim to
facilitate only the qualitative analysis of the systems, whereas DFTs are primarily used for
quantitative analysis. Although the qualitative analysis can produce important informa-
tion about the dependability of the systems, it is advantageous (and sometime necessary)
to have quantitative information about the dependability of the system. As the dynamic
extensions of the fault trees model the state-based behaviour of the system, the combi-
natorial quantification techniques used to quantify classical fault trees cannot be applied
to quantify the dynamic versions of the fault trees. Various techniques have been already
developed to quantify DFTs, such as Markov chain-based methods (Boudali et al., 2007,
2010; Dugan et al., 1993), analytical approaches (Merle et al., 2011, 2014, 2010), Monte
Carlo simulation based methods (Ejlali and Miremadi, 2004; Rao et al., 2009; Zhang
and Chan, 2012), Bayesian Network based approaches (Boudali and Dugan, 2005, 2006;
Montani et al., 2008; Neil et al., 2008), Petri Net based approaches (Codetta-Raiteri,
2005; Zhang et al., 2009), compositional approaches (Chiacchio et al., 2013, 2011), and
a modularisation approach (Gulati and Dugan, 1997).

Although a number of methods are available to quantify DFTs, very limited research
has been performed to quantify Pandora temporal fault trees. For instance, recently an

25

analytical method (Edifor et al., 2012, 2013) and a Monte Carlo simulation-based method
(Edifor et al., 2014) to quantify Pandora temporal fault trees have been developed. Out of
these two methods, the analytical method is only applicable to systems with exponentially
distributed failure data and the simulation-based method is computationally expensive and
time consuming.

The increasing importance of model-based design and analysis, the potential use of
Pandora in this context, and different available quantification techniques for DFTs have
motivated this thesis to explore different possible ways to quantify Pandora temporal fault
trees to make it equally applicable for both qualitative and quantitative analysis. Un-
der this motivation, part of the scope of this thesis is to develop methodologies to pro-
vide state-space solutions to Pandora TFTs and also to provide ways for probabilistic
evaluation of the TFTs of systems having components with both exponentially and non-
exponentially distributed data.

1.2.3 Challenges of Uncertainty

One common feature of all the MBSA techniques is that they perform quantitative anal-
ysis based on fixed values of failure data of system components, and hence take it as
guaranteed that the precise failure data of components are always available. However, in
the very early stages of design, sometimes it is necessary to consider failure data of new
components which have no available failure data. In some cases the exact choice of com-
ponent has yet to be made and thus precise failure data could not possibly be known. In
these kinds of situations, human judgement by linguistic expressions, such as ‘very low,

low, high, very high’ can be used to define failure data (Mahmood et al., 2013). Fuzzy
logic is a branch of mathematics developed by Zadeh (1965) that deals with linguistic
variables and provides an efficient way to handle uncertain data.

As the outcomes of the quantitative analysis are entirely dependent on the accuracy
of the data used in the analysis, the optimistic assumptions regarding the availability of
precise failure data may produce misleading results or, in the worst case, the quantita-
tive analysis may need to be discontinued due to the unavailability of the failure data.
As mentioned earlier, the issue of uncertain quantitative data has been addressed in the
quantitative analysis of classical and dynamic fault trees but no effort has been made to
address the issue of uncertainty in the quantification process of Pandora temporal fault
trees. Now the question is: how can the uncertainty about the component failure data
be incorporated in the quantification process of compositional MBSA techniques? This
forms another motivation of this thesis.

The answer to the above question requires formulating methodologies which allow
quantitative evaluation of system reliability with limited or absent quantitative data about
system components. As Pandora is easily integrated with MBSA techniques, the scope of
this thesis is to explore different possibilities and develop methodologies to incorporate
the issue of uncertainty into the quantification process of Pandora.

26

1.3 Research Hypothesis and Research Questions

Based on the challenges in the area of MBSA as presented in the previous sections, and
in the context of the motivation indicated in the previous section, the hypothesis defended
in this thesis is as follows:

It is possible to extend a state-of-the-art method for MBSA with novel concepts that

can address challenges in quantitative analysis of dynamic systems using Pandora and

the more general challenges of incorporating uncertainty in the field of advanced MBSA.

In order to do that a set of research questions have been developed as follows:

1. How can we model the dynamic behaviour of systems and link it to dynamic analys-
able models that can be used by compositional MBSA techniques to perform dy-
namic dependability analysis?

MBSA techniques use formal system models to facilitate automatic system analy-
sis. To aid in the automatic generation of dependability analysis artefacts such as fault
trees and FMEAs, system models are annotated with dependability related information.
This annotation typically uses Boolean expressions describing a fixed failure behaviour
for each system component. However, modern complex systems can operate in multiple
modes and the system components can have multiple sets of failure behaviour depending
on the mode of system operation, i.e., system components exhibit dynamic behaviour.
This makes Boolean expressions alone insufficient to perform dynamic analysis and gives
rise to the necessity of mode-based annotation of dynamic components. State machines
are good candidates for this and are widely been used in different techniques as a means
to describe dynamic system behaviour. Therefore, we believe: a state-transition formal-
ism can be used to capture dynamic failure behaviour and therefore allow compositional
MBSA techniques to perform automated qualitative and quantitative dependability anal-
ysis of dynamic systems.

2. How can the Pandora temporal fault trees of a dynamic system consisting of com-
ponents with various failure distributions be probabilistically evaluated using state-
space based approaches?

Pandora can be used with MBSA techniques to capture sequence-dependent dynamic
behaviour of systems. As Pandora captures the information about the state of a system,
standard combinatorial techniques used for probabilistic evaluation of classical fault trees
cannot be used to quantify Pandora TFTs. The solution requires generating all possible
system states and stochastic transitions between states. The existing analytical method
of quantifying Pandora temporal fault trees is applicable only for systems featuring com-
ponents with exponentially distributed lifetimes. However, components can have failure
rates with other distributions, like Lognormal or Weibull. Different methodologies have

27

been developed to provide state-space solution to DFTs of dynamic systems featuring
various failure distributions. As Pandora TFTs are also a DFT-like dynamic extension
of classical fault trees, we believe: state-space quantification methods can be used on
Pandora temporal fault trees to perform probabilistic dependability evaluation of dynamic
systems with various failure rate distributions.

3. How can we incorporate the issue of uncertain component failure data in the quan-
tification process of temporal fault trees and thereby allow probabilistic evaluation
of dynamic systems in conditions of uncertainty?

Quantitative dependability analysis of a system is performed based on the failure logic
and the probabilistic failure data (e.g. failure rate or failure probability of component) of
the system components. The logical expressions showing the possible causes of system
failure can be obtained from the qualitative analysis but the failure data is completely de-
pendent on the components themselves. That means the availability of failure data is the
deciding factor of the possibility of performing a quantitative analysis and we have seen
earlier that there are situations when failure data of some component may not be available.
Although there are multiple issues with assuming the certainty of component failure data,
these are frequently ignored in MBSA techniques, i.e., they take it as guaranteed that the
failure data are always available and accurate. This assumption about the availability of
failure data could undermine the applicability of such MBSA techniques for quantitative
analysis under uncertainty. In the past, research has been performed to address the is-
sue of uncertainty in the quantification process of classical FTs and DFTs, but none of
these efforts were made in the context of MBSA. As Pandora can be integrated with com-
positional MBSA techniques, we believe: it is possible to incorporate uncertain failure
data in the quantification of Pandora TFTs, thus allowing MBSA techniques to perform
quantitative analysis in conditions of uncertainty.

1.4 Research Objectives

To investigate the validity of the above research hypothesis, this thesis systematically re-
searches, develops and evaluates the proposed methodologies in five major steps, which
form the key objectives of the thesis:

1. Identify the complications faced by the MBSA techniques due to the dynamic
behaviour of systems.

To perform dynamic dependability analysis, one needs to understand what the dynamic
behaviour of a system really means. To improve the ability of compositional MBSA tech-
niques to perform dynamic dependability analysis, it requires proper understanding of the
challenges posed by the dynamic system behaviour and why these challenges complicate

28

the system analysis process and make the results of analysis inconsistent. This objec-
tive aims to describe the issues surrounding dynamic system behaviour in general and
then identify different complications it causes in the dependability analysis process. In
summary, this objective will identify a set of key challenges of dynamic analysis that the
subsequent objectives should overcome.

2. Provide a methodology to represent dynamic system behaviour

This objective is to determine how the components of the system can be annotated with
dynamic information. To accomplish this task, architectural models of systems will be
examined to see how the static behaviours of the system are annotated using Boolean
logic and different state-transition formalism based annotation techniques will be studied
to evaluate their structure, strengths and weaknesses to determine their potential use in
defining dynamic behaviour of systems. The goal is to develop a methodology to model
the dynamic behaviour of systems using state-event automata (e.g. mode or state charts
(Harel, 1987)). It will extend the existing Boolean annotation techniques used in compo-
sitional MBSA approaches such as HiP-HOPS, thus combining both static and dynamic
behaviour of a system in a single annotation. Temporal logic ought to be an option that
analysts can choose whenever necessary to define dynamic behaviour, but not something
they are forced to use all of the time. This thesis will also investigate the potential com-
plexities that may arise from the mode-based architectural annotation and provide guide-
lines on potential use of hierarchical system modelling using mode charts to alleviate the
complexities.

3. Demonstrate the dynamic system modelling and dependability analysis process
in HiP-HOPS

This objective aims to demonstrate the use of the methodology developed under the previ-
ous objective for dynamic system modelling in the context of compositional model based
safety analysis. Although the developed methodology is tool independent, the HiP-HOPS
tool will be used to demonstrate how it works. The reason behind choosing HiP-HOPS is
that it is a well-supported, state-of-the-art MBSA tool and it has additional functionality
(e.g. automated dependability analysis, architecture optimisation, safety requirements al-
location etc.) that could benefit from improved support for dynamic modelling, resulting
in a greater contribution to the field of MBSA. In this objective, the use of the developed
methodology will be illustrated by applying it to a case study of a dynamic system and
evaluating the results.

29

4. Develop methodologies to provide a state-space solution to Pandora TFTs

Dynamic system behaviour defined using mode charts cannot be directly analysed to ob-
tain useful dependability related information. For meaningful analysis, mode charts are
transformed into alternative representations such as Pandora temporal fault trees. To prob-
abilistically evaluate the system reliability from the Pandora TFTs, one needs to identify
how to probabilistically quantify all Pandora TFT gates, each minimal cut sequence that
can cause system failure, and eventually the top event probability. It is also important to
identify critical system components so that analysts can prioritise components according
to their contribution to the occurrence of the system failure. Pandora TFTs include both
Boolean and temporal gates.

Since the temporal gates capture the order of events occurrence, i.e., state of the sys-
tem, the quantitative evaluation of each of the Pandora TFT gates requires generating
state-space solutions for each of the gates according to their logical behaviour as defined
by Pandora. The existing analytical approach to quantify Pandora TFTs is dependent on
the exponential distribution of failure data. An objective of this research is therefore to
explore different techniques to provide a state-space solution to Pandora TFTs and subse-
quently develop methodologies to evaluate the reliability of dynamic systems. One aspect
of this is to develop an evaluation technique for Pandora TFTs that would be equally ap-
plicable to exponentially and non-exponentially distributed data.

5. Develop a methodology to enable uncertain data to be used in the quantifica-
tion of Pandora TFTs

The probabilistic evaluation of system dependability is performed based on failure data
of system components. Irrespective of the methodologies used to perform the quantitative
analysis, it is generally assumed that the failure data of system components are always
available. However, in the early design phase, failure data of some system components
may not be known. To address the issue of uncertain data, another objective of this thesis
is to investigate the possibility of incorporating uncertainty in the quantification process
of Pandora TFTs. The result would be a methodology to allow analysts to perform quan-
titative analysis of dynamic systems even with limited or absent probabilistic failure data,
thereby providing a way for MBSA techniques to perform dynamic analysis under condi-
tions of uncertainty.

1.5 Assumptions

The following assumptions are made in this thesis.
Non-Repairable Components
It is assumed that the system components are non-repairable. That is, once a component

30

fails it remains in the failed state forever. In other words, the state of a system component
can change from non-failed (false) to failed (true) and not vice versa.

Statistical Independence
System components are considered to be statistically independent, which means that the
probability of failure of a component is not dependent on the probability of failure of
another component in any way.

1.6 Thesis Structure

The rest of the thesis is arranged as follows:

Chapter 2: Background Study and Literature Review

This chapter defines the context of the research by discussing the dependability analy-
sis process. An overview of key traditional and model-based safety analysis methods is
provided. A critical review of the literature highlighting the key principles, strengths and
limitations of different safety analysis methods is provided to show the background and
motivation for the methodologies developed in this thesis.

Chapter 3: Dynamic Dependability Analysis

This chapter explains dynamic behaviour of systems in general and then identifies and
discusses different complications that are caused by the dynamic behaviour in the de-
pendability analysis process for the model based safety analysis approaches. After that,
it introduces a potential technique for modelling dynamic system behaviour using mode
charts. It shows how modes can be associated with the failure behaviour of components
and illustrates the mode based annotation process on a simple example system. It also
provides some guidelines on hierarchical system modelling to alleviate the complexities
that may arise from the mode based representation and also discusses the application of
temporal logic to capture dynamic behaviour.

Having presented this modelling technique, this chapter then illustrates the whole pro-
cess of dynamic dependability analysis using the HiP-HOPS tool which begins with the
component annotation, proceeds with generating temporal fault trees from the synthesis
of the mode charts, and ends by analysing the temporal fault trees to produce the mini-
mal cut sequences. Finally, this chapter demonstrates how the new approach can be used
in practice to perform dynamic analysis of systems by applying it on an Aircraft Fuel
Distribution system.

31

Chapter 4: Quantitative Dependability Analysis under Uncertainty

This chapter studies the existing quantitative analysis methods used for probabilistic eval-
uation of Pandora TFTs and makes a new contribution by presenting an approach for
performing dynamic analysis under conditions of uncertainty.

Taking the logical specification of the temporal gates as defined by Pandora into ac-
count and keeping all the assumptions unchanged, this chapter proposes two new method-
ologies to provide a state-space solution to Pandora TFTs and also to determine the crit-
icality of system components. The first methodology proposes translating temporal fault
trees into Petri Nets. In this methodology, time is considered as continuous and the com-
ponents are considered to have exponentially distributed failure data. The second method-
ology is based on Bayesian Networks. This methodology models time in a discrete do-
main and could work with any type of failure data distribution. The methodologies are
illustrated by applying them to a simple example.

This chapter also proposes a methodology based on fuzzy set theory and expert elici-
tation for quantitative evaluation of Pandora TFTs with uncertain failure data.

Having developed methodologies for the probabilistic evaluation of Pandora TFTs
and for the quantitative analysis of Pandora TFTs with uncertain failure data, this chapter
then illustrates how they can be used in practice by applying them to a fault tolerant fuel
distribution system of a ship. The analyses are explained step-by-step and the results are
discussed. The results are compared with the results produced by other existing method-
ologies, showing how the proposed methodologies can produce important quantitative
information about the dependability of a system under uncertainty.

Chapter 5: Discussion and Evaluation

This chapter evaluates the achievements of this thesis against its objectives. It provides a
comparative analysis of the proposed techniques to evaluate them. Different issues related
to the proposed approaches and their limitations are described. A potential direction for
future research is also presented here.

Chapter 6: Conclusion

This final chapter summarises the work presented in this thesis.

References

A list of references used in this thesis.

32

Chapter 2

Background Study and Literature
Review

This chapter clarifies the scope of the research presented in this thesis, and establishes a
context for the research by introducing the readers to different approaches and tools used
for dependability analysis of system. Firstly, key terms used in dependability analysis
process are defined and a brief description of the model based safety assessment pro-
cess is provided. Secondly, some of the well-established and widely used classical safety
analysis techniques like Failure Mode and Effects Analysis and fault tree analysis are de-
scribed. Thirdly, different compositional failure logic synthesis and analysis approaches
like Failure Propagation and Transformation Notation (FPTN), HiP-HOPS, and AADL as
well as other related methods are presented. Fourthly, different behavioural fault simula-
tion approaches like FSAP/NuSMV, and Altarica are described. Fifthly, other alternative
safety assessment approaches like Bayesian Networks, and Petri Nets are presented. Rel-
ative strength and weakness of different methods are emphasised while describing their
characteristics and functionality, and thus help define the scope of further research to
overcome the limitations of those conventional methods or to combine different methods
to benefit from their strong properties. Finally, concluding remarks are made in the last
section.

2.1 Reliability Engineering and Model Based Safety
Assessment

Dependability is a broad term which includes aspects of safety, reliability, security, avail-
ability, and maintainability. This thesis focuses on the safety and reliability as aspects of
dependability, and this subsection defines different terms related to these aspects. Before
explaining the technical details of system safety, it is important to establish the definitions
of some of the key terms used in this thesis. At first, we have to understand what does the
word safety mean and when we can say something is safe? In general, safety is defined

33

as freedom from accidents or losses. But there is an argument between people that there
is nothing that could be considered as absolute safety, therefore this term is required to
be defined in terms of acceptable loss. By considering this criterion, William Lowrance
defined safety as “a judgement of the acceptability of risk, and risk, in turn as a measure
of the probability of and severity of harm to human health. A thing is safe if its atten-
dant risks are judged to be acceptable” (Lowrance, 1976). The term acceptable itself is
ambiguous, because a condition which is acceptable to an employer or for a particular sit-
uation may not be acceptable in different situations or to a different employer. The term
risk is also defined as the hazard level combined with possibility of the hazard leading to
an accident and severity of the potential consequences (Leveson, 1995). A hazard is a
“state or set of conditions of a system (or an object) that, together with other conditions in
the environment of the system (or object), will lead inevitably to an accident (loss event)”
(Leveson, 1995).

Reliability is a closely related term to safety with subtle differences. Reliability is de-
fined as “the probability that a piece of equipment or component will perform its intended
function satisfactorily for a prescribed time and under stipulated environmental condi-
tions” (Leveson, 1995) (with nearly identical definition in (Villemeur, 1991)). Something
is considered as reliable if it is unlikely to fail. Unreliability, the complement of reliabil-
ity, is defined as the probability of failure. Failure is “the non-performance or inability
of the system or component to perform its intended function for a specified time under
specifies environmental conditions” (Leveson, 1995). Some useful parameters related to
reliability and unreliability are failure rate, repair rate, Mean Time To Failure (MTTF),
Mean Time Between Failure (MTBF) and Mean Time To Repair (MTTR). Failure rate is
the frequency with which a system or component fails, generally expressed as a number
of failures per hour. It is often denoted by λ and has the unit of t−1. The repair rate µ is
the probability density (that is, probability per unit time) that the component is repaired at
time t given that the component failed at time zero and had been in a failed state (that is,
the component is not yet restored to service) to time t. MTTF is the average time before
the first failure occurs for a repairable component and for a non-repairable component
this is the average lifetime of the component. MTBF is used for repairable components
and it represents the time between failures excluding the down time; i.e., it means up time
between failures. MTTR is the average time between a failure and a repair; i.e., duration
of time between the moment of component failure and the moment it becomes functional
after repair.

The aim of reliability engineering is to improve the reliability of a system in order
to minimise the risk associated with the system failure or to improve efficiency while
reducing the cost. Analysts can discover the flaws of a system through analysis, and
therefore can take necessary actions to improve the system design by adjusting to reduce
those flaws. There are many different techniques available to perform the safety analyses.
Safety analysis techniques like fault tree analysis (FTA) and Failure Modes and Effects

34

Analysis (FMEA) are well established and widely used during the design phase of safety-
critical systems. Usually these types of techniques are manual processes and performed
on an informal system model by a single person or a group of persons to fulfil safety
requirements of the systems. Although these techniques can produce a great deal of valu-
able information about the safety and reliability of the system, the overall performance
of these techniques largely depend on the skill of the analysts. As these analyses are per-
formed on informal models, it is therefore unlikely that they will be complete, consistent,
and error free which make it difficult to reuse that information. Furthermore, manual
analyses are usually time consuming and expensive, therefore once performed they are
unlikely to be repeated or iterated upon.

Over the past 20 years, research has focused on simplifying the dependability analysis
process by automating the synthesis process, which led to a body of work on model-
based safety assessment (MBSA) and prediction of dependability. Several approaches to
automated safety analysis have emerged, motivated mainly by the increased complexity
of systems and increased time and costs associated with the manual analysis. In model-
based safety analysis, system designers and safety analysts both use the same system
model or somehow related models. As a result, the models become more formal than
a separate model for safety analysis. This can allow automating all or some part of the
safety analysis process. By automating the safety analysis processes, MBSA can save
time and expenses and allow the reusability of the information. More importantly, it
allows the analysts to repeat the analyses process as many times as they want to cope
with the frequent changes in the model of the systems; it also reduces the probability of
introducing errors and omitting important information.

Within model-based safety analysis, two different paradigms of research have been
developed (Walker et al., 2008). The first paradigm can be called failure logic synthesis
and analysis which focuses on the automatic construction of predictive system failure
analyses. The other paradigm can be called behavioural fault simulation which focuses
more on behavioural simulation to automatically analyse potential failures in a system.
Some of the well-known classical safety analysis techniques and MBSA approaches of
each category will be discussed in the next sections.

2.2 Classical Safety Analysis Techniques

This section reviews different classical and well-established safety analysis techniques
which include Failure Mode and Effects Analysis (FMEA)/ Failure Mode Effects and
Criticality Analysis (FMECA) and Fault Tree Analysis (FTA).

2.2.1 FMEA/FMECA

Failure Mode and Effects Analysis (FMEA) is a well-known inductive safety analysis
method. FMEA was developed by reliability engineers in order to predict component

35

reliability. The FMEA process is described in both academic literature e.g., (Leveson,
1995) and in a number of industrial standards like (IEC, 2006). The FMEA process starts
with defining the system, identifying and listing all components of the system with their
failure modes, considering all possible modes of operation. Afterwards, the effects of
each of the failure modes on the other components of the system as well as on the overall
system is determined. Then the severities and probabilities of each failure modes are
evaluated. The results are documented in a table with column headings like item, failure
mode, and effects.

Failure Modes, Effects, and Criticality Analysis (FMECA) is an extension of FMEA
with more detailed analysis of the criticality of the failure modes. Two additional steps
are added to the FMEA: (1) identifying failure detection methods and compensating pro-
visions, and (2) identifying corrective actions to eliminate the failure or to reduce the
risk (Pukite and Pukite, 1998). Example of an FMECA table is shown in Table 1 (Leve-
son, 1995). FMEA/ FMECA do not usually provide any systematic ways for identifying
failure modes or determining their effects on other components. The following failure
conditions must be considered while identifying failure modes and their causes (Pukite
and Pukite, 1998):

1. Premature operation.

2. Failure to operate at a prescribed time.

3. Intermittent operation.

4. Failure to cease operation at a prescribed time.

5. Loss of output or failure during operation.

6. Degraded output or operational capability.

7. Other unique failure conditions.

The strength of these techniques is their completeness. However, the processes are
very time consuming and if applied to all parts of a complex system, then it can become
monotonous and costly. FMEA does not normally consider effects of multiple failures at
a single time. It normally considers each failure as an independent event without any rela-
tion with other failures except the subsequent effects the failure might produce (Leveson,
1995). But the FMEA used in the AutoSteve tool (Price and Taylor, 2002) can consider
the effects of multiple failure modes. As it has to consider all possible combinations of
failure, it would lead to a combinatorial explosion. Papadopoulos et al. (2004b) have
proposed a method to consider the effects of multiple failures and the methodology pro-
posed by Walker et al. (2009) can consider the effects of multiple failures as well as their
sequential behaviour.

36

Table 1: A sample FMECA

Item Failure Modes Cause of Failure Possible Effects Probability Level
Possible Actions to reduce

Failure Rate or Effects

Motor Case Rupture

Poor workmanship.

Defective materials.

Damage during transportation.

Damage during handling.

Over pressurisation.

Destruction

of missile.
0.0006 Critical

Close control of manufacturing

processes to ensure that

workmanship meets prescribed

standards. Rigid quality control of

basic materials to eliminate

defectives. Inspection and

pressure testing of completed

cases. Provision of suitable

packaging to protect motor during

transportation.

37

Among the different model-based safety analysis tools HiP-HOPS (Papadopoulos,
2000) has the capability to automatically generate FMEA from the fault trees. FMEA
produced by HiP-HOPS can describe further effects of a failure mode along with the
direct effect of that failure mode on the system. Grunske et al. (2007) have proposed a
method for probabilistic failure modes and effects analysis (pFMEA) using probabilistic
fault injection and model checking methods.

2.2.2 Fault Tree Analysis: FTA

Fault tree analysis (FTA) is a well-established and widely used method for evaluating sys-
tem safety and reliability qualitatively as well as quantitatively (Vesely et al., 2002). After
its creation in the 1960s, it has been used in variety of fields, including but not limited to:
automotive, aerospace, and nuclear industries (Walker and Papadopoulos, 2009). Fault
trees utilise graphical representations based on Boolean logic to show logical connections
between different faults and their causes (Vesely et al., 1981). They are a deductive anal-
ysis method, which means analysis starts with a system failure known as the ‘top event’
and works backwards to determine its root causes. From a fault tree, it is possible to un-
derstand how combinations of failures of different components or certain environmental
circumstances can lead to system failure. The roles of FTA in decision making are (Vesely
et al., 2002):

• To understand the logic leading to the top event.

• To prioritise the contributors leading to the top event.

• As a proactive tool to prevent the top event.

• To monitor the performance of the system.

• To minimise and optimise resources.

• To assist the designing of the system.

• As a diagnostic tool to identify and correct causes of the top event.

Steps required for successful FTA and the interrelationship between the steps are
shown in Figure 2. The first step is to define the objective of the FTA, i.e., defining
the objectives in terms of a failure of the system to be analysed. Just after defining the
objective of FTA, the top event of the FT is defined in step 2. After that, the scope of
the FTA is defined by indicating which of the component failures and contributions will
be considered and which will not be considered. The level of detail to which the failure
causes for the top event will be developed is defined is step 4 as the resolution of FTA. In
step 5, ground rules for the FTA are defined by declaring the procedure and nomenclature
by which events and gates are named. The ground rules are very important in creating an
understandable FT.

38

Figure 2: Fault Tree Analysis Steps (Vesely et al., 2002)

The actual construction of a FT is performed in step 6 and the evaluation is done in
step 7. Both qualitative and quantitative evaluations could be performed. The qualitative
evaluation provides information about the minimal cut sets which are the smallest combi-
nations of events that are necessary and sufficient to cause the top event. The quantitative
evaluation usually provides the probability of the top event and importance measure of
events based on their contribution to the top event. Finally, at the last step the results are
interpreted and presented.

2.2.2.1 Fault Tree Events and Gates Symbols

Fault trees use different symbols to represent different events and gates. Symbols used in
classical FTs to represent different events are shown in Figure 3.

Figure 3: Fault Tree Event Symbols

A basic event is an initiating or basic fault that does not require any further develop-
ment or expansion and is graphically represented by a circle. Basic events are represented
as leaf nodes in the fault tree and they combine together to cause intermediate events.
To facilitate quantitative analysis basic events are usually given failure rates and/or re-
pair rates. And in the qualitative analysis, cut sets are the combination of different basic
events.

An intermediate event is a fault that is caused by the logical combinations of other
events occurring further down the tree. As intermediate events are caused by other events,
they are almost always a type of logical gate. An undeveloped event is an event whose
contributions are not considered in the analysis, either because it is considered as unnec-
essary, or because insufficient information is available. It is graphically represented by a

39

diamond. A conditioning event does not necessarily represent a fault, it serves as a special
condition or constraint for certain types of gates. An ellipse is used to represent a condi-
tioning event. A normal event does not represent any fault and it is part of the nominal
behaviour of the system. Normal events are represented by a house symbol.

Figure 4: Fault Tree Logic Gate Symbols

Symbols used in classical FTs to represent different logic gates are shown in Figure
4. The OR gate is used to show a scenario when the output event occurs if at least one
of the input events occur. There is no restriction on the number input events to an OR
gate. Inputs to an OR gate are often restatements of the output i.e., an OR gate does
not necessarily represent a causal relationship between its inputs and outputs. In this
thesis, the symbol ‘∨’ is used to represent an OR gate in text or in logical expressions.
The output of an AND gate is true if all of its input events are true. For example, a fire
detection system can fail if both smoke detector unit and heat detector unit fail but not
by the failure of just one unit. Similar to the OR gate there may be any number of input
events to an AND gate but in contrast to the OR gate, the AND gate usually represents a
causal relationship between its inputs and outputs. The symbol ‘∧’ is used to represent
an AND gate in text or in logical expressions in this thesis. The XOR gate is true if one
and only one of its input events is true. This gate is a special case of the OR gate and in
most fault tree analysis it is considered as a two-input gate where the output is true if only
one of the inputs is true but not two1. The symbol ‘⊕’ is used to represent an XOR gate
in text or in logical expressions. The PAND gate is a special case of the AND gate and
detail about the PAND gate will be provided in subsection 2.2.2.5. The INHIBIT gate is
a special case of the AND gate and it produces an output when its only input event is true
in the presence of a conditioning event. An example of a typical fault tree is shown in
Figure 5.

2.2.2.2 Qualitative and Quantitative Analysis of Fault Trees

After construction of a fault tree, qualitative analysis is performed using Boolean logic
by reducing it to minimal cut sets (MCSs), which are a disjoint sum of products con-
sisting of the smallest combinations of failure events that are necessary and sufficient to
cause the top event. The order of a minimal cut set defines the number of basic events
that contribute to that minimal cut set. A 1st order MCS consists of a single basic event,

1In digital logic design, when a XOR gate has more than two inputs then the output becomes true when
odd number of inputs become true.

40

Figure 5: Example of a Fault Tree (Andrews, 1998)

i.e., a single failure event alone can cause the top event to occur. Therefore, this sin-
gle component becomes a candidate for upgrade or to replicate. On the other hand, a
4th order MCS contains four basic events. The lower the order of a MCS the higher
the importance of that MCS is. There are many fault tree algorithms available to per-
form qualitative, quantitative, and other different analysis. Walker (2009) has described
some of the fault tree analysis algorithms like MOCUS — Method of Obtaining Cut Sets
(Fussel and Vesely, 1972), ELRAFT — Efficient Logic Reduction Analysis of Fault Trees
(Semanderes, 1971), Linear Time Modularisation Algorithm (Dutuit and Rauzy, 1996),
and BDD — Binary Decision Diagram (Sinnamon and Andrews, 1997).

Quantitative analysis of a fault tree, which follows qualitative analysis, can help to
estimate the probability of the top event occurring from the given failure rates of basic
failure modes of the system (Vesely et al., 1981). In the quantification process, the ba-
sic events are assumed to be statistically independent. Usually, in fault tree analysis, as
the top event is represented as the disjoint sum of the MCS, an approximate value of
the probability of the top event can be determined by calculating the probability of each
MCS and then adding them together, given that the probability of MCSs are small. In the
Fault Tree Handbook (Vesely et al., 2002), this approximation is termed as “rare event
approximation” and it is also stated that if the basic events probabilities are below 0.1
then this approximation are typically sufficiently accurate. In addition to this approxima-
tion, depending on the applications, different kinds of probabilities like time-dependent
probabilities could be calculated provided that the proper failure distributions of the com-
ponents/events are available.

Although the primary focus of the quantitative analysis of a fault tree is to determine
the top event probability, it is possible to determine the probability of any intermediate
events as well as the basic events. Dominance of the minimal cut sets could be deter-

41

mined based on the significance of their contribution to the top event. The cut set which
contributes the most to the top event is considered as the most dominant. In addition
to determining dominant MCS, importance of basic events could also be obtained in the
similar way.

To be able to perform quantitative analysis to get top event probability, the basic events
are usually given one of the following types of data (Vesely et al., 2002):

1. a component failure probability in some time interval,

2. an event occurrence probability in some time interval,

3. a component unavailability, and

4. a pure event probability.

If the exponentially distributed failure rate (λ) of a component C and the mission time
is given, then the failure probability of the component is calculated as:

Pr{C}(t) = 1− e−λ t (1)

where Pr{C} is the failure probability of the component, also known as the unreliability
of the component and t is the mission time.
As the minimal cut sets are presented as the intersection of the basic events, the proba-
bility of a MCS is obtained by simply multiplying the probabilities of the basic events as
follows:

Pr{MCSi}=
n

∏
j=1

Pr{BE j} (2)

where Pr{MCSi} is the probability of the minimal cut set i and Pr{BE j} is the probability
of the basic event j in MCSi.
And, since the top event is the union of the minimal cut sets, hence, the top event proba-
bility could be calculated as (Esary and Proschan, 1963):

Pr{top event}= 1−
n

∏
i=1

(
1−Pr{MCSi}

)
(3)

where Pr{top event} is the probability of the top event and Pr{MCSi} is the probability
of the minimal cut set i.

The outcomes of the quantitative evaluation of a fault tree largely depend on the pre-
cision of the data used during the analysis. Imprecise or uncertain data could make the
results of a quantitative analysis questionable. Though FTA is popular and widely used,
application of traditional FTA has some limitations, e.g., in expressing time- or sequence-
dependent dynamic behaviour (Dugan et al., 1990; Bruns and Anderson, 1993; Walker

42

and Papadopoulos, 2009); or when handling uncertainties, allowing use of linguistic vari-
ables and integrating human error in failure logic (Mahmood et al., 2013; Tanaka et al.,
1983). These are well known limitations of FTA and by this time conventional FTA has
gone through different modifications to overcome them.

To capture sequence-dependant behaviour, classical FTs are extended to introduce
Dynamic Fault Trees (DFTs) and Pandora Temporal Fault Trees. The basic description
of DFT is presented in subsection 2.2.2.4 and the description of the Pandora Temporal
Fault Tree is presented in subsection 2.2.2.5. To handle uncertainties during quantitative
analysis, classical fault trees are extended using fuzzy set theory, known as Fuzzy Fault
Trees. Some preliminaries on fuzzy fault trees are provided in the next subsection.

2.2.2.3 Fuzzy Extension of FTA: FFTA

During quantitative analysis, in conventional FTA, failure rates of components are typi-
cally considered to be constant (Yuhua and Datao, 2005). But for many complex systems,
it is often very difficult to estimate a precise failure rate due to lack of knowledge, scarcity
of statistical data, ambiguous component behaviour, and operating environment of the
system (Liang and Wang, 1993; Singer, 1990). This situation is especially relevant in the
early design stages when system analysts may have to consider failure rates of completely
new or undetermined components which have no available quantitative failure data, and
thus precise failure rates could not possibly be known. As Fuzzy Logic is a branch of
mathematics that deals with linguistic variables and provides an efficient way to draw
conclusions from imprecise and vague information, in order to allow the conventional
FTA to capture uncertainty, a different quantification method of FTA based on fuzzy set
theory have been proposed by different researchers e.g., (Gmytrasiewicz et al., 1990; Lin
and Wang, 1997; Suresh et al., 1996; Tyagi et al., 2011; Wang et al., 2013; Ferdous et al.,
2009; Tanaka et al., 1983).

The basic idea of fuzzy FTA is to use fuzzy representations of failure rates or failure
probability of components instead of the crisp representations used in classical FTA. A
fuzzy number A can be thought of as a set of real numbers where each possible value
has a weight between 0 and 1. This weight is referred to as the degree of membership
defined by a membership function. Among different forms of fuzzy numbers, triangular
fuzzy number (TFN) and trapezoidal fuzzy number (TZFN) are widely used in reliability
analysis. A trapezoidal fuzzy number A = {a1,a2,a3,a4} shown in Figure 6 is defined by
the membership function as:

µA (x) =

x−a1

a2−a1
, f or a1 < x < a2,

1, f or a2 ≤ x≤ a3,
x−a4

a3−a4
, f or a3 < x < a4,

0, otherwise.

(4)

43

where a1 ≤ a2 ≤ a3 ≤ a4.

Figure 6: Graphical representation of Trapezoidal fuzzy number

After getting the MCSs from qualitative analysis, the next step is to define or represent
the failure rates of all basic components/events as fuzzy numbers. There is no restriction
on the format of the fuzzy numbers to be used to represent the failure rates. However,
most researchers used either triangular or trapezoidal forms of the fuzzy numbers to rep-
resent failure rates of basic events. After defining fuzzy failure rates of all basic events,
fuzzy operators for the fault tree’s gates are defined and subsequently, all the MCSs are
quantified using the fuzzy failure rates of basic events. These values are used to obtain
the top event probability. As the fuzzy numbers are used in the quantification process, the
top event probability is obtained as a fuzzy number. The idea of fuzzy fault tree analysis
is illustrated by an example below.
Let us consider that the failure rates of basic events are defined as triangular fuzzy num-
bers as:

λ (BEi) = {λi1, λi2, λi3} , f or i = 1,2, · · · ,n (5)

where n is the total number of basic events, λ (BEi) is the fuzzy failure rate of the basic
event i and λi1, λi2, and λi3 are the elements of that fuzzy failure rate. By considering
mission time as t, the fuzzy probabilities of the basic events are defined using equation
(1) as:

Pr{BEi}(t) =
{

ai (t) , bi (t) , ci (t)
}
=
{

1− e−λi1t , 1− e−λi2t , 1− e−λi3t} (6)

As the MCSs are represented as the intersections (AND) of different basic events therefore

44

from the above fuzzy probability of the basic events and using equation (2) the fuzzy
operator of the AND gate or the fuzzy probabilities of MCSs are obtained as:

PAND =
n

∏
i=1

Pr{BEi}(t) =
{ n

∏
i=1

ai (t) ,
n

∏
i=1

bi (t) ,
n

∏
i=1

ci (t)
}

(7)

And, finally, if the failure probability of each MCS i is presented by a fuzzy number
as Pr{MCSi}(t) =

{
xi(t), yi(t), zi(t)

}
, then the probability of the top event is obtained

using equation (3) as:

Pr{top event}=
{

1−
n

∏
i=1

(
1− xi(t)

)
, 1−

n

∏
i=1

(
1− yi(t)

)
, 1−

n

∏
i=1

(
1− zi(t)

)}
(8)

For illustration, let us consider the simple fault tree of Figure 7. The logical expression
for the top event can be written as:

Top Event = A1∨A2 = (X1∧X2)∨ (X3∧X4)

Figure 7: Fault Tree to illustrate the use of Fuzzy Set theory in FTA

Fuzzy failure rates (triangular representation) of basic events and fuzzy probabilities
of the basic events considering mission time t = 1000 hours are shown in Table 2. Using
equation (7) and data from Table 2, the fuzzy probabilities of two MCSs can be obtained
as:

Pr{A1}(t) = {0.0002, 0.0008, 0.0015} and Pr{A2}(t) = {0.0009, 0.0020, 0.0030}

45

Table 2: Fuzzy Failure Rates and Failure Probabilities of Basic Events of Fault Tree of
Figure 7

Event Id Fuzzy Failure Rates Fuzzy failure Probabilities

λi1 λi2 λi3 ai(t) bi(t) ci(t)

X1 1.005E-5 2.020E-5 3.046E-5 0.01 0.02 0.03

X2 2.020E-5 4.082E-5 5.129E-5 0.02 0.04 0.05

X3 3.046E-5 5.129E-5 6.188E-5 0.03 0.05 0.06

X4 3.046E-5 4.082E-5 5.129E-5 0.03 0.04 0.05

Now using equation (8) and fuzzy probabilities of the MCSs, the fuzzy top event
probability is:

Pr{top event}= (0.0011, 0.0028, 0.0045)

The above result implies that the failure probability of the top event is between 0.0011
and 0.0045, and the most possible value of the top event probability is 0.0028. Some
researchers like Ferdous et al. (2009) have also mapped the fuzzy top event probabilities
into a single value. In addition to evaluating fuzzy top event probabilities, most of the
researchers those who had used fuzzy fault tree analysis for reliability analysis had also
evaluated the fuzzy cut set importance and basic events importance as well.

2.2.2.4 Dynamic Fault Trees: DFTs

As mentioned earlier, classical fault tree analysis is not capable of analysing the failure
behaviour of a system where the outcome of the analysis depends not only the combina-
tions of the failures of the components but also on the order in which the components fail.
In order to make classical fault tree analysis capable of capturing sequence-dependent dy-
namic behaviour, a number of extensions like Dynamic Fault Trees (DFTs) (Dugan et al.,
1992), Temporal Fault Trees (Palshikar, 2002), State/Event Fault Trees (SEFTs) (Kaiser
et al., 2007), and Pandora Temporal Fault Trees (Walker, 2009) have been proposed. The
detailed description of all the proposed dynamic extensions of fault trees is beyond the
scope of this thesis. However, Dugan’s Dynamic Fault Tree is briefly described in this sec-
tion, while SEFTs and Pandora Temporal Fault Trees will be described in section 2.3.4
and 2.2.2.5 respectively.

Of all the dynamic extensions of fault trees, probably the most prominent is the Dy-
namic Fault Tree (Dugan et al., 1993; Manian et al., 1998). Two special gates, namely
Functional Dependency (FDEP) gate and SPARE gate, are introduced as part of the Dy-
namic Fault Tree (DFT) to represent temporal behaviour of the systems.

The Functional dependency (FDEP) gate (see Figure 8) helps to design a scenario
when the operations of some components of a system are dependent on the operation of
another component of the system. For example, when many components of a system

46

Figure 8: Functional Dependency (FDEP) Gate

receive power from a single source of supply, then failure of the power supply would
cause all the dependent components to fail. In a FDEP gate there is only one trigger input
which could be a basic event or an intermediate event. However, there could one or more
dependent basic events in a FDEP gate. As the dependent basic events are functionally
dependent on the trigger event, the occurrence of the trigger event forces the dependent
events to occur. By contrast, failure of any number of the dependent events will not affect
the trigger event, at the same time dependent events themselves have no effect on each
other. The FDEP gate is particularly useful for modelling networked systems, where
communication between connected components takes place through a common network
element, and failure of the common element isolates other connected components. This
type of gate can also model interdependencies, which would otherwise introduce loops in
the fault trees.

Figure 9: Spare Gate

A SPARE gate is shown in Figure 9. All the inputs of the SPARE gate are basic

47

events, one of them acts as a primary component (left most input) and the others are
the spare components. The SPARE gate designs a scenario where the spare components
are activated in a sequence, i.e., if there are two spare components then the first spare
will be activated in case the primary fails; if the first spare fails then the second one will
be activated. The outcome of the SPARE gate becomes true if all the input events are
true. A SPARE gate could model three types of spares: Cold Spares, Warm Spares, and
Hot Spares. The failure rate of each of the spare components is affected by the mode
they are in and this effect is modelled by a dormancy factor. In the cold spare mode
the spare components are deactivated until they are required therefore the dormancy is
closer to zero. In contrast, in the hot spare mode, spare components are always active
but serve their functionality when the primary fails; as a result the failure rate of a spare
component is the same as an active component even if it is not in service, and therefore
a spare component has a dormancy factor close to one. In warm spare mode, the spare
components are neither on nor off, instead they are kept in-between these two states, i.e.,
components are kept in a reduced readiness state until required. The dormancy factor
of a component in warm spare mode is considered somewhere in-between the dormancy
factor of cold and hot spare modes (e.g., 0.5).

Usually, Markov chains are employed to solve DFTs (Dugan et al., 1992) and quan-
titative analysis of DFTs are performed based on exponential-like distributions of com-
ponents failure behaviour. As Markov chains are constructed considering all possible
combinations of components, the state space of the Markov chain increases nearly expo-
nentially with respect to the components. For this reason, the Markov chain for a large
DFT with a significant number of dynamic components will be difficult to create and
analyse. Another issue with Markov chains is that they can only quantify the DFT of a
system if and only if the components of the system have exponentially distributed failure
rates. Alternatives have also been proposed, such as an algebraic framework to model dy-
namic gates of DFTs; this allows qualitative (Merle et al., 2011) and quantitative (Merle
et al., 2014) analysis of DFTs. Moreover, a considerable number of researchers like Mal-
hotra and Trivedi (1995), Hura and Atwood (1988), Bobbio et al. (1999), Helmer et al.

(2007), and Reza et al. (2009) have used Petri Nets to solve classical fault trees, however,
to the knowledge of the author, fewer efforts (e.g., Codetta-Raiteri (2005); Zhang et al.

(2009)) have been made to solve DFT using Petri Nets. But uses of Bayesian Networks
for solving DFTs are increasing e.g., (Boudali and Dugan, 2005; Marquez et al., 2008;
Montani et al., 2008). Further details of Markov chains, Bayesian Networks, and Petri
Nets based reliability engineering approaches are presented in section 2.5.1, 2.5.2, and
2.5.3 respectively.

2.2.2.5 Pandora Temporal Fault Trees

Pandora is an extension of classical fault trees, which makes conventional fault trees ca-
pable of dynamic analysis (Walker et al., 2007; Walker, 2009). Pandora augments fault

48

trees with new temporal gates and provides temporal laws to allow qualitative analysis,
and thus overcome the limitations of FTA in expressing sequence-dependent behaviour.
This technique can be used to determine minimal cut sequences (MCSQs) of temporal
fault trees, which are the smallest sequences of events that are necessary to cause the top
events, analogous to minimal cut sets (MCSs) of conventional fault trees. The basis of
Pandora is the redefinition of the long-established Priority-AND (PAND) gate (Fussell
et al., 1976).

Pandora assumes that the occurrence of the events are instantaneous, i.e., go from
‘non-fail’ to ‘fail’ with no delay, and that they are persistent i.e., once occurred, they
remain in a ‘true’ state indefinitely. Given this, there are three possible temporal relations
between two events X and Y:

• before – X occurs first, Y occurs second

• after – Y occurs first, X occurs second

• simultaneous – X and Y occur at the same time

To represent these three temporal relations between events, i.e., to capture the sequence
between the occurrence of events, Pandora introduces three temporal gates: Priority-AND
(PAND), Priority-OR (POR), and Simultaneous-AND (SAND).

Priority-AND (PAND)
As mentioned earlier, the PAND gate is not a new gate. It has been used in FTA as far

back as the 1970s and also features in the DFT methodology. Nevertheless, it was never
properly defined for qualitative analysis, resulting in ambiguous behaviour. Therefore,
to avoid ambiguity, in Pandora, the PAND gate is defined as being true if the following
conditions are true:

• All input events occur

• Input events occur from left to right

• No input events occur simultaneously

In Pandora, the symbol‘<’ is used to represent the PAND gate, however, to avoid confu-
sion between a PAND gate and the less than sign, this thesis uses ‘C’ as the symbol for
the PAND gate. As a result, now X CY means X PAND Y , where X and Y are both failure
events. The symbol of the Pandora’s PAND gate with n inputs is shown in Figure 10.

Priority-OR (POR)
Similar to the PAND gate, the Priority-OR (POR) gate also defines a sequence, but it

specifies an ordered disjunction rather than an ordered conjunction. It is used to indicate
that one input event has priority and must occur first for the POR to be true, but does not

49

Figure 10: Pandora’s PAND gate with n inputs (n≥ 2)

require all other input events to occur as well. The POR can therefore be used to represent
trigger conditions where the occurrence of the priority event means that subsequent events
may have no effect. The POR is true only if:

• Its priority event (left-most) occurs

• No other input event occurs before or at the same time as the priority input event

In Pandora, the symbol ‘|’ is used to represent the POR gate in logical expressions, but
this symbol is often confused with the conditional probability symbol. To avoid this con-
fusion, in this thesis, the symbol ‘o’ is used to represent the POR gate, thus X oY means
(X POR Y) and the graphical symbol of the Pandora’s POR gate is shown in Figure 11.

Simultaneous-AND (SAND)
The Simultaneous-AND or SAND gate is used to define situations where an outcome

is only triggered if two or more events occur simultaneously. For example, this can happen
because of a common cause, or because the events have a different effect if they occur
approximately simultaneously as opposed to in a sequence. It is true only if:

• All input events occur

• All the events occur at the same time

The symbol ‘&’ is used to represent the SAND gate in logical expressions and the fault
tree symbol of the SAND gate is shown Figure 12.

50

Figure 11: Pandora’s POR gate with n inputs (n≥ 2)

Figure 12: Pandora’s SAND gate with n inputs (n≥ 2)

These three temporal gates are integrated with other Boolean gates (AND, OR) to cre-
ate the Pandora Temporal Fault Tree. In Pandora’s logical expressions, the SAND gate
has the highest priority, then the PAND, POR, AND, and OR. Therefore P∨Q & RCS oT
is equivalent to P∨ (((Q & R)C S) o T). As well as the three temporal gates, Pandora
also defines a set of temporal laws that describe the behaviour of the gates and how they
relate to each other and to the standard Boolean AND and OR gates. These laws include
the temporal versions of the Distributive, Associative, Absorption laws, and other fully

51

temporal laws (Walker, 2009). As temporal expressions are usually complex when com-
pared to Boolean expressions, temporal laws can be used to minimise the expressions and
therefore reduce complexity (Walker and Papadopoulos, 2009). Most important of the
Pandora laws are the Completion laws (Walker, 2009), which relate the temporal gates to
the Boolean gates:

• Conjunctive Completion Law: X ∧Y ⇔ (X CY)∨ (X & Y)∨ (Y CX)

• Disjunctive Completion Law: X ∨Y ⇔ (X oY)∨ (X & Y)∨ (Y oX)

• Reductive Completion Law: X ⇔ (Y CX)∨ (X & Y)∨ (X oY)

As mentioned earlier, in Pandora, there are only three possible temporal relations
between any two events, therefore if both the events occur then one and only one of these
relations must be true. The Conjunctive Completion law represent this scenario, i.e., if X

and Y both occur, then either X occurred before Y , or they occurred simultaneously, or Y

occurred before X . The Disjunctive Completion law represents a scenario when at least
one of the two events occurs, then either only one occurred on its own or before the other,
or both occurred simultaneously. The Reductive Completion Law shows how an event
(in this case Y) can be totally redundant if it does not matter when it occurs in relation to
another event.

Table 3: Temporal Truth Table for all gates in Pandora

X Y X OR Y X AND Y X POR Y X PAND Y X SAND Y
0 0 0 0 0 0 0
0 1 1 0 0 0 0
1 0 1 0 1 0 0
1 1 1 1 0 0 1
1 2 1 2 1 2 0
2 1 1 2 0 0 0
2 2 2 2 0 0 2

All the temporal laws can be proved by means of temporal truth tables (Walker, 2009).
Temporal truth tables are extensions of Boolean truth tables with information about the
order in which events occurred. Pandora defines the order of events occurring by means
of sequence values. In Pandora, “the exact time at which an event occurs is not important
— the only thing that matters is when it occurs relative to the other events, i.e., which
comes first, which comes second, which comes last etc.” (Walker, 2009). Similarly, it is
not necessary to know exactly how long the interval between these events last. Therefore,
sequence values are the abstractions of the time at which an event occurs. Sequence values
differ from the ‘true’ and ‘false’ values of Boolean logic in that they not only express true
or false but also the relative order between events. For example, sequence value 0 means
the event has not occurred but if an event has occurred then it will have any sequence

52

value greater than 0 to indicate when it occurs relative to other events under considera-
tion. For example, sequence value 1 means the event occurs first, 2 means second, and
so on, i.e., the higher the sequence value the later the event occurs. The temporal truth
table for all the gates in Pandora using the concept of sequence value is shown in Table 3
(Walker, 2009).

Quantitative Evaluation of Pandora Temporal Gates
The primary intention behind creating Pandora was to allow dynamic qualitative anal-

ysis of systems. However, in terms of quantitative analysis, techniques are also available
for probabilistic evaluation. Quantitative solutions to the PAND gate include derivations
from calculus (algebraic solution) (Fussell et al., 1976; Merle et al., 2011; Yuge and
Yanagi, 2008; Merle et al., 2010); Markov Chain based solutions (Boudali et al., 2007);
Bayesian Network based solutions (Boudali and Dugan, 2005; Marquez et al., 2008;
Montani et al., 2008, 2006); and Petri Net based solutions (Codetta-Raiteri, 2005; Zhang
et al., 2009). As the DFT’s PAND gate is not always considered to be the same as the
Pandora’s PAND gate, not all the solutions will be applicable for Pandora’s PAND gate.
However, the solution proposed by Merle et al. (2010) shown in equation (9) is used as
an analytical solution to Pandora’s PAND gate.

Recently some analytical approaches have been introduced by Edifor et al. (2012,
2013) to quantify Pandora’s POR and SAND gates, and the solutions are shown in equa-
tions (10) and (11) respectively. Most recently Pandora’s temporal gates are quantified by
Edifor et al. (2014) using Monte-Carlo simulation. But neither the analytical nor the simu-
lation based approaches for evaluating Pandora temporal fault trees consider the inclusion
of a degree of uncertainty in the failure rates of the basic events, although a significant
amount of research has been done to consider uncertainty in the failure rates of the basic
events in the classical fault tree analysis. Moreover, till now no efforts has been made to
find Bayesian Network or Petri Net based solutions to Pandora temporal fault trees.

Pr{E1 CE2 CE3 C · · · CEn−1 CEn}(t) =
N

∏
i=1

λi

N

∑
k=0

[
e(ukt)

∏
N
j=0
j 6=k

(uk−u j)

]
(9)

where u0 = 0 and um =−∑
m
j=1 λ j f or m > 0.

Pr{E1 oE2 oE3 o · · · oEn−1 oEn}(t) =
λ1

(
1−
(
e−(∑

N
i=1 λi)t

))
∑

N
i=1 λi

(10)

Pr{E1&dE2&dE3&d · · ·&dEn−1&dEn}{0, t0, t1}=
N

∑
i=1

(
F(Xi){0, t0}∗

(N

∏
j=1
j 6=i

F(Xi){t0, t1}
))

(11)

53

2.3 Failure Logic Synthesis and Analysis Approaches
to MBSA

In failure logic synthesis and analysis, system-level models of failure propagation are
generated from component-level failure behaviour models using a process of composi-
tion. As the failure behaviour of the system components is modelled in a compositional
way, it is much easier to understand the effects of changing one component or subsystem
on the rest of the system. Techniques that follow the compositional approach include:
Component Fault Trees (CFTs) (Kaiser et al., 2003); State-Event Fault Trees (SEFTs)
(Grunske et al., 2005; Kaiser et al., 2007), Failure Propagation and Transformation No-
tation (FPTN) (Fenelon and McDermid, 1993), Failure Propagation and Transformation
Calculus (FPTC) (Wallace, 2005) and HiP-HOPS (Papadopoulos, 2000). These different
techniques will be discussed in the following subsections. As the Error Model Annex of
the AADL also follows the compositional approach and is therefore also discussed under
this section.

2.3.1 Failure Propagation and Transformation Notation

Failure Propagation and Transformation Notation (FPTN), which overcomes many of the
limitations of FTA and FMECA, is the first modular and graphical method to specify
failure behaviour of systems with complex architectures. FPTN was created to provide a
simple and clean notation to reflect the way in which failures within the system interact
along with the system architecture (Fenelon and McDermid, 1993). The basic unit of
the FPTN is a “module” and usually is represented by a simple box with a set of input
(incoming) and output (outgoing) failure modes. These inputs and outputs are connected
to other FPTN modules and a module can contain a number of sub-modules to form a
hierarchical structure. Failures can be propagated directly through one FPTN module to
another or can be transformed from one type to another. These failures modes could be
classified into a number of broad categories, like (Fenelon and McDermid, 1993):

• Timing Failure

– too early (te), too late (tl) etc.

• Value failures (v)

• Commission (c)

• Omission (o)

Example of an FPTN module is shown in Figure 13 (firstly used by Grunske and Han
(2008)). Inside the box, representing a module, there are some standardised sections,
each of which consists of some standard attributes like the header section consists of

54

modules name, and its criticality etc. The most important part is the module specifica-
tion section (second section) which describes the relationship between input and output
failure modes by defining the failure propagations, transformations, generations and de-
tections. This section is important because it defines how the module is affected by the
other modules or environment and how other modules or environment are likely to be
affected by this module. Each output failure mode of a FPTN module is specified by a
single Boolean equation as a sum-of-products of input failure modes (like minimal cut
sets of FTA). Therefore a FPTN module could be considered as a forest of trees. In the
example FPTN module, one of the output failure modes, Sprinkling: o is specified as
Sprinkling: o = Smoke Detected:tl + Smoke Detected: o; i.e., the omission of Sprin-
kler output could be caused if Smoke Detected input is too late (Smoke Detected:tl) or
omission of Smoke Detected input (Smoke Detected: o) occurs.

Figure 13: Example FPTN Module

Other than propagating and transforming failures modes from one form to another, a
FPTN component can also generate failure modes (internal failure modes) or can handle
some of the existing failure modes. These capabilities make FPTN usable as both an
inductive (creating FMECA) and a deductive (creating FTA) analysis method. Usually,
to evaluate FPTN modules, a fault trees is created for each of the outgoing failure modes.
As FPTN are created alongside the design of the system, therefore, if the system model
changes then the failure model also change. Potential flaws and problems can be identified
from the analysis of FPTN modules and these flaws could be rectified in the subsequent
design iterations.

Although FPTN provides systematic and modular notations for representing failure
behaviour of systems, in its classical form it can only perform static analysis, not dy-
namic. However, recently, Niu et al. (2011) have extended the classical FPTN notations
with temporal information, thus making it capable of performing dynamic analysis. They
named the new approach “Temporal-FPTN”. The basic structure of the FPTN module
was kept as it is in the classical form, however, temporal logic, referred to as Failure

55

Temporal Logic (FTL) is used instead of Boolean logic to specify equations to express
the relationships between input and output failure modes to a FPTN module. As nothing
is changed except the logic to represent equations, the new modelling framework is still
suitable to be used in hierarchical structure, and now the outcome of the analysis would
be temporal fault trees with Minimal Cut Sequences (MCSQs) instead of classical fault
trees with minimal cut sets (see Figure 14).

Figure 14: Safety Analysis Process using Temporal-FPTN

2.3.2 Failure Propagation and Transformation Calculus

Failure Propagation and Transformation Calculus (FPTC), closely related to FPTN, is a
method for determining and modelling failure behaviour of both hardware and software
components of systems (Wallace, 2005). Initially, it was designed to be used for the anal-
ysis of hard real-time software systems where the statistically schedulable code unit is
considered as the primary unit of the architectural description of the system. Data and
control flow behaviour of the system is defined by connecting these units using commu-
nications protocols like handshakes, buffers etc. One important thing to note is that FPTC
treats communication protocols as similar to the system components, i.e., they have their
own failure behaviour similar to system components and are modelled during the analysis.
FPTC also assumes that all the threads and communications are known to the designers
and are not created or destroyed dynamically during the system operation, i.e., the system
architecture is considered as static.

Unlike the FPTN module, the FPTC represents the system architecture with a Real-
Time Network (RTN) like notation as shown in Figure 15. A RTN graph consists of nodes
and arcs representing software and software components and interactions between them.

56

FPTC generalizes the FPTN equations to determine how a component might respond to
input failure modes to improve manageability and analysability. In addition to the classi-
fied failure modes of FPTN like value failures, timing failures, omission, and commission
etc., it includes nominal behaviour (represented as *) as a new type which indicates lack
of failure.

Figure 15: Example Real-Time Network Architecture

Similar to a FPTN module, a FPTC component can propagate failures (passing on
input failure modes to output failure modes) or transform failures (mapping failure of one
type to another) or a component itself can generate failures, or a component can detect and
correct some failures (see Figure 16). The responses of a component to its input failure
mode are expressed in a simple language based on patterns.

Figure 16: Behaviour of FPTC Component

FPTC can also handle multiple inputs/outputs by means of tuples of failures e.g.:

late → (value, ∗, late)

The above expression represents a scenario where a component has a single input and
three outputs. A timing failure, late, at the input will lead to a value failure at the first
output, no detectable failure at second output, and a timing failure (late) at the third output.
Equations for all output failures are specified considering all possible combinations of
input failures which results in combinatorial explosion. In order to address this problem,
Wallace (2005) has introduced the concept of using wildcards and variables to represent
equations in a compact and intuitive format. The reason behind using wildcards and

57

variables is that many of the combinations of the inputs lead to a single output pattern.
For example, following expressions show the use of wildcard and variable respectively.

(late,)→ (late, value)

(late, f)→ (f , late)

In the first expression, a wildcard (underscore symbol) is used and the expression
means that a late failure at the first input and any failure at the second would lead to the
same failure at the first and second output. A variable (f) is used in the second expression
which means whatever failure present on the second input is propagated to the first output.

Unlike other safety analysis techniques, FPTC does not suggest the synthesis of fault
trees from the FTPC models; rather it uses a fixed-point calculation technique. A distinct
advantage of using FPTC over other safety analysis techniques is that it overcomes one
significant limitation of other safety analyses techniques — handling cycles in architec-
tures by using fixed-point calculations. An open source tool, Epsilon (Paige et al., 2008),
was introduced to implement FPTC and the tool relies on a generic meta-model to support
transformations from AADL and SysML (Friedenthal et al., 2014) models. Recently, a
probabilistic variant of FPTC known as Failure Propagation and Transformation Analysis
(FPTA) is proposed by Ge et al. (2009). This method links architectural models with prob-
abilistic model checkers specified in PRISM (Kwiatkowska et al., 2011) and allows FPTC
to capture non-deterministic failure behaviour. FI4FA (Gallina and Punnekkat, 2011) is
the most recent extension of the FPTC which allows FPTC to consider more types of fail-
ure behaviour e.g., incompletion, inconsistency, interference and impermanence and also
allows to analyse mitigation behaviours. FPTC uses the full architectural models of the
system while specifying failure behaviour of components and therefore can adapt much
more readily to changes. As a result, the failure behaviour model is synchronized with the
system design. However, the outcome of the analysis relies on the analyst correctly iden-
tifying all the potential failure modes of interest and developing accurate models of the
consequent failure transformation behaviours of individual components. As all possible
combinations of failures are required to be considered, combinatorial explosion could be
an issue while applying FPTC in safety analysis, even though some sort of mechanisms
are proposed based on some assumptions to avoid combinatorial explosion.

2.3.3 Component Fault Trees

Conventional fault trees show logical connections between different faults and their causes.
They show the hierarchy of faults rather than the architectural hierarchy of the system
components, therefore it is difficult to map fault tree elements to the corresponding sys-
tem components. Component Fault Trees is a modular version of the conventional Fault
Tree approach that extends classical fault trees by using real components in the tree struc-
ture. In the CFT approach, smaller fault trees for each system component are defined
and those component fault trees are arranged in a hierarchical structure according to the

58

architectural hierarchy of the system (Kaiser et al., 2003). This enables closer synchro-
nization of CFTs with the system model. Like classical fault trees, CFTs use Boolean
gates such as AND, OR, and K-out-of-N gates. Moreover, CFTs use input output failure
ports and internal failure events. Input and output ports are used to specify possible points
of failure propagation and internal events are similar to that of the basic events of classical
fault trees. CFTs differ from standard fault trees in that they allow multiple top events to
be defined and represent repeating events only once. As a result, CFTs look more like a
directed acyclic graph (Cause Effect Graph) than a tree like structure. However, standard
fault tree algorithms could still be used to analyse CFTs both qualitatively and quantita-
tively as CFTs are still logical connections between faults and their causes. An example
of a CFT is shown in Figure 17.

Figure 17: Example Component Fault Tree

The main advantage of using CFTs over classical FTs is its hierarchical decomposition
of systems to manage the complexity of modern systems. Classical FTA cannot benefit
from the decomposition facilities because while creating a standard fault tree, the analyst
has to consider all levels of the system at once. In contrast, in CFT, smaller fault trees
for each of the components are created and arranged in a hierarchical order according to
the system architecture. As a result, different parts of the system can be developed and
stored separately as part of the component definition in a library which facilitates a greater
degree of reusability.

To be able to use CFTs in the architectural level of the systems, Grunske and Kaiser
(2005) have presented an approach to construct a system level CFT hierarchically based
on a system architecture where all the components of the architecture are annotated with

59

low-level CFTs. In order to analyse SaveCCM models (Carlson et al., 2006; Åkerholm
et al., 2007), Grunske (2006) have extended the procedure of creating hierarchical CFTs.
A windows-based tool, ESSaReL (ESSaRel, 2005) is available to perform minimal cut
set analysis and probabilistic evaluation of CFTs. Recently another tool called ViSSaAn
(Visual Support for Safety Analysis)(Yang et al., 2011) has been developed based on a
matrix view to allow improved visualisation of CFTs and efficiently representing informa-
tion related to minimal cut sets of CFTs. Adler et al. (2011) have developed a meta-model
to extract reusable CFTs from the functional architecture of systems specified in UML.

2.3.4 State Event Fault Trees

Even though FTA is a powerful technique widely used in reliability engineering, it has
an inability to capture time or sequence dependent behaviour. This combinatorial tech-
nique is suitable for modelling static behaviour but is not suitable for modelling dynamic
behaviour. To overcome this limitation, State-Event Fault Trees (SEFT) extend conven-
tional FTA by adding capabilities for representing states (that last over a period of time)
and events (sudden phenomena that cause state transition) to fault trees, thus overcom-
ing the limitation of standard FTA by using state-based system models in the analysis
(Grunske et al., 2005). SEFTs can also be seen as an extension of CFTs with probabilistic
finite state models. Therefore, elements/components in the system architecture are mod-
elled with a set of states and probabilistic transitions between these states (see Figure 18).
A state is graphically represented as a rounded rectangle and considered as a condition
that lasts over a period of time, whereas an event is graphically represented as a solid bar
and considered as an instantaneous phenomenon that can cause a state transition.

Figure 18: Example State Event Fault Tree

Grunske et al. (2005) have described a method to construct a SEFT from a system
architecture where each of its elements has their SEFT defined. This method identifies
the relationship between components based on name-matching of the state and event ports

60

as well as the data and control flow specified in the architecture.
As SEFTs make a distinction between causal and sequential transitions they therefore

provide separate types of ports for them. Sequential transition applies to states which
specify predecessor / successor relation between states; in contrast, causal transition ap-
plies to events which define a causal (trigger/guard) relationship between events. As
events are explicitly represented in SEFTs, it is possible for one or more combinations
of events to cause another event. To combine the events Boolean gates (e.g., AND and
OR) of standard fault trees could be used. SEFTs can also include temporal information
in the failure expression like assigning events with deterministic or probabilistic delays
by using Delay Gates. History-AND, Priority-AND and Duration gates are employed to
specify causal and sequential relations between events with respect to time. For example,
the History-AND gate checks whether an event has occurred in the past, the Priority-AND
gate can check in what order events have occurred, and the Duration gate can ensure that
the system has been in a certain state for a specified amount of time.

Like CFTs, SEFTs can also be structured as a hierarchy of architectural components,
where ports are used to specify the interactions between the components. SEFTs follow
the same procedure as that of FTAs during modelling of system failure, i.e., the analy-
sis starts with a system failure and works backwards to determine its root causes. As it
uses state-based behaviour descriptions it can use pre-existing state-based models from
the system design, which results in a greater degree of reusability compared to classical
fault trees. However, it is no longer possible to analyse SEFTs using traditional fault tree
algorithms because of the state-based representation they have used. Different types of
techniques are now required to convert SEFTs into other representation like Petri Nets or
Markov chains for quantitative evaluation of SEFTs. Steiner et al. (2012) have proposed a
methodology to create and analyse SEFTs using the ESSaRel tool (ESSaRel, 2005). Con-
sequently, the SEFT models are converted to Deterministic Stochastic Petri Nets (DSPNs)
(Marsan and Chiola, 1987), then the analysis of the DSPN models can be performed using
separate DSPN analyser like TimeNET (German and Mitzlaff, 1995). In the conversion
process the whole system is required to be considered, i.e., all the components and sub-
components with their own state-based behaviour are to be considered, which would lead
to a combinatorial state-space explosion. This problem can be remedied to some extent
by using a combinatorial-FTA like algorithm for the static part of the system and using
more efficient algorithms for the dynamic part of the system. However, the performance
of the dual-analysis technique will depend on the type and complexity of the system being
analysed.

2.3.5 HiP-HOPS

Hierarchically Performed Hazard Origin & Propagation Studies or HiP-HOPS (Papadopou-
los, 2000; Papadopoulos and Mcdermid, 1999) is one of the more advanced and well
supported compositional safety analysis techniques. It can provide similar functionality

61

to CFTs and FPTN but with more features and a greater degree of automation. It en-
hances the architectural design of a system with logical failure annotations to construct
fault trees and FMEA automatically. It has some design optimisation capability that can
help with decisions on component and subsystem selection among alternatives as well as
decisions on the level and location of replicated components. It uses novel algorithms for
top-down semi-automatic allocation of safety requirements in the form of Safety Integrity
Levels which automates some of the processes for the ASIL allocation specified in the
new automotive safety standard ISO26262 (ISO, 2011).

2.3.5.1 Overview of the Methodology

HiP-HOPS analysis consists of four phases:

1. System modelling and failure annotation

2. Fault Tree synthesis

3. Fault Tree analysis and FMEA synthesis

4. Optimisation

A generic overview of the HiP-HOPS safety analysis technique is shown in Figure
19. The first phase is performed manually and it consists of developing a model of the
system and then annotating the system model with the failure behaviour to produce fault
trees and perform the analysis. Modelling and annotation of the system can be done using
modelling tools like Matlab Simulink. In the fault tree synthesis phase, the tool takes an
annotated system model as input and use automated algorithms to create a series of fault
trees which define failures along with their causes in the architecture.

The algorithm works deductively, i.e., it takes failure of system outputs and works
backward through the system architecture to determine which components caused those
failures. These failures are then joined together using the appropriate logical operators
to construct fault trees, considering system failures as top events and lower level com-
ponents failures (root causes) as basic events. In the third phase, fault trees generated
in the previous phase are analysed and a FMEA is constructed combining the entire in-
formation stored in the different fault trees. At the same time both qualitative analysis
and quantitative analysis are carried out on the fault trees, where the former provides the
minimal cut sets and the latter provides the unavailability of the top event. If the system
is required to be optimized then the optimisation is done iteratively in the last phase using
genetic algorithms. A brief description of the each of the phases is given below. As model
optimisation is out of scope of this thesis, the optimisation phase is not described.

2.3.5.2 Annotation Phase

HiP-HOPS can analyse any system that has identifiable components and some material,
energy or dataflow transactions among the components. Before generating any fault trees

62

Figure 19: A generic overview of HiP-HOPS Technique

for system architecture, the tool needs to know how the different system components are
interconnected and how they can fail. The architectural model of the system shows the
interconnections between the components of system and the architecture can be arranged
hierarchically, i.e., the system consists of different subsystems and subsystems have their
own components (see Figure 20).

HiP-HOPS considers that an output failure of a component could be caused by an
internal failure, an input failure, or combination of both. Therefore, local failure informa-
tion for each of the components needs to be entered which describes what can go wrong
with a component and how a component responds to a failure propagated from other parts
of the system. This is achieved by annotating the model with a set of expressions show-
ing how the deviations in the component outputs can be caused either by internal failure
of that components or corresponding deviations in the component’s input. Such devia-
tions include omission of output, unexpected commission of output, incorrect output, or
too late or early arrival of output. Other than the logical behaviour of the components,
numerical data (failure rate and severity of the component) can also be entered for the
components. Numerical data will then be used during quantitative analysis in the analy-
sis phase. If any advanced analysis is planned then other data can be entered. When all
the logical and numerical information regarding the failure behaviour of the components
are specified, then the component can be stored in a library to allow a greater degree of

63

reusability. Failure modes and annotations of the failure modes of a simple model of a
standby recovery system of Figure 20 are shown in Table 4 and 5 respectively.

Figure 20: Example of Standby Recovery System

Table 4: Failure modes of Standby Recovery System

Component Failure Modes Probability

Standby Recovery Block Electro Magnetic Interference 0.001

Primary Internal Failure 0.03

Standby Internal Failure 0.02

Sensor Input Internal Failure 0.05

2.3.5.3 Synthesis Phase

As soon as local failure data for the components are entered, HiP-HOPS can then use the
system model to synthesise fault trees. During the annotation process failure expressions
are added manually to each component by the designers, which essentially represent CFTs
of the components describing the propagation, generation, and transformation of failures
between the inputs and outputs of the components. If a component is considered as a
standalone module then the input and output deviations of that component are just the
potential conditions of failure. But if we consider a component as a part of a system then
its input deviations represent failure conditions which are caused by other components
further upstream in the model, whereas the output deviations are the cause of failure fur-
ther downstream in the model. That means output deviations of a particular class of one
component at one end of a connection trigger input deviations to other components at the

64

Table 5: Failure Mode Expressions for Standby Recovery System

Component Output Deviations Failure expressions

Standby Recovery Block Omission-Output

Omission-Primary.Output

AND

Omission-Standby.Output

OR

Electro Magnetic Interference

Primary Omission-Output Omission-Input OR Failure

Standby Omission-Output

Omission-Monitor

AND

(Omission-Input OR Failure)

Sensor Input Omission-Output Failure

other end of the connection. In this way, failures are propagated globally in the model.
Therefore the synthesis phase starts its operation with a top event (deviation of system
output) and traverses the model by following the propagation of failures backwards from
the top level of the system towards the basic component level. Fault trees are generated it-
eratively by replacing the input deviations of each component by the corresponding output
deviations propagated by other components. This process continues till the basic events
of the fault tree are found.

2.3.5.4 Analysis Phase

The synthesis process constructed a set of one or more interconnected fault trees, therefore
in the analysis phase those synthesised fault trees are analysed both qualitatively and
quantitatively, and eventually an FMEA is created from these results. Usually synthesised
fault trees are large and complex; however, they can be minimised. Therefore, to reduce
the size and complexity of fault trees, qualitative analysis is performed to obtain minimal
cut sets. This is done by applying logical rules to reduce complex expressions, and there
are many methods available to do so. HiP-HOPS uses a version of MICSUP (Pande et al.,
1975) as its primary minimal cut set generating algorithm. Once the minimal cut sets have
been obtained, they are used for quantitative analysis to obtain the probability of the top
event using basic events failure rate and equations (2) and (3).

In addition to the quantitative analysis, in the last step a further qualitative analysis
is performed to generate an FMEA, which is a table concisely showing the results. The
FMEA shows the direct connections between component failures and system failures,
and hence it is possible to see both how a failure for a given component affects everything
else in the system and also how likely that failure is. Although a classical FMEA only can

65

Figure 21: Conversion of FMEA from fault trees

show the direct effects of the single failure modes on the system, the FMEA generated by
HiP-HOPS can also show the further effects of a failure mode, i.e. what are the possible
effects of a failure mode if it occurs in conjunction with other failure modes? The concept
of generating an FMEA from a fault tree using HiP-HOPS is shown in Figure 21.

In this example, C1-C9 are the basic events (component failures), and F1 and F2 are
the system failures (top events). As seen in Figure 21, component failures C1 and C2 have
direct effect on system failure F1 (and C8 and C9 have on F2). Components C3, C4, C6,
and C7 have no direct effects on the system, i.e., individual failure of those components
cannot cause system failure. However, in conjunction they have effects on the system,
e.g., C6 and C7 both occurring in conjunction can cause F1 and F2 to occur. Common
cause failure can also be identified from this FMEA, e.g., component C5 is causing both
F1 and F2.

One important thing to note is that one common weakness of most of the model-based
safety analysis techniques is their inability of generating FMEA. HiP-HOPS is one of the
only approaches that provides the means to generate FMEA tables by analysing minimal

66

cut sets of the generated fault trees (Papadopoulos et al., 2004a).
HiP-HOPS is supported by a mature tool (Papadopoulos, 2012) which can perform

system safety analysis and architectural optimisation. The tool has been developed as
an independent plug-in and has been interfaced to a range of tools, including Matlab
Simulink and Simulation X. HiP-HOPS has been successfully applied by many com-
panies like Volvo (Papadopoulos and Grante, 2005) or Daimler Chrysler (Papadopoulos
et al., 2001) to analyse many complex real-world systems and this technique is widely
recognised as one of the state-of-the-art techniques in the reliability engineering area.

2.3.6 AADL

Architecture Analysis and Design Language (AADL) is a domain-specific language stan-
dardised by the International Society of Automotive Engineers (SAE) for the specifica-
tion and analysis of hardware and software architectures of performance-critical real-time
systems (SAE, 2012). The language has the capability to represent a system as an as-
sembly of software components mapped onto an execution platform. The language pro-
vides a standard set of component abstractions, such as ‘thread’, ‘thread group’, ‘process’,
‘data’, and ‘subprogram’ for software components; ‘processor’, ‘memory’, ‘device’ and
‘bus’ for hardware components; and ‘system’ as a composite component (Feiler et al.,
2006a). AADL supports different types of interaction between components, for example
events and dataflows, and the interactions between hardware and software components are
defined through binding. Moreover, the language is extensible through customised “an-
nexes”, and the error model annex is one such extension of AADL using state machines.
These are associated with an AADL component or connection to enable the specification
of redundancy management and risk mitigation methods in architecture, and to enable
qualitative and quantitative assessments of system properties such as safety, reliability,
integrity, availability, and maintainability.

The dependability model consists of architecture modelling and error modelling. The
architecture model, often referred to as the nominal architecture, describes system com-
ponents with their connections and interactions. In contrast, the error modelling specifies
the failure behaviour of AADL elements in terms of the propagation of faults as finite
state machines consisting of finite number of states. Transitions between states are trig-
gered by internal error events (either failure or repair events of components) or by error

propagation. Error propagations are caused by error states of other components on the
component in question. An AADL error model consists of a model type and at least one
error model implementation. Error models can be associated with hardware components,
software components, composite components and connections.

Figure 22 shows a graphical representation and textual description of an AADL error
model of a component with propagations. As seen from Figure 22, the complete error
model consists of two parts. The first part, the error model specifies the structure of the
component and the second part, the error model implementation defines the behaviour

67

of the component. In this example the component has two states: Error Free (initial
state) and Failed, two internal events Fail and Repair. The transition from the Error Free

state to the Failed state can be caused by either internal failure event Fail or an incoming
error propagation FailedVisible coming from the component’s environment (other com-
ponents). The component will generate an outgoing propagation with a fixed probability
(p) while it is in the Failed state. The system component can go back to the Error Free

state if the internal event Repair occurs. In this example, the internal events are associ-
ated with a Poisson probability distribution. The Occurrence properties for error events
and error propagations specify the arrival rate or the occurrence probability respectively.
Those properties can be declared in the error model type (considered as the default value)
and in the error model implementation. Therefore, an occurrence value in the error model
type can be replaced by a component specific value whose component is associated with
the error model.

Figure 22: AADL Error Model Definition for Component with Error Propagation

68

AADL components represent the elements of a system; therefore, systems may be
represented as collections of components and hierarchies of components. As a result,
the system error model can be considered as a composition of the error models of its
components or subsystems. Each AADL error model can be stored in a library and can be
reused for different AADL components. Interactions between components take place by
propagating errors from the failing component to the dependent components. Propagation
of errors between components is determined by their interdependencies and the AADL
Error Model Annex has specified a set of dependency rules (Feiler and Rugina, 2007)
to define interdependencies between components. For example, propagations may occur
from a component to any outgoing connections and between all sub-components of the
same process, which is conceptually similar to Papadopoulos’s approach of integrating
HiP-HOPS and Matlab Simulink models (Papadopoulos and Maruhn, 2001).

Figure 23 shows propagation between error model instances based on application
component interactions and execution platform bindings. In the figure, the upper portion
shows two application components are connected via a port connection where both com-
ponents and port has their error model (state machines), and the error propagations occurs
in the same direction of port flows. The lower portion of the figure shows two processors
interconnected via a bus and errors are propagated between them due to the connectivity
through the bus. Other than the error propagations between interconnected components,
error propagation can occur between the hardware and the application components and
connections, due to their binding to the execution platform. Propagations coming to a
component or going out from a component can be filtered by using Guard properties.
For details about the Guard properties readers are referred to (Feiler and Rugina, 2007).

Figure 23: Error Propagations between Error Model Instances (Feiler and Rugina, 2007)

To analyse an AADL error model there are currently two approaches available. The
first approach automatically translates an error model into a standard fault tree (Joshi

69

et al., 2007), and the second approach generates Generalized Stochastic Petri Nets (GSPNs)
from error model specifications and uses existing GSPN tools for quantitative analysis
(Rugina et al., 2007). Recently, a number of researchers have integrated AADL and
AltaRica Dataflow. For example, Mokos et al. (2008) have presented a method for trans-
forming the AADL model to AltaRica model.

2.4 Behavioural Fault Simulation Approaches to MBSA

In behavioural fault simulation, system failure models equivalent to an FMEA are pro-
duced by injecting faults into executable formal specifications of a system, thereby es-
tablishing the system level effects of faults. In most cases, the results are then used in
a model-checker to verify the system safety properties. Techniques that follow this ap-
proach include FSAP-NuSMV, Altarica, DCCA, and SAML. These different techniques
will be discussed in the following subsections.

2.4.1 FSAP/NuSMV

The Formal Safety Analysis Platform FSAP/NuSMV-SA (Bozzano and Villafiorita, 2003,
2007) consists of a set of tools including a graphical user interface tool, FSAP, and an
extension of model checking engine NuSMV. The aim of this platform is to support formal
analysis and safety assessment of complex systems. This platform allows the user to inject
particular failure modes into the system (either nominal mode or degraded mode of the
system) and then observe the effects of that failure on the system behaviour. The primary
goal of the FSAP/NuSMV-SA toolset is to verify if a system model is satisfying its safety
requirements; however, it is capable of performing different types of safety analyses, e.g.,
automatic fault tree generation.

The components of the FSAP/NuSMV-SA platform are shown in Figure 24. As seen
in the figure, it has different modules to perform different tasks. The central module of
the platform is the SAT Manager which can control the other modules of the platform.
It stores all the information related to safety assessment and verification which includes
references to system model, extended system model, failure modes, safety requirements
and analyses. System models are described as finite state machines with the NuSMV
language in the Model Capturing module as plain text. This model can be a formal safety
model or a functional system model and the user has the flexibility to use their preferred
text editor to design or edit the system model. An example of a NuSMV model of two-bit
adder is shown in Figure 25 (originally used in (Bozzano and Villafiorita, 2007)). The
Failure Mode Editor and the Fault Injector modules allow the user to inject failure modes
in the system model to create an extended system model (see Figure 26). The expressions
of the failure modes can be stored in a library to provide greater degree of reusability.
The system model is then augmented with safety requirements in the Safety Requirement

Editor. Temporal logic is used to express the safety requirements and can also be stored in

70

a library to facilitate future reuse. The Analysis Task Manager defines the analysis tasks
that are required to be performed, i.e., specification of the analyses. The next step is to
assess the annotated system model against its functional safety requirements. This task is
done based on model checking technique in the NuSMV-SA Model Checker module. This
module also generates counter examples and safety analysis results by means of fault
trees etc. The Result Extraction and Displayers module process all the results generated
by the platform and present to the user. The fault trees can be viewed in the displayer
that is embedded in the platform or using commercial tools, and counter examples can be
viewed in a textual or graphical or tabular fashion etc.

Figure 24: Components of FSAP/NuSMV-SA Platform

In the FSAP/NuSMV-SA, fault trees are generated step by step. At first a reachability
analysis is performed by starting with the initial states of the system model and travers-
ing (by iteratively creating a set of successor states) the system state chart until a state is
reached in which the top event of the fault tree has occurred. The outcome of this pro-
cess is a set of all states where failures of components occur. The minimal cut sets are
obtained from these set of states by extracting only the failure variables from these states
and writing the expressions for those failure modes based on the information obtained
from the state machine. As standard FTs are combinatorial this process ignores dynamic
information stored in the system model. However, to preserve the dynamic information
NuSMV-SA can add traces with each cut set describing how the failure can occur. An-
other way of doing the dynamic analysis is to perform the ordering analysis on minimal
cut sets (Walker et al., 2008).

Although the FSAP/NuSMV-SA platform provides multiple functionality, it does also
have some limitations, especially in handling fault trees. Fault trees generated by this
toolset show the relation between top events and basic events; however, how the faults
are propagated through the different level of the system model is not shown which could

71

Figure 25: A NuSMV model for two-bit adder (Bozzano and Villafiorita, 2007)

Figure 26: Injecting fault into the bit module

make the fault trees less visibly understandable for complex systems. It provides the
means to perform qualitative FTA, but it does not have the ability to perform probabilistic
evaluation of FTs. Like other state machine based approaches, this platform also suffers
from state space explosion while modelling large or complex systems.

72

2.4.2 AltaRica

AltaRica is a high level description language (Arnold et al., 2000; Point and Rauzy, 1999)
based on finite state machines designed to model both nominal and failure behaviour of
complex systems. It can represent systems as hierarchies of components and subcom-
ponents and model both state and event like State-Event fault trees. Once a system has
been modelled in AltaRica, it can be analysed by external tools and methods, e.g., the
generation of fault trees, Petri nets, model-checking etc. (Bieber et al., 2002).

In AltaRica, components are represented as nodes, and each node possesses a number
of state and variables (either state variables or flow variables). The number of state and
flow variable are discrete. The values of the state variables are local to the node they are
in, and value of a state variable changes when an event occurs, i.e., events are triggering
state transitions, thus changing the values of state variables. Flow variables are visible
both locally and globally, and are therefore used to provide interfaces to the nodes.

Each basic component is described by an interfaces transition system, containing the
description of the possible events, possible observations, possible configurations, map-
pings of what observations are linked to which configurations, and what transitions are
possible for each configuration. A classic example of a component (electrical switch) in
AltaRica is shown in Figure 27.

Figure 27: Node Example in AltaRica: Switch (Point and Rauzy, 1999)

The behaviour of a component (node) is defined through assertions and transitions.
Assertions specify restrictions over the values of flow and state variables whereas transi-
tions determine causal relations between state variables and events, consisting of a single
trigger (event) and a guard that constraints the transition; guards are basically some as-
sertions over flow and state variables. In the above example, the switch has a Boolean
state variable IsClosed; transitions between the values (true or false) of this variable are
triggered by the events open and close. The component has two flow variables: f 1 and
f 2, the assertions over those two variables species that the power on both terminal of the
switch will be same when the switch is closed.

73

After defining the nodes, they can be organized hierarchically to reflect system decom-
position and architecture. The top-level node represents the system itself, and it consists
of other lower-level nodes. Nodes can communicate either through interfaces or through
event dependencies. The first process is done by specifying assertions over interfaces and
the second one is done by defining a set of broadcast synchronisation vectors. These
broadcast synchronisation vectors allow events in one node or component to be synchro-
nised with those in another. These vectors can contain question marks to indicate that
an event is not obligatory (e.g., a bulb cannot turn off in response to a power cut if it is
already off). Additional constraints can be applied to the vectors to indicate that certain
combinations or numbers of events must occur, particularly in the case of these ‘optional’
events, e.g., that at least one of a number of optional events must occur, or that k-out-of-n
must occur etc.

Two main variants of AltaRica have been designed so far. The primary difference
between the variants is how the variables are updated after firing of transitions. In the first
version (Arnold et al., 2000; Point and Rauzy, 1999), variables are updated by solving
constraints, thus consuming too many resources. Therefore, this approach is not scal-
able for industrial application although it is very powerful. To make AltaRica capable
of assessing industrial scale applications, a second version, AltaRica Data-Flow (Boiteau
et al., 2006; Rauzy, 2002) is introduced where variables are updated by propagating val-
ues in a fixed order, and the order is determined at compile time. This approach takes
fewer resources than the first approach, however, it cannot naturally model bidirectional
flows through a network, cannot capture located synchronisation, and faces difficulties in
modelling looped systems. Currently, the third version of AltaRica, AltaRica 3.0 (Batteux
et al., 2013) is under specification. It improves the expressive power of the second version
without reducing the efficiency of assessment algorithms. The main improvement is that
it defines the system model as a new underlying mathematical model — Guarded Tran-
sition Systems (GTS) (Batteux et al., 2013) — which allows analysts to model systems
consisting of loops, and can easily model bidirectional flows. AltaRica 3.0 provides a set
of assessment tools, e.g., Fault Tree generator, Markov chain generator, stochastic and
stepwise simulator. However, it still lacks capability for capturing dynamic or temporal
ordering of events in the generated Fault Trees.

2.4.3 DCCA

Deductive Cause Consequence Analysis or DCCA (Güdemann et al., 2007; Ortmeier
et al., 2005) is a formal method for safety analysis. It determines whether a given com-
ponent fault is the cause of a system failure or not by using mathematical methods. It is
a formal generalization of FMEA and FTA, more formal than FTA and more expressive
than FMEA. The goal of DCCA is:
“Given an unwanted, hazardous situation H and a set of component failure modes Γ. De-

termine, which combinations of failures modes may (1) potentially cause a hazard and (2)

74

are minimal in the sense, such that no proper subset of these failure modes can cause the

hazard.” (Güdemann et al., 2007).
DCCA represents the system model as finite state automata with temporal semantics

using Computational Tree Logic (CTL). It assumes that all the basic component failure
modes are available, and then defines a set of temporal properties that indicate whether
a certain combination of component failure modes can lead to the system failure. This
property is known as the criticality of a set of failure modes which are analogous to cut
sets of classical fault trees. Similar to FTA, DCCA aims at determining the minimal
critical sets of failure modes which are necessary and sufficient to cause the top event
(system failure) and therefore FTA may be considered as a special case of DCCA.

DCCA also faces the state explosion problem because to determine minimal critical
sets it has to consider all possible combinations of component failure modes. This prob-
lem can be alleviated to some extent by using results from other informal safety analysis
techniques like FTA which are believed to be generating smaller but good initial guesses
for solutions. However, by doing this DCCA inherits the shortcomings of FTA, i.e., it is
unable to capture dynamic behaviour where order of events is equally important as com-
bination of failures. Deductive Failure Order Analysis (Güdemann et al., 2008), a recent
extension of DCCA enables it to deduce temporal ordering information of critical sets
from DCCA. In this extension, Pandora style temporal gates like PAND and SAND are
used to capture temporal behaviour. Temporal logic laws are also provided to make the
temporal ordering deduction process automated.

2.4.4 SAML

Safety Analysis Modelling Language (SAML) (Güdemann and Ortmeier, 2010) is a tool-
independent modelling framework that can construct system models with both determinis-
tic and probabilistic behaviour. It utilises finite state automata with parallel synchronous
execution capability with discrete time steps to describe a system model consisting of
hardware and/or software components, environmental conditions etc. In the state au-
tomata, transitions can be defined both as probabilistic and non-deterministic. From a
single SAML model both qualitative and quantitative analysis can be performed. An ex-
ample of a SAML model is shown in Figure 28. A SAML model consists of at least
one module description and declarations of zero or more constants (either of type double,
int, or bool) and formulas. The example SAML model has two modules (A and B), four
constants, and one formula. After declaring all the optional constants the module decla-
ration starts with the keyword ‘module’ followed by the module name and the declaration
end with the keyword ‘endmodule’. As the modules are declared as state automata, every
module has at least one state variable and at least one rule to update the state variable. Ev-
ery state variable is represented as a range of integer values and initialised with a value.
Every update rule defines either at least a probabilistic assignment or at least one non-
deterministic choice of assignments, and they are conditioned on a Boolean activation

75

Figure 28: Example SAML model (Güdemann and Ortmeier, 2010)

condition.
SAML models can be transformed automatically to the input format of other model-

based safety analysis techniques without changing the architecture of the systems. There-
fore SAML can work as an intermediate language for MBSA techniques, i.e., if models
designed in any other higher-level language can be converted to SAML models (extended
system models) then the resultant models can be transformed to input format of other
targeted analysis tools, and, thereby analysed with all targeted tools.

Güdemann and Ortmeier (2011) have shown the ways of transforming SAML models
into the input language of probabilistic model checker PRISM (Kwiatkowska et al., 2011).
In the same work, the above researchers also have shown the ways of transforming SAML
modules to NuSMV modules although the former supports both non-deterministic and
probabilistic update rules whereas the latter supports only non-deterministic update rules.

The primary advantage of SAML is its formal qualitative and quantitative semantics
that allows different analyses to be performed in the same model. To perform quantitative
analysis, many analysis techniques rely on the result of the previously performed qualita-

76

tive analysis but SAML can perform quantitative analysis independently (no reliance on
qualitative analysis). However, SAML also suffers from the state explosion problem like
other state-transition based formalism.

2.5 Other Related Techniques in Reliability Engineering

2.5.1 Markov Models

Markov Model analysis is another state-transition based graphical modelling technique
used to capture the dynamic behaviour of systems. A Markov model of a system consists
of a list of all possible states of the system, the transition among states and numerical
values defining rate of each transition. In reliability engineering, the rates associated with
each transition are usually the failure or repair rate of components. States are graphically
represented as circles and directed edges are used to represent transition. Each state in
the Markov model encompasses all the system information with reference to component
failures, sequence of failures, and information on spare allocations (Manian et al., 1998)
and the probability of the system being in state i at time t is denoted by Pi(t). A very
simple Markov model of a system with two states: Operational and Failed is shown in
Figure 29.

Figure 29: Simple example of Markov Model

In the figure, the rate of transition from state 1 to state 2 is λ , i.e., failure rate of
the system is λ . After forming the graphical model, it is necessary to write ordinary
differential equations (ODEs) for each state based on incoming and outgoing transitions
which represent overall probability of the system being in a particular state. The solution
of a Markov model is obtained by solving the differential equations of all states (Vesely
et al., 2002). For example, let us consider a generic parallel system with two independent,
non-repairable components A and B and their failure rate is λA and λB respectively. The
block diagram of the system and Markov model of the system are shown in Figure 30.

In state 1, the system is fully functional where both the components are available. In
state 2, the system is operating with component B (with A failed) and in an opposite way
in state 3 the system is operating with component A (with B failed). The final state F

represents a state where both the component failed.
If we define the probability of the system being in states 1, 2, 3 and F as P1, P2, P3 and

77

Figure 30: Non-repairable parallel system and Markov model of the system (Mahmud,
2012)

PF then differential equations for the Markov model can be written as (Mahmud, 2012):

d
dt

P1(t) =−(λA +λB) P1(t)

d
dt

P2(t) = λA P1(t)−λB P2(t)

d
dt

P3(t) = λB P1(t)−λA P3(t)

d
dt

PF(t) = λA P3(t)+λB P2(t)

(12)

In the above equations for different states, on the right hand side, terms with negative
sign represent the rate at which the system is leaving that particular state and terms with
a positive sign imply the rate at which the system is entering that particular state. The
solution of the Markov model is obtained by solving the above equations and can be
written as:

P1(t) = e−(λA+λB)t

P2(t) = e−λBt− e−(λA+λB)t

P3(t) = e−λAt− e−(λA+λB)t

PF(t) = e−(λA+λB)t− e−λAt− e−λB t +1

(13)

Coverage modelling, i.e., modelling systems considering covered and uncovered fail-
ures of components as mutually exclusive events, which is difficult to integrate into FTA,
can be easily incorporated into Markov models. After introducing the concept of coverage
modelling, Markov models gradually replaced FTA as a method for reliability analysis of
safety-critical fault tolerant systems (Dugan et al., 2000). The Dynamic Fault Tree (DFT)
approach is introduced by extending conventional FT with dynamic gates to provide a way
to analyse FTs using Markov models (Vesely et al., 2002; Dugan et al., 1993). Boudali
et al. (2007, 2010) have proposed input/output interactive Markov Chains to solve some
issues in application of DFTs, like a lack of formal syntax and semantics, and limitations
in modular analysis. Guo and Yang (2008) have proposed a technique to automatically
generate Markov chains based on voting, self-diagnostic and failure mode information of

78

a system without using any intermediate model e.g., DFT. Due to the reputation of Markov
Chains for quantitative safety analysis, different researchers like Aneziris and Papazoglou
(2004); Bukowski and Goble (1995); Jianzhong and Julian (2011); Platis et al. (1998);
Tao (2009); Wan and Wu (2009); have used Markov analysis method for dependability
analysis of different systems.

Although Markov analysis is a popular graphical model for reliability analysis, the
major shortcoming of Markov modelling is that for large and complex systems, the Markov
model becomes exceptionally large and complicated and therefore difficult to construct
and analyse. One more thing to note about the Markov chain model is that it defines
the state transitions with exponentially distributed rates, i.e., it can model the system be-
haviour if the system components have exponential failure rate. As a result, if the system
components have failure rates with any other distributions (e.g., Weibull distribution) then
Markov chains cannot be used to analyse such systems.

2.5.2 Bayesian Networks

Bayesian Networks (BNs) are directed acyclic graphs that represent a set of random vari-
ables and their conditional dependencies (Pearl, 1988). Therefore a BN is made up of:

1. A Directed Acyclic Graph

2. Conditional Probability Table (CPT) for each node of the graph

A simple example of Bayesian Network and set of tables for each node is shown in Figure
31 and Table 6. The nodes of the graph represent the random variables (events) and arcs
represent dependencies or cause-effect relations among nodes.

Figure 31: Simple example of Bayesian Network

In a Bayesian Network, a node X is said to be the parent of another node Y if there
is an arrow from node X to node Y e.g., A is a parent of B and B is child of A in Figure
31. Parent nodes have a direct effect on its child nodes and each node Xi has a conditional
probability distribution Pr{Xi|Parents(Xi)} that quantifies the effect of the parents on the
node. If a child node represent a Boolean variable and its parents are m Boolean variables

79

Table 6: Set of conditional probability table of BN in Figure 31

then the probability function could be represented by a table of 2m entries, one entry for
each of the 2m possible combinations of its parents being true or false. A node without a
parent is known as root node, and a node without child is called leaf node e.g., A is a root
node and C and D are leaf nodes in Figure 31.

A set of conditional independence statements are the main considerations when mak-
ing BN models and conditional independence information can be obtained from a BN
model by employing the rules of d-separation (Pearl, 1988). Two random variables X

and Y are conditionally independent given a third random variable Z if and only if they
are independent in their conditional probability distribution given Z i.e., X and Y are
conditionally independent given Z if and only if, given any value of Z, the probability
distribution of X is the same for all values of Y and the probability distribution of Y is the
same for all values of X .

Using the conditional independence assumptions of BNs, the joint probability distri-
bution of a set of random variables {X1, X2, X3, · · · , Xn−1, Xn} can be determined using
a chain rule as explained in (Mi et al., 2012; Chen et al., 2010; Pearl, 1988):

Pr{X1, X2, X3, · · · , Xn−1,Xn}=
n

∏
i=1

Pr{Xi| Parent(Xi)} (14)

If A and B are two random events and evidence is found that event B has occurred
then using the Bayes theorem, the posterior probability of event A on condition that B has
happened can be obtained as:

Pr{A|B}= Pr{B|A} Pr{A}
Pr{B}

(15)

where Pr{A} and Pr{B} are the prior probability of event A and B respectively.
As BNs provide a robust probabilistic method of reasoning under uncertainty and

they are capable of combining different sources of information to provide a global safety
assessment, they have therefore received much attention in last decade in the area of de-
pendability analysis (Bobbio et al., 2001; Langseth and Portinale, 2007). Weber et al.

(2012) have reported a continuous growth of the number of publications showing scien-
tific and industrial interest for BNs. According to their observation, 61% of publications
are about the application of BNs in dependability analysis, 26% are for risk analysis and
13% are in maintenance area as shown in Figure 32.

80

Figure 32: Distribution of use of BNs in reliability Engineering (Weber et al., 2012)

Usually Bayesian Networks are used in two different ways to perform dependability
analysis of systems. In the first way, systems are modelled using Bayesian Networks
and then the analysis is performed on that model. Researchers like Doguc and Ramirez-
Marquez (2009); Huang et al. (2008); Neil and Marquez (2012); Neil et al. (2008); Torres-
Toledan and Sucar (1998) etc. have shown the ways of modelling systems directly in
Bayesian Networks, and subsequent analysis on that system model. The second approach
of using BNs in dependability analysis is to transform other representations like FTs,
DFTs into BNs. For example, Bobbio et al. (2001) has introduced a way of translating
FTs to BNs. They represented the basic events of the FTs as the root nodes of the BNs
and the intermediate events (Boolean gates) as the intermediate nodes of the BNs. As the
Boolean gates of the FTs represent deterministic causal relationships between the input
and output events, the non-root nodes are actually deterministic nodes and all the entries
in the CPT are either 0 or 1 (see Figure 33). And the prior probabilities of the root nodes
are same as the probabilities assigned to the basic events (leaf nodes) in the FTs.

Using similar concepts, DFTs can also be translated into BNs to evaluate the depend-
ability of the systems. For example, methods of transforming dynamic fault trees (DFT)
to dynamic Bayesian network (DBN) are presented by Montani et al. (2006); and Boudali
and Dugan (2005). To allow reliability analysis based on automatic translation of DFT to
DBN, a tool called RADYBAN (Reliability Analysis with DYnamic BAyesian Networks)
was developed by Montani et al. (2008).

Hybrid Bayesian Network (HBN) and Continuous-time Bayesian Networks (CTBN)
were proposed by Neil et al. (2008) and Boudali and Dugan (2006) respectively to intro-
duce continuous variables along with discrete variables in BNs. Neil and Marquez (2012)
have used HBN to perform reliability analysis of systems with repairable components and
the way of measuring importance of system components to determine their sensitivity us-
ing BNs is proposed by Zhong and Li (2013).

Not all the system failures are caused only by mechanical failure of system com-
ponents or software failure: human error is an important constituent of system failure.

81

Figure 33: Two input OR gate and its BN model

According to the Royal Society for the Prevention of Accidents (RoSPA, 2011), human
error is somehow involved in 95% of road accidents and in 76% of cases human error
is solely responsible for accidents. Kim and Seong (2006) proposed a BN model which
includes human factors to perform quantitative analysis of instrumentation and control
(I&C) systems in nuclear power plants. Recently, to quantify human error probability,
Jiang et al. (2010) have proposed a method which combines Cognitive reliability and an
error analysis method (CREAM) (Hollnagel, 1998) with Bayesian Networks to overcome
the limitations of general data from databases directly.

The popularity of BNs is increasing rapidly in performing dependability analysis of
complex systems due to their ability to make decisions from uncertain situations. Re-
searchers have already used BNs to evaluate popular reliability analysis techniques, e.g.,
FTs and DFTs; however, till now no effort has been made to use BNs for the evaluation
of Pandora temporal fault trees.

2.5.3 Petri Nets

Petri Nets (PNs) are a formal graphical and mathematical modelling tool which are appro-
priate for specifying and analysing the behaviour of complex, distributed and concurrent
systems (Murata, 1989; Peterson, 1977). They are very popular for their utilisation of es-
tablished mathematical methods such as reachability tree analysis, deadlock analysis and
other formal analysis methods and validation tools (Hei et al., 2011; Reza et al., 2009). A
classical Petri Net is a bipartite directed graph represented graphically by:

82

• A finite set of places P = {P1, P2, · · · , PM} which typically represent conditions
within the system being modelled and they are denoted graphically as circles.

• A finite set of transitions T = {T1, T2, · · · , TN} symbolized by bars which represent
events occurring in the system that causes change in the conditions (Places) of the
system.

• A finite set of directed edges or arcs F . Edges can only connect transitions to places
or places to transitions such that F ⊆ (T ×P)∪ (P×T) .

Input and output arcs are directed edges drawn from places to transitions and transi-
tions to places respectively. Input places known as pre-conditions of a transition represent
the conditions that need to be satisfied for the transition to be activated and connected to
the transition through input arcs. On the other hand, output places are known as post-
conditions of a transition which represent the outcome of the transition and are connected
to the transition through output arcs. The black dots inside the places are known as to-
kens which represents whether a place is active or not. A specified number of tokens are
needed to be available in the input places of a transition for the transition to be enabled
and on firing/ triggering the transition a specified number of tokens are removed from
each input places and a specified number of tokens are deposited to the output places of
the transition.

Figure 34: Basic components of a Petri Net

To increase the modelling capability of Petri nets, it has been extended with a special
type of arc known as inhibitor arcs. Like other arcs, an inhibitor arc also connects a place
to a transition and is represented by an arc terminating with a small circle instead of an
arrowhead like normal arcs. In Figure 35, the arc from place P2 to transition T 1 is an
inhibitor arc. The interesting property of an inhibitor arc is that it enables the transition
when the input place has no token and disables the transition when the place has a token
(opposite behaviour of normal arcs). At the same time no tokens are consumed through
the inhibitor arc. Therefore, the inclusion of the inhibitor arc in Petri nets allows for
checking non-occurrence of events, and thus increases the modelling power of Petri Nets.

Marking functions which map tokens to places represents the dynamic feature of Petri
nets. A marking of a PN at time t represents the state of the system at time t, and is

83

Figure 35: Petri Net with inhibitor arc

specified as a set of non-negative integers by:

M(t) = {m1(t), m2(t), · · · , mN(t)} (16)

where mi(t) is the number of tokens in place i at time t and M(t0) is known as the initial
marking.
A marking MA is said to be reachable from another marking MB if there exists a sequence
of transitions from MB to MA. The reachability set of a PN is a set of all markings reach-
able from an initial marking M(t0).

Petri Nets capture the dynamic behaviour of a system by using a reachability tree/graph,
and the process is known as reachability analysis. A reachability tree is a directed graph
whose nodes are the possible markings of the PNs and edges represents the fired transi-
tions. An edge exists from MA to MB if MB is reachable via a single transition from MA.
Reachability can be analysed both forward and backward and the procedure is described
by Leveson and Stolzy (1987), and Helmer et al. (2007).

For illustration purpose, we can consider a simple system with two identical repairable
components and they can be either in an ON or an OFF state. A Petri Net of the system
behaviour is shown in Figure 36. The Petri net of the system has two places named ON

and OFF , and initially the system is in place ON which has two tokens (dots) i.e., both
the components are active. Two possible transitions of the Petri net are denoted as Tf ailure

and Trepair. If the transition Tf ailure fires then a token is removed from place ON and one
token is deposited to place OFF , i.e., one component goes to the OFF state from the ON

state. On the other hand, if transition Trepair fires then one token is deposited to place
ON and one token is removed from place OFF , i.e., one component is recovered from its
failure state and entered into its operational state.
Possible markings of the system can be defined as:
{2, 0}: both the components are active
{1, 1}: one component failed and another is working
{0, 2}: both the components failed (represents system failure)

84

Figure 36: Petri Net of a system with two identical repairable components

From the Petri net of figure 36 and possible markings, a traceability graph can be
drawn as shown in Figure 37. Therefore by using the forward reachability analysis feature
of Petri Nets it is possible to show potential hazardous states of the system that can be
reached from the initial state after a finite sequence of occurrence of events; it is believed
that this feature would be helpful for this current research.

Figure 37: Traceability graph of the system with two identical repairable components

Classical PNs are easy to analyse but require more places and transitions to model
the behaviour of moderately complex systems, which will give rise to state explosion
problems (Desrochers et al., 2005). Conventional PNs have gone through different modi-
fications to overcome the problem of modelling data and time-dependent behaviour such
as Arc Extensions and Inhibitor Arcs (Zurawski and Zhou, 1994), Timed Petri Nets,
Coloured Petri Nets and Hierarchical Petri Nets (Desrochers et al., 2005).

In Timed Petri nets, time is introduced to model the interaction among events consid-
ering their starting and completion times. A special case of timed Petri Nets is proposed
by Molloy (1982) known as Stochastic Petri Net (SPN) where transition delays are expo-
nentially distributed. One important feature of a SPN is that its underlying reachability
graph is isomorphic to a continuous time Markov Chain (CTMC) (Marsan and Chiola,
1987). To allow both immediate and timed transition in the same Petri Net, SPNs are
extended by Marsan et al. (1996) to introduce Generalized Stochastic Petri Nets (GSPN),
where thin black bars are used to represent instant transitions and relatively thick bars
are used to represent timed/delayed transition, and immediate transitions are given higher

85

priority than timed transitions. Coloured Petri Nets have been introduced to increase the
modelling power of Petri Nets where tokens are given different colours to carry complex
information (Jensen, 1996).

Petri Nets can be used to model both nominal and failure behaviour of systems. For
instance, Fanti et al. (2014) have used Petri Nets to model an Integrated System (IS) for
the Healthcare at Home (HAH) management system, and subsequently simulated the PN
model to observe the behaviour of the IS. Some researchers have used Petri nets to model
functional behaviour of the system and then use another safety analysis method e.g. FTA
to perform the safety analysis based on the non-functional behaviour identified from the
PNs (e.g. Reza et al. (2009)). Leveson and Stolzy (1987) introduced a new method
where both nominal and failure behaviour of a system is shown in the same Petri net, i.e.,
failure transitions and fault conditions are introduced with normal transitions and normal
conditions, and they are represented by double bar and double circle as shown in Figure
38.

Figure 38: Petri Net showing nominal and failure behaviour

To increase the modelling and analytical power of combinatorial approaches of safety
analysis, researcher like Bobbio et al. (1999), and Helmer et al. (2007) have proposed the
ways of mapping FTs to PNs, and Codetta-Raiteri (2005) and Zhang et al. (2009) have
introduced the ways of converting DFTs to PNs. Conversion of a Boolean Gate (OR) and
a DFT’s Gate (PAND) to PNs by Codetta-Raiteri (2005) is shown in Figures 39 and 40
respectively. The PAND gate is also available in the Pandora temporal fault trees with
some behavioural changes. Therefore, the above transformation of PAND gate to PNs
could be modified to make it Pandora compatible, and using these ideas other temporal
gates of the Pandora could be transformed to Petri nets and thus benefit from the analytical
power of Petri Nets.

State Machines provide an easy-to-use modelling approach, but they can be harder
to analyse directly, therefore to take benefit of Petri Nets to analyse system behaviour,
Pais et al. (2011) have presented the translation strategies from UML state machines to
Petri Net and Hei et al. (2011) have presented an automated tool for transforming UML
state charts to Petri Nets. But none of the methods has performed the equivalence check
between the UML and Petri Net models. As state machine-based models suffer from

86

Figure 39: OR gate and its PN model

Figure 40: PAND gate and its PN model

state explosion problems and do not allow direct analysis, therefore we can benefit by
converting those models to Petri Nets, and one important contribution would be to find
the way to check equivalency between a state machine-based model and Petri Net of the
same model.

2.6 Discussion

This chapter has presented a review of literature in reliability engineering, different clas-
sical safety assessment techniques, and in particular model-based safety assessment tech-
niques. Model-based safety assessment is a continually evolving field that has attracted
a significant interest in industry and academia over the last 20 years. Different tools
and techniques have been developed as a part of model-based safety assessment to allow
the analysts to perform different types of analyses automatically or semi-automatically.
This chapter has classified different MBSA tools and techniques into two main categories
based on their ways of working — failure logic synthesis and analysis approaches and

87

behavioural fault simulation approaches. However, irrespective of their structural com-
plexity or whatever classical methods they use, all the techniques share a common goal:
to provide some means to allow dependability analysis of safety-critical systems.

There exist many challenges in the MBSA area. One such problem is that of devel-
oping fault propagation models that links causes to effects. Another challenge is opti-
misation of system architectures to meet requirements or to allocate requirements. Hi-
erarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS) is one of the
advanced and well supported state-of-the-art MBSA techniques which can resolve these
challenges. It can provide similar functionality to CFTs and FPTN but with a higher de-
gree of automation. Moreover, it can automatically generate fault trees, FMEA tables,
perform quantitative analysis on fault trees, and has the ability to perform multi-objective
optimisation of the system models.

Increasingly, systems are getting more complex and their behaviour becomes more
dynamic. As the behaviour of the system changes, functions and their failure modes vary,
as do the flows between components of the architecture and the potential deviations of
those flows. Due to this complex behaviour and the many possible interactions between
the components, assessing the effects of combinations of failure events is not enough by
itself to capture the system failure behaviour. In addition, understanding the order in
which they fail is also required for a more accurate failure model. However, classical ap-
proaches like fault trees (FTs) are not capable of capturing sequence-dependent dynamic
behaviour. As these classical approaches are used as the primary basis for dependabil-
ity analysis in many different MBSA techniques, those MBSA techniques also lack the
capability of capturing dynamic behaviour of systems.

By looking at different state-event based approaches, it is clear that state machines
make it easier to capture the dynamic behaviour of systems. For instance, Architec-
ture Analysis and Description Language (AADL) with its Error Annex is an architecture
modelling language which provides a rich syntax to annotate components of complex-
systems with dependability related information based on stochastic state automata. Al-
taRica Dataflow and SAML are two other languages that also provide the ways of anno-
tating components with dependability related information using a state-based formalism
to capture dynamic behaviour of components. Papadopoulos (2000) has provided some
preliminary ideas of using state-based annotation in HiP-HOPS to overcome its limitation
in capturing dynamic behaviour, but no formal guidelines were provided to show how the
annotations would be made or how the interactions between behavioural state machines
of different components in different levels of the hierarchy will take place. Inspired by
the capability of the state-based annotation languages to capture dynamic behaviour of
systems, this thesis aims to develop a methodology to provide a way to annotate system
components with dynamic behaviour related information using state-event automata, thus
allowing the compositional MBSA techniques to perform dynamic dependability analysis
based on these annotations. Considering the multi-dimensional contributions of HiP-

88

HOPS to the MBSA domain, it is selected as an example MBSA tool to illustrate the use
of the newly developed methodology in practice.

As already seen in this chapter, the main limitation of the state machine based ap-
proaches is that for a moderately complex system they suffer from state explosion and at
the same time it is not possible to analyse the state machines directly. As it is possible
to arrange system architectures hierarchically, it is therefore believed that the state ex-
plosion problem could be minimised by using hierarchical state machines (state charts).
However, proper guidelines on hierarchical system modelling, e.g. how the communi-
cations between the states in different levels of the hierarchy would take place, need to
be provided. By foreseeing the complexities that may arise while using state machines
for dynamic system modelling, this thesis will provide guidelines on hierarchical system
modelling using state machines to alleviate the complexities.

As it is not possible to readily analyse state machines directly, we therefore also need
to translate state machines to other representations, e.g. Pandora temporal FTs or BNs.
Some researchers have shown the ways of translating state machines to classical fault
trees but it will not be able to preserve the sequence dependent behaviour of the system.
However, recently, Mahmud et al. (2012) have introduced the ways of translating state
machines into Pandora temporal fault trees. Therefore, if system components can be
annotated with state-based behaviour, then Pandora temporal fault trees can be generated
from the state machines to show the failure behaviour of the system.

Pandora allows fault trees to capture sequence-dependent dynamic behaviour. The
major advantages of Pandora are that by performing qualitative analysis it can create use-
ful insight to system failure in the absence of quantitative data and it is integrated well
in model-based design and analysis. Although Pandora’s strength lies in its ability to
perform qualitative analysis, it has limited capability of performing quantitative analysis.
However, in order to obtain accurate information about the system dependability, it is nec-
essary to perform quantitative analysis along with the qualitative analysis. Quantitative
analysis provides measures of system reliability probabilistically and also the criticality
of the components based on their relative contribution to the occurrence of system failure.

Considering the increasing importance of model-based design and analysis, and the
potential use of Pandora in this context, recent efforts have been made to develop analyt-
ical and Monte Carlo Simulation based approaches to allow quantitative analysis of Pan-
dora TFTs. However, the application of the analytical solution is limited to exponentially
distributed data only; on the other hand, the Monte Carlo Simulation based approach is
too computationally expensive for larger systems. Therefore, there exists plenty of scope
to explore different approaches to develop novel methodologies to provide an improved
solution to quantitative analysis of Pandora TFTs. The new methodologies should be
able to provide a state-space solution to Pandora TFTs in a reasonable time, and at the
same time, the methodologies should be equally applicable to both exponentially and
non-exponentially distributed data.

89

With an aim to provide methodologies to provide improved analysis of Pandora TFTs,
different approaches such as Markov Chains (MCs), Bayesian Networks (BNs), and Petri
Nets (PNs) have been studied. All these approaches have established a good reputation in
the dependability analysis domain. Markov Chains are a popular probabilistic model suit-
able for dependability assessment of dynamic systems and dynamic fault trees (DFTs) are
usually quantified by translating them to MCs. But to show dynamic behaviour of com-
plex systems it requires a large number of variables, and thus suffers from state explosion
problem. Moreover, the application of MCs is limited to exponentially distributed data
only.

Stochastic Petri Nets (SPNs) are well-established and a powerful mathematical mod-
elling tool. As their underlying reachability graphs are isomorphic to Continuous Time
Markov Chains, they have been used to provide a state-space solution to DFTs. PNs
offer several important advantages such as the graphical feature of PNs allows effective
modular modelling and its mathematical feature allows model verification and simulation.
However, like the MCs, their application limited only to exponentially distributed data.

Bayesian networks, another popular tool which provides a robust probabilistic method
of reasoning under uncertainty, is increasingly used to assess dependability of systems. It
can be observed from the literature review that BNs are increasingly being used to provide
solutions to DFTs. Unlike MCs and PNs, they are capable of analysing systems featuring
different failure distributions. The major limitations of BNs are that there are no formal
semantic guidelines for developing BNs for a system and they do not guarantee a coherent
model. To guarantee a coherent model, one option would be to transform another coherent
classical model to BNs, e.g. FT into BNs, but the success in this case is limited by the
correctness of the classical model from where BNs is obtained. Another option would be
to define rules to develop BNs which could generate coherent model of system.

According to the above discussion, BNs appear to be the most suitable techniques to
provide a state-space solution to Pandora TFTs which will be applicable to both exponen-
tially and non-exponentially distributed data. Considering the mathematical strength and
many other advantages offered by PNs, these also seem to be a good candidate technique
that could be explored to provide a state-space solution to Pandora TFTs. Therefore, these
two techniques will be considered in this thesis for the quantitative analysis of Pandora.

Another important issue in the MBSA area that has received very little attention is the
uncertainty in the failure data. The outcome of a quantitative analysis is entirely depen-
dent on the accuracy of the failure data or other numerical values used in the analysis.
In most of the existing MBSA techniques, failure data of components are considered to
be always available and thus do not consider inclusion of a degree of uncertainty in the
failure data of the basic events. As already discussed in this chapter, for many complex
systems, it is often very difficult to estimate a precise failure data or probability of compo-
nents from past occurrences due to lack of knowledge (vagueness), scarcity of statistical
data, and changes in operating environments of the systems etc.(He et al., 2007; Mah-

90

mood et al., 2013; Tanaka et al., 1983). From the literature review, it is clear that the
fuzzy logic has the capability to deal with linguistic variables and it provides an efficient
way to draw conclusions from imprecise and vague information. Fuzzy logic is widely
used to handle uncertainty in FTA but no effort has been made to use fuzzy logic to handle
uncertainty in Pandora temporal fault trees. For this reason, fuzzy logic has been selected
as a potential way of incorporating uncertainty aspects of failure data in the quantification
process of Pandora TFTs. This thesis will explore the existing quantification techniques
for the Pandora TFTs to develop a methodology to allow quantitative analysis of Pandora
with uncertain data.

91

Chapter 3

Dynamic Dependability Analysis

3.1 Introduction

One important aspect of many systems is their dynamic behaviour, i.e., the behaviour of
the system (both nominal and potential failure behaviour) can change according to what
state or mode of operation the system is in. As the behaviour of the system changes,
functions and their failure modes vary, as do the flows between components of the archi-
tecture and the potential deviations of those flows. These behavioural uncertainties are
increasingly prevalent as the complexity and scale of the systems increases, and dynamic
behaviour can be observed in almost any large industrial systems. Dynamic behaviours
of systems create complicated situations for classical dependability analysis techniques.
The first aim of this chapter is to discuss those complications. The second aim is to show
a potential way of modelling dynamic behaviour. The third aim is to use that behavioural
annotation in the context of HiP-HOPS to perform dynamic dependability analysis.

3.2 Dynamic Behaviour and Challenges in Dependability
Analysis

In large industrial plants, big tasks are often divided into smaller tasks and are processed
in different stages of the operation. In this way, resources are utilised in a sequence of
different stages, and in each of those stages, a set of different functions are performed to
complete the overall task. The Aircraft Fuelling Systems (AFS) of modern aircraft are
examples of such systems. The operation of those systems can be divided into modes,
whereby some of the operations may take place before the flight and some may take place
during the flight. Throughout the process, at any particular point in time, some of the
system components may act as active components and some others may act as passive
components. By active at a point in time, we mean those components which are engaged
in some sort of useful system operation at that particular time. On the other hand, passive
components are those which are idle or switched off, i.e., not involved in any sort of

92

operation at that point in time and waiting to be reactivated by the system.
The activity and inactivity of system components could be intentional or unintentional.

Sometime a system may have to perform a set of variable functions, and to facilitate
this sort of varying functionality, a variable configuration of the system is obtained by
intentionally activating and deactivating a selected number of components. A second
scenario could be that a system is performing a fixed set of functions, and in the presence
of the failure of one or more of the system components, the system may sacrifice some
of its non-critical functions and go to a degraded operational mode by only doing the
critical functions with a limited number of components with a different configuration. To
make the safety critical system more tolerant to faults, many systems have fault tolerance
strategies built in. As part of such a fault tolerant strategy, in the presence of faults,
systems may reconfigure themselves by using spare (cold or hot) components to respond
to the faults and continue the nominal behaviour. A component is considered as cold
spare if it is deactivated until it is required in any sort of system operation. On the other
hand, hot spare components are always active irrespective of their necessity in the system
operation; however, they serve their functionality only when the primary component fails.

For instance, consider a hypothetical twin engine aircraft fuel distribution system,
shown in Figure 41. The system has two fuel tanks, TL and TR; two pumps PL and PR;
and three valves VL, VR, and VC. In the normal operating condition, mode 1, the left
engine receives fuel from the left tank (TL) through VL and PL; and the right engine
receives fuel from the right tank (TR) through VR and PR. In this mode, valve VC is kept
closed (see Figure 42). Now, if we hypothesise a failure such that VR is stuck closed,
then there is no flow from TR to the right engine. So the system has to reconfigure itself
to maintain fuel flow to the right engine. A new configuration of the system in this mode,
mode 2, is shown in Figure 43. And a third configuration, mode 3 (see Figure 44), is
formed when there is no fuel flow to the left tank from TL through VL.

Figure 41: Twin engine aircraft fuel system

This kind of multi-modal operation and variable number of system configurations can
pose difficulties for classical dependability analysis techniques, e.g. fault trees, and for
those model-based safety assessment techniques that use these classical techniques as a

93

Figure 42: Direction of fuel flow to engines in Mode 1

Figure 43: Direction of fuel flow to engines in Mode 2

Figure 44: Direction of fuel flow to engines in Mode 3

94

means for their analysis. If we want to analyse such a system with tools like HiP-HOPS,
we will soon be faced with difficulties caused by the dynamic behaviour of the system.
For such systems, it is difficult to precisely define the nominal behaviour of the system
because it has different behaviour in different modes. Therefore, it is equally difficult
to define the potential deviations from the nominal behaviour. Another thing to note is
that different selections of components are activated and deactivated to obtain a desirable
configuration; therefore some of the components may be irrelevant in some of the modes,
and thus so are their failure modes. For example, if the above mentioned system is in mode
2 then the valve VR becomes irrelevant because it is either failed or has no functionality
in this mode. As a result, it is a challenge for classical analysis technique to take this state
dependent behaviour into account and represent it in an understandable and manageable
format.

Some extensions of classical fault trees have been proposed to accommodate state/mode
dependent dynamic behaviour in the structure of the fault tree. The Dynamic Fault Tree
is one such extension that proposes four new logic gates: the functional dependency gate,
the spare gate, the priority-AND gate, and the sequence-enforcing gate. However, the pri-
mary focus of this extension is to perform quantitative analysis, and this is done usually
by translating them into Markov chains. Therefore, it gives the analysts limited scope to
obtain qualitative information about the complex dependencies between modes and the
potential failure behaviour of the components. Pandora is another extension of classical
fault trees that captures dynamic behaviour using three temporal gates: priority-AND,
priority-OR, and simultaneous-AND gates. It also defines a set of temporal rules to allow
meaningful qualitative analysis. However, methods for quantitative evaluation of Pandora
fault trees are not well developed yet. Although all the dynamic extensions of the classical
fault trees provide some means to capture the dynamic behaviour of systems, there still
remains the issue of correctly modelling the dynamic behaviour and linking it to dynamic
analysable models that can be used for qualitative and quantitative analysis.

Furthermore, modelling the mode/state dependent dynamic behaviour complicates the
dependability analysis process and makes the analysis results inconsistent. We believe
that if the components can be annotated with failure behaviour based on the modes of
operation they are involved in, and if this information can be organised in a consistent
and manageable way and put in the correct context, then the complexity of the dynamic
analysis can be minimised and the analysis can be made more consistent. Here, we can
foresee two potential challenges. The first challenge is to represent the mode automata,
i.e., what is causing the system to go from one mode to another and how the transitions
are happening. The second challenge is how we can associate the modes with the failure
behaviour of the components and thus what could be the best way to represent that infor-
mation. In both challenges, the goal is to find representations compatible with common
MBSA approaches.

In the following sections we describe an approach to represent the mode-based be-

95

haviour of dynamic systems and ways of annotating system components with mode based
failure behaviour. The first step involves identifying potential modes of operation for the
system and then representing the transitions between modes with a suitable structure. In
the second step, potential failure behaviours of the system components in different modes
are identified, the components are annotated with those behaviours, and all the data are
finally presented in a well-structured format. At the end of the chapter, an example de-
pendability analysis is performed by using HiP-HOPS to demonstrate the approach’s util-
ity with MBSA techniques.

3.3 Representation of Dynamic Behaviour

According to the above description, a system can behave dynamically by reconfiguring
itself to provide a variable set of functions or by providing a single set of function with
some alternative configurations. In both cases, the configuration of the system has a link to
the functions provided by the system. In other words, the architecture of the system has a
relation with the mode in which the system is operating, i.e., a distinct architecture can be
associated with a distinct mode of operation. This section presents a way of representing
the mode/state based behaviour of systems as well as a way of associating modes with the
failure behaviour of components.

3.3.1 Representing Dynamic Behaviour with Mode Charts

State-transition based methodologies, such as Mode Charts, are suitable and widely used
to capture dynamic behaviour of systems. A mode chart M could be defined as (Košecká,
1992; Sampath et al., 1996):

M = (Q, Σ, δ , q0) (17)

where Q is the set of all possible modes, Σ is the set of all possible events, δ is the
transition function δ : Q×Σ→ Q and q0 is the initial mode. Example of a mode chart is
shown in Figure 45.

Figure 45: Example of a mode chart

96

In this thesis, dynamic behaviour of a system is represented as a set of different func-
tional modes and a set of transitions among the modes. In each of these modes, the system
may deliver a fixed set of functions with one architecture or may deliver a different set of
functions with different architectures. For example, a system can be in:

• a normal operational mode, in which it delivers a set of functions;

• a degraded mode, where the system is operating safely but with limited functional-
ity;

• a failed mode, where all the intended functionality is lost.

However, the variations in system modes and their interactions depend on the designers’
intention, i.e., how they want the system to behave in different situations. Therefore, to
describe the dynamic behaviour using mode charts, we would have to identify all possible
functional modes that the system could be in and also need to determine all possible
conditions that can trigger transitions between those functional modes.

Consider, for instance, the fuel distribution system presented earlier (see Figure 41),
where the system has to perform a fixed set of functions. Let’s say the functions are:

1. To provide fuel to the left engine.

2. To provide fuel to the right engine.

As seen from Figure 42 to 44, to provide the above functions the system could work
in three different modes. Figure 46 shows a mode chart of the twin engine aircraft’s
fuel system considering three possible functional modes. Each of the modes essentially
represents a distinct configuration of the system. The association between modes and
different configurations of the system is shown in Figure 47. Mode 1 is the initial mode,
and in this mode all the system components are working fine: the first function of the
system is completed by providing fuel to the left engine from the left tank through VL
and PL, and the second function is obtained by directing fuel to the right engine from
the right tank through VR and PR. Mode 2 and 3 refers to two degraded modes where
system functionality is not affected, but the system nonetheless changes its configuration
in response to failure.

When the system is in Mode 1, it will remain in this mode unless transition T1 or T2
causes it to go to Mode 2 or Mode 3. In Mode 2, fuel flow to right engine from right
tank is replaced by the fuel flow from the left tank, whereas in Mode 3, fuel flow to the
left engine from the left tank is replaced by the fuel flow from the right tank. Transition
conditions could be a single event (normal or failure) or a combination of events and they
could be represented as Boolean expressions.

Let us find the expression for T1, as seen from Figure 47, that causes the system to
change its mode of operation from the Mode 1 to the Mode 2 because of the lack of flow
to the right engine through the valve VR. This deviation could be caused either due to

97

Figure 46: Mode Chart of the behaviour of the system in Figure 41

Figure 47: Association between system architectures and modes

the failure of tank TR or failure of valve VR. So the expression of the transition could be
written as:

T1 = Failure of TR ∨ Failure of VR

The two terms in the right hand side of the above expression are the failure of two
of the system components. The above expression is used only for illustrative purpose,
however, and this expression can be represented in a better format, as will be seen in the
next subsection. Each component may be active in some modes and inactive in others, and
therefore the failure behaviour of each component is confined to those modes in which it
is active. If a particular component is not involved in any kind of operation in a mode, then
the behaviour of that component may become irrelevant for that mode. Figure 48 shows
a slightly different version of the mode chart of Figure 46, where all the components
involved in each mode are listed inside the rounded rectangle representing the mode and
the transitions are represented as failure events.

98

Figure 48: Mode chart with active components listed in the modes

3.3.2 Annotation of Mode Based Failure Behaviour of Components

The mode chart of a system only represents the functional modes and/or degraded modes
and all possible transitions between those modes. However, in order to perform depend-
ability analysis, we need to identify the failed modes of the system as well. As mentioned
earlier, the system can work with different configurations in different functional modes
to provide the same or different set of functions; therefore, a single failed mode could be
reached in different ways from different functional modes. This is the primary bottleneck
for the classical dependability analysis approaches.

In compositional MBSA approaches, system components are usually annotated with
a fixed set of failure behaviour; however, for systems with dynamic behaviour, this kind
of annotation is often misleading, either too optimistic or too pessimistic. For dynamic
systems, components are instead required to be annotated with mode based behaviour,
i.e., which mode the components are in and what the possible behaviours are for that
mode. It is not necessary for all components to have failure behaviour in all modes.
This is due to the fact that a component may not be active in a particular mode, may
be failed prior to entering a mode, or the activity of a functioning component is masked
due to the failure of other components. However, this assumption is only appropriate
for non-repairable components. If a component is repairable then a failed component can
regain its functionality to change the configuration of the system, and thus make the above
assumption invalid.

Let us deal with the various cases one at a time. In the first case, where a component
is not active in a particular mode, the failure behaviour of that component is irrelevant in
this mode. For example, in the above mode chart, component VC has no activity in Mode
1; hence, we can say that the failure behaviour of VC is irrelevant in Mode 1.

99

In the second case, the component has already failed before coming to the present
mode; therefore, the failure behaviour of the component is already addressed in any of
the prior modes. For example, assume that the system goes from Mode 1 to Mode 2 due
to the failure of TR (see Figure 48). If we look at Figure 48, then we can see that TR was
present in Mode 1 but not in Mode 2. Therefore the failure behaviour of TR is addressed
in Mode 1 before entering Mode 2, and in Mode 2 it becomes irrelevant.

In the third case, the component itself is not failed; however, its activity does not have
any effect in the system because of some other reason, e.g., failure of other components.
For example, if some components are connected in series, then failure of one component
makes the subsequent components inaccessible. This situation can be seen more clearly
from the example above. Assume that the system in above example goes to Mode 2 due
to the failure of TR. Failure of TR makes the activity of VR ignorable in Mode 2, because
the activity of VR is only relevant when TR is working properly.

Following the above discussion, the mode based failure behaviour of component VL,
i.e., the possible causes of its failure, can be represented as follows:

Table 7: Mode based failure behaviour of component

PPPPPPPPPPPPPPPP

Component
Name

Failure
Behaviour Mode 1 Mode 2 Mode 3

VL VL.Blocked VL.Blocked No effect

In Table 7, for illustrative purposes, we assume that only a blockage can cause the
failure of valve VL; however, any other causes (or combination of causes) can be used. It
is worth noting that the failure behaviour of VL is the same in Mode 1 and Mode 2; as
VL is not active in Mode 3, VL’s failure behaviour has no effect in this mode.

Let us consider the inability of the above system to deliver fuel to the left engine as one
of its failure modes. Transitions to this failure mode from all three functional modes are
shown in Figure 49. The failure mode is represented as a dotted ellipse and the transitions
that cause the system to go from a functional mode to a failure mode are represented as
dotted arrows. For illustration, the mode based failure behaviour — in the form of input
and output deviations — for two failure modes are shown in Table 8. As seen in the table,
in mode 1, the condition ‘no fuel to the left engine’ could be caused by the failure of the
left pump (PL.Failed); however, in mode 2 and 3, the same failure could be caused
because of:

• no flow from valve VL to PL (No_VL_PL) in disjunction with the failure of PL

• and no flow from valve VC to PL (NO_VC_PL) in disjunction with the failure of
PL respectively.

No_VC_PL is only possible in mode 3 because in mode 1, VC is in passive mode, thus
no flow is possible through VC, and in mode 2, there is a flow through VC, but the flow

100

is in the opposite direction, i.e., VC to PR, hence flow from VC to PL does not make any
sense in this mode. And in mode 3, No_VC_PL could be caused by the failure of VC
(VC.Blocked) or because of no flow from VR to VC (No_VR_VC).

Figure 49: Mode chart with failure modes and transitions to failure modes from functional
modes

Table 8: Mode based expressions of failure behaviour

PPPPPPPPPPPPPPPP

Failure
Modes

Failure
Expression Mode 1 Mode 2 Mode 3

No fuel to left engine PL.Failed
PL.Failed

∨
No_VL_PL

PL.Failed
∨

No_VC_PL

No_VC_PL No effect No effect
VC.Blocked

∨
No_VR_VC

3.3.3 Complexity of Mode Chart and Hierarchical Modelling

In the last two subsections, we have seen the mode chart of the functional behaviour of
the system and the mode based failure behaviour of system components. The architecture
of the example system was relatively simple; hence the mode chart was fairly small. Now
the question is whether these approaches can be applied to model the dynamic behaviour
of large and complex systems. Such systems usually perform a wide range of functions
in different phases of operation is often composed from multiple smaller subsystems. As
a result, the architecture of the system can become too complex to model in a straight-
forward fashion because of the many subsystems and many possible interactions among
them.

101

If we want to model the behaviour of such a system using the concept shown in the
previous subsection, then we would soon be faced with serious challenges. First, we have
to identify all possible functional modes and the related configurations of the system. Af-
ter that, all permutations of all the modes needs to be calculated and then all possible
transitions between those modes are required to be defined. In this process, many re-
dundant modes and repeated transitions will be considered. Finally, we have to compile
all the information into a single model, resulting in a very big and complex mode chart
which could easily be unmanageable. This problem is often referred as the state explosion
problem.

This problem could be solved by introducing a hierarchical structure to the mode chart
and thus make the modelling of dynamic behaviour of complex system more manageable.
This section will therefore show how a hierarchical mode chart can be used to model the
dynamic behaviour of a more complex system.

The most important difference between hierarchical mode charts and classical mode
charts is that the hierarchical mode charts introduce hierarchically nested modes. Modes
that contain other modes are called composite/super modes; on the other hand, modes
without internal structure are called basic/simple modes. A nested mode is called a direct
sub-mode when it is not contained by any other mode; otherwise, it is referred to as a
transitively nested sub-mode.

Every mode can react to external events for transition, and while reacting to external
events, every mode can have optional entry and exit actions. When a mode is entered, the
entry actions are executed and during leaving a mode the exit actions are executed without
considering how a mode is entered or left. Every mode should contain the information
about the components of the system involved in that mode. If the mode is a super mode
then it should have a default starting sub-mode, which acts as a target mode of a transi-
tion made to the super mode, and should have at least one final state to handle outgoing
transitions.

Modes can have any number of mode variables, which are local to the modes and are
used to reflect the status of the components involved in the modes. If a variable belongs
to a super (parent) mode or if any behaviour is defined for a parent mode, then all the
sub-modes of that super mode will inherit that variable or behaviour, i.e., all sub-modes
use it as a global variable/behaviour.

Every sub-mode must continue to act as though it was also an instance of the super
mode, which means no sub-mode should act in a way which contradicts/violates the aims
of the super mode. The best possible way to ensure this is to control the interaction of
every sub-mode with modes outside the parent modes. To do so, some restrictions are
put on the scope of interaction for modes. All basic modes which do not belong to a
super mode can communicate with each other at any level of the hierarchy and can also
communicate with super modes that are at the same level in the hierarchy. Any kind of
sub-modes within a super mode can interact with each other directly because they are at

102

the same level, but they are not allowed to interact with any modes outside of their super
mode directly even if they are at the same level. If any sub-mode has to interact with
other modes outside of the super mode, then the interaction should take place under the
control of the super mode. That means all transitions internal to a super mode are handled
by its sub-modes, but any outgoing or incoming transition to or from any outside mode is
handled only by the super mode itself. In other words, we can say that the super/parent
mode has responsibility for any transitions external to that mode.

So far, we have said that any transitions to or from external modes are handled by the
parent modes. The following rules are followed to handle any kind of transition in our
proposed hierarchical mode chart.

Incoming Transitions to a Parent Mode: If a transition is made to a parent mode, then
any entry action for that parent mode is performed first. After that, the transition is han-
dled by the parent mode by transferring the control to the default starting sub-mode.

Incoming Transitions to a Sub-Mode of a Super Mode: If a transition is made to a
sub-mode of a super mode, then any entry action for the enclosing super mode is per-
formed first. After that, the control is transferred to the targeted sub-mode based on the
transition condition.

Outgoing Transitions from a Super Mode: As mentioned earlier, every super mode
has at least one final mode. If the final mode is reached by a transition from the super
mode itself, then this final mode represents a transition from the super mode. A transition
from the super mode means transition from any of the sub-modes because of inheritance
and takes precedence over any of the transitions from the current sub-mode. This is re-
ferred as “common behaviour” shared by all sub-modes.

Outgoing Transitions from a Sub-Mode: If a final mode of a super mode is reached
by a transition from one or more of the sub-modes, then this final mode represents a tran-
sition from the sub-mode of the super mode to any external mode. In such case, any exit
action of the sub-mode is executed followed by any exit action of the enclosing super
mode.

To illustrate the use of hierarchical mode charts to capture the dynamic behaviour of
complex systems, consider a modified version of the system from Figure 41, as shown in
Figure 50. Some new components have been added to new architecture to make it fault
tolerant. Now both the tanks have two openings and each of the openings is connected
to a valve. For example, for the left tank (TL), left opening (TLO1) is connected to VL1
and right opening (TLO2) is connected to VL2. So, fuel to the left engine from TL can be
directed through two different paths. The first path is through TLO1→ VL1→PL (left
path), and the second path is TLO2 → VL2 → PL (right path). Similarly, for the right

103

engine, fuel from the right tank (TR) could flow through either TRO1→ VR1→ PR (left
path) or TRO2→ VR2→ PR (right path).

Figure 50: Fault tolerant twin engine aircraft fuel system

Consider that the behaviour of the system is defined as such that at the beginning both
the tanks use the left path to provide fuel to the respective engines, and the right paths stay
inactive, i.e., components in the right paths are acting as passive components. If for some
reason the left lines become unavailable, then the tanks will switch to the right lines to
continue the fuel flow to the engines. After that, if the right path of the left tank becomes
unavailable (fails) then the system will continue its operation using the right tank; on the
other hand, if the right path of the right tank becomes unavailable then the system will
depend only on the left tank for fuel flow to both the engines.

Now, let us consider that the failure of the system to provide fuel to the left engine
is one of the failure modes (hazardous state). The flat mode chart showing this failure
behaviour is shown in Figure 51. In this mode chart, the name of the modes are short-
ened to increase readability; however, for better understanding Table 9 and 10 provide
elaboration for the shortened name of the modes with detailed description of the modes
with reference to the system status. For this particular failure mode, no fuel to left engine,
there are eight functional and/or degraded modes which are represented as black rounded
rectangles in the mode chart. In these modes, proper fuel flow to the left engine is en-
sured, but each time with different system configurations. For example, the initial mode,
TL_L_TR_L, represents a functional mode where the left engine receives fuel from the
left tank through its left path and the right engine is fed from the right tank through its left
path. On the other hand, the TR_L is a degraded mode and it represents a scenario where
both the engines are fed from the right tank through its left path.

104

Figure 51: Classical Mode Chart for the failure behaviour ‘no fuel to left engine’ of the system in Figure 50

105

Table 9: Explanation of the name of the functional/degraded modes used in the mode
chart of Figure 51

Mode Name:

Shortened
Mode Name: Explained Description of the Mode

TL_L_TR_L

TL is using its left path

and

TR is using its left path

The left tank (TL) is providing fuel to

the left engine and the right tank (TR)

is providing fuel to the right engine.

To provide fuel to the engines, both

the tanks are using their left path.

TL_L_TR_R

TL is using its left path

and

TR is using its right path

TL is providing fuel to the left engine

through its left path and TR is provid-

ing fuel to the right engine through its

right path.

TL_R_TR_L

TL is using its right path

and

TR is using its left path

TL is providing fuel to the left engine

through its right path and TR is provid-

ing fuel to the right engine through its

left path.

TL_R_TR_R

TL is using its right path

and

TR is using its right path

TL is providing fuel to the left engine

through its right path and TR is provid-

ing fuel to the right engine through its

right path.

TL_L TL is using its left path
TL is providing fuel to both the engines

using its left path.

TL_R TL is using its right path
TL is providing fuel to both the engines

using its right path.

TR_L TR is using its left path
TR is providing fuel to both the engines

using its left path.

TR_R TR is using its right path
TR is providing fuel to both the engines

using its right path.

106

Table 10: Explanation of the name of the failed modes used in the mode chart of Figure
51

Mode Name:
Shortened

Mode Name: Explained Description of the Mode

TL_L_NO_LE

No fuel to the left engine
and

TL is using its left path

Fuel flow to the left engine
is stopped and the left
tank (TL) is providing fuel
to the right engine using
its left path.

TL_R_NO_LE

No fuel to the left engine
and

TL is using its right path

Fuel flow to the left engine
is stopped and TL is provid-
ing fuel to the right engine
using its right path.

TR_L_NO_LE

No fuel to the left engine
and

TR is using its left path

Fuel flow to the left engine
is stopped and TR is provid-
ing fuel to the right engine
using its left path.

TR_R_NO_LE

No fuel to the left engine
and

TR is using its right path

Fuel flow to the left engine
is stopped and TR is provid-
ing fuel to the right engine
using its right path.

TL_L_D_TR_L_NO_LE

No fuel to the left engine,
TL is using its left path
but is in dormant mode

and
TR is using its left path

No fuel flow to the left
engine is available. The left
path of the TL is available
for supplying fuel to the
right engine but currently it
is not in use because the
right engine is getting fuel
from TR through its left
path.

TL_L_D_TR_R_NO_LE

No fuel to the left engine,
TL is using its left path
but is in dormant mode

and
TR is using its right path

No fuel flow to the left
engine is available. The left
path of the TL is available
for supplying fuel to the
right engine but currently it
is not in use because the
right engine is getting fuel
from TR through its right
path.

107

TL_R_D_TR_L_NO_LE

No fuel to the left engine,
TL is using its right path
but is in dormant mode

and
TR is using its left path

No fuel flow to the left
engine is available. The right
path of the TL is available
for supplying fuel to the
right engine but currently it
is not in use because the
right engine is getting fuel
from TR through its left
path.

TL_R_D_TR_R_NO_LE

No fuel to the left engine,
TL is using its right path
but is in dormant mode

and
TR is using its right path

No fuel flow to the left
engine is available. The right
path of the TL is available
for supplying fuel to the
right engine but currently it
is not in use because the
right engine is getting fuel
from TR through its right
path.

NO_LE_NO_RE

No fuel to the left
and

the right engine

Fuel flow to both the
engines is stopped.

The failed mode could be reached from each of the functional and degraded modes,
with the same or different transitions. In the mode chart, there are nine modes (red rectan-
gles) that represent the same failed mode, ‘no fuel to left engine’. Although, these modes
represent the same failure behaviour they have different significance from the system’s
perspective. For example, modes TL_L_NO_LE and TL_L_D_TR_R_NO_LE both cor-
respond to the system state where there is no fuel to the left engine and the left path of the
TL is available to provide fuel to the right engine. But still they are distinctive in the sense
that in the former mode the left path of the TL is already in use to provide fuel to the right
engine because fuel flow to the right engine from TR is no longer available. On the other
hand, in the latter mode, although the left path of TL is available to provide fuel to the
right engine, it is not in use because fuel flow to the right engine from TR is still available
through the right path of TR. Therefore, although in both the modes there is no fuel flow
to the left engine, with respect to overall system performance and in terms of criticality,
the mode TL_L_NO_LE is more critical than the mode TL_L_D_TR_R_NO_LE. This is
because in the latter mode, in the condition of failure, more options would be available
for the fuel flow to the right engine. More specifically, in TL_L_NO_LE mode, if the left
path of the TL becomes unavailable then the system will only have the option to switch
to the right path of the TL.

108

On the other hand, in the TL_L_D_TR_R_NO_LE mode, if the right path of the TR
(currently in use) becomes unavailable then the system will switch to the left path of the
TL. That means the system will enter the TL_L_NO_LE mode. Therefore, for the failure
mode “no fuel to the left engine”, both the modes have same significance — but for the
overall system operation (in this case, fuel flow to the remaining engine, i.e., right engine)
their significance is different.

For this reason, a single failure behaviour is represented in different modes. If we ob-
serve the mode chart carefully, then we can see that the transition PL Failed (marked
as green arrow) causes the system to go to the failure mode irrespective of the func-

tional/degraded mode the system is in. Therefore, this transition can be considered as a
common transition which repeats eight times, and the repetition can be omitted by using
the hierarchical mode chart.

To create a hierarchical mode chart, we need to create parent modes and identify the
modes from the flat mode chart that can be assigned to a single parent mode. For the
mode chart of Figure 51, we can create parent modes based on which tanks are in use
in the system operation. The hierarchical mode chart of the functional behaviour of this
system is shown in Figure 52. As seen in Figure 52, three parent modes — TLTR, TL,
and TR are created. The TLTR mode represents a scenario when both the tanks are in use,
i.e., the left engine gets fuel from the left tank and the right engine gets fuel from the right
tank.
It is seen from Table 9 that each of the modes TL_L_TR_L, TL_R_TR_L, TL_L_TR_R
and TL_R_TR_R correspond to the scenarios when the system is using both the tanks.
Hence, these four modes are included as sub-modes in the parent mode TLTR. The TL
mode represents the system behaviour when both the engines get fuel from the left tank.
The sub-modes to the TL mode are TL_L and TL_R, taken from the flat mode chart. And
finally the TR mode represents the scenario where both engines get fuel from the right
tank and the sub-modes to this mode are TR_L and TR_R.

At first look, it may seem like that the top-level functional behaviour of this system
is same as the system in Figure 41; however, it is not. For the system in Figure 41, in
mode 1, both the tanks have a single path available to provide fuel to the engines, hence,
unavailability of one path would force the system to go to a different functional mode.
But for this system, every tank has two possible paths to use; therefore, failure of the first
path (left path) would not cause the system to go directly to another functional mode.
Therefore, in TLTR mode the system can operate with different configurations and each
of the configurations is considered as a sub-mode in the parent mode, TLTR.

As seen in Figure 52, the TLTR mode has four sub-modes, and TL_L_TR_L is the
default starting sub-mode, therefore any transition targeted to TLTR mode would lead to
a transition to the TL_L_TR_L sub-mode. This sub-mode represents a fully functional
configuration of the system where both the left and the right tank are using their left path
to provide fuel to the left and the right engine respectively.

109

Figure 52: Hierarchical structure of the mode chart of Figure 51

The TL_R_TR_L sub-mode corresponds to a configuration where the left engine is
using the right path and the right tank is using the left path. In this mode, the left tank
is left with only the right path and therefore the failure of this path would cause the
system to leave the TL_R_TR_L sub-mode, and consequently leaves the TLTR mode.
As this transition is from a sub-mode of the TLTR mode to an external mode (TR), the
transition is handled by a final mode within the TLTR mode, shown as transition T3

leading to a final state (a filled circle within a circle). Similar to the TL_R_TR_L sub-
mode, in the TL_L_TR_R sub-mode the right tank is left with its right path only, therefore
unavailability of this path would also cause the system to go to the TL mode. Finally, the
TL_R_TR_R sub-mode corresponds to a configuration where both tanks have already lost
their left path and only have their right path in action, hence the failure of any of the paths

110

would force the system to go either to the TL or the TR mode.
Before (see Figure 51) the transition PL Failed was defined for all the functional

or degraded modes that causes the system to go to a failure mode, but now that common
transition is defined only for the parent modes (depicted by the green arrows in Figure
52). As the transition is defined for the parent modes, all the sub-modes will therefore au-
tomatically inherit this behaviour. PL Failed is defined at the level of the TLTR mode
and causes the system to go to the NO_LE mode (no fuel to the left engine), therefore, the
occurrence of PL Failed in any of the sub-modes of TLTR will cause the system to go
to the NO_LE mode. In the same way, PL Failed is defined as a common transition
in the TL and TR mode. In addition to PL Failed, the PR mode has also defined VC
Failed as another common transition, because in the TR mode, this transition will take
the system into the NO_LE mode no matter what TR sub-mode it is in.

3.3.4 Application of temporal logic to mode charts

Now, we will see when we need to take the order of the transitions/events into account
while defining the behaviour of a system. In the mode chart, if a single mode is reached
from another mode through two different paths with two or more different transitions
in two different orders, then the order of transitions has no effect, i.e., the behaviour
can be expressed as a Boolean expression. For example, in figure 52, inside the TLTR
mode, the TL_R_TR_R sub-mode can be reached from TL_L_TR_L through two dif-
ferent paths. One of the paths contains the combination of transitions (TLO1 Blocked

∨ VL1 Failed) then (TRO1 Blocked ∨ VR1 Failed), and the other path con-
tains the transitions (TRO1 Blocked ∨ VR1 Failed) then (TLO1 Blocked ∨ VL1
Failed). That means both the paths contain the same combination of transitions in two
different orders. Therefore, in this case, the order of events has no effect on the behaviour,
and we can write the expression for the paths as (TRO1 Blocked ∨ VR1 Failed)
AND (TLO1 Blocked ∨ VL1 Failed) without using any temporal operators. How-
ever, this is not necessarily the case for all systems. In the mode chart of a system, if
two different modes can be reached from a single mode with two or more transitions in a
different order, then the order of transitions must be taken into account.

Consider the simplified railway crossing system in Figure 53. The system consists of
a sensor, a barrier, and a warning light. When there is no train on the railway line, the bar-
rier stays raised and the warning light is turned off. When a train approaches, the sensor
sends a signal to the light and the barrier. On receiving the signal the light starts flashing
and after a set amount of time the barrier descends. When the train has passed, the sensor
sends another signal to the barrier and the light, and the barrier will raise and the light will
stop flashing after receiving the signal from the sensor. The sensor can behave abnormally
either by committing a signal when the signal is not required or by omitting a signal when
the signal is required. If the sensor commits a signal when there is no train on the railway
line, then the barrier will descend and the light will flash unnecessarily which will disrupt

111

the traffic flow. However, if the sensor commits a signal when a train is approaching and
the barrier is already descended and the light is flashing, then the barrier will raise and the
light will stop flashing, thus creating a hazardous scenario.

Figure 53: A simple railway crossing system

Now we come to the effects of the omission of the signal from the sensor. If a train
is approaching and the sensor fails to send a signal to the light and the barrier then it will
create a catastrophic scenario. In this scenario, the train will continue to cross the road
and the drivers of the vehicles on the road will receive no warning about this because of
the absence of the light and the barrier. As a result, it is highly likely that some of the
vehicles may collide with the train. However, an omission of signal when the barrier is
already descended and the light was already on has no such catastrophic consequences.
In this case, the train will pass, but the traffic will be delayed because the barrier will
stay descended and the light will stay on due to lack of signal. These are some of the
scenarios that can be caused either by the commission or omission of signal. However,
the barrier and the light themselves can be failed to cause some serious scenarios. If the
light is blown then it is considered as the failure of the light and if the motor of the barrier
fails, then it is considered as the failure of the barrier. It is clear that if the barrier motor
fails when it was in the raised position, then even if the signal is made available by the
sensor the barrier cannot descend. Similarly, if the light is blown then it cannot flash in
the presence of the signal. The mode chart of the railway crossing system is shown in
Figure 54.

In each of the modes we can see the position and status of the barrier, the status of
the light, and whether the train is approaching or not. The barrier could be either raised
(Barrier Up) or descended (Barrier Down) and in both the position it could be either OK
or Failed. If the barrier is OK, then it can go from one position to another, otherwise it

112

will stay in its current position forever. In the mode chart, mode M1 and M4 represent two
functional modes of the system and all other modes are either degraded or failed modes.

In M1, there is no approaching train, the barrier is in the up position (Barrier Up), and
the light is off. Now, if a train approaches, then a signal (transition Signal_LON_BDOWN
) will cause the system to leave the mode M1 to go to the mode M4. On the other hand,
when the train has passed, another signal (transition Signal_LOFF_BUP) will cause
the system to go the mode M1 by leaving mode M4. Now, let us investigate the effect of
the order of the transition in the system behaviour, i.e., when we should take the order of
events/transitions into account during defining the system behaviour. Assume the system
is in mode M1: now the transition Motor Failed will cause the system to go to the
mode M7. After that, the transition Signal_LON_BDOWN will take the system to the
mode M11. The mode M11 represents a scenario when the train is approaching, the light
is flashing, but the barrier is stuck in the raised (Up) position. This scenario can be con-
sidered as serious because the train is crossing the road, but the barrier has not descended
to stop the vehicles on the road. If the drivers of the vehicles on the road somehow missed
the flashing light, then it is highly likely that they could collide with the train.
Now, let see what mode the opposite sequence of the transitions will take the system to
and how serious that mode is. In mode M1, if the transition Signal_LON_BDOWN occurs
first, then the system will go to the mode M4. After that, if Motor Failed transition
occurs, then it will take the system to the mode M9. This mode represents a scenario when
a train is crossing the road and the barrier is already descended and failed. That means
when the train has passed, the barrier cannot raise to let the vehicle on the road to pass,
thus causing unnecessary disruption in the traffic flow. However, this scenario is not as
serious as in mode M11.

So, it is obvious that from a single mode a system can go to two different modes with
different levels of severity just because of two transitions occurring in two different or-
ders. Therefore, we can conclude that it is necessary for some systems to take the order
of transitions into account and for some systems it is not required. This requirement com-
pletely depends on the architecture of the systems and how the components are interacting
in the architecture. Generally, if different sequences of events will lead to different modes
and have different effects, temporal operators are necessary. Therefore, we would suggest
using both Boolean and temporal operators to define the failure behaviour of systems.

113

Figure 54: Mode chart of a simplified railway crossing system

114

3.4 Modelling and Dependability Analysis Process using
HiP-HOPS

As described in section 2.3.5, HiP-HOPS analysis consists of three main phases. In the
first phase, the system model is annotated with the failure data. The system model show-
ing the topology of the system, components, and the interconnections between them is
created in a separate modelling tool (e.g., the Matlab Simulink tool has an integrated in-
terface for HiP-HOPS). We refer to this model of the system as a static architectural model
and it can be hierarchical to facilitate the decomposition of the system into subsystems
and so on (see Figure 55).

Annotation of system components with failure data consists of defining the various
failure behaviours of the components, such as what can go wrong with a component
and how the component will respond to the failures that have occurred elsewhere in the
system. The behaviours are defined as Boolean expressions with output deviations as the
operands in the Boolean operator. The output deviations include the unexpected omission
of output or unintended commission of input and are usually caused by internal failure of
the components or failures propagated to the inputs of the components. For example, in
Table 5, omission of standby recovery block is defined as:

Omission-Output = Omission-Primary.Output

∧
Omission-Standby.Output

∨
Electro Magnetic Interference

Once the system model is annotated with failure behaviour, the second phase creates
fault trees by examining the system model and the failure behaviour of the components.
Output deviations from one component are connected to input deviations in others and
thus HiP-HOPS can synthesise fault trees for the whole system from its constituent local
failure annotations. The final phase takes the fault trees generated in the previous phase
and analyses them to produce important information regarding the dependability of the
system.

Now, for dynamic analysis, we need to create a dynamic model of the system with
the help of the static model of the system which was already created for HiP-HOPS. The
process of creating the dynamic model, i.e., behavioural mode chart, is shown in Figure
55. We can complete the whole process of dynamic analysis in three distinct phases: an
annotation phase, a synthesis phase and an analysis phase. In the annotation phase, this
thesis uses HiP-HOPS to model the functional mode chart of the system by identifying
the potential failure scenarios that can violate the nominal behaviour of the system. The
idea behind this is to identify functional and degraded modes, and thus compile them
to create the mode chart. In the synthesis phase, the mode chart will be used as input
to determine the potential causes of system failure from different modes (functional or

115

Figure 55: Mapping from static architectural model to dynamic mode chart

degraded). As the failure behaviour is determined based on modes and the modes are
changed dynamically, at the end of this step we will obtain the dynamic analysis results
of the system. Finally, the results (the fault trees) are analysed in the analysis phase to
produce meaningful results about the dependability of the system.

3.4.1 The Annotation Phase

The HiP-HOPS static analysis provides the means to obtain a static model of the system
and its failure behaviour. In our approach we will reuse the information obtained by the
static analysis of the system. So, now we have the system architecture and the static
behavioural annotation of the components in the architecture. We can see an example
architecture in Figure 55 (static model) where the system has total 11 components (C1-
C11) in the top level of the hierarchy. The system is decomposed into subsystems, and we
can see that as we go down the system hierarchy, components are distributed among the
subsystems. At a given point in time, the system may use one or more of its subsystems to
provide a set of same or different functionality. That means that although the architecture
is static, the functional configuration is dynamic. For example, consider the components
at the lowest level of the hierarchy. At time t, the system may use a set of components
{C1, C5, C9} to perform the task A, and at time t+1 the system may use another set of
components {C2, C7, C9} to perform the same task. That means the system architecture

116

remains static, but the configuration changes dynamically.
These distinct configurations represent different modes that the system could be in

during its operation. Each of the modes consists of the name of the components involved
(active) in that mode. Therefore, at a certain point in time, a mode does not necessarily
represent the behaviour of a single component but rather it represents the behaviour of
a group of interacting components, i.e., the behaviour of a distinct system configuration.
As the modes represent different configurations of the system and the failure of a sin-
gle or a group of components in a certain configuration can force the system to form a
different configuration, failure of components will cause a mode transition. As the tran-
sitions are caused by the failure of the components, the transition conditions are derived
from the failure behaviour annotation (done in the static analysis using HiP-HOPS) of the
components.

The modelling process starts from the top of the static hierarchy and moves down-
wards. The parent modes or composite modes are identified from the top level of the
static hierarchy. So, from the top level of the hierarchy we obtain the abstract mode chart
of the system with all the component names in the respective modes. For small systems,
a single mode chart is obtained for the whole architecture. For a relatively large system,
as we go downward in the static hierarchy, the system is decomposed into smaller subsys-
tems. Therefore, the configuration represented by different modes in the abstract mode
chart will be divided into smaller configurations, resulting in sub-modes in the mode chart.
Now, each of the sub-modes will represent a smaller configuration with a smaller num-
ber of components than their parent modes. For a particular parent mode, the sub-modes
represent distinct system configurations and all these sub-modes (configurations) will act
together to represent the configuration represented by the parent mode. This hierarchi-
cal decomposition will continue till no further decomposition is possible, i.e., no smaller
configuration of subsystems is possible.

As mentioned earlier, all the components of a system are annotated with their failure
behaviour for the static analysis using the HiP-HOPS. However, the components are now
assigned to different modes in the mode chart and therefore their behaviour may need to
be redefined. We refer the annotation done in the static analysis as the default behaviour
of the components. If a component has different behaviour in different modes, then we
have to define the mode based behaviour of that component. If no mode based behaviour
is defined for a component, then the default behaviour of that component will be taken
into account during the analysis. Let us consider the twin engine aircraft fuel system of
Figure 41 again. The architecture of the system is formally defined in Figure 56.

Annotation of the components of the above architecture for static analysis is shown
in Table 11. Output deviations and their logical expression are shown in Table 12. Now
using HiP-HOPS, we can see that the system can continue to provide its functionality in
three possible configurations. In the first configuration, the set of active components is
{TL, TR, VL, VR, PL, PR}. As it represents a functional mode, we can refer it as TLTR

117

Figure 56: Architecture of twin engine aircraft fuel distribution system

Table 11: Failure behaviour of components of twin engine aircraft fuel distribution system

Component Failure Behaviour Failure Expression Failure Rate

Left Tank (TL)

Internal failure

or

shortage of fuel

TL.Empty

∨

TL.Blocked

λT LE ∨λT LB

Right Tank (TR)

Internal failure

or

shortage of fuel

TR.Empty

∨

TR.Blocked

λT RE ∨λT RB

VL Internal failure VL.Failed λV L

VR Internal failure VR.Failed λV R

VC Internal failure VC.Failed λVC

PL Internal failure PL.Failed λPL

PR Internal failure PR.Failed λPR

mode as both left tank (TL) and right tank (TR) are in use. The second configuration
consists of the components set {TL, VL, VC, PL, PR}, and it is referred to as the mode
TL. The final functional configuration of the system consists of the components set {TR,
VR, VC, PL, PR} and corresponds to mode TR. As the failure modes of the components
(see Table 11) are the same in any mode of operations, we do not need to refine them any
further.

However, as the number of components varies from one mode to another and the sys-
tem configuration changes, we have to redefine the output deviations of the system to show
the mode based behaviour. In different configurations the system components may have
to perform different roles, e.g., workload on a component may change from one mode
to another. Consider, for instance, that each of the engines of the duel engine aircrafts

118

Table 12: Failure data for twin engine aircraft fuel distribution system

Output Deviations Failure Expression

Omission-LE_Line
PL.Failed ∨ Omission-VL_PL

∧ Omission-VC_PL

Omission-RE_Line
PR.Failed ∨ Omission-VR_PR

∧ Omission-VC_PR

Omission-VL_PL VL.Failed ∨ Omission-TL_VL

Omission-VR_PR VR.Failed ∨ Omission-TR_VR

Omission-VC_PL VC.Failed ∨ Omission-VR_VC

Omission-TL_VL TL.Empty ∨ TL.Blocked

Omission-VR_VC VR.Failed ∨ Omission-TR_VR

Omission-TR_VR TR.Empty ∨ TR.Blocked

Omission-VL_VC VL.Failed ∨ Omission-TL_VL

Omission-VC_PR VC.Failed ∨ Omission-VL_VC

consumes X litres of fuel per minute. Therefore, if the system operates in TLTR mode,
then X litres of fuel flows through both VL and VR. Now, if for some reason VR gets
stuck closed then the system will switch to TL mode, which means the left tank will pro-
vide fuel to both the engines. This results in double (2X litres/minute) fuel flow through
the VL, which means the pressure on valve VL is different on two different modes. At
the same time, workload on some components may remain the same in different modes,
i.e., their behaviour is mode-independent. For example, we may assume the workload on
pump PL or PR remains the same in all the functional modes. For this reason we also
have to redefine the failure rates of components to have mode based failure rate. As a
result, a component can have the same failure logic expression in different modes but due
to having different failure rates they are treated differently.

Following the instructions provided in subsection 3.3.2, the annotation of mode based
failure behaviour of output deviations is performed and shown in Table 13. The redefined
failure rates of the components are shown in Table 14.

Once all the functional modes and the mode based failure behaviour of the system
are defined, then the transition conditions among the modes must be defined. For this
particular example, we have three functional modes: TLTR, TL, and TR, where TLTR is
the initial mode. Now we have to define how the TL and TR modes can be reached from
the TLTR mode. Applying HiP-HOPS on the architecture of Figure 56, it is realised that
the unavailability (failure) of line VR_PR will cause the system to go to TL mode from
TLTR mode, and on the other hand, the unavailability of the line VL_PL will cause the
system to go to the TR mode.

119

Table 13: Mode based expressions of failure behaviour

PPPPPPPPPPPPPPPPP

Output
Deviations

Failure
Expression

TLTR TL TR

Omission-LE_Line PL.Failed

PL.Failed

∨
Omission-VL_PL

PL.Failed

∨
Omission-VC_PL

Omission-RE_Line PR.Failed

PR.Failed

∨
Omission-VC_PR

PR.Failed

∨
Omission-VR_PR

Omission-VL_PL

VL.Failed

∨
Omission-TL_VL

VL.Failed

∨
Omission-TL_VL

No effect

Omission-VR_PR

VR.Failed

∨
Omission-TR_VR

No effect

VR.Failed

∨
Omission-TR_VR

Omission-VC_PL No effect No effect

VC.Failed

∨
Omission-VR_VC

Omission-TL_VL

TLeft.Empty

∨
TLeft.Blocked

TLeft.Empty

∨
TLeft.Blocked

No effect

120

Omission-VR_VC No effect No effect

VR.Failed

∨
Omission-TR_VR

Omission-TR_VR

TRight.Empty

∨
TRight.Blocked

No effect

TRight.Empty

∨
TRight.Blocked

Omission-VL_VC No effect

VL.Failed

∨
Omission-TL_VL

No effect

Omission-VC_PR No effect

VC. Failed

∨
Omission-VL_VC

No effect121

Table 14: Mode based failure behaviour of components of twin engine aircraft fuel distri-
bution system

Component Failure Expression
Failure Rates

TLTR TL TR

Left Tank (TL)

TL.Empty

∨
TL.Blocked

λT LE

∨
λT LB

λT LE1

∨
λT LB1

-

Right Tank (TR)

TR.Empty

∨
TR.Blocked

λT RE ∨λT RB - λT RE1∨λT RB1

VL VL.Failed λV L1 λV L2 -
VR VR.Failed λV R1 - λV R2

VC VC.Failed - λVC λVC

PL PL.Failed λPL λPL λPL

PR PR.Failed λPR λPR λPR

If we denote the transitions from TLTR mode to TL and TR modes as T1 and T2

respectively, then their expression can be written using the predefined failure behaviour
of the system as:

T1 = Omission-VR_PR

and
T2 = Omission-VL_PL

In the analysis, the mode chart is represented in a tabular form and the mode chart for the
above example is shown in Table 15.

Table 15: Tabular representation of mode chart

Source Mode Transition Condition Destination Mode
TLTR Omission-VR_PR TL

TLTR Omission-VL_PL TR

3.4.2 The Synthesis Phase

Once the mode chart of the system architecture and the mode based failure data have been
defined, the mode chart can then be synthesised using HiP-HOPS. This phase operates by
examining how the failure of components propagates through different modes in the mode
chart and causes system failure. Therefore, the first task of this phase is to identify the
parts of the system model that act as the system outputs, since failures of these parts
will be used as the top level failures (top events of the fault trees) of the whole system.
In the case of the twin engine aircraft fuel distribution system, the supply of fuel to the

122

left engine can be considered as one of the system outputs. A failure to provide this
functionality would be a failure of the system and so it would be treated as a starting point
for the synthesis.

In the static analysis, for each system output, HiP-HOPS generates a local fault tree
describing the reason for the output deviation. The tool then traverses the architecture
backwards to examine the input components leading to the system output, and from there
to the inputs of those components, and so forth. In this way the tool traverses the whole
architecture and creates local fault trees for the interconnected components. The traver-
sal continues until no connected components remains. After that, the tool goes back and
combines the local fault trees into a single fault tree which represents all the possible
combinations of component failure that can lead to the system failure. For dynamic anal-
ysis, the synthesis phase also creates a single fault tree showing the causes of each system
failure, but the process of creating the fault trees differs from the static analysis.

In dynamic analysis, a given top event (system output) can potentially be caused by
failures in multiple different modes. Just as HiP-HOPS traverses back through com-
ponents in static synthesis, in dynamic synthesis HiP-HOPS will traverse back through
modes as well, following each possible transition that leads to the failed mode represent-
ing the system failure. The result is a disjunction of fault trees that represents all the
possible transitions from the starting state to the system failure mode. The top event of a
mode specific fault tree is represented in the following form:

Output Deviation Name<mode name>

where the mode name defines the mode from which the causes for output deviation de-
fined by the Output Deviation Name are required to be derived. For this example,
if supply of fuel to the left engine is taken as a system output, then the set of fault trees
representing this output deviation can be represented as:

Omission-LE_Line ={Omission-LE_Line<TLTR>, Omission-LE_Line

<TL>, Omission-LE_Line<TR>}

In the above expression, Omission-LE_Line represents the output deviation of
the system (omission of fuel in the line to the left engine) and each element of the
set represents the cause of that output deviation in a particular mode. For example,
Omission-LE_Line<TLTR> represents the cause for Omission-LE_Line from
TLTR mode. As mentioned earlier, the elements of the set are actually the top events of
their own fault trees, therefore, the whole tree for that top event is required to be devel-
oped. For this reason, the elements of the set are taken one by one and the fault trees are
developed for each of the elements by traversing the system mode chart and system archi-
tecture. However, in this case, the fault tree development process varies from one element
to another. If an element represents the top event of the fault tree for the initial mode of
the mode chart, then the fault tree is generated by traversing the system architecture as

123

it is done in static analysis. That means the process starts with the failure logic of the
system output that is defined for the initial mode. It then traverses the static architecture
to examine the propagation of failure through the components to the system output. Af-
ter that, the mode based local fault trees of all involved components are created and this
process continues until no connected components remain. Once all the mode based local
fault trees are created, then they are combined together to obtain a single fault tree.

For the duel engine aircraft fuel distribution system example, the failure expression of
the Omission-LE_Line in the initial mode (TLTR) is defined as (see Table 13):

Omission-LE_Line<TLTR> = PL.Failed<TLTR>

That means the omission of system output from TLTR mode is caused by the internal
failure of the left pump. Therefore, it is a single point of failure and we do not need to
traverse the architecture any further.

Now, if we want to generate a fault tree for any internal modes (any modes other
than the initial mode) in the mode chart, then we have to traverse both static system
architecture and the mode chart itself (see Figure 57). This is because in this case, for
a particular internal mode, we not only have to find the causes of system failure from
that particular mode but also the causes for the system being in that particular mode. For
example, in Figure 57, consider that we have to find the causes (in the form of a fault
tree) that led the system to the system failure from Mode i. To do so, we have to find two
things.

Figure 57: Fault tree generation process for any internal mode

Firstly, we need to find the causes of the system failure from Mode i, and secondly, we
need to find the causes of the system being in Mode i from the initial mode. The former

124

is obtained by traversing the static architecture and the latter is obtained by traversing
the system mode chart (see Figure 57). That means to obtain the fault tree showing
the causes of system failure from a particular internal mode, we have to start with the
failure logic expression of the output deviation of the system for that particular mode.
Then the process traverses the static architecture and the mode chart at the same time.
In this thesis, we refer these traversal processes as architecture traversal and mode chart

traversal, respectively. In the architecture traversal step, it traverses the static architecture
to examine the components that give rise to the input deviations received by the system
output, and then creates mode based local fault trees for all the involved components.
Once all the components are explored and the local fault trees are generated, then they are
combined together to obtain a single fault tree. This concludes the first half of the task.

The remaining half of the task is done in the mode chart traversal step. In this step,
the process starts with the mode for which we are obtaining the causes of system failure.
Starting from this mode the process traverses the mode chart backward (towards the initial
mode) to find the causes of the system being in this mode. In every iteration, the process
replaces the current mode by its immediate preceding mode(s) and transition condition
from the preceding mode(s) to the current mode. This process will continue until the
initial mode is reached, and as a result of this process, we obtain all the possible combi-
nations of events (component failures) that cause the system to go to the mode in question
from the initial mode.

Consider the example of duel engine aircraft fuel distribution system. If we want to
obtain the causes of system failure (Omission-LE_Line) from the TL mode then will
start with the following expression:

Omission-LE_Line<TL> = TL C Omission-LE_Line<TL>

On the right hand side of the above expression, the term inside the angle brackets means
that the system has to be in the TL mode before we can obtain the failure behaviour of
the system in TL mode. To ensure this sequence a PAND operator (C) is used in the ex-
pression. The term following the PAND operator is the expression that causes the system
failure from the TL mode. Now the process will proceed with the above expression in the
following ways as described earlier.

Architecture Traversal Step:
Omission-LE_Line<TL> = PL.Failed<TL> ∨ Omission-VL_PL<TL>

= PL.Failed<TL> ∨ VL.Failed<TL> ∨ Omission-TL_VL<TL>

= PL.Failed<TL> ∨ VL.Failed<TL> ∨ TLeft.Empty<TL> ∨
TLeft.Blocked<TL>

Mode Chart Traversal Step:
{TL}= {TLTR}.T1

= Omission-VR_PR<TLTR>

125

= VR.Failed<TLTR> ∨ Omission-TR_VR<TLTR>)

= VR.Failed<TLTR> ∨ TRight.Empty<TLTR> ∨
TRight.Blocked<TLTR>

Now combining the results obtained by the architecture traversal and the mode chart
traversal steps the failure behaviour of the system output from the TL mode is written
as:

Omission-LE_Line<TL>= (VR.Failed<TLTR> ∨ TRight.Empty<TLTR>

∨ TRight.Blocked<TLTR>) C (PL.Failed<TL> ∨ VL.Failed<TL>

∨ TLeft.Empty<TL> ∨ TLeft.Blocked<TL>)

In the same way the causes of system failure from the TR mode can be obtained as:

Omission-LE_Line<TR>= (VL.Failed<TLTR> ∨ TLeft.Empty<TLTR>

∨ TLeft.Blocked<TLTR>) C (PL.Failed<TR> ∨ VC.Failed<TR>

∨ VR.Failed<TR> ∨ TRight.Empty<TR> ∨ TRight.Blocked<TR>)

Now the complete failure behaviour of the system output can be obtained by taking logi-
cal OR of the individual failure behaviour in different modes.

Omission-LE_Line = Omission-LE_Line<TLTR> ∨
Omission-LE_Line<TL> ∨ Omission-LE_Line<TR>

= PL.Failed<TLTR> ∨ (VR.Failed<TLTR> ∨ TRight.Empty<TLTR>

∨ TRight.Blocked<TLTR>) C (PL.Failed<TL> ∨ VL.Failed<TL> ∨
TLeft.Empty<TL> ∨ TLeft.Blocked<TL>) ∨ (VL.Failed<TLTR>

∨ TLeft.Empty<TLTR> ∨ TLeft.Blocked<TLTR>) C (PL.Failed<TR>

∨ VC.Failed<TR> ∨ VR.Failed<TR> ∨ TRight.Empty<TR>

∨ TRight.Blocked<TR>)

From Table 14, it is seen that the failure rate of PL is same in all the modes, i.e.,
behaviour of PL is mode-independent. In that case, PL.Failed can be used to repre-
sent the same failure in any mode, thus PL.Failed ⇐⇒ PL.Failed<TLTR> ⇐⇒
PL.Failed<TR> ⇐⇒ PL.Failed<TL>. Therefore, the above expression can be
rewritten as:

= PL.Failed ∨ (VR.Failed<TLTR> ∨ TRight.Empty<TLTR>

∨ TRight.Blocked<TLTR>) C (PL.Failed ∨ VL.Failed<TL> ∨
TLeft.Empty<TL> ∨ TLeft.Blocked<TL>) ∨ (VL.Failed<TLTR>

∨ TLeft.Empty<TLTR> ∨ TLeft.Blocked<TLTR>) C (PL.Failed

126

∨ VC.Failed<TR> ∨ VR.Failed<TR> ∨ TRight.Empty<TR>

∨ TRight.Blocked<TR>)

This fault tree expression now shows the causes of the omission of fuel to the left
engine from all relevant modes.

3.4.3 The Analysis Phase

The outcome of the synthesis process is a set of one or more interconnected Pandora tem-
poral fault trees (TFTs). Qualitative analysis of classical fault trees allows the analysts to
draw conclusions about the possible causes of system failure in the form of combinations
of events (component failure). As a fault tree can contain many branches and many gates,
qualitative analysis simplifies and transforms the fault tree into a set of minimal cut sets.
Each minimal cut set is the smallest combinations of events that can cause the system
failure and is represented as the conjunction of a number of events. As HiP-HOPS is a
fault tree analysis tool, it also analyses the fault trees to obtain minimal cut sets and it
uses a variation of MICSUP (Pande et al., 1975) as its primary minimal cut set generation
algorithm.

For the dynamic analysis, as the synthesis process produces Pandora temporal fault
trees instead of classical fault trees, the existing FTA techniques used in HiP-HOPS cannot
be used to analyse the temporal fault trees. This is because of the event ordering and the
presence of the temporal gates in the Pandora TFTs. In Pandora, the term cut sequence
(CSQ) replaces the term cut set (CS) of classical fault trees. Now, CSQ represents a
sequence of events that can cause the system failure. The smallest sequence of events
that is necessary and sufficient to cause the top event is termed the minimal cut sequence
(MCSQ). Therefore, we now need to perform qualitative analysis of Pandora TFTs and
the goal is to obtain minimal cut sequences. The ways of performing qualitative analysis
of Pandora TFTs have been shown by Walker (2009, Chapter 4). In the analysis phase,
we use the temporal fault trees generated in the synthesis phase and the methodologies
proposed by Walker (2009) to obtain the minimal cut sequences.

Using a prototype version of the HiP-HOPS tool the MCSQs to cause the top event
Omission-LE_Line are calculated to be:

1. PL.Failed
2. VR.Failed<TLTR> C VL.Failed<TL> ∧ VR.Failed<TLTR>
o TLeft.Empty<TL> ∧ VR.Failed<TLTR> o TLeft.Blocked<TL>

3. VR.Failed<TLTR> o VL.Failed<TL> ∧ VR.Failed<TLTR>
C TLeft.Empty<TL> ∧ VR.Failed<TLTR> o TLeft.Blocked<TL>

4. VR.Failed<TLTR> o VL.Failed<TL> ∧ VR.Failed<TLTR>
o TLeft.Empty<TL> ∧ VR.Failed<TLTR> C TLeft.Blocked<TL>

5. TRight.Empty<TLTR> C VL.Failed<TL> ∧ TRight.Empty<TLTR>

127

o TLeft.Empty<TL> ∧ TRight.Empty<TLTR> o TLeft.Blocked<TL>
6. TRight.Empty<TLTR> o VL.Failed<TL> ∧ TRight.Empty<TLTR>
C TLeft.Empty<TL> ∧ TRight.Empty<TLTR> o TLeft.Blocked<TL>

7. TRight.Empty<TLTR> o VL.Failed<TL> ∧ TRight.Empty<TLTR>
o TLeft.Empty<TL> ∧ TRight.Empty<TLTR> C TLeft.Blocked<TL>

8. TRight.Blocked<TLTR> C VL.Failed<TL> ∧ TRight.Blocked<TLTR>
o TLeft.Empty<TL> ∧ TRight.Blocked<TLTR> o TLeft.Blocked<TL>

9. TRight.Blocked<TLTR> o VL.Failed<TL> ∧ TRight.Blocked<TLTR>
C TLeft.Empty<TL> ∧ TRight.Blocked<TLTR> o TLeft.Blocked<TL>

10. TRight.Blocked<TLTR> o VL.Failed<TL> ∧ TRight.Blocked<TLTR>
o TLeft.Empty<TL> ∧ TRight.Blocked<TLTR> C TLeft.Blocked<TL>

11. VL.Failed<TLTR> C VC.Failed<TR> ∧ VL.Failed<TLTR>
o VR.Failed<TR> ∧ VL.Failed<TLTR> o TRight.Empty<TR>
∧ VL.Failed<TLTR> o TRight.Blocked<TR>

12. VL.Failed<TLTR> o VC.Failed<TR> ∧ VL.Failed<TLTR>
C VR.Failed<TR> ∧ VL.Failed<TLTR> o TRight.Empty<TR>
∧ VL.Failed<TLTR> o TRight.Blocked<TR>

13. VL.Failed<TLTR> o VC.Failed<TR> ∧ VL.Failed<TLTR>
o VR.Failed<TR> ∧ VL.Failed<TLTR> C TRight.Empty<TR>

∧ VL.Failed<TLTR> o TRight.Blocked<TR>
14. VL.Failed<TLTR> o VC.Failed<TR> ∧ VL.Failed<TLTR>
o VR.Failed<TR> ∧ VL.Failed<TLTR> o TRight.Empty<TR>
∧ VL.Failed<TLTR> C TRight.Blocked<TR>

15. TLeft.Empty<TLTR> C VC.Failed<TR> ∧ TLeft.Empty<TLTR>
o VR.Failed<TR> ∧ TLeft.Empty<TLTR> o TRight.Empty<TR>
∧ TLeft.Empty<TLTR> o TRight.Blocked<TR>

16. TLeft.Empty<TLTR> o VC.Failed<TR> ∧ TLeft.Empty<TLTR>
C VR.Failed<TR> ∧ TLeft.Empty<TLTR> o TRight.Empty<TR>
∧ TLeft.Empty<TLTR> o TRight.Blocked<TR>

17. TLeft.Empty<TLTR> o VC.Failed<TR> ∧ TLeft.Empty<TLTR>
o VR.Failed<TR> ∧ TLeft.Empty<TLTR> C TRight.Empty<TR>

∧ TLeft.Empty<TLTR> o TRight.Blocked<TR>
18. TLeft.Empty<TLTR> o VC.Failed<TR> ∧ TLeft.Empty<TLTR>
o VR.Failed<TR> ∧ TLeft.Empty<TLTR> o TRight.Empty<TR>
∧ TLeft.Empty<TLTR> C TRight.Blocked<TR>

19. TLeft.Blocked<TLTR> C VC.Failed<TR> ∧ TLeft.Blocked<TLTR>
o VR.Failed<TR> ∧ TLeft.Blocked<TLTR> o TRight.Empty<TR>
∧ TLeft.Blocked<TLTR> o TRight.Blocked<TR>

20. TLeft.Blocked<TLTR> o VC.Failed<TR> ∧ TLeft.Blocked<TLTR>
C VR.Failed<TR> ∧ TLeft.Blocked<TLTR> o TRight.Empty<TR>

128

∧ TLeft.Blocked<TLTR> o TRight.Blocked<TR>
21. TLeft.Blocked<TLTR> o VC.Failed<TR> ∧ TLeft.Blocked<TLTR>
o VR.Failed<TR> ∧ TLeft.Blocked<TLTR> C TRight.Empty<TR>

∧ TLeft.Blocked<TLTR> o TRight.Blocked<TR>
22. TLeft.Blocked<TLTR> o VC.Failed<TR> ∧ TLeft.Blocked<TLTR>
o VR.Failed<TR> ∧ TLeft.Blocked<TLTR> o TRight.Empty<TR>
∧ TLeft.Blocked<TLTR> C TRight.Blocked<TR>

3.5 Case Study

To illustrate the use of HiP-HOPS to perform dynamic modelling and analysis of a more
complex system, we consider an Aircraft Fuel Distribution System (AFDS), first pre-
sented in (Papadopoulos, 2000) but reworked here, and shown in Figure 58. As seen in
the figure, the system model represents the fuel storage and distribution system of a twin
engine aircraft. The system consists of:

1. Seven identical (in capacity) fuel tanks to store fuel and they are connected with
polythene piping. To maintain a balance across the body of the aircraft, the fuel
tanks are distributed symmetrically across the vertical and the horizontal axes. As
seen in the figure, in the horizontal axis, there are two tanks in each of the wings
of the aircraft and in the vertical axis there are tanks in the front, central, and rear
parts of the aircraft. Each tank is coupled with a level sensor to measure the level
of the fuel in the tank.

2. Eleven bi-directional fuel pumps embedded with speed sensor to provide fuel flow
throughout the system, especially towards the engines. The flow rates and the di-
rection of flows are computer controlled to meet the demand of the engines and also
to maintain the level of fuel in all the tanks to avoid imbalance in the body of the
aircraft.

3. Twelve valves that can be used to activate some paths or block some paths ac-
cording to the requirement of the system in different situations. They are software
controlled and their operations are synchronised with the operations of pumps to
ensure effective collaboration.

4. Twelve flow meters to measure the rate of fuel flow through the pipes and these
measurements are used in deciding the paths to activate and deactivate to maintain
the proper fuel flow to the engines and maintaining balance across the body of the
aircraft.

5. A refuelling point to refill the tanks.

129

6. Two jettison points to release fuel to the environment in case of any emergency
conditions either to maintain the balance across the body of the aircraft or to reduce
the weight of the aircraft to ease the emergency landing.

Figure 58: Aircraft Fuel Distribution System (Papadopoulos, 2000)

The AFDS under consideration has two main functions: storing fuel in the tanks and
distributing the fuel throughout the system. This functionality is provided in two different
modes — refuelling and consumption. The refuelling takes place when the aircraft is
parked (pre-flight). It is done by injecting fuel into the central tank and then automatically
distributing the fuel to the different tanks. The consumption of fuel takes place during a
flight, which includes the taxiing, take-off, climbing, cruising, approaching and landing
phases. Under normal operation, the front tank is feeding the Port Engine (PE) and the
Starboard Engine (SE) is fed from the rear tank. At this time the central valve (VC) and
the jettison valves (VLJ and VRJ) are closed. As fuel is consumed by the engines, the fuel
level in both the front and rear tanks will go down. To maintain the appropriate fuel level
in the front and rear tanks, fuel is transferred to these two tanks from the central tank and
the tanks in the wings. Fuel to the front tank comes from the central tank and the right
wing tanks, on the other hand the rear tank gets fuel from the central tank and the left
wing tanks. In normal operating conditions, the distribution of fuel is done in a way that
the centre of gravity remains near the centre of the body of the aircraft.

In conditions of failure, both the engines can be fed from a single tank. For example,
if the valve VF1 fails stuck closed, then it is possible to open the valve VC to cross-feed
both the engines from the rear tank. Although, in this case, the flow from the rear tank

130

is needed to be doubled to meet the fuel demand of two engines. As a result, the sys-
tem becomes imbalanced and it is possible to direct the fuel flow from different sources
to various destinations with variable speed to maintain the balance. In normal condi-
tions, both symmetrically positioned (in outer wing tanks) jettison paths are deactivated
by closing the jettison valves (VLJ and VRJ). However, in any emergency condition, the
system allows the jettison of fuel to the atmosphere by opening the corresponding valves.
Jettison of fuel usually takes place during an emergency landing when it is necessary to
discard the extra fuel to reduce the mass of the aircraft to ease the safe landing. That
means in the presence of failure, the system configuration is needed to be changed by
activating and/or deactivating system components to compensate for the effects of the
failure and to continue system operation either with equal or degraded functionality. The
activation or deactivation or any other calibration of the system components is done by
a central computerised control system. Therefore, this centralised control system repre-
sents a single point of failure. However, apart from this single point of failure, the failure
behaviour of the system is more interesting in the more refined levels of detail. Different
fault-tolerant strategies are implemented in the system architecture, hence, we can see that
there are redundant components and redundant paths of fuel flow to tolerate some faults
up to some certain levels. Therefore, in this section, we will concentrate on determining
the mode based failure behaviour of the system at the plant level, i.e., in different opera-
tional modes, what are the possible combinations of failures that occur at plant level (e.g.,
failure of pump, valve malfunctions) that can cause the system failure.

3.5.1 The System Architecture and the Static Hierarchy

The static hierarchy of the fuel distribution system shown in Figures 59 and 60 were
firstly shown in (Papadopoulos, 2000). In the first level of the hierarchy, the system is
represented as a single block with one input and four outputs. The input comes from
the refuelling point and represents the flow of fuel to the system in the refuelling phase.
Two of the outputs shows the flow of fuel to the two engines and two remaining out-
puts show the fuel flow to the jettison points. In the second level of the hierarchy, the
system is decomposed into four subsystems and now the input and the outputs are con-
nected to different subsystems. Different subsystems are now doing different tasks. The
engine feed cross-feed (EFCF) subsystem is directly involved in feeding the engines with
fuel, and as seen in Figure 60, the two output lines — Starboad_Engine_Line and
Port_Engine_Line from the EFCF subsystems represent two fuel flow path to star-
board and port engine respectively.

The jettison lines are now going out from the Right Wing Deposit (RWD) and the
Left Wing Deposit (LWD). The input line (Refuelling_Line) is directly connected
to the Central Deposit (CD), that means in the refuelling phase, fuel is provided to central
deposit and it then distributes the fuel through two output lines (Central_Line_1 and
Central_Line_2). Each subsystem consists of a variable number of components

131

Figure 59: First level of the static hierarchy of the fuel distribution system (Papadopoulos,
2000)

Figure 60: Second level of the static hierarchy of the fuel distribution system (Papadopou-
los, 2000)

and is responsible for performing a particular set of operations. The component-level
decomposition of the CD, EFCF, and RWD subsystem are shown in Figures 61, 62, and
63 respectively.

As the structure of the LWD subsystem is similar to that of the RWD subsystem, the
component level decomposition is not shown here. In this thesis, we will analyse the
mode based failure behaviour of the EFCF subsystem and therefore from now on we will
concentrate only on this particular subsystem.

3.5.2 Static Analysis of the EFCF Subsystem

To perform the static analysis of the EFCF subsystem, we need to annotate the compo-
nents of this subsystem with their failure information. After that, we have to identify the
output of this subsystem. As mentioned earlier, the EFCF is responsible for providing fuel
to the starboard and port engine. So, provision of fuel to each engine can be considered
as the output of this subsystem, and thus failure of EFCF to provide fuel to any of the
engines could be considered as a hazardous situation. As the fuel to the port engine and
the starboard engine is provided in a similar fashion with the opposite set of components,

132

Figure 61: Component level decomposition of CD subsystem (Papadopoulos, 2000)

Figure 62: Component level decomposition of EFCF subsystem (Papadopoulos, 2000)

Figure 63: Component level decomposition of RWD subsystem (Papadopoulos, 2000)

133

we will concentrate on the failure of the EFCF subsystem to provide fuel to the port en-
gine alone. The failure data for different output deviations are shown in Table 16 and the
failure behaviour of the components of the EFCF subsystem is shown in Table 17.

Table 16: Failure data for output deviations of EFCF subsystem

Output Deviations Failure Expression

Omission-Port_

Engine_Line
PF1.Failed ∨ Omission-VF2_PF1

Omission- Starboad_

Engine_Line
PR1.Failed ∨ Omission-VR2_PR1

Omission-VF2_PF1
VF2.Failed ∨ Omission-VF1_VF2

∧ Omission-VC_VF2

Omission-VR2_PR1 VR2.Failed ∨ Omission-VR1_VR2

Omission-VF1_VF2 VF1.Failed ∨ Omission-TF_VF1

Omission-VR1_VR2 VR1.Failed ∨ Omission-TR_VR1

Omission-TF_VF1 TF.Failed

Omission-TR_VR1 TR.Failed

Omission-VF1_VC VF1.Failed ∨ Omission-TF_VF1

Omission-VC_VR2 VC.Failed ∨ Omission-VF1_VC

Omission-VR1_VC VR1.Failed ∨ Omission-TR_VR1

Omission-VC_VF2 VC.Failed ∨ Omission-VR1_VC

From the system architecture and using the data from tables 16 and 17, it is possible
to mechanically derive a fault tree using HiP-HOPS for the condition “no fuel provided to
port engine”, i.e., the combination of component failure that can cause Omission-Port
_Engine Line. One thing to note is that in the analysis the flow sensors are considered
as reliable, i.e., in any situation they will give a proper reading. Figure 64 shows the fault
tree for the condition “no fuel to the port engine”.

134

Table 17: Failure behaviour of the components of the EFCF subsystem

Component Failure Behaviour Failure Expression Failure Rate

Front Tank (TF)
Internal failure

or
shortage of fuel

TF.Empty
∨

TF.Blocked
λT FE ∨λT FB

Rear Tank (TR)
Internal failure

or
shortage of fuel

TR.Empty
∨

TR.Blocked
λT RE ∨λT RB

VF1
Internal failure

or
commission of input

VF1.Stuck_Closed
∨

VF1.Comission-close_command
λV F1SC∨λV F1CC

VF2
Internal failure

or
commission of input

VF2.Stuck_Closed
∨

VF2.Comission-close_command
λV F2SC∨λV F2CC

VC
Internal failure

or
commission of input

VC.Stuck_Closed
∨

VC.Comission-close_command
λVCSC∨λVCCC

PF1 Internal failure
PF1.Electromechanical_fail_stop

∨
PF1.Control_valve_stuck_at_zero

λPF1EMF ∨λPF1@SZ

VR1
Internal failure

or
commission of input

VR1.Stuck_Closed
∨

VR1.Comission-close_command
λV R1SC∨λV R1CC

VR2
Internal failure

or
commission of input

VR2.Stuck_Closed
∨

VR2.Comission-close_command
λV R2SC∨λV R2CC

PR1 Internal failure
PR1.Electromechanical_fail_stop

∨
PR1.Control_valve_stuck_at_zero

λPR1EMF ∨λPR1@SZ

135

Figure 64: Fault tree of the condition “no fuel to the port engine”

136

The fault tree of Figure 64 can be analysed to obtain the minimal cut sets. The analy-
sis obtains 28 cut sets as shown below. Each of these cut sets can cause the condition ‘no

fuel flow to the port engine’. If we inspect the system architecture at Figure 62, then it is
obvious that the failure of pump PF1 (PF1.Failed) or failure of flow through VF2 due
to the failure of VF2 (VF2.Failed) will always cause no fuel flow to the port engine
and these conditions are represented by cut sets 1-4. The rest of the cut sets represent
the failure expression as conjunction of two events. For example, cut set 5 represents that
the failure of valve VF1 (VF1.Stuck_Closed) and VC (VC.Stuck_Closed) can
cause no fuel flow to the port engine.
Using the HiP-HOPS tool the Minimal Cut Sets to cause the top event (no fuel to the port
engine) are calculated to be:

1. PF1.Electromechanical_fail_stop
2. PF1.Control_valve_stuck_at_zero
3. VF2.Stuck_Closed
4. VF2.Comission-close_command
5. VF1.Stuck_Closed ∧ VC.Stuck_Closed
6. VF1.Stuck_Closed ∧ VC.Comission-close_command
7. VF1.Stuck_Closed ∧ VR1.Stuck_Closed
8. VF1.Stuck_Closed ∧ VR1.Comission-close_command
9. VF1.Stuck_Closed ∧ TR.Empty
10. VF1.Stuck_Closed ∧ TR.Blocked
11. VF1.Comission-close_command ∧ VC.Stuck_Closed
12. VF1.Comission-close_command ∧ VC.Comission-close_command
13. VF1.Comission-close_command ∧ VR1.Stuck_Closed
14. VF1.Comission-close_command ∧ VR1.Comission-close_command
15. VF1.Comission-close_command ∧ TR.Empty
16. VF1.Comission-close_command ∧ TR.Blocked
17. TF.Empty ∧ VC.Stuck_Closed
18. TF.Empty ∧ VC.Comission-close_command
19. TF.Empty ∧ VR1.Stuck_Closed
20. TF.Empty ∧ VR1.Comission-close_command
21. TF.Empty ∧ TR.Empty
22. TF.Empty ∧ TR.Blocked
23. TF.Blocked ∧ VC.Stuck_Closed
24. TF.Blocked ∧ VC.Comission-close_command
25. TF.Blocked ∧ VR1.Stuck_Closed
26. TF.Blocked ∧ VR1.Comission-close_command
27. TF.Blocked ∧ TR.Empty
28. TF.Blocked ∧ TR.Blocked

137

3.5.3 Dynamic Analysis of the EFCF Subsystem

According to the subsection 3.4.1, in order to perform the dynamic analysis, we need to
determine the different functional configurations of the system from the static analysis
and the system architecture. At the same time, it is also necessary to obtain the causes
of each change in configuration. Different functional configurations will represent the
modes and the causes of configuration changes will act as transition conditions in the
mode chart. From the description of the system, it is clear that in the normal operating
condition the port engine is provided with fuel from the front tank and the starboard en-
gine from the rear tank. However, in the condition of failure the EFCF subsystem can
cross-feed both the engines. Therefore, broadly we can divide the operation of the EFCF
subsystem into two modes — normal mode and cross-feed mode. In the normal mode,
both the tanks (front and rear) are in use. However, in the cross-feed mode, there are two
possibilities. The first possibility is that both the engines are fed from the front tank. This
possibility occurs when the starboard engine does not receive any fuel from the rear tank.
In the second possibility, both engines are fed from the rear tank because the port engine
is not getting fuel from the front tank. So, we have three modes of operations for the
EFCF subsystem, namely EFCF_Normal, EFCF_Front_Tank_Cross_Feed, and
EFCF_Rear_Tank_Cross_Feed. Now we have to define the mode based behaviour
of the components to facilitate dynamic analysis. The first step is to determine the set of
components that are used in different modes to define their behaviour in the respective
modes. The sets of components used in different modes are as below:

EFCF_Normal = {TF, TR, VF1, VR1, VF2, VR2, PF1, PR1}

EFCF_Front_Tank_Cross_Feed = { TF, VF1, VC, VF2, VR2, PF1,

PR1}
EFCF_Rear_Tank_Cross_Feed = {TR, VR1, VC, VF2, VR2, PF1,

PR1}
The mode based failure behaviour of the components are shown in Table 18. We can

see that the failure logic of the components remains the same in different modes; however,
their failure rates change depending on the configuration. Table 19 shows the mode based
logical expression for different output deviations. Now we have to identify the transition
conditions between the modes in the mode chart. The EFCF subsystem starts its oper-
ation in EFCF_Normal (EFCF_N) mode. Some output deviations of the subsystem
would force it to go either to the EFCF_Front_Tank_Cross_Feed(EFCF_FTCF)
or EFCF_Rear_Tank_Cross_Feed(EFCF_RTCF) mode. From static analysis it is
identified that the EFCF subsystem would go to the EFCF_Front_Tank_Cross_Feed
mode if Omission-VR1_VR2 occurs, on the other hand, Omission-VF1_VF2would
cause the system to go the EFCF_Rear_Tank_Cross_Feed mode. The functional
mode chart of the EFCF subsystem is shown in Figure 65 and the tabular form of the
mode chart is shown in Table 20.

138

Table 18: Mode based failure behaviour of components of EFCF subsystem

Component Failure Expression
Failure Rates

EFCF_N EFCF_FTCF EFCF_RTCF
Front Tank (TF) TF.Empty ∨ TF.Blocked λT FE ∨λT FB λT FE1∨λT FB1 -
Rear Tank (TR) TR.Empty ∨ TR.Blocked λT RE ∨λT RB - λT RE1∨λT RB1

VF1
VF1.Stuck_Closed

∨
VF1.Comission-close_command

λV F1SC∨λV F1CC λV F1SC1∨λV F1CC1 -

VF2
VF2.Stuck_Closed

∨
VF2.Comission-close_command

λV F2SC∨λV F2CC λV F2SC2∨λV F2CC2 λV F2SC3∨λV F2CC3

VC
VC.Stuck_Closed

∨
VC.Comission-close_command

- λVCSC1∨λVCCC1 λVCSC2∨λVCCC2

PF1
PF1.Electromechanical_fail_stop

∨
PF1.Control_valve_stuck_at_zero

λPF1EMF ∨λPF1S@Z λPF1EMF ∨λPF1S@Z λPF1EMF ∨λPF1S@Z

VR1
VR1.Stuck_Closed

∨
VR1.Comission-close_command

λV R1SC∨λV R1CC - λV R1SC1∨λV R1CC1

VR2
VR2.Stuck_Closed

∨
VR2.Comission-close_command

λV R2SC∨λV R2CC λV R2SC2∨λV R2CC2 λV R2SC3∨λV R2CC3

PR1
PR1.Electromechanical_fail_stop

∨
PR1.Control_valve_stuck_at_zero

λPR1EMF ∨λPR1S@Z λPR1EMF ∨λPR1S@Z λPR1EMF ∨λPR1S@Z

139

Table 19: Mode based failure data for the EFCF subsystem

PPPPPPPPPPPPPPPPP

Output
Deviations

Failure
Expression

EFCF_N EFCF_FTCF EFCF_RTCF

Omission-Port_Engine_Line
PF1.Failed

∨
Omission-VF2_PF1

PF1.Failed
∨

Omission-VF2_PF1

PF1.Failed
∨

Omission-VF2_PF1

Omission- Starboad_Engine_Line
PR1.Failed

∨
Omission-VR2_PR1

PR1.Failed
∨

Omission-VR2_PR1

PR1.Failed
∨

Omission-VR2_PR1

Omission-VF2_PF1 VF2.Failed
VF2.Failed

∨
Omission-VF1_VF2

VF2.Failed
∨

Omission-VC_VF2

Omission-VR2_PR1
VR2.Failed

∨
Omission-VR1_VR2

VR2.Failed
∨

Omission-VC_VR2

VR2.Failed
∨

Omission-VR1_VR2

Omission-VF1_VF2
VF1.Failed

∨
Omission-TF_VF1

VF1.Failed
∨

Omission-TF_VF1
No effect

Omission-VR1_VR2
VR1.Failed

∨
Omission-TR_VR1

No effect
VR1.Failed

∨
Omission-TR_VR1

Omission-TF_VF1 TF.Failed TF.Failed No effect
Omission-TR_VR1 TR.Failed No effect TR.Failed

140

Omission-VF1_VC No effect
VF1.Failed

∨
Omission-TF_VF1

No effect

Omission-VC_VR2 No effect
VC.Failed

∨
Omission-VF1_VC

No effect

Omission-VR1_VC No effect No effect
VR1.Failed

∨
Omission-TR_VR1

Omission-VC_VF2 No effect No effect
VC.Failed

∨
Omission-VR1_VC

141

Figure 65: Functional mode chart of EFCF subsystem

Table 20: Tabular representation of mode chart

Source Mode Transition Condition Destination Mode

EFCF_Normal Omission-VR1_VR2 EFCF_Front_Tank_Cross_Feed

EFCF_Normal Omission-VF1_VF2 EFCF_Rear_Tank_Cross_Feed

Figure 66: Fault tree for the condition “no fuel to the port engine” in EFCF N mode

142

Figure 67: Temporal fault tree for the condition “no fuel to the port engine” in EFCF FTCF mode

143

Figure 68: Temporal fault tree for the condition “no fuel to the port engine” in EFCF RTCF mode

144

Table 21: Name and ID of the Basic events of the fault trees in Figures 66, 67, and 68

Event Name Event ID Event Name Event ID

PF1.Electomechanical_fail_stop<EFCF_N> X1 TF.Blocked<EFCF_FTCF> X16

PF1.Control_valve_stuck_at_zero<EFCF_N> X2 VF1.Stuck_Closed<EFCF_N> X17

VF2.Stuck_Closed<EFCF_N> X3 VF1.Comission-close_command<EFCF_N> X18

VF2.Comission-close_command<EFCF_N> X4 TF.Empty<EFCF_N> X19

VR1.Stuck_Closed<EFCF_N> X5 TF.Blocked<EFCF_N> X20

VR1.Comission-close_command<EFCF_N> X6 PF1.Electomechanical_fail_stop<EFCF_RTCF> X21

TR.Empty<EFCF_N> X7 PF1.Control_valve_stuck_at_zero<EFCF_RTCF> X22

TR.Blocked<EFCF_N> X8 VF2.Stuck_Closed<EFCF_RTCF> X23

PF1.Electomechanical_fail_stop<EFCF_FTCF> X9 VF2.Comission-close_command<EFCF_RTCF> X24

PF1.Control_valve_stuck_at_zero<EFCF_FTCF> X10 VC.Stuck_Closed<EFCF_RTCF> X25

VF2.Stuck_Closed<EFCF_FTCF> X11 VC.Comission-close_command<EFCF_RTCF> X26

VF2.Comission-close_command<EFCF_FTCF> X12 VR1.Stuck_Closed<EFCF_RTCF> X27

VF1.Stuck_Closed<EFCF_FTCF> X13 VR1.Comission-close_command<EFCF_RTCF> X28

VF1.Comission-close_command<EFCF_FTCF> X14 TR.Empty<EFCF_RTCF> X29

TF.Empty<EFCF_FTCF> X15 TR.Blocked <EFCF_RTCF> X30

145

In the mode chart of Figure 65, all the functional modes are represented as a solid
rounded rectangle and a failed mode is represented as a dashed rounded rectangle. Essen-
tially the failed modes and the transitions to the failed modes from the functional modes
are not a part of the functional mode chart, therefore they are shown as dashed lines in
the mode chart and omitted in the tabular form. The failed mode and the transitions to
the failed mode are just to show how a failed mode can be reached from different func-
tional modes. For the subsystem EFCF, we are analysing to determine the causes of the
condition “no fuel to the port engine”, hence the failed mode corresponds to the output
deviation Omission-Port_Engine_Line. Following the instructions provided in
the subsection 3.4.2, the mode based fault trees for the output deviation of the subsystem
EFCF are obtained and shown in Figures 66, 67, and 68 respectively. The names and the
IDs of the basic events of the fault trees in Figures 66, 67, and 68 are shown in Table
21. Using the methodologies shown in section 3.4.3, the fault trees are analysed and the
following 44 minimal cut sequences are obtained.

Using a prototype version of the HiP-HOPS tool the Minimal cut sequences to cause
the top event (“no fuel to the port engine”) are calculated to be:

1. X1

2. X2

3. X3

4. X4

5. X5 CX13∧X5 oX14∧X5 oX15∧X5 oX16

6. X5 oX13∧X5 CX14∧X5 oX15∧X5 oX16

7. X5 oX13∧X5 oX14∧X5 CX15∧X5 oX16

8. X5 oX13∧X5 oX14∧X5 oX15∧X5 CX16

9. X6 CX13∧X6 oX14∧X6 oX15∧X6 oX16

10. X6 oX13∧X6 CX14∧X6 oX15∧X6 oX16

11. X6 oX13∧X6 oX14∧X6 CX15∧X6 oX16

12. X6 oX13∧X6 oX14∧X6 oX15∧X6 CX16

13. X7 CX13∧X7 oX14∧X7 oX15∧X7 oX16

14. X7 oX13∧X7 CX14∧X7 oX15∧X7 oX16

15. X7 oX13∧X7 oX14∧X7 CX15∧X7 oX16

16. X7 oX13∧X7 oX14∧X7 oX15∧X7 CX16

17. X8 CX13∧X8 oX14∧X8 oX15∧X8 oX16

18. X8 oX13∧X8 CX14∧X8 oX15∧X8 oX16

19. X8 oX13∧X8 oX14∧X8 CX15∧X8 oX16

20. X8 oX13∧X8 oX14∧X8 oX15∧X8 CX16

21. X17 CX25∧X17 oX26∧X17 oX27∧X17 oX28∧X17 oX29∧X17 oX30

22. X17 oX25∧X17 CX26∧X17 oX27∧X17 oX28∧X17 oX29∧X17 oX30

146

23. X17 oX25∧X17 oX26∧X17 CX27∧X17 oX28∧X17 oX29∧X17 oX30

24. X17 oX25∧X17 oX26∧X17 oX27∧X17 CX28∧X17 oX29∧X17 oX30

25. X17 oX25∧X17 oX26∧X17 oX27∧X17 oX28∧X17 CX29∧X17 oX30

26. X17 oX25∧X17 oX26∧X17 oX27∧X17 oX28∧X17 oX29∧X17 CX30

27. X18 CX25∧X18 oX26∧X18 oX27∧X18 oX28∧X18 oX29∧X18 oX30

28. X18 oX25∧X18 CX26∧X18 oX27∧X18 oX28∧X18 oX29∧X18 oX30

29. X18 oX25∧X18 oX26∧X18 CX27∧X18 oX28∧X18 oX29∧X18 oX30

30. X18 oX25∧X18 oX26∧X18 oX27∧X18 CX28∧X18 oX29∧X18 oX30

31. X18 oX25∧X18 oX26∧X18 oX27∧X18 oX28∧X18 CX29∧X18 oX30

32. X18 oX25∧X18 oX26∧X18 oX27∧X18 oX28∧X18 oX29∧X18 CX30

33. X19 CX25∧X19 oX26∧X19 oX27∧X19 oX28∧X19 oX29∧X19 oX30

34. X19 oX25∧X19 CX26∧X19 oX27∧X19 oX28∧X19 oX29∧X19 oX30

35. X19 oX25∧X19 oX26∧X19 CX27∧X19 oX28∧X19 oX29∧X19 oX30

36. X19 oX25∧X19 oX26∧X19 oX27∧X19 CX28∧X19 oX29∧X19 oX30

37. X19 oX25∧X19 oX26∧X19 oX27∧X19 oX28∧X19 CX29∧X19 oX30

38. X19 oX25∧X19 oX26∧X19 oX27∧X19 oX28∧X19 oX29∧X19 CX30

39. X20 CX25∧X20 oX26∧X20 oX27∧X20 oX28∧X20 oX29∧X20 oX30

40. X20 oX25∧X20 CX26∧X20 oX27∧X20 oX28∧X20 oX29∧X20 oX30

41. X20 oX25∧X20 oX26∧X20 CX27∧X20 oX28∧X20 oX29∧X20 oX30

42. X20 oX25∧X20 oX26∧X20 oX27∧X20 CX28∧X20 oX29∧X20 oX30

43. X20 oX25∧X20 oX26∧X20 oX27∧X20 oX28∧X20 CX29∧X20 oX30

44. X20 oX25∧X20 oX26∧X20 oX27∧X20 oX28∧X20 oX29∧X20 CX30

First four MCSQs each represents a single point of failure. The 5th MCSQ, X5 CX13 ∧
X5 oX14∧X5 oX15∧X5 oX16 can be interpreted as:
“The event with ID X5 occurs before X13, as long as none of X14, X15, and X16 has occurred
yet.”

Although the above cut sequences and the cut sets obtained from the static analysis in
section 3.5.2 represent the necessary and sufficient conditions for the same top event (no
fuel to the port engine), they are significantly different. The first noticeable difference is
that in the static analysis the concept of mode is absent and it also does not take the se-
quencing among events into account while capturing the failure behaviour of the system,
whereas in the dynamic analysis events are modelled as mode dependent and sequencing
among the events are also considered. To understand the effect of not considering the
sequencing of events in the static analysis, let us examine a minimal cut set. For instance,
consider the minimal cut set 7.

MCS 7: VF1.Stuck_Closed ∧ VR1.Stuck_Closed

According to the above MCS, there will be no fuel flow to the port engine if both the

147

valves VF1 and VR1 failed. That means it does not matter whether VF1 fails first or VR1
fails first, the only thing that matters is that failure of both them in any sequence will
cause the port engine to be starved of fuel. A superficial look at the system architecture
from Figure 58 would confirm that this MCS is a necessary and sufficient condition to
stop fuel flow to the port engine. This is because these valves are in two possible paths
through which the port engine can receive fuel, e.g., the valve VF1 is in the path from the
front tank (TF) to the port engine and the valve VR1 is in the path from rear tank (TR)
to the port engine. Therefore, the above MCS is initially convincing from a qualitative
perspective.

Now, let us examine the quantitative aspects associated with the above MCS. In the
static analysis, fixed values are used as the failure rate of the valves VF1 and VR1 (see
Table 17). If we recall the system description, then we can see that under normal operating
condition the port engine is fed from the front tank and the starboard engine is fed from the
rear tank. In the condition of failure, the front tank can provide fuel to both the engines,
similarly, the rear tank can also provide fuel to both engines. As fuel is consumed from
these tanks, to maintain appropriate level of fuel in these tanks, fuel is transferred to the
front tank from right wing tanks through the central tank and on the other hand the rear
tank gets fuel from left wing tanks through central tank. That means the activation of the
fuel flow from the left and right wing tanks as well as the amount of pressure on these
tanks depend on two things.

• Which tank is supplying fuel to the engines (front tank or rear tank or both).

• How fast the fuel is consumed from the tanks.

For example, assume that the engines have a demand for m litres of fuel per minute.
Therefore, in the functional condition, m litres of fuel flows through the valves VF1
and VR1. Now, if the valve VF1 failed first, event VF1.Stuck_Closed occurred,
then the rear tank has to meet the demand of both the engines which results into double
fuel flow (2m litres/minute) through the VR1. On the other hand if the VR1 failed first
(VF1.Stuck_Closed occurred) then VF1 has to allow double flow through it. That
means the pressure on the valves VF1 and VR1 can be doubled depending on which of
them failed first. As pressure on the valves increases, their chance of failure should also
increase, i.e., failure rate should vary. However, the static analysis left out this possibility
by using a fixed failure rate value and by not considering the order of event occurrence.

This is just one effect of the order of component failure on the component themselves;
there may be other associated issues. For example, if VF1 fails first, then to continue
the fuel flow to the port engine it is necessary to open the valve VC which may also
contribute to the probability of top event (no fuel to port engine) because now fuel has
to flow through three valves (first VR1, then VC, and finally VF2) whereas before the
failure of VF1 fuel has to pass through two valves (first VF1, then VF2). It also increases
the pressure on the rear tank which will eventually increase the pressure on the left wing

148

tanks, thus making the rear tank as well as the left wing tanks more susceptible to failure.
On the other hand, if VR1 fails first then the path through which fuel flows to the port
engine remains the same; however, now the front tank and right wing tanks become more
susceptible to failure because of the increased pressure on them.

To address the above mentioned issues with the event sequencing in the static anal-
ysis, the dynamic analysis explicitly highlights the event sequencing in the minimal cut
sequences and also defines mode specific failure data for the basic events. For example,
MCSQ 5 and 23 as shown below (event IDs are replaced by event names) are two MCSQs
where the sequencing between the events contained in MCS 7 are explicitly defined.

MCSQ 5:
VR1.Stuck_Closed<EFCF_N> C VF1.Stuck_Closed<EFCF_FTCF>

∧ VR1.Stuck_Closed<EFCF_N> o VF1.Comission_close_command
<EFCF_FTCF>

∧ VR1.Stuck_Closed<EFCF_N> o TF.Empty<EFCF_FTCF>
∧ VR1.Stuck_Closed<EFCF_N> o TF.Blocked<EFCF_FTCF>

MCSQ 23:
VF1.Stuck_Closed<EFCF_N> o VC.Stuck_Closed<EFCF_RTCF>
∧ VF1.Stuck_Closed<EFCF_N> o VC.Comission_close_command
<EFCF_RTCF>

∧ VF1.Stuck_Closed<EFCF_N> C VR1.Stuck_Closed<EFCF_RTCF>

∧ VF1.Stuck_Closed<EFCF_N> o VR1.Comission_close_command
<EFCF_RTCF>

∧ VF1.Stuck_Closed<EFCF_N> o TR.Empty <EFCF_RTCF>

∧ VF1.Stuck_Closed<EFCF_N> o TR.Blocked <EFCF_RTCF>

To explicitly highlight the change in failure rate of same component, mode specific
failure rates are defined. For example, in MCSQ 23, VF1.Stuck_Closed<EFCF_N>
and in MCSQ 5, VF1.Stuck_Closed<EFCF_FTCF> represent the failure of VF1.
Although they represent the failure of the same component, due to their mode tag (i.e.,
the terms inside the angle brackets) they are two different events with different failure
data. More specifically, VF1.Stuck_Closed<EFCF_N> represents the failure of VF1
when the system is in normal condition, i.e., front tank is providing fuel to the port engine
only. On the other hand, VF1.Stuck_Closed<EFCF_FTCF> represent the failure
of VF1 when front tank is proving fuel to both the engines, i.e., VF1 has double flow
through it. Similarly, VR1.Stuck_Closed<EFCF_N> is failure of VR1 when it has
normal flow (m litres/minute) through it and VR1.Stuck_Closed<EFCF_RTCF> is
the failure of VR1 when double fuel flows through it. Consequently, each also has a
different failure rate defined to reflect this different workload.

149

Chapter 4

Quantitative Dependability Analysis
under Uncertainty

4.1 Introduction

The previous chapter describes how state-based annotations can be added to the archi-
tectural model of dynamic systems. This allows state machines (SMs) representing the
dynamic failure behaviour of the systems to be obtained by synthesising the system model
using approaches like HiP-HOPS, and subsequently the SMs can be translated into Pan-
dora temporal fault trees using the algorithm proposed by Mahmud et al. (2012). Pandora
temporal fault trees will produce qualitative information about the failure behaviour of
the system as a set of minimal cut sequences. However, to get numerical information
regarding the dependability of the systems, e.g., probability of the system being in a
non-operational state after a certain amount of time, or by identifying the most critical
components, a quantitative analysis is required.

Section 2.2.2.5 shows that HiP-HOPS can quantify Pandora temporal fault trees using
an analytical approach based on the failure rate of components. However, this assumes
that the exact failure rates of components are always available. Therefore, HiP-HOPS
is unable to perform quantitative analysis under uncertainty, i.e., if the failure rates of
components are uncertain then it cannot provide any quantitative information about the
dependability of the systems. If this limitation in performing quantitative analysis un-
der uncertainty can be overcome, by redefining the analytical operators of the gates used
in Pandora TFT to incorporate uncertainty in failure rates of components or by translat-
ing Pandora TFTs into other models capable of making decision under uncertainty, then
HiP-HOPS can be successfully used for uncertainty analysis in a dynamic dependability
analysis.

This chapter presents the basic concepts of quantitative analysis in HiP-HOPS and
proposes three methodologies for improved analysis of Pandora TFTs, thus improving
the efficacy of MBSA approaches to perform quantitative analysis under uncertainty.

150

4.2 Quantitative Dependability Analysis of Dynamic Sys-
tems

The quantitative analysis of Pandora TFT is performed based on the result of the quali-
tative analysis to help estimate the probability of the top event occurring from the given
failure rates of basic events. As the top event of a TFT is represented as a disjunction
of a set of minimal cut sequences (MCSQs), first the probabilities of all the MCSQs are
calculated using the formulas defined for Boolean and temporal gates in Section 2.2.2.2
and 2.2.2.5 respectively based on the presence of the gates in the expressions of the MC-
SQs. All the dynamic analyses performed in HiP-HOPS are based on some assumptions
about the behaviour of the components failure events. Firstly, events are considered as
non-repairable, i.e., the event is false as long as the fault has not occurred and when the
fault occurs, the event become true and will remain true afterward. In other words, events
can only go from false (non-failed) to true (failed) but not vice versa. It is also assumed
that an event goes instantly from false to true.

Secondly, basic events are considered to be statistically independent. For example,
assume X and Y are two events with failure probability Pr{X} and Pr{Y}. If they are
considered as dependent then probability of both events occurring is:

Pr{X ∧Y}= Pr{X} ·Pr{Y |X}= Pr{Y} ·Pr{X |Y} (18)

Where Pr{Y |X} is the conditional probability of Y given X meaning that the occurrence
of Y may be affected by the occurrence of X and vice versa.
However, similar to classical FTA, HiP-HOPS considers that all basic events are indepen-
dent; therefore, the probability of both events occurring is:

Pr{X ∧Y}= Pr{X} ·Pr{Y} (19)

The analytical solution uses failure rates or occurrence probability in a continuous
time domain and exponential distribution of the failure rates are used. In the analytical
solution, as the time is considered as continuous and events as statistically independent,
the simultaneous occurrence of two events is considered to have null probability, therefore
the SAND gate is usually excluded (as the probability of a MCSQ containing a SAND
gate equates to zero) from the quantitative analysis.

Apart from the above assumptions, compositional MBSA approaches like HiP-HOPS
do not consider any uncertainty aspect in the failure rates or failure probabilities of the
basic components. As mentioned earlier, the integrity of the results obtained from quan-
titative analysis completely depends on the data used in the analysis. Sometimes it is
difficult to find precise failure rates of components due to the scarcity of statistical data,
or complex architecture of systems, or change in operational environment, or using com-
pletely new components. Moreover, in the early design phase if no decision has been

151

made about the components that are going to be used in the system then failure rates of
components cannot be decided. Therefore, if uncertain failure rate data are used as the
basis of the quantitative analysis in approaches like HiP-HOPS without addressing the
uncertainty, then the uncertainty at the basic event level will propagate towards the top
event, and thus make the outcomes uncertain as well. Although, an analytical technique
is available to probabilistically quantify Pandora temporal fault trees, it is only applicable
to systems which have components with exponentially distributed failure data. For this
reason, it is worth exploring the alternative options to provide a state space solution to
Pandora TFTs.

In this thesis, Petri Nets, Bayesian Networks and fuzzy set theory have been identi-
fied as three potential approaches to extend the capabilities of compositional MBSA ap-
proaches by addressing uncertainty in the quantitative analysis of dynamic systems. The
next three sections will describe the methodologies to quantify temporal fault trees based
on Petri Nets (PNs), Bayesian Networks (BNs) and fuzzy set theory. The Petri Net based
approach is for a continuous time domain and is based on the exponential distribution of
failure rates of components. The fuzzy set theory based methodology is based on the an-
alytical solution of the Pandora TFTs; therefore all assumptions of the analytical solution
are left unchanged. The BNs based approach is for an interval-based discrete time domain
and this approach can work with any types of component lifetime distributions.

4.3 A Petri Net based Methodology

The primary goal of the Petri Net based methodology is to translate the Pandora temporal
fault trees into generalised stochastic Petri Nets (GSPN), thus providing a state-space so-
lution to TFTs. This section defines a method for translating Pandora temporal fault trees
into GSPNs. During the transformation process, all the assumptions of the Pandora tem-
poral fault trees are taken into account. In the proposed mapping strategy, each temporal
fault tree node (basic, intermediate, and top events) is mapped to a sub-net where there
is a place indicating the status of the node. We use places to represent the state of the
system, timed transitions to represent random faults and immediate transitions to repre-
sent failure propagation. A place is graphically represented as a circle, a timed transition
is represented as a white bar and an immediate transition is represented as a black bar.
Timed transitions are characterised by the failure rate of basic events and in this thesis,
for the PN based method, we use exponential distribution of failure rates.

The mapping of each TFT gate to GSPN should be correct in the sense that in the
sub-net there is a place representing the outcome of the gate and if all the conditions
are fulfilled for the gate outcome to be true then the place gets a token. As we use the
exponential firing rates (failure rates) for the timed transitions, two transitions firing at
the same time is zero. For this reason, if we transform the SAND gate containing two or
more basic events into a Petri Net then during the whole mission time we will not get any

152

token in the place representing the SAND output, i.e., probability of the SAND outcome
is always 0. For this reason, during quantitative analysis using exponential failure rates
we can ignore any MCSQ that contains a SAND gate and therefore there is no need to
transform a SAND gate to PN. The process of transforming all the TFT gates except the
SAND gate is described in the following subsections. The logical correctness of all the
mappings of TFT gates to Petri Nets is verified by constructing and testing them in the
CPN tool (Jensen et al., 2007).

4.3.1 Mapping of Basic Events to GSPN

This section describes the process of transforming a Pandora basic event to a Petri Net
model. During the transformation process we have to make sure that all the assumptions
about the basic events in the Pandora TFTs remain unchanged. The mapping of a basic
event to a Petri Net is shown in Figure 69.

Figure 69: Mapping of a basic event to a Petri Net

In the PN model of a basic event, the condition (occurred or non-occurred) of the
event is determined by the presence or absence of a token in some particular place. In the
general case of PN model, a place can have multiple tokens; however, in this case, a place
can have at most one token. This is due to the fact that the places are now representing the
status of components which could either be true (occurred) or false (non-occurred) and
can essentially be represented by the presence and absence of a single token. As all com-
ponents are assumed to be fully functional at time 0, the place (Working) representing the
fully functional state has a token. Every component is considered to have an exponentially
distributed failure rate, and the occurrence of an event (component failure) is represented
by the timed transition named Fail. Once this transition fires, the event occurs, i.e., the
component corresponding to the event has failed.

Usually, when a transition fires in a PN model a pre-specified number of tokens are
removed from the input place(s) of the transition and a pre-specified number of tokens
are deposited to the output place(s) of the transition. However, in the case of a basic
event, the amount (percentage) of tokens that are removed from the place Working are
deposited to the place Failed and this amount is determined by the transition Fail which
is characterised by the exponential distribution of the failure rate of the component. For
example, if the firing rate of transition Fail is set as unity (1) then on firing of this transition
a token would be consumed from the place Working and a token would be deposited in
the place Failed. However, failure rates of components are usually far less than 1, so the

153

firing rate would not be unity. Depending on the failure rate, a fraction of the token would
be consumed from the place Working and accumulated in the place Failed. For example,
if the failure rate of a component is 0.0001/hour then the probability that the component
will fail after 1000 hours would be 0.095. Now, for this component in the PN model the
transition Fail would be set to fire at the rate of 0.0001/hour. Table 22 shows the process
of token removal and accumulation process for this component for a duration of 1000
hours by setting the discretisation step as 100 hours.

Table 22: Token removal and accumulation process in the PN model of a basic event

Time (hours)
Token in the places

Working Failed

0 1.00 0

100 0.990 0.010

200 0.980 0.020

300 0.970 0.030

400 0.961 0.039

500 0.951 0.049

600 0.942 0.058

700 0.932 0.068

800 0.923 0.077

900 0.914 0.086

1000 0.905 0.095

So the place Failed represents the failure state of a component. Now, we have to
model the failure propagation for the event. In Pandora, a failure is propagated instantly,
i.e., there is no delay between the occurrence and the propagation of the failure. For this
reason, an immediate transition named Propagate is used to propagate the failure (see
Figure 69). The outgoing arrow from transition Propagate back to place Failed serves
to maintain persistency of events, i.e., maintain the permanent failure state of the event
irrespective of any further propagation. To ensure that the error is propagated exactly once
in a single path, the inhibitor arc from place Propagated to transition Propagate is used.

4.3.2 Mapping of the Boolean Gates to GSPN

Mapping of the Boolean AND and OR gates to a Petri Net is based on the work of Bobbio
et al. (1999). An AND gate can have any number of input events connected to it and the
outcome of the AND gate becomes true iff all the input events to it become true. The
mapping of an n input AND gate to a PN model is shown in Figure 70.

154

Figure 70: Mapping of an n input AND gate to Petri Net

Figure 71: Mapping of an n input OR gate to Petri Net

155

The places X1 Failed, X2 Failed, X3 Failed, · · · , Xn−1 Failed, and Xn Failed represent
the input events to the AND gate. All the places are connected to a single immediate
transition (AND) with bidirectional arrows, therefore the transition will fire when all the
input places have a token (i.e., all input events occur) and on firing it deposits a token to
the place representing the outcome of the AND gate (AND Propagated).

Unlike the AND gate, the OR gate represents a logical disjunction of the input events,
and means the outcome of the OR gate becomes true if at least one of the input events
become true. The OR gate is translated to a PN model by creating a transition for each
place corresponding to input events of the OR gate (see Figure 71). Hence, as soon as
one of the input places gets a token, one of the transitions will fire and deposit a token
to the place corresponding to the outcome of the OR gate (OR). In both the cases (AND
and OR) no token is consumed from the input places because an event may be the input
of several gates. For this reason, the bi-directional arrows are used to connect the places
to the transition(s).

4.3.3 Mapping of the Temporal Gates to GSPN

The mapping of the temporal gates to PN models is not as straightforward as that of the
Boolean gates. This is due to the fact that the Boolean gates are stateless in the sense that
they do not need to remember the order of occurrence of the events. However, along with
the occurrence of the input events, the temporal gates must also remember the order of
occurrence of input events. Now, let us recall the behaviour of Pandora’s temporal gates
from subsection 2.2.2.5. In a PAND gate, if there are n input events (X1 Failed, X2 Failed,
X3 Failed, · · · , Xn−1 Failed, and Xn Failed) then to make the PAND outcome true all the
events must occur and they must occur in order from left to right, i.e., X1 Failed occurs
first, then X2 Failed, then X3 Failed, · · · , then Xn−1 Failed, and finally Xn Failed. The
transformation of an n input PAND gate to a PN model is shown in Figure 72.

The transformation is done in such a way that ensures the exact sequencing of events
to make the PAND outcome true. The place X1 Failed is connected to the transition T1

with a bi-directional arrow and all other places corresponding to other input events are
connected to this transition using inhibitor arcs. As a result, the transition T1 will fire
when there exists a token in place X1 Failed and no token in any other connected places
(X2 Failed to Xn Failed) . Once this transition fires, the place P1 would get a token and
essentially will represent the scenario when only the left-most input of the PAND gate
occurs but not the others. Similarly, the transition T2 will fire to deposit a token to place
P2 when the second input becomes true (i.e., place X2 Failed gets a token) and all the
subsequent inputs remain false. In a similar fashion, the firing of transition Tn−1 deposits
a token to place Pn−1, thus representing that the (n−1)th event to the PAND gate has
occurred and the nth event is still to occur. So, the presence of a token in each of the
places from P1 to Pn−1 confirms that events X1 Failed to Xn−1 Failed have occurred in a
sequence from left to right and the event Xn Failed is yet to occur.

156

Figure 72: Mapping of an n input PAND gate to Petri Net

Now, the places P1 to Pn−1 and the place Xn Failed are connected to an immediate
transition Tn and the firing of this transition would deposit a token to the place PAND

which essentially represents the scenario when the PAND outcome becomes true, i.e.,
all input events to the PAND gate occurred and they occurred obeying the sequence. If
a PAND gate has only two inputs then we just need to ensure sequencing between two
events. The PN model of a two input PAND gate is shown in Figure 73.

Figure 73: Mapping of a two input PAND gate to Petri Net

Similar to the PAND gate, the POR gate also defines a sequence. It is used to specify
that one input event has priority and must occur first for the POR to be true, but unlike
PAND does not require all other input events to occur as well. That means if the disjunc-
tion of the non-priority events occurs at all then it should occur after the priority event.
For example, let us consider that X1, X2, X3, · · · , Xn−1, and Xn are n different input events
to a POR gate where the event X1 is the priority event. The outcome of the POR gate can
become true if at least one of the following two conditions becomes true.

157

1. Condition 1: X1∧ (X2∨X3∨·· ·∨Xn−1∨Xn)

2. Condition 2: X1 C (X2∨X3∨·· ·∨Xn−1∨Xn)

The first condition refers to a scenario where only the priority event occurs. The second
condition represents a scenario where one or more non-priority events may have occurred
but they occurred after the priority event. The exact logical mapping of an n input POR
gate to a PN is shown in Figure 74. In the figure, the place P1 represents the logical OR of
the non-priority events. The places P2 and P3 represent the conditions 1 and 2 respectively.
The place named POR represents the logical OR of the two conditions, i.e., the outcome
of the POR gate.

Figure 74: Mapping of an n input POR gate to Petri Net

Condition 2 actually represents a two input PAND gate where the left input is the pri-
ority events of the POR gate and the right input is the logical OR of the all non-priority
events of the POR gate. From the PN model of the two input PAND gate (see Figure 73)
we can see that the transition PAND would be enabled only if both the places X NOT Y

and Y Failed have a token each. For both the places to have a token each, the place
X NOT Y must have the token first otherwise it will never have a token. That means, in
terms of timing, X ∧Y followed by Y will make the PAND outcome true. For this reason,
in Figure 74, the place P2 will always get a token first and subsequently enables the tran-
sition Tn+2 to deposit a token to the place POR. So, the POR outcome will never become
true because of a token in the place P3. As a result, the place P3 becomes redundant in the
PN model, which in effect makes the transitions Tn+1 and Tn+3 extraneous as well. The
refined PN model for the n input POR gate is shown in Figure 75. If a POR gate has two
input events then Figure 75 would be reduced to Figure 76.

158

Figure 75: Refined PN model of n input POR gate

Figure 76: Mapping of a two input POR gate to PN model

4.3.4 Evaluating System Unreliability using PN based method

In Pandora TFTs, the top event (system failure) of the temporal fault tree is represented
as the logical OR of the minimal cut sequences (MCSQs). A MCSQ represents the log-
ical relation among the basic events using Boolean AND gate and the temporal gates,
i.e., a MCSQ can contain any number of temporal and Boolean AND gates to combine
any number of basic events. In order to probabilistically evaluate Pandora TFTs via PN
models to obtain information about system unreliability, at first we need to transform the
MCSQs to the PN model. After that, to represent the top event, a PN model of an OR
gate must be formed by considering the places representing the outcome of the MCSQs
as input. The basic events are transformed to a PN model according to the process shown
in section 4.3.1 and TFT gates are transformed to PN model following the process shown
in sections 4.3.2 and 4.3.3 respectively.

159

Once the PN model of the TFT is created, the model can be simulated using any PN
simulator to obtain information about the system unreliability after a pre-specified mission
time. In this thesis, an open source PN analyser named ORIS (Horváth et al., 2012) is
used to simulate the PN models. During simulation we need to define the mission time
to decide how long the simulation will run and also have to set the step size. Step size
represents the fraction of the mission time that would be covered in a single iteration. So
the step size is obtained by dividing the mission time by the number of steps in which
we want to finish the simulation. That means the biggest step size could be equal to the
mission time and there is no restriction on the minimum step size. However, the smaller
the step size the longer the simulation will take to finish.

Figure 77: An example TFT

For illustration, let us consider the TFT of Figure 77. The TFT consists of three basic
events (A, B, and C), one POR, one PAND, one AND, and one OR gate. The expression
of the top event can be written as:

Top Event = (A oB)∧C∨BCA

Let us assume that the failure rate per hour of the components A, B, C are 0.0007,0.0005,
and 0.0009 respectively. The TFT of Figure 77 is mapped into the PN model, and shown
in Figure 78. All the places corresponding to the basic events have a token each at the
beginning of the simulation and the places are connected to the timed transitions charac-
terised by failure rate of the respective component. Now, if we want to know the proba-
bility of the system failure after 1000 hours, then we have to run the simulation by setting
the mission time as 1000 hours. We have run the simulation for 1000 hours with 100

160

Figure 78: PN model of the TFT of Figure 77

hours step size, and the system unreliability value obtained was 0.318. From this value, a
decision could be made that with the given failure rates of the components there is 31.8%
chance of system failure after 1000 hours.

4.3.5 Importance Measures using the PN based Method

Importance measures determine the various contributions of basic or intermediate events
to the occurrence of the top event or how a change in any of these events can affect the
occurrence of the top event. This information can be served as a useful source of data
for resource allocation (upgrade, maintenance etc.) and helps stakeholders in improving
system dependability (safety, reliability, availability etc.). At present, HiP-HOPS can
perform Fussell-Vesely and Birnbaum importance measures (Vesely et al., 2002) as a part
of quantitative analysis based on the fixed failure rates of the components.

Using the PN based method, we can calculate the importance of a component (or basic
event) by taking the difference between the top event probability and the top event prob-
ability with the component fully available. The idea is to see the changes in the value of
top event probability in the condition that the component has not failed during the mission
time, i.e., when the component does not contribute at all to the top event. The probability
of the top event is obtained during the system unreliability evaluation process as shown
in the previous section. In a PN model, to make a component fully available, we simply
need to remove the token from the place representing the component. Once we remove
the token from a place, then even though the place is connected to a timed transition,
during the simulation the transition will never trigger, thus the component corresponding
to the place will not contribute to the occurrence of the top event. Let Pr{T E} be the
probability of the top event and Pr{T E|BEi=0} be the probability of the top event given
that the basic event BEi is fully available. So the importance measure (IM) for a basic
event BEi is defined as:

161

IM(BEi) = Pr{T E}−Pr{T E|BEi=0} (20)

The bigger the value of the IM(BEi) the higher the importance of the component is, and
all the components are ranked according to their importance. For example, the results of
the importance measure calculation from the PN model of Figure 78 for the basic events
of the TFT of Figure 77 are shown in table 23.

Table 23: Importance ranking for the basic events of PN in Figure 78

Basic Events (BEi) Pr{TE} Pr{TE|BEi=0} IM (BEi) Rank

A

0.318

0 0.318 1

B 0.299 0.019 3

C 0.048 0.270 2

4.4 A Bayesian Networks based Methodology

The primary goal of the Bayesian network based methodology is to translate the Pandora
temporal fault trees into Bayesian Networks, and thus increase the capability of MBSA
techniques to perform quantitative analysis of dynamic systems under uncertainty. More
importantly, it will allow the MBSA approaches to use any distributions of failure data of
components in quantitative analysis, not just exponential distribution.

4.4.1 Representation of time in Pandora TFTs

In order to convert TFTs into BNs, it useful to first understand how Pandora represents
time in its sequencing among events. Pandora makes few assumptions about the model
of time in any system; time can be discrete or continuous, point or interval-based, or
some hybrid. However, whichever way the time is represented, the model of time must
be linear, i.e., branching of time is not permitted in Pandora. As the events in Pandora
are persistent and occur instantly, there are only three possible temporal relation between
two events: before, simultaneous, and after. For this reason, in Pandora “the exact time
at which an event occurs is not important — the only thing that matters is when it occurs
relative to the other events, i.e., which comes first, which comes second, which comes last
etc.” (Walker, 2009, p.105).

Therefore, sequence values — an abstraction of the relative time at which an event
occurs — are used in Pandora instead of a quantitative, absolute metric of time. If an
event has not occurred during the mission time then that event is given a sequence value
0. If an event has occurred at any time during the system operation within the mission
time then it is given a sequence value greater than 0 to indicate when it occurred relative
to other events, i.e., all sequence value greater than 0 represents logical true, but the

162

higher the value the later the events occurred. For example, sequence value 1 means the
event occurred first, 2 means it occurred second and so on. If two or more events occur
simultaneously, then they will have the same sequence value. As these sequence values
combine the truth state (true/false) with the relative time of occurrence for each event,
these values make up the basis of temporal truth tables used in Pandora. A temporal truth
table showing the sequence values for each gate in Pandora given the sequence values of
each input event was shown in Table 3 in section 2.2.2.5.

Figure 79: An interval-based Discrete time model in Pandora

An example of an interval-based discrete model of time in Pandora is shown in Figure
79. In this model, the mission time is divided into 10 equal intervals and are used to
determine relative position of event occurrence, i.e., to decide sequence values for events.
It is important to note that the interval numbers themselves do not directly represent the
sequence values. Sequence values are assigned to events in an increasing order based on
their relative occurrence time. For example, if an event X occurs in interval i and gets
a sequence value k then if the next event Y occurs in any interval greater than i then it
would be given the sequence value k+1 because of its relative position to event X. As
seen in the figure, once an event occurs (e.g. a component fails) it continues to hold
its failed status to be persistent. In terms of deciding relative positions (before, after,
or simultaneous) between events, what we actually need to know are the intervals when
the events originally occurred. It does not really matter at what exact time within an
interval the events occur. As seen in the figure, the event X occurs at the very beginning
of interval 3 and event Y occurs in the middle of interval 5, however they will be given
the sequence value 1 and 2 respectively, and this is sufficient to decide that the event X

occurs before event Y. In the interval-based model of time if two events occur in the same
interval but in two different times, they still would get the same sequence value, and are
thus consequently considered as occurring simultaneously.

4.4.2 Conversion of Temporal Fault Trees into Bayesian Networks

In the PN based methodology proposed in section 4.3, a continuous model of time was
used. For the BN based methodology, an interval-based discrete model of time is used
instead. So the first step in the BN based reliability evaluation method is to translate the
Pandora TFT into a discrete-time Bayesian Network. In this BN, each root node repre-
sents a basic event of the TFT and each intermediate node represents a gate (including

163

both Boolean and temporal gates) of the TFT. The prior probability tables (PPTs) for
each of the root nodes are then defined, while the intermediate nodes must each have a
conditional probability table (CPT) defined. The conversion of the TFT to BN is a simple
one-to one mapping from basic events to root nodes and from logic gates to intermediate
nodes in which the original fault tree connections are preserved in the form of parent/child
relationships. The PPTs for the root nodes are populated based on the failure probability
distributions of the basic events and the CPTs for the intermediate nodes are defined based
on the behaviour of the gates used in the temporal fault trees.

As the outcome of each temporal gate is dependent on the relative sequence values of
the events involved in those gates, mission time T is divided into n equal intervals from
t = 0 to t = T (see Figure 80), where n must be at least equal to the maximum order of
the minimal cut sequences. The order of a minimal cut sequence (MCSQ) defines the
number of basic events contribute to that MCSQ. Each time interval represents a possible
non-zero sequence value, during which an event may go from its not occurred (false)
state to its occurred (true) state. At the beginning of the system operation, a component is
considered as fully available therefore given a sequence value 0 (i.e., the component is in a
state named State 0 (False)) and this value remains the same until the component fails, i.e.,
if the component can survive till the end of the mission time then it will continue carrying
the sequence value 0. If a component fails in interval 1, then it will have the sequence
value 1, but if the component fails in any other interval i where 1 < i ≤ n then it can
have any sequence value in between 1 to i based on its relative position to its immediate
predecessor.

Figure 80: Division of mission time into n intervals

An event having a sequence value ‘i’ is considered to be in ‘State i’ and it has an
associated probability value representing the probability of the event being in ‘State i’.
As the root nodes in the BN represent different basic events, we need to define prior prob-
ability tables for the root nodes, where each entry in a prior probability table of a node
represents the probability of the respective event being in a particular state. The values
of the entries of the PPT are calculated from the failure rates of the components and the
calculation process depends on the distributions of the failure rates.

If exponential distribution of failure rate is used, then we can obtain the probability of

164

a component being failed in the interval [t1, t2] by integrating the probability density func-
tion (PDF) of exponential distribution, λe−λ t , in the following way:

Pr{BEi}[t1,t2] =
∫ t2

t1
λe−λ tdt (21)

The Weibull distribution is one of the most popular component life distributions used
in reliability engineering (O’Connor, 2011). The Weibull PDF is given by:

f (t) =
β

α

(t
α

)β−1
e−
(

t
α

)β

(22)

where α is scale parameter and β is shape parameter. For Weibull distribution, we can
obtain the component failure probability in the interval [t1, t2] as:

Pr{BEi}[t1,t2] =
∫ t2

t1
f (t)dt (23)

Once prior probability tables for the nodes representing the basic events are created,
we need to create the conditional probability tables for the nodes representing the TFT
gates. Note that in Pandora the output of any gate can be either true or false but every true
value is linked with a sequence value, i.e., the relative time at which the gate outcome
becomes true. Therefore, the probability of an intermediate node representing a TFT
gate being in a certain state given the states of its parent nodes can either be 0 or 1. For
instance, let us consider a 2 input POR gate. For simplicity, we divide the mission time
T into 2 intervals, i.e., n=2. This yields three possible states for each event: State 0, in
which an event does not occur at all during the mission time T ; State 1, in which the
event occurs in the interval [0,T/2], and State 2, in which the event occurs in the interval
[T/2,T]. Each state is then associated with a probability, namely the probability of the
event being in that state.

Figure 81 illustrates this example and shows the 2 input POR gate and its BN model,
where the events are independent. In the BN, nodes X and Y represent the events X and
Y and prior probability tables for these nodes are generated based on the failure rate of
the component failure modes X and Y respectively. The arcs from nodes X and Y to node
(X POR Y) show the dependency of the output of the POR gate on its input events X and
Y . The conditional probability table shows the logical specification of the POR gate, i.e.,
its output is true if its priority (left-most) input event occurs and no other events occur
before or at the same time as the priority event. A 1 in the State 0 column of the CPT
means the output of the POR gate is false — i.e., it is 100% probable that the output of
the POR gate will not become true during the mission time T given that the input events
are on those particular states. Similarly, a 1 in the State 1 column means that it is 100%
probable that the POR output will become true in interval 1 given those particular inputs,
and the same for State 2 and interval 2.

For instance, we can say that the probability that the POR gate will be in State 0 given

165

that event X is in State 1 and event Y is State 0 is 0, i.e., Pr{(X POR Y) = State 0 | X =

State 1, Y = State 0}= 0. This is as we would expect, since the POR gate will have the
same sequence value as its priority event if the left-most (priority) event X occurs and
the other event Y does not occur. Instead, the POR outcome should be in State 1, i.e.,
Pr{(X POR Y) = State 1 | X = State 1,Y = State 0} = 1. This can also be seen in the
temporal truth table in Table 3: if X is 1 and Y is 0, then (X POR Y) should also be 1.

Figure 81: Two input POR gate and its BN model

The mapping of a two input PAND gate with n=2 is shown in Figure 82. Similar to
the POR gate the CPT of the PAND gate resembles its temporal truth table. As seen in
the CPT of the PAND gate, the PAND outcome becomes true only in one scenario when
the first input (X) is in State 1 and the second input (Y) is in State 2, i.e., they occur in a
sequence from left to right. In this case, the state associated with the PAND outcome is
State 2 because this is the state when the last input of the PAND becomes true.

As mentioned earlier a MCSQ can contain any number of gates from PAND, POR, and
AND gate, and the top event is represented as the logical OR of the MCSQs. So a MCSQ
combines the basic events using both temporal and Boolean gates. Due to the behavioural
specifications, the temporal gates have to consider the state (sequence number) of the
events and the Boolean gates do not need to consider the state information. However, in
a MCSQ, the outcome of an AND gate may be connected to the input of a temporal gate,
and vice versa. So, to maintain the compatibility between the outputs and the inputs we
need to define temporal behaviour for the AND gate. The mapping of a two input AND
gate to a BN model by dividing the mission time into two equal intervals is shown in

166

Figure 83. The behaviour of the AND gate is as such that its outcome becomes true only
when all of its inputs become true, and it does not impose any condition on the sequencing
of events. From the CPT of the AND gate in Figure 83, we can see that the AND outcome
becomes true (1’s in column State 1 or State 2) when the input events are either in State
1 or State 2. If any of the input event is in State 0 (logical false) then the outcome of the
gate is false (1’s in the column State 0). So the CPT of the PAND, POR, and the AND are
of the same pattern and entries in the table are either 0 or 1, but the positions of the 0’s
and 1’s change according to the logic of the gates.

Figure 82: Two input PAND gate and its BN model

Now comes the mapping of the Boolean OR gate to the BN. In Pandora, the OR gate
is used to combine the MCSQs to represent the top event of the TFTs. So in a minimised
Pandora TFT, there is only one OR gate. As the primary aim of the quantitative evaluation
of Pandora TFT is to estimate the system unreliability, i.e., probability of the top event
being true (system failure) after a specified time, unlike the AND gate the Boolean rep-
resentation of the output of the OR gate would suffice. One thing to note that the inputs
to the OR gate are the MCSQs with temporal information (with states) and the output of
the OR gate is either true or false, so a mapping from temporal input to Boolean output
is needed. Mapping of a two input OR gate to a BN model is shown in Figure 84, where
each of the input events has three possible states. It is seen from the CPT of the OR gate
that the probability of the OR outcome being true is 100% if at least one of its input is
true (either in State 1 or State 2).

167

Figure 83: Two input AND gate and its BN model

Figure 84: Two input OR gate and its BN model

168

4.4.3 Evaluating System Unreliability using the BN based method

Once we have the Pandora TFT of the failure behaviour of a system, we can translate
the TFT to BN model and subsequently perform a query on the BN model to obtain the
system unreliability. We have modified an open source tool named JavaBayes (Cozman,
2001) to create the BN model and to perform the query on it. For illustration, the example
TFT of Figure 77 is translated into BN model, shown in Figure 85. In the BN, the root
nodes are named after their corresponding basic events in the TFT. Prior probability tables
for the root nodes are populated based on the failure rate of the events (0.0007,0.0005,
and 0.0009 for events A, B, and C respectively) and for 1000 hours of mission time. Table
24 shows the prior probability values for the basic events for n=5 (number of intervals the
mission time is divided into). The CPT for each of the inner nodes of the BN is generated
automatically based on the logical specification of the gate the node is representing. After
that, to obtain the probability of the top event of the TFT, a query is performed on the node
named Top Event, and the value obtained is 0.305. This value represents the probability
of the system failure after 1000 hours.

Figure 85: Bayesian Network of the TFT of Figure 77

Table 24: Prior probability values for the basic events

Basic Events
Probabilities

State 0 State 1 State 2 State 3 State 4 State 5

A 0.4966 0.1306 0.1136 0.0988 0.0858 0.0746

B 0.6065 0.0952 0.0861 0.0779 0.0705 0.0638

C 0.4066 0.1647 0.1376 0.1150 0.0959 0.0802

169

4.4.4 Observation Based Analysis and Importance Measure using
BN based Method

During the probabilistic evaluation of the system unreliability, the statuses of the system
components, i.e., which state the components are in, are not taken into account. That
means the system reliability is evaluated solely based on the lifetime distribution of the
components, and this is the only way available during the design time because at that
time there is no way to know whether a particular component is failed or working, and
if failed when it failed. However, when the system is implemented and employed to
perform its operation, then in the operational mode, it is possible to observe the status
of the components. It may not be possible to observe the status of all the components
because the system may consist of thousands of components or due to the nature of the
operational environment; however, we cannot rule out the possibility of observing the
status of at least some of the components. So if the observation about the states of the
system components can be taken into account then it is possible to investigate their effects
on the system unreliability.

In the proposed BN based method, we can put observation on any of the nodes.
In general, in Bayesian Networks, the probability of a child node Xi is conditionally
dependent on its parent nodes, and defined by conditional probability distribution as:
Pr{Xi|Parents(Xi)}. If we are not certain about the status of the parent nodes then we
cannot readily say anything about the probability of the child node with certainty. To
obtain the probability of the child node, we have to take all possible states of the parent
nodes into account. However, certainty about the status of all or some of the parent nodes
can make the status of the child node certain. For example, let us consider the BN of two
input OR gate in Figure 86 where all nodes are Boolean (can be either in true of false
state).

Figure 86: BN of two input Boolean OR gate

170

In this BN, X and Y are the parent nodes for node X OR Y. Now, if we want to know
the probability of the node X OR Y being true, Pr{X OR Y = True}, without any obser-
vation about the parent nodes then we have to do the following:

Pr{X OR Y = True}= Pr{X OR Y = True | X = False,Y = False}×Pr{X = False}×
Pr{Y = False}+Pr{X OR Y = True | X = False,Y = True}×Pr{X = False}×Pr{Y =

True}+Pr{X OR Y = True | X = True,Y = False}×Pr{X = True}×Pr{Y = False}+
Pr{X OR Y = True | X = True,Y = True}×Pr{X = True}×Pr{Y = True}

Pr{X OR Y = True}= 0×0.6×0.7+1×0.6×0.3+1×0.4×0.7+1×0.4×0.3 = 0.58

The above procedure takes into account all possible states of the parent nodes (X, Y)
to obtain the probability of the child node. Now, if we know the state of both the parent
nodes, e.g., both the parents are in False state, then we can readily say that the probability
of the node X OR Y being in the true state, Pr{X OR Y = True | X = False,Y = False},
is 0. Now, if we can observe the state of one of the parent nodes then it will have effect
on the probability of the child node. For example, if we observe the node X to be in the
False state, Pr{X = False}= 1, then Pr{X OR Y = True} would be calculated as:

Pr{X OR Y = True | X = False} = Pr{X OR Y = True | X = False,Y = False} ×
Pr{X =False}×Pr{Y =False}+Pr{X OR Y = True | X =False,Y = True}×Pr{X =

False}×Pr{Y = True}

Pr{X OR Y = True | X = False}= 0×1×0.7+1×1×0.3 = 0.3

So in a two input OR gate if we know that one input is False then the probability of
the OR gate becomes completely dependent on the probability of the remaining input. In
the BN model of Pandora TFT, the nodes representing the basic events can be in more
than two states which depends on the number of intervals used to divide the mission time.
Now, if we can observe the state of any of the basic events, i.e., when the events occur then
we can put that observation in the node representing that basic event, and subsequently
run query on the node representing top event to see the effect. If we recall the example BN
from the previous section, then we can see that without any observation about the state
of the components the estimated system unreliability is 0.305. For illustration, we can
try running the queries by putting some experimental observations on the root nodes. For
example, if we observe the node B to be in State 4 then the system unreliability changes
to 0.278, and if we observe node B to be in State 1 then the unreliability value becomes
0.373. From these results, we can conclude that the later the event B occurs the higher the
reliability of the system. And it is the opposite for event A in the sense that if we observe
the event A to be in State 4 then system unreliability is 0.656 and if A is observed to be

171

in State 1 then system unreliability becomes 0.536.
We can take advantage of this observation based analysis to determine the contribution

of the components in the top events. Similar to the approach shown in section 4.3.5 for the
PN based method, the importance of a component in the BN based approach is calculated
by taking the difference between the top event probability and the top event probability
with the component fully available. To make a component fully available, we have to
observe the component to be in the State 0, meaning the component has not failed during
the selected mission time. So the importance measure of a basic event BEi is defined as:

IM(BEi) = Pr{T E}−Pr{T E | BEi = State 0} (24)

The importance measure calculation process for the root nodes (basic events) of the BN
of Figure 85 is shown in Table 25.

Table 25: Importance ranking for the basic events of the BN of Figure 85

Basic Events (BEi) Pr{TE} Pr{TE|BEi = State 0} IM (BEi) Rank

A

0.305

0 0.305 1

B 0.299 0.006 3

C 0.076 0.229 2

So far, we have performed predictive reasoning on the Bayesian Network to obtain
system unreliability and to determine the criticality of components. This is done by fol-
lowing the direction of the BN arcs from the root nodes towards the leaf nodes. In this
process, failure probability data of the root nodes are used to obtain the probability of
system failure, i.e., data about causes are used to obtain new belief about the effect. In
the importance measure process, observation on the root nodes (causes) are provided to
obtain their effects on the leaf node (effects). That means it is possible to observe the
change in effects due to the change in the causes.

Using this facility of observing the status of a node, we can also perform diagnostic
analysis on the BN, i.e., reasoning from effects to causes. To facilitate the diagnostic
analysis, the Bayes theorem shown in equation (15) will be used. For example, consider
the BN of the two input OR gate in Figure 86 where X and Y are two root nodes and
the node X OR Y is the leaf node. For diagnostic analysis, let us observe the leaf node
being true, i.e., Pr{X OR Y = True}. Based on this observation on the leaf node we can
determine the change in the root nodes. Let us say, we now want to know the probability
of the node X being true. To find this what we essentially need to know is the probability
of X being true given that X OR Y is true, i.e., Pr{X = True | X OR Y = True}. We can

172

find this value by using the Bayes theorem as follows:

Pr{X = True | X OR Y = True}= Pr{X OR Y = True | X = True}× Pr{X = True}
Pr{X OR Y = True}

=
1× 0.4

0.58
= 0.6897

Similarly, in reliability engineering, if the analysts have the evidence that the system
has failed then based on this evidence the analysts’ belief about the failure probability
of the components can be updated. That means we now have to put an observation on
the leaf node of the BN and work backwards (in the opposite direction of the BN arcs)
towards the root nodes to update probability information of the root nodes. For illustration
the node Top Event of the BN in figure 85 is observed to be true and the probability values
of the root nodes as shown in Table 24 are updated to obtain the values shown in Table
26.

Table 26: Posterior probabilities of root nodes of the BN in Figure 85

Basic Events
Probabilities

State 0 State 1 State 2 State 3 State 4 State 5

A 0 0.2297 0.2162 0.2010 0.1846 0.1685

B 0.5935 0.1162 0.0950 0.0779 0.0642 0.0532

C 0.1006 0.2496 0.2086 0.1743 0.1453 0.1216

4.5 Fuzzy set theory based methodology

The analytical solutions used in HiP-HOPS and the PN and the BN based methods pro-
posed in the last two sections for quantitative evaluation of Pandora temporal fault trees
rely on the exact failure rates of system components. If the exact values of the failure
rates of the basic events are known then HiP-HOPS can evaluate the top event probability.
However, if the exact failure rates of components are not available then the quantitative
analysis of failure behaviour of system needs to be discontinued.

It is not unusual to have components with missing failure rates or probabilities. For
many complex systems, it is often very difficult to estimate the precise failure rate of
components from past operational history due to lack of knowledge, limited statistical
data, and changes in operating environments of the systems (Ferdous et al., 2009). This
situation is especially relevant in the early design phases, when the designer may have to
consider components which have never used before or undetermined components which
have no available failure data, and thus the exact failure rate could not possibly be known.
In such situations, human judgement in linguistic terms, e.g., ‘very low, low, high’ etc.
can be used to determine the uncertain failure rates or probability of components, thus

173

allowing the quantitative analysis under uncertainty. In the literature, fuzzy sets are found
as a widely used method to be used in association with classical fault trees to obtain
uncertain data about the system components and allow quantitative analysis of system
behaviour by means of FTA.

The main idea behind a fuzzy set theory based methodology is to use a fuzzy repre-
sentation of the failure data instead of single value, and then evaluate the top event as a
range of possible values. In this way, some valuable quantitative information about the
dependability of a system can be obtained even if the exact data about the system com-
ponents are not available. To be able to use the fuzzy representation of the failure data
we have to define the fuzzy operators for the temporal fault tree gates. After the temporal
fault tree is obtained using qualitative analysis, the following steps are required to be able
to use the fuzzy representation of failure data in the quantitative analysis:

• Obtain fuzzy possibility of component failure data.

• Use fuzzy possibility values and the fuzzy operators of the TFT gates to obtain
fuzzy top event possibility and importance measures.

• Determine the crisp top event probability from the top event possibility.

The above steps are described one by one in the next subsections.

4.5.1 Process of obtaining fuzzy failure possibility data for system
components

Before we can use the fuzzy set theory based methodology, we need to decide what form
of the fuzzy representation of the numbers we are going to use. After that, we have to
obtain the fuzzy failure possibility of components in the prespecified format. There are
different methods available to obtain fuzzy numbers such as 3σσ expression or expert
knowledge elicitation (Cai, 1996). In this thesis, we use the expert elicitation method to
obtain the fuzzy failure possibility of components. However, the users have the flexibility
to use any other method to obtain the data.

4.5.1.1 Fuzzy numbers to represent the possibilities of Basic events

Fuzzy set theory has been developed to deal with imprecise, vague or partially true in-
formation (Zadeh, 1965). A fuzzy number A can be thought of as a set of real numbers
where each possible value has a weight between 0 and 1. This weight is referred to as
degree of membership defined by a membership function. Let us consider a function
µA(x) : R→ [0,1] as:

µA (x) =

µ l

A(x), f or a1 < x < aM,

µr
A(x), f or aM ≤ x < a2,

0, otherwise.

(25)

174

where a1, a2, aM ∈ R and µ l
A(x), µr

A(x) : R→ [0,1].
The above function highlights that µA(x) has a left region µ l

A(x) and a right region µr
A(x)

connected at maximum, µ l
A(aM) = µr

A(aM). Now we can define a fuzzy number A by the
function in equation (25) which is called the membership function of the fuzzy number
A, and write

A , µA(x) (26)

where , means is defined as.
Among different forms of fuzzy numbers, the triangular fuzzy number (TFN) and the

trapezoidal fuzzy number (TZFN) are widely used in reliability analysis. In this thesis,
we also use the triangular and the trapezoidal forms of the fuzzy number to represent the
possibilities of the basic events. The triangular representation of the basic event failure
possibilities can be denoted by a triplet (a1, a2, a3) and the corresponding membership
function is written as:

µA (x) =

x−a1

a2−a1
, f or a1 < x < a2,

a3− x
a3−a2

, f or a2 ≤ x < a3,

0, otherwise.

(27)

A trapezoidal form of the failure possibility can be denoted by a quadruple (a1, a2, a3, a4),
and the membership function is defined as:

µA (x) =

x−a1

a2−a1
, f or a1 < x < a2,

1, f or a2 ≤ x≤ a3,
a4− x
a4−a3

, f or a3 < x < a4,

0, otherwise.

(28)

If two fuzzy numbers Ã1 and B̃1 are expressed as (a1,a2,a3,a4) and (b1,b2,b3,b4)

then algebraic operations between them are defined as (Tyagi, Pandey and Tyagi, 2010):
Addition:

Ã1⊕ B̃1 = (a1,a2,a3,a4)⊕ (b1,b2,b3,b4) = (a1 +b1,a2 +b2,a3 +b3,a4 +b4) (29)

Multiplication:

Ã1⊗ B̃1 = (a1,a2,a3,a4)⊗ (b1,b2,b3,b4) = (a1×b1,a2×b2,a3×b3,a4×b4) (30)

4.5.1.2 Domain expert evaluation and fuzzification of the opinion

In this evaluation step, a set of qualitative data representing the failure possibility of basic
events are obtained. To obtain this, a set of experts are provided with a set of basic
events from the TFT representing the failure behaviour of the system and the mission time

175

t. The experts will then subjectively evaluate the failure possibility of the components
after the specified mission time. An expert is a person who is familiar with the system
under consideration, has knowledge about the working environment of the system, and
has considerable training and knowledge of the system operation. The experts can be
selected from different fields like design, operation, maintenance, and management of the
system.

Experts are human beings, therefore, they may have different levels of expertise, work-
ing experience and obviously their background may vary widely. The experts make de-
cision about different basic events based on their experiences and their knowledge about
the system. As a result, the opinions obtained from different experts are subjective due
to the varying perceptions of the experts about the system. In a real world scenario, the
opinion of an expert with higher experience and expertise should be given higher priority
over the opinion of the expert with relatively low expertise and experience. To facilitate
this, a weighting factor is used to define the relative quality of the opinion of the experts.

Table 27: Weighting scores for different experts (Rajakarunakaran et al., 2015)

Constitution Classification Score

Professional Position

Professor, GM/DGM, Chief Engineer, Director 5
Assistant Professor, Manager, Factory Inspector 4

Engineer, Supervisors 3
Foreman, Technician, Graduate apprentice 2

Operator 1

Professional Experience
(years)

≥ 20 5
15 to 19 4
10 to 14 3
5 to 9 2
< 5 1

Educational or
Technical qualification

Ph.D or M.Tech. 5
M.Sc or B.Tech. 4
Diploma or B.Sc. 3

ITI 2
Secondary school 1

Due to the complexity of the systems and the vagueness of events, the experts can-
not provide the exact numerical values regarding the failure possibility of components;
instead they give their opinion in linguistic terms. The values of linguistic variables are
words or sentences in natural languages and they play an important role in dealing with
situations which are too complex or vague in nature, i.e., very difficult to describe using
conventional quantitative expressions. For instance, we can consider “failure possibility
of component” as a linguistic variable consisting of fuzzy sets like very low, low, fairly

low, medium, fairly high, high, very high as shown in the example Figure 87.

176

Figure 87: Fuzzy numbers representing linguistic variables

µvery low(x) =

1, if 0≤ x≤ 0.05,
0.2−x
0.15 , if 0.05 < x < 0.2,

0, if x≥ 0.2.

µlow(x) =

x−0.05

0.15 , if 0.05 < x≤ 0.2,
0.35−x

0.15 , if 0.2 < x < 0.35,

0, otherwise.

µ f airly low(x) =

x−0.2
0.15 , if 0.2 < x≤ 0.35,

0.5−x
0.15 , if 0.35 < x < 0.5,

0, otherwise.

µmedium(x) =

x−0.35

0.15 , if 0.35 < x≤ 0.5,
0.65−x

0.15 , if 0.5 < x < 0.65,

0, otherwise.

µ f airly high(x) =

x−0.5
0.15 , if 0.5 < x≤ 0.65,

0.8−x
0.15 , if 0.65 < x < 0.8,

0, otherwise.

µhigh(x) =

x−0.65

0.15 , if 0.65 < x≤ 0.80,
0.95−x

0.15 , if 0.8 < x < 0.95,

0, otherwise.

µvery high(x) =

0, if x≤ 0.80,
x−0.8
0.15 , if 0.8 < x < 0.95,

1, if 0.95≤ x≤ 1.

(31)

177

Once an expert provides his/her opinion about the failure possibility of an event in lin-
guistic terms, then this must be mapped to corresponding quantitative data in the form of a
membership function of fuzzy numbers. As mentioned earlier, the membership functions
could be of triangular or trapezoidal form. For example, Figure 87 shows membership
functions of the linguistic variables in the triangular form and their corresponding equa-
tions are shown in equation (31). The system analysts have to define the failure possibility
distribution (values for membership functions) for different linguistic variables based on
the nature of the system they want to analyse.

However, this is a subjective task and results may vary from analyst to analyst. Ross
(2004a,b) described six different methods — intuition, inductive reasoning, inference,
genetic algorithms, neural networks, and rank ordering to form membership functions of
fuzzy sets. Analysts can choose any of the above mentioned methods to define the values
for membership functions of the failure possibility of the basic events.

4.5.1.3 Aggregation of the opinion of the experts

In the domain expert evaluation process, failure possibility data for each basic event is ob-
tained from a set of M different experts. Since each expert may have different view about
an event, therefore their opinion about the event may be different. In order to achieve an
agreement among the conflicted views of the experts, their opinion should be aggregated
into a single opinion. The aggregation could done by simply taking the arithmetic aver-
age of different opinions, but it will give all the experts equal weight and thus overlooks
the knowledge, expertise and experience of the experts. On the other hand, if we take
the weighted average of the opinions to obtain a single opinion then the opinion of the
experienced experts (with higher score) would dominate the result, and consequently the
opinion of the less experienced experts (with a low score) will not be properly reflected.
To ensure that the expertise and experience of experts are taken into account and at the
same time the opinions of the less experienced experts are properly accommodated in the
aggregated opinion. The aggregation process is done in six different steps and the steps
are described below:

Step 1: Similarity Measures
In this step, a matrix known as the similarity matrix (SM) is obtained in the following
form by calculating similarities between the opinions of different experts.

SM =

1 s12 s13 . . . s1M

s21 1 s23 . . . s2M
...

...
...

sM1 sM2 sM3 . . . 1

To determine similarity between the opinions of two experts, we use the concept described
by Hsu and Chen (1996). Hsu and Chen (1996) used the following equation to obtain the

178

similarity between two fuzzy sets.

S(Ãi, Ã j) =

∫
x
(
min{µÃi

(x),µÃ j
(x)}

)
dx∫

x
(
max{µÃi

(x),µÃ j
(x)}

)
dx

(32)

where S(Ãi, Ã j) is known as the similarity measure function introduced by Zwick, Carl-
stein and Budescu (1987) and Ãi, and Ã j are the opinion of expert i and j respectively. The
formula in equation (32) calculates the ratio of the consistent area (overlapped area) to the
whole area for any forms of fuzzy set. The overlapping between two expert opinions (in
triangular form) is shown in Figure 88.

Figure 88: Overlapping between two triangular fuzzy sets

As seen in the matrix SM, the diagonal entries are 1, because these entries represent
S(Ãi, Ãi), i.e., similarity of one expert opinion with itself. If two opinions do not overlap
at all, then the similarity between them would be 0. As mentioned earlier, in this thesis,
we will use only the triangular and trapezoidal forms of the fuzzy set, therefore we have
to derive specific formulae for different cases of triangular and trapezoidal fuzzy sets with
the help of the formula in equation (32).

Let us first derive the formula for similarity measures for two triangular fuzzy sets.
If two experts Exi and Ex j provide their opinion as triangular fuzzy numbers Ãi and Ã j

respectively, then four possible scenarios can occur:

1. The two sets completely overlap each other.

2. Two sets do not overlap at all.

3. Two sets partially overlap where Ãi starts before Ã j (see Figure 89a).

4. Two sets partially overlap where Ã j starts before Ãi (see Figure 89b)

In the first scenario, both the sets (opinions) are same, i.e., similarity between them is 1.
In the second case, as the sets do not overlap at all, there is no similarity between them.
In the other two cases, the opinions partially overlap and the overlapped area is another
triangular fuzzy set.

179

(a) Ãi precedes Ã j (b) Ã j precedes Ãi

Figure 89: Overlapping between two opinions in triangular form

Let us consider the opinion of two experts Exi and Ex j as Ãi = {ai,bi,ci} and Ã j =

{a j,b j,c j} then the similarity between the opinions can be calculated as follows:

1. If ci ≤ a j or c j ≤ ai then
S(Ãi, Ã j) = 0. (33)

2. If ai ≤ a j and ci > a j then

S(Ãi, Ã j)=
(ci−a j)

2

ai(bi−b j− ci)+a j(ai +bi−b j− c j)+bi(−ci− c j)+ c j(b j + ci)+b jci
(34)

3. If a j ≤ ai and c j > ai then

S(Ãi, Ã j)=
(c j−ai)

2

a j(b j−bi− c j)+ai(a j +b j−bi− ci)+b j(−c j− ci)+ ci(bi + c j)+bic j
(35)

(a) Triangular overlap
(height < 1)

(b) Triangular overlap
(height = 1)

(c) Trapezoidal overlap

Figure 90: Overlapping between two opinions in trapezoidal form where Ãi precedes Ã j

If we use trapezoidal fuzzy sets, then four scenarios can occur like the case of trian-
gular fuzzy sets. However, in the last two scenarios, depending on how we defined the
membership functions for the linguistic variables, the overlapped area could be either a
triangular or a trapezoidal fuzzy set. Figure 90 shows three possible overlapping scenar-
ios between the opinions of two experts. In all these scenarios, in terms of values, the
opinion of expert Exi precedes the opinion of expert Ex j. Similar to Figure 90, three

180

other scenarios are possible where the opinion of expert Ex j would precede the opinion
of expert Exi.

Now, if we consider the opinion of two experts Exi and Ex j as trapezoidal fuzzy sets
as Ãi = {ai,bi,ci,di} and Ã j = {a j,b j,c j,d j} then the similarity between the opinions can
be calculated as:

1. If di ≤ a j or d j ≤ ai then
S(Ãi, Ã j) = 0. (36)

2. If a j < di and b j > ci then

S(Ãi, Ã j) =
(di−a j)

2

(b j− ci)(di−a j)+(di− ci +b j−a j)(−ai + ci−bi +d j + c j−b j)
(37)

3. If ai ≤ a j and b j ≤ ci then

S(Ãi, Ã j) =
di−a j + ci−b j

−ai−bi +d j + c j
(38)

4. If ai < d j and bi > c j then

S(Ãi, Ã j) =
(d j−ai)

2

(bi− c j)(d j−ai)+(d j− c j +bi−ai)(−a j + c j−b j +di + ci−bi)
(39)

5. If a j ≤ ai and bi ≤ c j then

S(Ãi, Ã j) =
d j−ai + c j−bi

−a j−b j +di + ci
(40)

Step 2: Average agreement calculation
Once the similarity matrix is obtained, then the average agreement, AA(Exi), for each of
the experts is obtained as:

AA(Exi) =
1

M−1

M

∑
j=1
j 6=i

SM(i, j) (41)

Step 3: Relative agreement calculation
After the average agreement for all the experts are calculated, then the relative agreement,
RAD(Exi), for all the experts is calculated as:

RAD(Exi) =
AA(Exi)

∑
M
i=1 AA(Exi)

(42)

Step 4: Weighting factor calculation
Weighting scores for experts are defined in Table 27 based on their professional positions,

181

years of working experience and their educational qualifications. As a result, when we
select M different experts, each of them may have different weighting score (WS). For
example, if we choose a professor with a PhD degree and 20 years of work experience,
then his/her weighting score would be 15 (5+5+5=15). On the other hand, the weighting
score for an engineer with a MSc degree and 11 years of work experience would be 10
(3+3+4). So the weighting factor for each of the experts is calculated as:

WF(Exi) =
WS(Exi)

∑
M
i=1WS(Exi)

(43)

where WS(Exi) is the weighting score of expert i and WF(Exi) is weighting factor for
expert i.

Step 5: Aggregation weight calculation
Now we have the relative agreement degree (RAD(Exi)) and weighting factor (WF(Exi))
for all of the experts calculated. To make a balance between relative agreement and
weighting factor, we calculate aggregation weight as follows:

AW (Exi) = α ·WF(Exi)+(1−α)RAD(Exi) (44)

where α (0 ≤ α ≤ 1) is a relaxation factor which represents the importance of WF(Exi)

over RAD(Exi). If α is set to zero then no importance is paid on the WF(Exi); on the
other hand if α is set to 1 then no importance is paid to RAD(Exi). If no importance is
paid to RAD(Exi) by setting α to 1, then steps 1 to 3 are not required.

Step 6: Aggregation of opinions
This is the step where the opinions of the experts are aggregated to obtain a single opinion.
The aggregation is performed using the following formula.

Ã =
M

∑
i=1

(AW (Exi)⊗ Ãi) (45)

where Ã is the aggregated opinion (a fuzzy set) and Ãi is the opinion of expert i.

4.5.2 Defuzzication and top event probability calculation

As the fuzzy possibilities of basic events are used in the quantification of the TFT, the
possibilities of the minimal cut sequences as well as the top event possibility would be
obtained as fuzzy numbers. In order to provide a single possibility instead of a range
of possibilities, we need to map the fuzzy failure possibilities to a crisp value known as
the fuzzy failure possibility score (FFPS) through defuzzification. A number of methods
(Ross, 2004b; Wang, 1997) e.g., weighted average method, the centre of area method,
mean max membership method, the centre of maxima method, the mean of maxima

182

method, centroid method, and so on are available to perform the defuzzication opera-
tion. For simplicity, in this thesis, we use the centre of area method for defuzzification.
Defuzzication of a triangular fuzzy number, Ã = (a1,a2,a3) can be obtained using the
following equation.

X =

∫
xµÃ(x)dx∫
µÃ(x)dx

=

∫
a2

a1

x−a1

a2−a1
x dx+

∫
a3

a2

a3− x
a3−a2

x dx∫
a2

a1

x−a1

a2−a1
dx+

∫
a3

a2

a3− x
a3−a2

dx
=

1
3
(a1 +a2 +a3) (46)

A trapezoidal fuzzy number, Ã = (a1,a2,a3,a4) can be defuzzified as follows:

X =

∫
a2

a1

x−a1

a2−a1
x dx+

∫
a3

a2
xdx+

∫
a4

a3

a4− x
a4−a3

x dx∫
a2

a1

x−a1

a2−a1
dx+

∫
a3

a2
dx+

∫
a4

a3

a4− x
a4−a3

dx

=
(a4 +a3)

2−a4a3− (a1 +a2)
2 +a1a2

3(a4 +a3−a2−a1)

(47)

Using equations (46) and (47) we can obtain the top event possibility as a crisp value.
However, in classical FTA, the top event is quantified as a single probability value. So, we
have to map the possibility value into a probability value. Onisawa (1988) has proposed
a function to convert a crisp failure possibility value into a probability value. Failure
probability from failure possibility can be obtained as follows.

FP =

1

10K , FFPS 6= 0,

0, FFPS = 0.
(48)

where FP is failure probability, FFPS is fuzzy failure possibility score and

K =
(1−FFPS

FFPS

)1
3 ×2.301.

4.5.3 Fuzzy operators for TFT gates

Once the fuzzy failure possibilities of all the basic events are obtained, then we can use
these values to quantify the top event possibility. However, we first need to define the
fuzzy operators for all the TFT gates. One thing to note is that all the fuzzy operators for
the TFT gates are defined for exponential distribution of failure rates and for a continuous
time domain.

4.5.3.1 Fuzzy operators for the Boolean gates

Fuzzy operator for the AND gate:
The outcome of a AND gate becomes true when all the input events are true. Therefore,

183

the output probability of a AND gate with N inputs can be obtained as a probability of all
N inputs occurring. If there are N statistically independent input events in a AND gate
at time t then the probability of the output of the AND gate is (Henley and Kumamoto,
1981):

Pr{E1∧E2∧E3∧ ·· · ∧En−1∧En}(t) =
N

∏
i=1

Pr{Ei}(t) (49)

where Pr{Ei}(t) is the failure probability of event Ei at time t.
Now, we do not have the probability values for the basic events, rather we have fuzzy

possibility values for the basic events. So, if the failure possibility of event i is presented
by a triangular fuzzy number as Pi (t) = {ai (t) ,bi (t) ,ci (t)} , then the AND gate fuzzy
operator for the triangular representation of the failure possibilities can be defined as:

PANDF = ANDF
(
{P1(t),P2(t), · · · ,PN(t)

}
=

N

∏
i=1

Pi(t)

=

{ N

∏
i=1

ai(t),
N

∏
i=1

bi(t),
N

∏
i=1

ci(t)
} (50)

Similarly for the trapezoidal representation of the failure possibilities, Pi (t)= {ai (t) ,bi (t) ,

ci (t) ,di (t)}, the AND gate fuzzy operator can be defined as:

PANDF = ANDF
{

P1(t),P2(t), · · · ,PN(t)
}
=

N

∏
i=1

Pi(t)

=

{ N

∏
i=1

ai(t),
N

∏
i=1

bi(t),
N

∏
i=1

ci(t),
N

∏
i=1

di(t)
} (51)

Fuzzy operator for the OR gate:
In HiP-HOPS, the OR gates are usually quantified using the Esary-Proschan formula
(Esary and Proschan, 1963). According to the formula, if there are N input events in
an OR gate at time t then the probability of the output of the OR gate is:

Pr{E1∨E2∨E3∨·· ·∨En−1∨En}(t) = 1−
N

∏
i=1

(
1−Pr{Ei}(t)

)
(52)

In the absence of the failure probability, if the failure possibility of the event Ei is pre-
sented by a triangular fuzzy number as Pi (t) = {ai (t) ,bi (t) ,ci (t)} , then the OR gate
fuzzy operator for the triangular representation of the failure possibilities can be defined
as:

PORF = ORF
{

P1(t),P2(t), · · · ,PN(t)
}
= 1−

N

∏
i=1

(
1−Pi(t)

)
=

{
1−

N

∏
i=1

(
1−ai(t)

)
,1−

N

∏
i=1

(
1−bi(t)

)
,1−

N

∏
i=1

(
1− ci(t)

)} (53)

184

For trapezoidal representation of the failure possibilities, the OR gate fuzzy operator is
defined as:

PORF = ORF
{

P1(t),P2(t), · · · ,PN(t)
}
= 1−

N

∏
i=1

(
1−Pi(t)

)
=

{
1−

N

∏
i=1

(
1−ai(t)

)
,1−

N

∏
i=1

(
1−bi(t)

)
,1−

N

∏
i=1

(
1− ci(t)

)
,1−

N

∏
i=1

(
1−di(t)

)}
(54)

4.5.3.2 Fuzzy operator for the Temporal gates

As seen from equations (9) and (10) that to obtain probability of the PAND and the POR
gate we need to know the failure rate of components. However, at present we have the
failure possibility of components in the fuzzy form. So, we have to obtain the fuzzy
failure rate of components from the fuzzy failure possibility of the components. This can
be done in two steps. In the first step, the fuzzy possibility will be converted to fuzzy
probability (FP) using equation (48).

In the second step, the fuzzy failure rate can be obtained using the following equation.

λ =
− ln(1−FP)

t
(55)

where λ is the failure rate and t is the mission time.

Fuzzy operator for the PAND gate:
In a minimal cut sequence (MCSQ), if there are N statistically independent input events
in a PAND gate and they occur sequentially, i.e., event 1 occurs first, then event 2,· · · ,
then event N–1, and finally event N, then the fuzzy probability of that PAND gate can be
defined using equation (9) as:

PPANDF = PANDF{λ1,λ2,λ3, · · · ,λn}(t) =
N

∏
i=1

λi

N

∑
k=0

[
e(ukt)

∏
N
j=0
j 6=k

(uk−u j)

]
(56)

where λi is the fuzzy representation of failure rate, u0 = 0 and uk =−∑
k
j=1 λ j f or k > 0.

If the failure rate of an event Ei is represented by a triangular fuzzy number as (li,mi,ni),then
the fuzzy probability of the outcome of the PAND gate can be defined as:

PPANDF =

{
N

∏
i=1

li
N

∑
k=0

[
e(ukt)

∏
N
j=0
j 6=k

(uk−u j)

]
,

N

∏
i=1

mi

N

∑
k=0

[
e(ukt)

∏
N
j=0
j 6=k

(uk−u j)

]
,

N

∏
i=1

ni

N

∑
k=0

[
e(ukt)

∏
N
j=0
j 6=k

(uk−u j)

]} (57)

Similarly for the trapezoidal representation of the failure rates, λi = (li,mi,ni,oi), the

185

fuzzy probability of the outcome of the PAND gate can be defined as:

PPANDF =

{
N

∏
i=1

li
N

∑
k=0

[
e(ukt)

∏
N
j=0
j 6=k

(uk−u j)

]
,

N

∏
i=1

mi

N

∑
k=0

[
e(ukt)

∏
N
j=0
j 6=k

(uk−u j)

]
,

N

∏
i=1

ni

N

∑
k=0

[
e(ukt)

∏
N
j=0
j 6=k

(uk−u j)

]
,

N

∏
i=1

oi

N

∑
k=0

[
e(ukt)

∏
N
j=0
j 6=k

(uk−u j)

]} (58)

If there are 2 input events in a PAND gate, then according to Merle et al. (2010), equation
(56) reduces to:

PPANDF =
λ2

λ1 +λ2
e−(λ1+λ2)t− e−λ2t +

λ1

λ1 +λ2
(59)

In this case, if the failure rates of the two events are represented as λ1 = (l1,m1,n1,o1)

and λ2 = (l2,m2,n2,o2) then the fuzzy probability of the PAND gate can be written as:

PPANDF =

{
l2

l1 + l2
e−(l1+l2)t− e−l2t +

l1
l1 + l2

,

m2

m1 +m2
e−(m1+m2)t− e−m2t +

m1

m1 +m2
,

n2

n1 +n2
e−(n1+n2)t− e−n2t +

n1

n1 +n2
,

o2

o1 +o2
e−(o1+o2)t− e−o2t +

o1

o1 +o2

}
(60)

Fuzzy operator for the POR gate:
For any minimal cut sequence of N statistically independent events in a POR gate with the
expression E1 oE2 oE3 o · · · oEN−1 oEN , and the fuzzy failure rates λ1,λ2,λ3, · · · ,λN−1,λN

respectively, then the fuzzy probability of the POR gate can be defined using equation
(10) as:

PPORF = PORF{λ1,λ2,λ3, · · · ,λn}(t) =
λ1

(
1−
(
e−(∑

N
i=1 λi)t

))
∑

N
i=1 λi

(61)

If the failure rate of event Ei is represented by a triangular fuzzy number as λi = (li,mi,ni),
then the fuzzy probability of the outcome of the POR gate can be defined as:

PPORF =

{
l1
(

1−
(
e−(∑

N
i=1 li)t

))
∑

N
i=1 li

,
m1

(
1−
(
e−(∑

N
i=1 mi)t

))
∑

N
i=1 mi

,

n1

(
1−
(
e−(∑

N
i=1 ni)t

))
∑

N
i=1 ni

} (62)

Similarly, for the trapezoidal representation of the failure rates, λi = (li,mi,ni,oi), of basic

186

events the fuzzy probability of the POR gate can be written as:

PPORF =

{
l1
(

1−
(
e−(∑

N
i=1 li)t

))
∑

N
i=1 li

,
m1

(
1−
(
e−(∑

N
i=1 mi)t

))
∑

N
i=1 mi

,

n1

(
1−
(
e−(∑

N
i=1 ni)t

))
∑

N
i=1 ni

,
o1

(
1−
(
e−(∑

N
i=1 oi)t

))
∑

N
i=1 oi

} (63)

As mentioned in Section 4.2, when we consider the events as statistically independent
and the mission time as continuous, then the probability of two or more events occurring
exactly at the same time is zero, i.e., in the continuous time domain the probability of
SAND gate with N statistically independent event is zero. As the probability of SAND
gate equates to zero for the above assumption, a fuzzy operator for the SAND gate is not
defined.

We can see that the fuzzy operators for the Boolean gates use the failure possibility
of events as input and produce the output as a fuzzy possibilities. On the other hand, the
fuzzy operators for the temporal gates use the fuzzy failure rate as input and produce the
output as fuzzy probability. As the top event is represented as the logical OR of different
MCSQs, we need to convert the fuzzy probability values obtained by the temporal gates
into fuzzy possibility values. Failure possibility from failure probability can be obtained
using equation (48) as follows:

FFPS =

1

1+
(K

2.301

)3 , if FP 6= 0.

0, if FP = 0.

(64)

where FFPS is fuzzy failure possibility score, FP is failure probability, and

K = log10

(1
FP

)
.

4.5.4 Importance Measures in Fuzzy Set Theory based Approach

The evaluation of the contribution of different basic events to the top event probability is
very important in identifying the critical components. The importance measures used in
the traditional probabilistic approaches are not applicable in the case of fuzzy set theory
based approaches because in this case basic event failure data is represented as fuzzy
possibilities rather than crisp probabilities. So we have to define new importance measure
that are suitable for the fuzzy set theory based methodology. Different methodologies
(e.g., (Guimarees and Ebecken, 1999; Suresh, Babar and Raj, 1996; Tyagi, Pandey and
Kumar, 2011)) have already been proposed to quantify fuzzy importance measures.

In this thesis, we calculate the fuzzy importance of a basic event by taking the differ-
ence between the fuzzy top event possibilities with and without the presence of the basic
event. Let P̃Ti=1 be the fuzzy failure possibility of the top event with the basic event Ei

187

fully unavailable, i.e., fuzzy possibility of the basic event Ei is considered as {1, 1, 1} or
{1, 1, 1, 1} in triangular or trapezoidal form. On the other hand, P̃Ti=0 is the failure pos-
sibility of the top event when the possibility of basic event Ei is either {0, 0, 0} or {0, 0,
0, 0}, i.e., the basic event Ei is fully available. In conventional approaches, the Birnbaum
importance is obtained by taking the difference between P̃Ti=1 and P̃Ti=0 where P̃Ti=1 and
P̃Ti=0 are crisp values. However, in this case, P̃Ti=1 and P̃Ti=0 are fuzzy numbers, hence,
we need to find distance between these two numbers to find the fuzzy importance of a
basic event. The distance between two fuzzy numbers can be obtained using Euclidean or
Hamming distance (Deza and Deza, 2009). In this thesis, we use the Euclidean distance
to obtain the distance between two fuzzy numbers. As a result, the fuzzy importance
measure (FIM) for a basic event Ei is defined as:

FIM(Ei) = ED[P̃Ti=1, P̃Ti=0] (65)

where ED[P̃Ti=1, P̃Ti=0] is the Euclidean distance between P̃Ti=1 and P̃Ti=0.
If P̃Ti=1 = {a1

1, a2
1 ,a3

1} and P̃Ti=0 = {a1
0, a2

0 ,a3
0} then

FIM(Ei) = ED[P̃Ti=1, P̃Ti=0] =
√
(a11−a10)2 +(a21−a20)2 +(a31−a30)2 (66)

Using the above equation we can calculate importance measure for all the basic events
and rank them in accordance with their importance index. For two basic events Ei and
E j, if FIM(Ei) > FIM(E j) then the basic event Ei will have greater importance then the
basic event E j.

4.6 Case Study

This section describes the functionality of a fault tolerant fuel distribution system of a ship
and demonstrates how the quantitative evaluation methods for Pandora temporal fault
trees proposed in the earlier sections can be used to evaluate the reliability of such a
dynamic system with uncertainty.

4.6.1 Fuel Distribution System of a Ship

The case study of the fault tolerant fuel distribution system of a ship was first used in
(Edifor et al., 2012) but reworked in this thesis, and shown in Figure 91.
The system consists of:

• Two identical fuel tanks to store fuel and they are connected to other system com-
ponents using polythene piping.

• Three unidirectional fuel pumps to provide fuel to the engines from the tanks.

188

Figure 91: Fault Tolerant fuel Distribution System

• Four valves that can activate some paths or block some paths according to the re-
quirements of the system in different situations. These valves are software con-
trolled.

• Two flowmeters to measure the rate of fuel flow through the pipes and these mea-
surements are used in deciding the paths to activate and deactivate to maintain the
proper fuel flow to the engines.

• Two engines to provide thrust for the ship and are responsible for the manoeuvra-
bility of the ship.

• A central controller that controls different valves to activate and deactivate different
paths to maintain the proper fuel flow to the engines.

The primary functions of the system are storing fuel in the tanks during refuelling and
distributing fuel to the engines during the consumption mode. In the consumption mode,
the engines consume fuel to produce mechanical energy and the power of the engines are

189

transferred to the propellers. The propellers produce thrust for the ship and it causes the
ship to move. If for some reason the engines fail to operate, then the propellers would
not get the mechanical power to produce the thrust for the ship, thus the manoeuvrability
of the ship will be reduced. That means the proper manoeuvrability of the ship depends
on the proper functionality of the engines which is dependent on the proper fuel flows
to them. The system is fault tolerant in the sense that there are two different paths for
fuel flow to each of the engines and if one of the paths become unavailable then the
alternative path can be used to ensure fuel flow to the engines. The Controller is the
central component of the system and it is responsible for maintaining proper fuel flow
to the engines. It does this by activating and deactivating different paths of fuel flow by
activating the spare pump and by opening or closing different valves according to the fuel
requirements.

Under functional conditions, there are two primary fuel flows: Pump 1 (P1) provides
fuel to Engine 1 from Tank 1, and Pump 2 (P2) provides fuel to Engine 2 from Tank 2.
Flowmeters observe the rate of fuel flow to each engine and report it back to the Controller.
On detecting inadequate fuel flow to either of the engine, the Controller activates the
standby Pump 3 (P3) to introduce dynamic behaviour to this system and redirects fuel
flow through valves V1-V4 accordingly. For instance, if a problem is detected with the
fuel flow to Engine 1, then the Controller can redirect fuel flows to Engine 1 through Pump
3 instead of Pump 1 by opening Valves 1 and 3 (V1 and V3) and activating Pump 3. In
contrast, if inadequate fuel flow to Engine 2 is detected then Valves 2 and 4 (V2 and V4)
will be opened instead of V1 and V3 and Pump 3 will be activated. Consequently, P3 can
replace either P1 or P2, but not both. A failure of both P1 and P2 will result in at least one
engine being starved of fuel; e.g., if P1 fails and P3 replaces it, then P3 will be unavailable
for replacing P2 if P2 subsequently fails. This results in degraded thrust functionality for
the ship and with one engine working only the manoeuvrability and speed of the ship will
be reduced.

4.6.2 Qualitative Temporal Fault Tree Analysis of the System

Before quantitative analysis can proceed, the qualitative information about the failure
behaviour of the system must be obtained. Pandora temporal gates can be used to model
the dynamic behaviour of the above mentioned system and helps to correctly capture the
sequences of events that can lead to failure. For simplicity, internal failure of the engines
themselves is left out of the scope of this analysis. The Pandora TFT for the failure
behaviour of Engine 1 of the fuel distribution system was constructed via model-based
synthesis from Pandora descriptions of local failure logic of components.

Failure modes of the different components of the systems are abbreviated and shown
in Table 28.

At the top level, the causes of omission of fuel to Engine1 and 2 can be expressed
using temporal gates as follows:

190

Table 28: List of Basic Events for the fuel distribution system

Basic Events Description

P1 Failure of Pump 1

P2 Failure of Pump 2

P3 Failure of Pump 3

V1 Failure of Valve 1 (e.g. blockage or stuck closed)

V2 Failure of Valve 2 (e.g. blockage or stuck closed)

V3 Failure of Valve 3 (e.g. blockage or stuck closed)

V4 Failure of Valve 4 (e.g. blockage or stuck closed)

E1 Omission of fuel to Engine 1

E2 Omission of fuel to Engine 2

S1 Failure of Flowmeter sensor 1 (e.g. sensor readings stuck high)

S2 Failure of Flowmeter sensor 2

CF Failure of Controller

O-Engine1 = ((O-Pump1 o O-Pump2)∧ O-Valve3)
∨ (O-Pump2 C O-Pump1)

∨(O-Pump2 & O-Pump1)

O-Engine2 = ((O-Pump2 o O-Pump1)∧ O-Valve4)
∨ (O-Pump1 C O-Pump2)

∨(O-Pump1 & O-Pump2)

As O-Engine1 and O-Engine2 are caused by the same events in the opposite
sequences, only the failure behaviour of Engine 1 will be considered here. Omission of
fuel to Engine1 (O-Engine1) has three possible causes, depending on the sequence of
events:

1. If there is no fuel from Pump 1 (O-Pump1), then Pump 3 replaces it, as long as
Pump 2 has not failed first; this precondition can be represented using the POR
gate. Thus in this situation, an omission of fuel can be caused by omission of fuel
from both Pump 1 and Pump 3 (via Valve 3).

2. If Pump 2 fails first, then Pump 3 replaces it and will be unavailable to replace
Pump 1 if it also fails. Thus sequential failure of Pump 2 and then Pump 1 will lead
to an omission of fuel to Engine 1 (represented using the PAND gate).

3. If both Pump 2 and Pump 1 fail at the same time (represented with the SAND
gate), then Pump 3 can only replace one of them. Behaviour in this situation is

191

non-deterministic (as Pump 3 may replace either Pump 1 or Pump 2, but not both),
and thus as a pessimistic estimation, simultaneous failure of Pump 1 and Pump 2 is
given as a cause of failure for both engines.

The expanded fault tree expressions for the failure of Engine 1 are as follows:

E1 = (P1∨P1oP2oCFoV1)o (P2∨P2oP1oCFoV2)∧(V3 ∨ P3 ∨ (V1CP1oP2oCF)
∨ (V1&P1oP2oCF) ∨ (S1CP1oP2) ∨ (CFCP1oP2) ∨ (S1&P1oP2)
∨ (CF&P1oP2) ∨ (V2CP2oP1oCF) ∨ (V2&P2oP1oCF) ∨ (S2CP2oP1)
∨ (CFCP2oP1) ∨ (S2&P2oP1) ∨ (CF&P2oP1)) ∨ (P2∨P2oP1oCFoV2)
C (P1∨P1oP2oCFoV1) ∨ (P2∨P2oP1oCFoV2)&(P1∨P1oP2oCFoV1)

After minimising the above expressions using Pandora temporal laws, the resulting
minimal cut sequences to cause failure of Engine 1 are shown in Table 29.

Table 29: Minimal Cut Sequences to cause the failure of Engine 1

Minimal Cut Sequence Description

(P1 oP2)∧P3
Failure of Pump 1 before Pump 2 (if Pump 2 fails at all)

and failure of Pump 3

(P1 oP2)∧V 1
Failure of Pump 1 before Pump 2 (if Pump 2 fails at all)

and failure of Valve 1

(P1 oP2)∧V 3
Failure of Pump 1 before Pump 2 (if Pump 2 fails at all)

and failure of Valve 3

(S1CP1) oP2
Failure of Flowmeter 1 before Pump 1, as long as Pump 2

has not failed yet

(S1&P1) oP2
Simultaneous failure of Flowmeter 1 and Pump 1, as long

as Pump 2 has not failed yet

(CF CP1) oP2
Failure of Controller before Pump 1, as long as Pump 2

has not failed yet

(CF&P1) oP2
Simultaneous failure of Controller and Pump 1, as long

as Pump 2 has not failed yet

P2CP1 Failure of Pump 2 before Pump 1

P1&P2 Simultaneous failure of both Pump 1 and Pump 2

As mentioned earlier, it is assumed that all events are independent and the proba-
bility of two independent events occurring at the same time is effectively 0, therefore
MCSQs containing SAND gates will not be considered during the quantitative analysis.
Thus for this example system, minimal cut sequences: (S1&P1)oP2, (CF&P1)oP2 and

192

(P1&P2) are not considered during the reliability quantification of the example system.
The Pandora TFT of the failure behaviour of the fault tolerant fuel distribution system is
shown in Figure 92.

Figure 92: TFT of failure behaviour of Engine 1

4.6.3 Quantitative Analysis using the PN based Method

In order to quantify the Pandora TFT of Figure 92 to evaluate the reliability of the fuel dis-
tribution system using the PN based method, we first need to define the exponential failure
rates of the components. The failure rates of the components involved in the minimal cut
sequences (see Table 29) are shown in Table 30.

The Pandora TFT of the failure behaviour of the fuel distribution system is translated
into Petri Net model following the procedures described in Section 4.3, and shown in
Figure 93. As seen in this figure, timed transitions (white rectangles) are characterised
by exponential firing rates based on the failure rate of the components they are connected
with. To obtain the system unreliability from the PN model we need to simulate the model.

193

For simulation, we need to define the mission time and the step size. The PN model was
created and simulated using the ORIS tool (Horváth et al., 2012). The system unreliability
was calculated for mission times ranging from 1000 hours to 20000 hours. The step size
does not have any effect on the system unreliability but it controls the execution time
(simulation speed). For this reason, we have tried different step sizes to observe the
variations in execution time and execution time is taken as an average over 10 runs for
each mission time.

Table 30: Failure rates of components of fuel distribution system

Component Failure rate/hour (λ)

Pump 1 3.2 E-5

Pump 2 3.2 E-5

Pump 3 3.2 E-5

Valve1 1.0 E-5

Valve3 6.0 E-6

Flowmeter Sensor 2.5 E-6

Controller 5.0 E-7

Figure 93: Petri Net model of the failure behaviour of the fuel distribution system

194

Table 31: Unreliability of the fuel distribution system and average execution time with
different step sizes (SS)

Mission Time (Hours) Unreliability
Average Execution Time (seconds)

SS=20 SS=250 SS=500 SS=1000

1000 0.0017 8.0 1.0 1.0 1.0

2000 0.0066 64.8 9.0 6.0 5.0

3000 0.0143 209.7 24.0 16.0 12.1

4000 0.0242 378.6 39.0 25.2 17.2

5000 0.0362 560.8 56.0 33.5 22.4

6000 0.0500 773.8 74.4 43.6 28.4

7000 0.0651 970.8 90.4 52.4 33.5

8000 0.0815 1146.7 104.6 60.2 37.5

9000 0.0989 1322.6 119.6 68.3 40.8

10000 0.1170 1501.0 134.9 75.5 45.0

11000 0.1359 1706.7 152.2 83.4 48.8

12000 0.1552 1858.4 166.6 89.3 52.5

13000 0.1749 2032.8 181.6 96.5 55.7

14000 0.1948 2204.4 196.7 103.4 59.3

15000 0.2149 2365.4 211.1 110.1 62.1

16000 0.2351 2520.8 223.2 116.5 65.4

17000 0.2552 2692.3 236.7 123.4 69.2

18000 0.2753 2874.4 248.7 130.1 72.3

19000 0.2952 3030.5 260.4 136.6 75.8

20000 0.3150 3182.3 270.8 143.3 79.4

The results showing the system unreliability with different mission times and the av-
erage execution time with four different step sizes are shown in Table 31. Different other
values of step size were also used to calculate the average execution time and the graph
in Figure 94 shows the trends in the change in the execution time with the change in the
mission time and step size. As seen from the results in Table 31 and graph in Figure 94,
in the PN based method, both mission time and step size have an effect on the average
execution time. We can see that, as the value of mission time increases, the execution
time also increases linearly. This is an expected behaviour because when the simulation
runs it divides the mission time into several small intervals based on the step size and it
continues accumulating the time to simulate each small interval to obtain a single value

195

for the whole mission time at the end of the simulation. For this reason, by increasing
mission time we are adding some extra intervals, so the simulation will take some extra
time for those extra intervals. For example, if an instance of the simulation divides the
mission time into n intervals and each interval takes t1 seconds on average to simulate,
then the total simulation time would be t = n× t1. Now if we increase the mission time
by adding m extra intervals then the simulation time will become t = n× t1 +m× t1, i.e.,
t = (n+m)× t1. This also implies that the more steps the simulation will take the more
time it will take to complete. That means the smaller the step size, the higher the total
simulation time, which is also seen in the graph in Figure 94. As the step size does not
have any effect on the system unreliability, we can choose the maximum possible step
size to keep the simulation time minimum. For this case study, as we wanted to know the
system unreliability in every 1000 hours up to 20000 hours, we can choose the maximum
step size as 1000.

Figure 94: Changes in average execution time with the change of value of mission time
and step size

One important aspect of quantitative reliability analysis of system designs is to iden-
tify the critical components so that the designers can decide where to focus their efforts
on those parts of the system that require most improvement to satisfy the requirements,
e.g., by applying fault tolerance strategies. The importance measures of the components
of the fuel distribution system were calculated according to the procedure described in
section 4.3.5, and shown in Table 32. The importance of the components were evaluated
for 20000 hours of mission time.

From Table 32, it can be seen that the highest contribution to the top event is from the
Pump 1 (P1) and the lowest contribution is from the Controller (CF). So, for this particular
top event the most critical component is Pump 1 and the least critical is the Controller.
The second most critical is the Pump 3 (P3) and Valve 1 (V1) is the next. Although, all

196

Table 32: Importance ranking for the basic events of the fuel distribution system according
to the PN based method

Basic Events (BEi) Pr{TE} Pr{TE|BEi=0} IM (BEi) Rank

P1

0.3150

0 0.3150 1

P2 0.2941 0.0209 4

P3 0.1736 0.1414 2

V1 0.2801 0.0349 3

V3 0.2949 0.0201 5

S1 0.3134 0.0016 6

CF 0.3147 0.0003 7

the pumps have the same failure data, they have different criticality values due to their
role in the system in the context of this particular top event.

4.6.4 Quantitative Analysis using BN based Method

In order to perform the quantitative analysis of the failure behaviour of the fault tolerant
fuel distribution system using the BN based method, we first need to the translate the
TFT of the failure behaviour of the system into a discrete-time Bayesian Network, and
then perform a query on the BN model to obtain different information regarding the de-
pendability of the system. The Pandora TFT of Figure 92 shows the failure behaviour
of Engine 1. The TFT is translated into a discrete-time Bayesian Network following the
procedure shown in Section 4.4.2. The BN of the TFT is shown in Figure 95. As seen
in Figure 95, the mapping from TFT to BN is one-to-one, i.e., the basic events of the
TFT are mapped to the root nodes of the BN, and the intermediate events (logic gates) are
mapped into internal nodes.

The prior probability table of each root node of the BN is populated based on the
failure rate of the component (see Table 30) the node is representing following the pro-
cedure described in Section 4.4.2. As described in Section 4.4.2, in order to generate the
prior probability values of the events, we need to define a mission time and the number
of intervals (n) to divide the mission time into discrete intervals. There is no restriction
on the maximum value of n but the minimum value of n could be equal to the maximum
order of the MCSQs. The order of a minimal cut sequence (MCSQ) defines the number of
basic events contribute to that MCSQ. For this particular case study, the maximum order
of MCSQs is 3, so the minimum possible value of n is 3. The prior probability values for
the root nodes of the BN of Figure 95 are calculated considering mission time as 20000
hours and dividing the mission time into 20 intervals (n=20), shown in Table 33. The
conditional probability table of each intermediate node of the BN is populated based on
the type of TFT gate it represents following the procedure described in Section 4.4.2.

197

Figure 95: Bayesian Network of failure behaviour of Engine 1

Now, running a query on the node named “System Failure” would give us the value of
the system unreliability for mission time 20000 hours. The value of the system unrelia-
bility obtained for 20000 hours of mission time is 0.3281 and it takes 75.8312 seconds on
average to run the query. The average run time is taken as an average over 10 runs. If we
choose smaller values of n then the run time will decrease. This is because of the fact that
the run time depends on the number of states we need to consider for each of the nodes
(events) in the BN, and the number of states depends on the value of n. As the value of n

increases, number of states also increases, thus increase the execution time. However, if
we consider more states for each of the nodes in the BN, then we will have a more precise
value of system unreliability because of the smaller discretisation steps. Table 34 shows
the top event probabilities (system unreliability) and average execution times for 20000
hours of mission time with different values of n. As seen in the table, if we increase the
number of intervals (value of n) by 1, then the system unreliability is increased by a factor
of approximately 1.02; on the other hand, the average execution time is increased by a
factor of approximately 1.78.

198

Table 33: Prior probabilities of root nodes for n = 20 and t = 20000

Node
Probabilities

State 0 State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10 State 11

P1 0.5273 0.0315 0.0305 0.0295 0.0286 0.0278 0.0268 0.0260 0.0252 0.0243 0.0237 0.0228

P2 0.5273 0.0315 0.0305 0.0295 0.0286 0.0278 0.0268 0.0260 0.0252 0.0244 0.0236 0.0228

P3 0.5273 0.0315 0.0305 0.0295 0.0286 0.0278 0.0268 0.0260 0.0252 0.0244 0.0236 0.0228

V1 0.8187 0.0100 0.0098 0.0098 0.0096 0.0096 0.0094 0.0094 0.0093 0.0092 0.0091 0.0090

V3 0.8869 0.0060 0.0059 0.0059 0.0059 0.0059 0.0058 0.0057 0.0058 0.0057 0.0056 0.0057

S1 0.9512 0.0025 0.0025 0.0025 0.0025 0.0024 0.0025 0.0024 0.0025 0.0024 0.0025 0.0024

CF 0.9900 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

Node
Probabilities

State 12 State 13 State 14 State 15 State 16 State 17 State 18 State 19 State 20

P1 0.0222 0.0214 0.0208 0.0201 0.0195 0.0189 0.0183 0.0177 0.0171

P2 0.0222 0.0214 0.0208 0.0201 0.0195 0.0189 0.0183 0.0177 0.0171

P3 0.0222 0.0214 0.0208 0.0201 0.0195 0.0189 0.0183 0.0177 0.0171

V1 0.0089 0.0088 0.0087 0.0087 0.0086 0.0084 0.0084 0.0083 0.0083

V3 0.0056 0.0055 0.0056 0.0055 0.0054 0.0055 0.0054 0.0053 0.0054

S1 0.0025 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024

CF 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

199

Table 34: System unreliability and average execution time after 20000 hours

n Top Event Probability Average Execution Time (seconds)

3 0.2742 0.0063

4 0.2900 0.0079

5 0.2995 0.0154

6 0.3058 0.0468

7 0.3104 0.1090

8 0.3138 0.2462

9 0.3164 0.4976

10 0.3186 0.9703

12 0.3217 2.9687

15 0.3249 11.9557

17 0.3264 26.6460

20 0.3281 75.8312

It is now clear that the number of intervals to divide the mission time has an effect
on the system unreliability and execution time. To observe the effect of the mission time
on execution time, we have performed quantitative analyses with different mission times
ranging from 1000 hours to 20000 hours, and also with 6 different numbers of intervals.
Table 35 shows the values of system unreliability for different mission times with different
numbers of intervals. One thing to note is that to obtain the value of system unreliability
for a particular mission time and a particular value of n, we need to provide a new set of
prior probability values for the root nodes of the BN. For example, for 20000 hours mis-
sion time and for 6 different values of n, we provided 6 different sets of prior probability
values for the root nodes of the BN, and in return we obtained 6 different values for sys-
tem unreliability. The graphical view of the changes in system unreliability with mission
time and different values of n is shown in Figure 96. Figure 97 shows the changes in av-
erage execution time for different mission times and different values on n. As mentioned
earlier and as also seen in the graph of Figure 96, if we increase the number the intervals
to divide the mission time, then the accuracy of the approximation of system unreliability
increases and it appears to be converging to a ceiling value. From Figure 97, it can be seen
that for a particular value of n, the average execution time remains almost the same for all
values of mission time, however it increases with an increase in the value of n which is
mentioned earlier. That means the mission time does not have an effect on the execution
time unless we change the value of n. Therefore, the analysts have the flexibility to make
a trade-off between the value of n and the execution time.

200

Table 35: Unreliability of the fuel distribution system for different mission with different
values of n

Mission Time (Hours)
Unreliability

n=5 n=10 n=12 n=15 n=17 n=20

1000 0.0019 0.0019 0.0019 0.0020 0.0020 0.0020

2000 0.0071 0.0074 0.0074 0.0074 0.0074 0.0075

3000 0.0152 0.0158 0.0158 0.0159 0.0159 0.0160

4000 0.0257 0.0266 0.0267 0.0269 0.0269 0.0271

5000 0.0382 0.0396 0.0398 0.0400 0.0401 0.0403

6000 0.0521 0.0541 0.0545 0.0548 0.0550 0.0551

7000 0.0674 0.0702 0.0706 0.0711 0.0713 0.0715

8000 0.0838 0.0874 0.0879 0.0885 0.0888 0.0891

9000 0.1009 0.1053 0.1061 0.1068 0.1072 0.1076

10000 0.1187 0.1242 0.1250 0.1259 0.1264 0.1268

11000 0.1368 0.1433 0.1444 0.1455 0.1460 0.1466

12000 0.1552 0.1629 0.1642 0.1654 0.1660 0.1667

13000 0.1737 0.1826 0.1841 0.1855 0.1862 0.1870

14000 0.1922 0.2024 0.2041 0.2058 0.2066 0.2075

15000 0.2107 0.2222 0.2242 0.2261 0.2270 0.2280

16000 0.2290 0.2420 0.2441 0.2463 0.2473 0.2485

17000 0.2471 0.2615 0.2639 0.2664 0.2675 0.2688

18000 0.2649 0.2809 0.2835 0.2862 0.2875 0.2889

19000 0.2824 0.2999 0.3028 0.3057 0.3071 0.3087

20000 0.2995 0.3186 0.3217 0.3249 0.3264 0.3281

The criticality of the components of the fuel distribution system is calculated follow-
ing the procedure described in Section 4.4.4 by setting the mission time to 20000 hours
and n to 20. The results of the evaluation are shown in Table 36. According to the results
shown in Table 36, Pump 1 (P1) contributed the most to the top event probability hence
ranked as the most critical component and the lowest contribution is from the Controller
(CF) which is ranked as the least critical component of the system. The second most
critical is the Pump 3 (P3) and Pump 2 (P2) is the next.

201

Figure 96: Changes in system unreliability with the change of values of mission time and
n

Figure 97: Changes in execution time with the change of values of mission time and n

We used predictive reasoning on the BN model to obtain the system unreliability by
following the directions of network arcs. For predictive analysis, we use the information
(failure probability) about the causes (component failure) to obtain the new belief (un-
reliability value) about the effect (system failure). It is effective for system analysis in
the design phase because at this time analysts can provide quantitative information about
system components from the historical data, if any existed at all. As the system is yet to
be implemented and yet to perform its function, it is not possible to provide any definitive
evidence about the occurrence of an event. However, when the system is implemented
and deployed to perform its operation, then during the runtime it is possible to observe

202

the state of the components, and thus evidence about the occurrence of events can be
obtained.

Table 36: Importance ranking for the basic events of the fuel distribution system according
to the BN based method

Basic Events (BEi) Pr{TE} Pr{TE|BEi = State 0} IM (BEi) Rank

P1

0.3281

0 0.3281 1

P2 0.2962 0.0319 3

P3 0.2089 0.1192 2

V1 0.2988 0.0293 4

V3 0.3112 0.0169 5

S1 0.3257 0.0024 6

CF 0.3276 0.0005 7

If we recall Section 4.4.4, then we can see that the importance measures of system
component are calculated based on the evidence about the status of the system component.
With the help of evidence based analysis, we can also perform diagnostic reasoning on
the BN, i.e., reasoning to symptoms to causes. For example, when an analyst observes
that the system has failed, based on this observation his belief about the failure probability
of the components can be updated. That means a posterior probability distribution for the
components is obtained given that the system has failed. Posterior probability distribution
for the root nodes of the BN in Figure 95 are obtained by providing the evidence that the
system has failed, and shown in Table 37. One thing to note is that this reasoning is
performed backward, i.e., in the opposite direction of the arcs. Now, if we perform a
predictive analysis based on this updated belief about the probability distribution of the
system components, then the value of system unreliability will also be updated. For this
case study, the updated value of system unreliability is 0.8315, previously it was 0.3281.

203

Table 37: Posterior probabilities of root nodes for n = 20 and t = 20000

Node
Probabilities

State 0 State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 State 9 State 10 State 11

P1 0 0.0574 0.0568 0.0562 0.0556 0.0550 0.0541 0.0534 0.0526 0.0515 0.0510 0.0497

P2 0.4760 0.0423 0.0400 0.0377 0.0357 0.0338 0.0318 0.0301 0.0285 0.0269 0.0256 0.0241

P3 0.3357 0.0443 0.0429 0.0415 0.0402 0.0391 0.0377 0.0365 0.0354 0.0341 0.0333 0.0320

V1 0.7452 0.0140 0.0138 0.0138 0.0135 0.0135 0.0132 0.0132 0.0131 0.0129 0.0128 0.0126

V3 0.8411 0.0084 0.0083 0.0083 0.0083 0.0083 0.0082 0.0080 0.0081 0.0080 0.0079 0.0080

S1 0.9440 0.0034 0.0033 0.0033 0.0032 0.0030 0.0031 0.0029 0.0029 0.0028 0.0028 0.0027

CF 0.9885 0.0007 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006

Node
Probabilities

State 12 State 13 State 14 State 15 State 16 State 17 State 18 State 19 State 20

P1 0.0491 0.0479 0.0472 0.0461 0.0452 0.0443 0.0433 0.0423 0.0413

P2 0.0229 0.0216 0.0205 0.0194 0.0184 0.0175 0.0166 0.0157 0.0149

P3 0.0312 0.0301 0.0292 0.0282 0.0274 0.0266 0.0257 0.0249 0.0240

V1 0.0125 0.0124 0.0122 0.0122 0.0121 0.0118 0.0118 0.0117 0.0117

V3 0.0079 0.0077 0.0079 0.0077 0.0076 0.0077 0.0076 0.0074 0.0076

S1 0.0027 0.0026 0.0026 0.0025 0.0025 0.0025 0.0024 0.0024 0.0024

CF 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

204

4.6.5 Quantitative Analysis using Fuzzy Set Theory Based Method-
ology

The fuzzy set theory based methodology is suitable to perform quantitative analysis when
exact quantitative data about the system components are not known. To illustrate the idea
of using fuzzy set theory based methodology described in Section 4.5 to evaluate the un-
reliability of the fuel distribution system, we use triangular fuzzy numbers to represent
the failure possibility of basic events. The mission time is considered to be 10000 hours,
so at the end of the analysis, we will obtain the fuzzy possibility and overall probability
of the system failure after 10000 hours. Due to the uncertainty about the failure rate data
of the basic events, experts’ linguistic judgements are used to quantify the failure possi-
bilities of the basic events. For this study, a group of six experts is constituted to provide
their opinion regarding the failure possibility of the basic events and they are provided
with different system related information, e.g. mission time and system architecture. The
weighting scores of the chosen experts are calculated by using the data from Table 27
and shown in Table 38. Note that this scheme is used here for illustration purposes; other
schemes are also possible and can be adjusted to account for opinions that carry higher
weights because they are based on a stronger, more explicit and objective rationale if
available. For example an expert may have consulted published reliability databases of
similar components.

Table 38: Weighting scores of six experts

Expert
Professional

position

Experience

(years)

Educational

qualification

Weighting

score

E1 Professor ≥ 20 PhD 15

E2 Asst. Professor 10 to 14 PhD 12

E3 Engineer 5 to 9 M.Tech 10

E4 Manager 15 to 19 MSc 12

E5 Operator < 5 Diploma 5

E6 Technician 5 to 9 B.Tech 8

In order to obtain the experts’ opinions about the failure possibilities of the basic
events as linguistic terms, seven levels of qualitative linguistic terms, i.e., Very Low (VL),
Low (L), Fairly Low (FL), Medium (M), Fairly High (FH), High (H), and Very High
(VH) are defined (see Table 39). The conversion scale of the linguistic terms to the fuzzy
numbers are obtained using the methodology shown by Rajakarunakaran et al. (2015).

The opinions of the different experts regarding the failure possibility of the basic
events are shown in Table 40. As the experts are different and have different backgrounds
and experiences, their opinions can vary widely from one basic event to another. These

205

Table 39: Linguistic variables with conversion scales

Linguistic Variables
Triangular fuzzy numbers

A B C

Very Low (VL) 0 0.04 0.08

Low (L) 0.07 0.13 0.19

Fairly Low (FL) 0.17 0.27 0.37

Medium (M) 0.35 0.50 0.65

Fairly High (FH) 0.62 0.73 0.82

High (H) 0.81 0.87 0.93

Very High(VH) 0.92 0.96 1.0

Table 40: Expert Opinions on the Basic events

Basic Events
Experts Opinion

E1 E2 E3 E4 E5 E6

P1 H FH H M H M

P2 H FH H M H M

P3 H H VH H VH H

V1 FH M FH H VH M

V3 M FH H FL H M

S1 FH M H H M FH

CF FL FH FL FH M L

Table 41: Aggregation of expert opinion in triangular fuzzy form for the basic events

Basic Events
Triangular Fuzzy Number

A B C

P1 0.660 0.750 0.839

P2 0.660 0.750 0.839

P3 0.831 0.887 0.943

V1 0.540 0.659 0.768

V3 0.529 0.637 0.743

S1 0.603 0.708 0.806

CF 0.369 0.473 0.568

206

variations are accounted for by the weighting process so there is no need to discount par-
ticular values. It is therefore necessary to aggregate the results to obtain an agreement
among the conflicted views of the experts. Using the methodology shown in subsection
4.5.1.3, the experts’ opinions are aggregated to obtain a single consensus about the failure
possibility of basic events. These aggregated results are shown in Table 41.

The aggregation process for Pump 1 is described below:
Table 42 shows the opinions of different experts about the failure possibility of Pump 1
in linguistic terms and also shows the mapping of the linguistic terms to corresponding
fuzzy values. Following the procedure (Step 1: Similarity Measures) shown in subsection
4.5.1.3, the similarity matrix SM is formed by obtaining the similarities among the opin-
ions. Average agreement (AA(Exi)), relative agreement degree (RAD(Exi)), weighting
factor (WF(Exi)), and aggregation weight (AW (Exi)) are calculated using equations (41),
(42), (43), and (44) respectively, and shown in Table 43. Now, equation (45) is used to
aggregate the opinions about the failure possibility of Pump 1 and the aggregated fuzzy
set for Pump 1 is {0.660, 0.750, 0.839}.

Table 42: Expert Opinion about the failure possibility of Pump 1 (P1)

Expert Expert Opinion Fuzzy Values

E1 H 0.81 0.87 0.93

E2 FH 0.62 0.73 0.82

E3 H 0.81 0.87 0.93

E4 M 0.35 0.50 0.65

E5 H 0.81 0.87 0.93

E6 M 0.35 0.50 0.65

SM =

1 0.002088 1 0 1 0
0.002088 1 0.002088 0.006971 0.002088 0.006971

1 0.002088 1 0 1 0
0 0.006971 0 1 0 1
1 0.002088 1 0 1 0
0 0.006971 0 1 0 1

Now, from the qualitative analysis, we have the minimal cut sequences (see Table

29) that are necessary and sufficient to cause the system failure, i.e., no fuel to Engine
1. From the expert opinions we have the fuzzy failure possibilities of the basic events in
the triangular fuzzy form. Therefore, we can quantify the minimal cut sequences using
the values from Table 41 and the fuzzy operators defined in Section 4.5.3. The fuzzy

207

Table 43: Different parameters for aggregation process

Expert(Exi) AA(Exi) RAD(Exi) WF(Exi) AW(Exi)

E1 0.400418 0.249003 0.241935 0.245469

E2 0.004041 0.002513 0.193548 0.098031

E3 0.400418 0.249003 0.161290 0.205147

E4 0.201394 0.125239 0.193548 0.159394

E5 0.400418 0.249003 0.080645 0.164824

E6 0.201394 0.125239 0.129032 0.127136

possibilities of the minimal cut sequences are shown in Table 44 and 45 respectively.

Table 44: Fuzzy possibilities of the first three MCSQs for omission of fuel to engine 1

Set
Minimal Cut Sequences (MCSQs)

(P1 oP2)∧P3 (P1 oP2)∧V1 (P1 oP2)∧V3

A 0.548 0.356 0.349

B 0.663 0.493 0.476

C 0.788 0.642 0.621

Table 45: Fuzzy possibilities of the second three MCSQs for omission of fuel to engine 1

Set
Minimal Cut Sequences (MCSQs)

(S1CP1) oP2 (CFCP1) oP2 P2CP1

A 0.146 0.094 0.161

B 0.205 0.134 0.222

C 0.296 0.189 0.321

Using equation (53) and the fuzzy possibilities of the MCSQs from Table 44 and 45,
the fuzzy possibility of the top event (no fuel to Engine 1) is obtained, which is also a
triangular fuzzy number: (0.877, 0.952, 0.989).

This fuzzy possibility of the top event can be mapped to a crisp value using the equa-
tion (46), and the value calculated by equation (46) is 0.939. So, 0.939 represents the
most likely possibility of the system failure after 10000 hours. This value belongs to the
set Very High (VH) with 47.5% membership, which provides a good insight about the
reliability of the system. If needed, we can convert this possibility value into a probability
value. The value is converted to a probability value using the equation (48), and the value
obtained is 0.119. So the probability of the system failure after 10000 hours is estimated
to be 0.119.

208

The fuzzy importance measures of the fuel system components are calculated accord-
ing to the method shown in Section 4.5.4. The components are ranked according to their
contribution to the occurrence of the top event (system failure) and the results are shown
in Table 46. As seen in the table, for the condition no fuel to Engine 1, the most critical
component is Pump 1 (P1) and the least critical component is the Pump 2 (P2). The next
most important are the Pump 3 (P3) and Valve 1 (V1).

Table 46: Fuzzy importance ranking for the basic events

Basic Events (Ei) FIM (Ei) Rank

P1 1.722 1

P2 0.018 7

P3 0.213 2

V1 0.147 3

V3 0.145 4

S1 0.103 5

CF 0.097 6

209

Chapter 5

Discussion and Evaluation

This chapter evaluates the contribution of this thesis and provides some recommendations
for future research. Firstly, the contributions of this thesis as presented in chapters 3 and 4
are compared against the set of research questions and objectives as described in chapter
1. Secondly, the effectiveness of the technique proposed in chapter 3 in modelling and
analysing dynamic behaviour of system is evaluated. Thirdly, the methodologies proposed
in chapter 4 for the probabilistic evaluation of Pandora TFTs are compared with each other
and also with the existing techniques. Finally, the limitations of this research are discussed
and some suggestions on the direction of future research are provided.

5.1 Evaluation of Contributions Against Objectives

The first research question of this thesis states that:

How can we model the dynamic behaviour of systems and link it to dynamic analysable
models that can be used by compositional MBSA techniques to perform dynamic depend-
ability analysis?

The following three objectives were derived to address this question.

Objective 1: Identify the complications faced by the MBSA techniques due to the
dynamic behaviour of systems

The intention behind this objective was to understand the dynamic behaviour of system
and subsequently identify the difficulties encountered by the MBSA techniques while
analysing such dynamic behaviour. This objective is achieved in section 3.2.

Firstly, the dynamic behaviour of systems is explained with reference to functionality
provided by systems and different possible system configurations to provide these func-
tionality. It was emphasised that a system component could either act as an active or
a passive component. A component performs useful system operations when it acts as

210

an active component, on the other hand, the component remains idle and involves in no
useful system operation when it acts as a passive component. A system can behave dy-
namically in different ways. For example, it may provide a variable set of functionality
with a variable set of configurations which are obtained by selectively activating and/or
deactivating some components. In this case, both system configurations and functionality
change dynamically at different point in time. On the other hand, the system can pro-
vide fixed set of functionality with different configurations. In this case, the system can
sacrifice some of its non-critical functionality due to the failure of some components and
continues operating in a degraded mode. All these scenarios of dynamic system behaviour
were explained with examples.

It was shown that this dynamic behaviour complicates the dependability analysis pro-
cess for compositional MBSA techniques and makes the result inconsistent. Due to a
variable number of configurations and multiple modes of operation, it is difficult for the
MBSA techniques to precisely define the nominal as well as the potential failure be-
haviour. At the same time, as the components are activated and deactivated selectively
to enter into different modes, it is a challenge for the compositional MBSA techniques
to take this mode dependent behaviour into account and represent it in an understandable
and manageable format.

Objective 2: Provide a methodology to represent dynamic system behaviour

As already mentioned, it is a challenge for the compositional MBSA techniques to rep-
resent mode based system behaviour and associate the mode with the failure behaviour
of components. This objective therefore aimed to find a way to represent mode based
dynamic behaviour in an understandable and manageable format. To achieve this objec-
tive, a state-transition based methodology, mode charts, has been identified as a potential
way of representing dynamic behaviour. To define the mode based behaviour, three types
of modes: functional, degraded, and failed modes are used. Each of these modes are de-
signed to represent a distinctive system configuration. Functional modes represent system
configurations where all the expected functionality of the system are provided, whereas
degraded modes correspond to system configurations where some of the system function-
ality are sacrificed but the system is operating safely. A configuration where all or some
critical set of functionality are lost is represented as a failed mode. Transitions from one
mode to another occur due to the failure of components, hence, the transition conditions
are represented as the Boolean expressions containing the failure events.

In compositional MBSA techniques, components are usually annotated with a single
set of failure behaviour. However, in dynamic systems, this kind of annotation is often
misleading and contributes to the inconsistency of results as mentioned earlier. In objec-
tive 1, it was identified that to perform dynamic analysis it is necessary to annotate the
system component with mode based behaviour. This thesis assumes the system compo-

211

nent is non-repairable and provides a way to annotate the system component with mode
based behaviour. Failure behaviour of a component is defined for those modes in which
the component has some useful activity and the annotation data are represented in a tabu-
lar form. The tabular representation makes the data more manageable and understandable.

Using the mode chart, it easy to model the dynamic behaviour of systems. However,
for a large and complex system, the mode chart could be too big and easily unmanage-
able because of the many possible modes and interactions among the modes. This thesis
proposes the use of hierarchical mode charts instead of a flat mode chart for modelling
behaviour of such a complex system. It defines some rules and provides guidelines on
how to create a hierarchical mode chart from a flat mode chart. It illustrates the ideas
using an example and also shows how the concept of hierarchical modelling can improve
the manageability of the mode charts. Temporal logic is identified as an option that the
analysts can consider to use whenever necessary to define dynamic behaviour. The sce-
narios when the use of temporal logic would be necessary and useful are illustrated with
an example case study and the ways of using temporal logic to define dynamic behaviour
are also shown.

Objective 3: Demonstrate the dynamic system modelling and dependability anal-
ysis process in HiP-HOPS

The methodology developed in the previous objective is not specific to any model based
safety analysis technique. To illustrate the use of this methodology, the intention behind
this objective is to demonstrate the dynamic system modelling and dependability analysis
process using the HiP-HOPS tool. At present, the HiP-HOPS tool can perform static anal-
ysis and allows automatic generation of fault trees and FMEA. The analysis is performed
is three phases: Annotation, Synthesis, and Analysis. At present, in the annotation phase,
system components are annotated with failure data related to the static behaviour of the
system. This thesis extends the annotation phase by annotating system components with
mode based dynamic behaviour following the instructions provided by the methodology
developed in objective 2.

Currently, the synthesis phase of HiP-HOPS produces classical fault trees by examin-
ing the system model and the failure behaviour of the components. Classical fault trees
are suitable for representing the static failure behaviour of a system; however, they are not
capable of representing the dynamic behaviour. As the annotation phase is extended by
this thesis with mode-based annotations, to preserve the dynamic (sequence-dependent)
behaviour in the synthesis process, this thesis extends the synthesis phase by generating
temporal fault trees. This is achieved by examining the system model to see how the fail-
ure of components propagates through different modes in the mode chart to cause system
failure.

At present, in the analysis phase, the HiP-HOPS tool takes the fault trees generated in

212

the synthesis phase and minimises them to obtain minimal cut sets. As the extended syn-
thesis phase produces temporal fault trees, this thesis extends the analysis phase to anal-
yse the temporal fault trees to minimise them to produce minimal cut sequences instead
of minimal cut sets and also develops methodologies to perform quantitative analysis of
temporal fault trees. The whole process of performing dynamic analysis using the HiP-
HOPS tool is illustrated by applying the newly developed methodology on an Aircraft
Fuel Distribution System.

The second research question of this thesis states that:

How can the Pandora temporal fault trees of a dynamic system consisting of components
with various failure distributions be probabilistically evaluated using state-space based
approaches?

The following objective was derived to address this question.

Objective 4: Develop methodologies to provide a state-space solution to Pandora
TFTs

As already mentioned, Pandora TFTs capture sequence-dependent dynamic behaviour,
hence the combinatorial solution techniques used for the evaluation of classical fault trees
cannot be employed to quantify Pandora TFTs. Markov chains are widely used to pro-
vide a state-space solution to dynamic fault trees by generating all possible system states
and stochastic transitions between states. Therefore, the primary intention of this objec-
tive is to develop methodologies to provide state-space solutions to Pandora TFTs. Two
methodologies were developed to achieve this.

In the first methodology, Petri Net is used to probabilistically evaluate Pandora TFTs.
In this methodology, firstly, the basic events of the TFTs are mapped to Generalised
Stochastic Petri Nets (GSPNs). Secondly, the GSPN model for each of the TFT gates
(both Boolean and Temporal gates) are developed by taking into account the logical spec-
ifications of the gates. As the MCSQs contain one or more basic events and logic gates,
the GSPN model for each MCSQ is obtained by combining the GSPN model of the basic
events and the logic gates contained in the MCSQ. Finally, the GSPN model for the top
event is obtained by combining all the GSPN model of the MCSQs. The GSPN model of
the top event can be simulated to obtain the probability of the top event. This methodology
also provides a way to determine the criticality of the system components by calculating
their relative contribution to the top event.

The second methodology proposed in this thesis is based on Bayesian Networks. In
this methodology, Pandora TFTs are mapped to discrete time Bayesian Network (BN).
The mapping is one to one, i.e., the basic events of the TFTs are mapped to the root nodes

213

of the BN and the logic gates are mapped to internal nodes. That means the number of
nodes in the BN is equal to the total number of basic events and TFT gates. Once the
mapping is done, prior probability values are assigned to root nodes based on the failure
rate of the system components and the conditional probability values are assigned to the
internal nodes based on the gate type the nodes are representing. Afterwards, queries
are made on different nodes as required to obtain the probability of the system being in
a certain state. This methodology provides a way to calculate the criticality of system
components by putting observation on the root nodes.

The third research question of this thesis states that:

How can we incorporate the issue of uncertain component failure data in the quantifica-
tion process of temporal fault trees and thereby allow probabilistic evaluation of dynamic
systems in conditions of uncertainty?

The following objective was derived to address this question.

Objective 5: Develop a methodology to enable uncertain data to be used in the quan-
tification of Pandora TFTs

The analysts can perform quantitative analysis using typical MBSA approaches once they
have the failure data of system components available in their hands. However, as already
mentioned, there are situations when the availability of the failure data cannot be guaran-
teed. Considering such situations, this objective was therefore to develop a methodology
to facilitate the quantitative analysis of systems with uncertain failure data.

This objective has been achieved by developing a methodology based on fuzzy set
theory, which is capable of quantifying Pandora TFTs with uncertain data. In this method,
fuzzy set theory and expert elicitation is used to obtain opinions about the failure data
of the components. Once the data about the system components are obtained as fuzzy
numbers, to use these data in the quantification process, the mathematical formulae used
in the analytical solution are modified to obtain the fuzzy operators for the temporal and
Boolean gates. After that, the fuzzy numbers and the fuzzy operators of the gates are used
to perform the quantitative analysis of the systems. This method also provides a way for
measuring importance of system components in terms of their contribution to the system
failure.

5.2 Evaluation of Techniques

In this section, firstly, an evaluation of the dynamic system modelling and analysis tech-
nique proposed in chapter 3 is made. Secondly, the methodologies proposed in chapter 4

214

for the probabilistic evaluation of Pandora TFTs are evaluated.

5.2.1 Evaluation of the technique for dynamic system modelling and
dependability analysis

As already mentioned, many of the failure logic synthesis and analysis based compo-
sitional MBSA techniques are not capable of performing dynamic analysis of systems.
The methodology proposed in chapter 3 for dynamic system modelling and dependabil-
ity analysis provides a way of modelling the dynamic behaviour of systems and links it
to dynamic analysable models. These models can be used by the compositional MBSA
techniques to perform both qualitative and quantitative dynamic analysis. To illustrate the
usefulness of the proposed approach in model-based dynamic analysis, the methodology
has been demonstrated using HiP-HOPS as an example compositional MBSA approach.

At present, the HiP-HOPS tool can only analyse static systems and automatically
generate fault trees and FMEA. Other than this, the HiP-HOPS tool can optimise system
architecture using genetic algorithms and semi-automatically allocate safety requirements
to the system components in the form of Safety Integrity Levels (SILs). The methodology
proposed in this thesis enables HiP-HOPS to perform dependability analysis of dynamic
systems. It also contributes towards the capability of HiP-HOPS to optimise the architec-
ture of dynamic systems and also to allocate SILs to the components of dynamic systems.

One thing worth mentioning is that the HiP-HOPS tool now generates temporal fault
trees instead of the classical fault trees. In static analysis, as a single set of behaviour is
defined for a component, the failure of a component is represented as a basic event in the
classical fault trees. However, in the dynamic analysis, as the components are annotated
with mode based behaviour, i.e., a component could have multiple sets of behaviour de-
fined, failure of a component can be represented as different basic events in the temporal
fault trees. More specifically, if a system has n operational modes and if a component
has different workloads in different modes then the component would contribute n basic
events in the TFTs. In this case, the cause of failure of the component could be same in all
the modes but the rate of failure would be different. The variable failure rates of a compo-
nent in different modes are taken into account by the proposed method to distinguish the
basic events originating from the same component. For this reason, the number of basic
events may increase in the dynamic analysis compared to the static analysis.

Although mode charts are simple and easy to create, they can be too big and complex
if we want to use them to represent the behaviour of large and complex systems. This
is because such a system usually consists of several subsystems and many interactions
are possible among them. Compiling all the information in a single mode chart requires
calculating the permutation of all possible modes and defining all possible transitions
among the modes. This will result in state space explosion. This thesis proposes the use
of hierarchical mode charts to manage the complexity of flat mode charts and provides
guidelines on how to use them. Although the use of hierarchical mode charts helps to

215

manage complexity of the flat mode charts, it will not solve the state space explosion
problem completely. As a result, the state explosion problem would certainly limit the
application of the proposed approach to use with small and medium-sized systems.

Another issue with mode charts is that they cannot be analysed directly. To produce
comprehensive data about the system dependability, the mode charts need to be trans-
lated into other formats such as fault trees or Petri Nets. This thesis provides guidelines
to translate the mode charts to Pandora temporal fault trees (TFTs), so that the dynamic
behaviour of the system is preserved in the fault trees. The advantage of transforming
the mode charts to Pandora TFTs is that it can be analysed both qualitatively and quan-
titatively. More importantly, the qualitative analysis of TFTs will also help to minimise
complex temporal expressions by obtaining minimal cut sequences, thus making the sub-
sequent quantitative analysis more manageable. As quantitative analysis of Pandora TFT
is performed based on the result of qualitative analysis, the disadvantage of using Pandora
TFTs is that analysts cannot perform standalone quantitative analysis of TFTs.

Mode charts could also be translated to dynamic fault trees (DFTs) but in this case
analysts can only perform quantitative analysis of DFTs, thus cannot benefit from the
qualitative analysis. Other than the fault trees, the mode charts could also be translated
to other representations such as Markov chains (MCs), Bayesian Networks (BNs), and
Petri Nets (PNs). Similar to DFTs, using these representations analysts can perform stan-
dalone quantitative analysis but qualitative analysis cannot be performed. In the conver-
sion process, these approaches (MCs, BNs, and PNs) will inherit the state-space explosion
problem of the mode charts and unlike the Pandora TFTs, as qualitative analysis is not
performed on these representations to minimise the complexity, these representations will
retain the complexity inherited from the mode charts and can make the analysis unman-
ageable.

The proposed methodology can provide similar functionality to many other composi-
tional MBSA approaches but with more features. Similar to FPTN and CFT, this method
allows analysts to perform static analysis, e.g. FTA, in addition, it also allows analysts
to perform dynamic analysis which is not possible in CFTs and in the classical form of
the FPTN. Unlike the FPTN and FPTC approaches, this method does not create separate
failure models alongside the design models of the systems, rather it annotates the same
system architecture models. As a result the models become more formal than a sepa-
rate model for dependability analysis, which can allow automating all or some part of
the dependability analysis process. The advantage of FPTN over the proposed approach
is that at present FPTN provides systematic and modular notations for presenting failure
behaviour of systems.

The proposed method can consider both static and dynamic system architectures whereas
the FPTC considers system architecture as static. However, FPTC can consider more
types of failure e.g., incompletion than the proposed approach and it can be used to deter-
mine and model failure behaviour of both hardware and software components of systems

216

but at present the application of the proposed approach is limited only to hardware compo-
nents of systems. Another difference between FPTC and the proposed approach is that the
proposed approach suggests the synthesis of temporal fault trees from the annotated sys-
tem models, whereas FPTC does not suggest the synthesis of fault trees from the FPTC
modules; rather it uses fixed point calculation. Some extension of FPTC also supports
model checking facility for system architecture but at present the proposed method does
not provide model checking facility. Therefore, if analysts have to analyse system with
both hardware and software components or if they want to perform model checking on
system architecture then they can choose FPTC, but the proposed method will be useful
for the dynamic analysis of systems with hardware components.

In terms of dynamic analysis, the proposed approach can provide a similar capability
to AADL’s error model but only for systems with hardware components. Although both
the approaches use state-event based methods to define the behaviour of components their
ways of working are different. To perform dependability analysis using AADL, analysts
have to define separate models for representing the nominal and the failure behaviour of
systems, however, as already mentioned, in the proposed approach analysts do not have to
create separate models for representing the failure behaviour of systems; rather they have
to annotate the system architecture with failure behaviour of components. One thing both
approaches have in common is that they increasingly suffer from state-space explosion
while modelling a moderately complex system. AADL models could be translated to fault
trees, GSPNs, FPTC models, and Altarica Dataflow etc. but at present, the behavioural
models of system created using the proposed approach are translated only to temporal
fault trees.

5.2.2 Evaluation of the Quantitative Analysis Techniques

This thesis advances quantitative dependability analysis by proposing two methodologies
for probabilistic evaluation of Pandora Temporal Fault Trees. Another major contribu-
tion of this thesis is a methodology to allow the analysts to perform quantitative analysis
with uncertain failure data. The effectiveness of these methodologies has already been
evaluated in chapter 4 by applying them during the dependability analysis of a fault tol-
erant fuel distribution system of a ship. In this subsection, the proposed techniques are
compared with each other and also with other existing techniques.

5.2.2.1 Petri Nets and Bayesian Networks Based Techniques

The proposed Petri Net technique transforms Pandora temporal fault trees into Gener-
alised Stochastic Petri Nets and models time as continuous. In the transformation process,
each temporal fault tree node (basic, intermediate, and top events) is mapped to a sub-net
where there is a place indicating the status of the node. The failure of a component is
represented as a timed transition and the failure propagation is represented as an imme-

217

diate transition. That means the sub-net of a TFT node could contain several places and
transitions. From Figure 69, it can be seen that mapping of a basic event to a GSPN model
requires three places, one timed and one immediate transitions. Mapping of an N input
OR gate to a GSPN model would require (N+1) places and N immediate transitions (see
Figure 71). On the other hand, an N input PAND gate could be transformed into a GSPN
model by using 2N places and N immediate transitions (see Figure 72). The number of
arcs (directed and inhibitor) required in the sub-net of a TFT node vary widely. Due to
the requirement of different number of places, transitions, and arcs to form a TFT node, a
GSPN model of a simple TFT could be increasingly complex and thus would be difficult
to create.

Once the GSPN model of a TFT is created, the model could be simulated to estimate
the probability of the system being in a failed state after a certain amount of time. During
the simulation, the analyst has to provide a mission time and a step size. The step size
does not have any effect on the result obtained from the simulation, but it does have a
direct effect on the simulation time. The smaller the step size, the longer it takes for the
simulation to finish. It is intuitive that the simulation time would increase if the mission
time is increased. Whatever step size is chosen, the analyst can observe the system unre-
liability after that amount of time. Therefore, analysts can choose mission time and step
size most convenient to them by basing their choice on how long and how often they want
to estimate the system unreliability.

Other than probabilistic evaluation of Pandora TFTs, the GSPN model of a TFT can
be used to play the token game to verify the accuracy of the results of the qualitative
temporal fault tree analysis. The idea is to put tokens in different places with different
time stamps and then simulate the model to see whether the failed state of the system is
reached for a selection of component failure in some particular order.

The PN based methodology also identifies the criticality of components by measuring
the contribution of the components to the system failure. The contribution of a compo-
nent is measured by taking the difference between system unreliability and the system
unreliability with the component fully available. A component is made fully available by
removing the token from the place that represents the status of the component.

Apart from the size and difficulties of creating GSPN model of a TFT, the Petri Net
based method has another limitation: its application is currently restricted to the systems
with exponentially distributed data.

The Bayesian Network (BN) based approach evaluates Pandora TFTs by translating
them into discrete time BNs where each root node of the BNs represents a basic event
and each internal node represent a logic gate. The transformation of a TFT gate to a BN
model is simpler than that of transforming it to a GSPN model in the sense that in this
case the transformation is one to one. For example, to transform an N input logic gate
of any type to a BN we will need N root nodes each representing an input event and an
intermediate node to represent the output of the gate. For this reason, in terms of creating

218

graphical models (either PN or BN) by transforming TFTs, the BN based method is less
complex than the PN based method.

In general, the main challenge of creating a BN of a system model lies in defining par-
ent child relationship between the nodes. However, the BN based methodology proposed
in this thesis does not have to face this challenge because it simply has to translate TFT
expressions (combination of logic gates and input events) to BN where the parent-child
relationship is already defined by the qualitative analysis of the TFTs. Another issue with
BN is that it is possible to create different BN models for the same system which will
produce the same result, except that they differ in complexity. This is primarily a problem
when parent-child relationship among the nodes are not properly defined, thus producing
a complex model instead of a simple one. Again, the methodology proposed in this thesis
does not suffer from this issue because of the well-defined parent-child relation in the
logical expressions. As this methodology is essentially modelling some logical expres-
sions in the form of a BN, it will always produce the same result for logically equivalent
expressions but with different execution time depending on the complexity of the expres-
sions. For example, the BN models of an un-minimised TFT and its equivalent minimised
TFT should be logically equivalent, i.e., they will produce same results but the former BN
model should be more complex than the latter model, just as the un-minimised TFT is
more complex than the minimised TFT.

Once the graphical BN model of a TFT is created, the next step is to divide the mission
time into a number of discrete intervals where the duration of intervals are same. This is
similar to defining step size in the PN based method. Once the number of intervals (n)

is decided, the prior probability values for each of the root nodes in different interval is
formulated based on the failure rate of the components that the node represents. At the
same time, conditional probability values for the internal nodes are defined based on the
type of logic gate they represent. Unlike, the PN based method, this method can work
with both exponentially and non-exponentially distributed data. A change in the number
of intervals or in mission time would require the prior and conditional probability values
redefined.

In the BN based method, system unreliability is obtained by performing a query on
the node representing the top event of the TFT. This approach calculates the criticality of
system component using the similar method used in PN based approach. The difference
is that in this case, a component is made fully available by observing the BN node which
represents the component to be in the State 0 (False). In addition to predictive analysis,
the BN based method also allows the analyst to perform diagnostic analysis. In diagnos-
tic analysis, if an analyst has an evidence that the system has failed then based on this
evidence the failure probability of system components are updated.

As already seen in chapter 4, the number of intervals has an effect on the time required
to run a query. The higher the number of intervals the more the time it requires to run a
query; however, it will also increase the accuracy of the estimation. One important thing

219

to note is that, for a particular number of intervals, whatever mission time we choose the
average execution time remains almost the same (see Figure 97). But in the PN based
method, for a fixed step size, a rise in the mission time increases the execution time.

Under the same conditions, both the BN and the PN based methods take approxi-
mately equal amounts of time to estimate the system unreliability, and the values esti-
mated are very close to each other. For example, for 20000 hours mission time, setting
the step size equal 1000 hours in the PN based method is equivalent to setting n=20 in the
BN based method. Under the above conditions, the system unreliability estimated by the
PN and BN based methods are 0.3150 and 0.3281 respectively; and the time taken by the
two approaches are 79.40 and 75.83 seconds respectively.

In summary, the BN based method has three distinctive advantages over the PN based
method:

1. A BN model for a TFT is easier to create compared to the PN model of the same
TFT.

2. The BN based method is applicable to failure data with any distributions whereas
the application of PN based method is limited to exponentially distributed data.

3. The BN based method allows us to perform both predictive and diagnostic analyses.

In contrast, the PN based method has two advantages over the BN based method:

1. It allows us to verify the accuracy of the qualitative results, i.e., correctness of the
minimal cut sequences.

2. From a single simulation, the PN based method allows us to estimate system un-
reliability/reliability for multiple mission times, and thus eliminates the need for
running separate simulations for different mission times. In the BN based method,
to estimate system unreliability for multiple mission times, a query is required to be
run for each mission time; and most importantly, for each mission time the analyst
has to provide a new set of prior probability data for the root nodes.

5.2.2.2 Evaluation of PN and BN based techniques against existing techniques

The Analytical solution to Pandora TFTs uses algebraic expressions to probabilistically
evaluate the temporal gates. This approach can be applied to evaluate MCSQs with any
number of temporal gates by forming the algebraic expressions for each of the gates con-
tained in the MCSQs. As a result, as the order (number of events) of a MCSQ increases,
the complexity of the mathematical expressions increases accordingly. Therefore, it is
difficult to form the mathematical expressions for complex MCSQs and thus their quan-
tification using analytical approach becomes harder. Another issue with the analytical
approach is that it is restricted to the exponential distribution, i.e., it can only applied to
analyse systems with exponentially distributed failure data.

220

The simulation approach to quantify temporal fault trees uses Monte Carlo Simulation
to evaluate system unreliability. This approach alleviates the limitations of the analytical
approach in terms of the distribution of data and is equally applicable for exponentially
and non-exponentially distributed data. In this approach, generic Monte Carlo Simulation
models for each of the temporal gates has been proposed and MCSQs are evaluated by
evaluating each individual gate contained in the MCSQs separately. For this reason, this
approach can take too long to provide a solution to more complex TFTs.

Markov chains are widely used in the probabilistic evaluation of dynamic fault trees.
In Markov chain based approaches, Continuous Time Markov Chains (CTMCs) are cre-
ated by generating all possible reachable system states and stochastic transitions among
states. After forming the graphical model, ordinary differential equations for all the states
are derived and subsequently solved to evaluate system reliability. Similar to DFTs, Pan-
dora TFTs can also be solved using Markov chains. Similar to the analytical solution
of Pandora TFTs, the application Markov chain based approach will also be limited to
system with exponentially distributed data.

As the underlying reachability graphs of stochastic Petri Nets are isomorphic to CTMCs,
Petri Nets are used in this thesis to provide a state space solution to Pandora TFTs. This
approach proposes Petri Nets for all the temporal and Boolean gates. The PN model of
the MCSQs are formed from these, and subsequently the model is simulated to estimate
system reliability. Similar to the analytical and Markov chain based quantification ap-
proaches for Pandora TFTs, this approach can only be applied to analyse system with
exponentially distributed data. But the advantage of this approach over other approaches
is that it can evaluate the correctness of the result of the qualitative analysis, i.e., verify
that the MCSQs obtained from the qualitative analysis lead to system failure. This is done
by performing a reachability analysis.

To allow the analysts to evaluate the dependability of dynamic systems featuring vari-
ous failure distributions, this thesis proposes another method based on Bayesian Networks
to provide a state space solution to Pandora TFTs. Unlike the analytical, Markov chain
and the Petri Net based methodologies, this approach can work with both exponentially
and non-exponentially distributed data. In this method, Pandora TFTs are mapped to
Bayesian Networks and then the BNs are solved to perform predictive analysis of system
like other approaches, i.e., estimates system unreliability using the failure data system
components. Unlike other approaches, this approach also allows diagnostic analysis of
systems, i.e., facilitate reasoning to symptoms to causes, such as when an analyst ob-
serves that the system has failed then based on this observation his belief about the failure
probability of the components are updated.

221

5.2.2.3 Evaluation of Fuzzy Set theory based approach with fixed value based tech-
niques

All the existing techniques for quantitative evaluation of Pandora temporal fault trees,
including the PN and BN based methods proposed in this thesis, rely on component failure
data to probabilistically evaluate system reliability. That means these approaches cannot
be applied for quantitative analysis of systems if one or more system components have
missing or limited failure data. The fuzzy set theory based approach alleviates the above
problem by combining expert opinion and fuzzy set theory to allow quantitative, dynamic
analysis when there is a scarcity of exact failure data of the components. For this reason,
this approach is particularly suitable for performing system analyses in the early design
phase when the exact choice about the components may have yet to be made and thus
exact values for the failure data may not be known. To verify the effectiveness of the
fuzzy set theory based method in estimating system unreliability with uncertain data,
a comparison is made between the system unreliability values estimated by the other
techniques and the value estimated by the fuzzy set theory based method, shown in Table
47. The data shown in the table are for the fault tolerant fuel distribution system used
in chapter 4, all considering mission time as 10000 hours. The Difference column of the
table shows with what percentage the value estimated by the proposed fuzzy approach
deviates from the values estimated by the other approaches.

Table 47: Comparison of system unreliability estimated by other approaches with the
unreliability estimated by the fuzzy set theory based approach

Approaches Unreliability

Unreliability

estimated by the

fuzzy approach

Difference

Analytical 0.135 11.85% lower

PN Based 0.117 1.71% higher

BN Based

with 3 intervals 0.111 7.21% higher

with 4 intervals 0.116 2.59% higher

with 5 intervals 0.119 0.119 same

with 6 intervals 0.121 1.65% lower

with 7 intervals 0.122 2.46% lower

with 8 intervals 0.123 3.25% lower

with 9 intervals 0.124 4.03% lower

with 10 intervals 0.124 4.03% lower

Although there are some small differences between the value estimated by the fuzzy
set based method and the values estimated by other fixed value based methods, the im-

222

portant thing to note that the fuzzy temporal fault tree analysis enables the analysts to
perform reliability analysis of dynamic systems in the presence of uncertain failure rate
data of system components while still yielding a reasonably useful result. In particular,
one important aspect of quantitative reliability analysis of system designs is to identify
the critical components so that the designers can decide where to focus their efforts on
those parts of the system that require most improvement to satisfy the requirements, e.g.,
by applying fault tolerance strategies. As seen in Table 46, the fuzzy set theory based
method can also determine the criticality of components, and thus allows analysts to see
the relative contribution of different system elements to the overall failure without relying
on an accurate estimation of the system failure probability.

5.3 Limitations and Future Research

Although the research presented in this thesis has made some significant contributions in
the model-based safety assessment domain, there remain a number of areas for further
research. Below are some limitations that open new avenues for further research.

5.3.1 Reparability of Events

In this thesis, it is assumed that the system components are non-repairable. This means
that once a component fails it remains in the failed state forever and is not repaired.
However, in many real life systems, it is possible to repair a failed component to restore its
functionality. Therefore, one possible avenue worthy of further research is the inclusion
of the reparability of components in the analysis — though it will complicate the dynamic
analysis to a great extent. This will definitely improve the practicability of the research
presented in this thesis.

5.3.2 Dynamic System Modelling and Analysis Technique

The major limitation of the approach proposed in chapter 3 for dynamic system modelling
and analysis is that it suffers from state-space explosion while modelling the behaviour of
a complex system. At present the approach defines mode-based dynamic behaviour for
all the system components. However, a system may contain subsystems or components
which only have a single set of behaviour throughout the system lifecycle, hence do not
require dynamic behaviour defined for that parts of the system. Therefore, in future, it is
worth trying to explore alternative options for modelling system behaviour to minimise
the state-space explosion problem. One potential option is to use separate static and dy-
namic modules during modelling the behaviour of the systems. Another option could
be to decompose larger systems into smaller parts, analyse those parts separately, and
then combine the results of those smaller analyses to obtain information about the overall
dependability of the whole system.

223

Although the proposed approach is not aimed at any particular compositional MBSA
technique, in this thesis, the utility of the approach in dynamic dependability analysis
is demonstrated using the HiP-HOPS tool. Therefore, in future, it is worth performing
research to apply the proposed method to other compositional MBSA approaches. At
the same time, in the proposed approach, temporal fault trees are synthesised and anal-
ysed to evaluate the dependability of systems. In future, research could be performed to
generate other dependability analysis artefacts such as dynamic fault trees, FMEAs, and
Markov chains etc. from the behavioural system models to evaluate the dependability of
the systems.

5.3.3 State Space Based Quantification Methods

To accurately capture the dynamic behaviour of systems, like other dynamic analyses
approaches, Pandora has to remember the state of the system components to represent
the sequencing among the occurrence of the components’ failure. As the number of
states increases exponentially with the number of system components, the state aware-
ness property poses the state explosion problem for Pandora. As both the Petri Net and
the Bayesian Network based methods provide state space solutions to Pandora temporal
fault trees and these methods kept all the properties of Pandora unchanged, they also in-
herit the state explosion problem. This problem limits the applicability and the scalability
of the approaches for the analysis of complex systems. As Pandora temporal fault trees
consist of both Boolean and temporal gates, it would be a worthwhile effort to develop a
modularisation technique that will enable the analysts to use combinatorial solutions for
modules with Boolean gates and state space solutions for modules with temporal gates,
thus providing a more scalable solution for dynamic system analysis.

At present, the application of the Petri Net based method is limited to systems with
exponentially distributed data. Although the Bayesian Network based method alleviates
this problem, it is still worth performing research to make the PN based method equally
applicable for exponentially and non-exponentially distributed data.

5.3.4 Fuzzy Set Theory Based Method

The aim of the fuzzy set theory based methodology is to allow quantitative, dynamic anal-
ysis when there is a scarcity of exact failure data of the components. The first thing to note
about the fuzzy set theory based method is that it is based on the analytical solution of
the Pandora TFTs. As the application of the analytical solution of TFTs is limited to the
system with exponentially distributed failure data, the fuzzy set theory based approach
will also only be applicable to the systems with exponentially distributed failure data.
Therefore, in future, it is worth trying to explore alternative options to allow the use of
non-exponentially distributed failure data in the quantification process of Pandora Tempo-
ral Fault Trees with uncertain data. One potential option is to extend this work by defining

224

the fuzzy operators for non-exponentially distributed data by modifying the operators de-
fined in this thesis. As already mentioned, the Bayesian Network based method is capable
of performing quantitative analysis with any type of failure distribution, so another option
could be to incorporate the uncertainty aspect of the failure data in the Bayesian Network
based approach. However, there is of course a possibility to develop entirely different
approaches to allow quantitative analysis of Pandora TFTs with uncertain data.

225

Chapter 6

Conclusion

Safety-critical systems are an integral part of our life but this means that the cost is sig-
nificant if they fail. Our high dependence on such systems make it a priority for engi-
neers to ensure their dependability by identifying the potential risks they pose as early
as possible and then minimising the likelihood of these risks. Many classical analysis
techniques such as Fault Tree Analysis (FTA) and Failure Modes Effects and Criticality
Analysis (FMECA) are available to aid the system analysts in the dependability analysis
processes. However, the manual nature of these classical analysis techniques makes the
system analyses process time consuming and expensive. At the same time, as the analyses
are performed on informal system models, these processes can result in inconsistencies
and discrepancies leading to inaccurate evaluation of system dependability.

Over the past twenty years, researchers have made continuous efforts to simplify the
dependability analysis process by automatically synthesising dependability related data
from system models. This has led to the emergence of the field of model-based safety
assessment (MBSA). In MBSA, analyses are performed on formal system models and
several tools and techniques have emerged to aid the analyses. Many MBSA techniques
use classical approaches like FTA as the engine for their analyses except that they gen-
erate them automatically from system model, thus alleviating many of the limitations of
classical approaches.

Using compositional MBSA techniques, analysts can determine how a single compo-
nent failure or combinations of failures of different components can lead to system failure.
As systems grow more complex and their behaviour becomes more dynamic, assessing
the effects of combinations of failure events is not enough by itself to capture the system
failure behaviour; in addition, understanding the order in which they fail is also required
for a more accurate failure model. Therefore there are many challenges and developments
in the MBSA paradigm that limits the efficacy and application of compositional MBSA
techniques to dynamic systems. To address some of these challenges, this thesis intro-
duces a methodology to annotate system components with dynamic dependability related
information using a state-event formalism based approach, thereby allowing the dynamic
MBSA of systems.

226

Pandora, a recent dynamic extension to classical fault trees, is also integrated with
model-based design and analysis. It introduces three temporal gates to allow MBSA
techniques to synthesise and analyse temporal fault trees from behavioural models of the
dynamic systems. Pandora’s strength lies in its temporal laws, which allow qualitative
analysis of dynamic systems. By performing qualitative analysis, Pandora can create
useful insight to system failure in situations with limited or absent quantitative failure
data, e.g. in the case of new system components. However, it has limited capability
to perform quantitative analysis, which provides a measure of how reliable a system is
and which parts of the system needs more attention to improve reliability. Although
recent approaches have been developed to quantify Pandora temporal fault trees, these
approaches have some limitations, such as being limited only to exponentially distributed
data or having excessive execution times.

Given the increasing importance of model-based design and analysis, and the po-
tential use of Pandora in this context, it is fruitful to explore possible ways to improve
quantitative analysis of Pandora TFTs. Such techniques should be able to provide a state
space solution to TFTs in a reasonable time, and most importantly they should be equally
applicable to both exponentially and non-exponentially distributed data.

Uncertainty in failure data is yet another important area of MBSA that could affect the
quantitative analysis, and surprisingly it has received little attention. In order to perform
quantitative analysis, typical MBSA approaches take it as guaranteed that the failure data
of system components will always be available. However, as already described in chapters
1 and 2, that there are cases where no guarantee can be given about the availability of the
failure data. In such cases, the scarcity of data could force the MBSA techniques to
discontinue the quantitative analysis, thus undermining the efficacy and applicability of
MBSA approaches for quantitative analysis of dynamic systems. This issue motivates
one of the goals of this thesis to develop a methodology to allow MBSA approaches to
perform dynamic, quantitative analysis under uncertainty.

In this thesis, a number of methodologies have been developed to achieve the objec-
tives stated in chapter 1. The contributions of this thesis can be summarised as follows:

• The complicacies faced by the compositional MBSA techniques while modelling
and analysing dynamic behaviour are identified. Different state based methodolo-
gies that are capable of modelling dynamic system behaviour are studied and mode
charts have been selected as a potential way of representing dynamic behaviour.
Subsequently, an approach has been proposed for annotating system component
with dynamic behaviour using state-event automata, thus allowing MBSA tech-
niques to perform dynamic analysis based on these annotations.

• Considering the complexities of the mode charts that may arise while modelling
large and complex systems, guidelines have been provided on potential use of hier-
archical system modelling to alleviate the complexities. The necessity of temporal

227

logic in defining dynamic behaviour of systems has been demonstrated by an ex-
ample case study, but it is not something the analysts are forced to use all time.

• The proposed dynamic modelling approach has been demonstrated using HiP-HOPS
as an example MBSA tool. This has been done by extending the existing phases
of the tool. The annotation phase has been extended by annotating system compo-
nents with mode-based dynamic behaviour. The synthesis phase has been extended
by providing ways to generate temporal fault trees by examining the system model
and how the failure of components propagates through different modes in the mode
chart to cause system failure. Finally, in the analysis phase, minimal cut sequences
are generated by analysing the temporal fault trees. As a whole this extension
of HiP-HOPS allows it to model more complex dynamic scenarios and perform
compositional dynamic dependability analysis of complex systems by generating
Pandora temporal fault trees (TFTs). As a result, in addition to dynamic depend-
ability analyses, this methodology contributes towards unlocking all the features of
HiP-HOPS such as architecture optimisation and safety requirements allocation for
dynamic systems.

• A method based on Petri Nets (PNs) has been developed for probabilistic evalua-
tion of Pandora TFTs. This method provides ways to transform Pandora TFT’s ba-
sic events and logic gates (both temporal and Boolean) into GSPN models. These
GSPN models are then combined together to form the GSPN models of MCSQs
which are then combined to form the GSPN model of the top event of the TFTs.
After that, the model is simulated to obtain the probability of the top event. The
PN based method also allows analysts to determine the criticality of system com-
ponents. In addition to the quantification of Pandora TFTs, this method can also
verify the correctness of the MCSQs.

• A Bayesian Networks (BNs) based method has been developed to quantify Pandora
TFTs. Similar to the PN based method this method can evaluate system reliability
by quantifying Pandora TFTs and can also determine criticality of system com-
ponents. However, this approach works by transforming TFTs into BNs, which
confers two advantages over other approaches. Firstly, in addition to predictive
analysis, it also allows diagnostic analysis. Secondly, it can be applied to system
with both exponentially and non-exponentially distributed data. This therefore im-
proves the analysis capabilities of Pandora.

• A methodology has been proposed by combining fuzzy set theory and expert elic-
itation to allow the analysts to perform quantitative analysis with uncertain failure
data. In the case of limited availability of failure data, this method obtains opinion
from experts about the failure data of components in linguistic terms and then rep-
resents them as fuzzy numbers. As a part of this method, fuzzy operators for all
the logic gates of Pandora have been developed. Fuzzy failure data of components

228

are used by fuzzy operators of the logic gates to evaluate the system unreliability.
This methodology can also determine the criticality of system components based on
their contribution to the occurrence of the top event. By more explicitly highlight-
ing areas of uncertainty in the failure data, this method can lead to a more effective
quantification of uncertainty in dynamic systems, producing more realistic and ro-
bust results that can help to avoid mistaken assumptions and potential over/under
estimations of system reliability

Although this thesis has made some significant contributions to the area of MBSA,
there remain some limitations that open new avenues for further research. At present, the
PN and the BN based method provide state space solutions to Pandora TFTs by gener-
ating all possible reachable system states and transitions between states. This could be
computationally expensive since the number of paths through the state machine increases
exponentially with the number of states, i.e., that the number of possible sequences of
events increases dramatically. A possible improvement is to develop a modularisation
technique to provide a scalable solution to temporal fault trees.

Although the fuzzy set theory based method proposed in this thesis enables us to
draw helpful conclusions about the dependability of the system even in the absence of
concrete failure data, its main utility lies in drawing relative (not absolute) comparisons,
e.g. about the relative criticality of components. It is important to emphasise that the
results can only be as reliable as the input data and the inclusion of fuzzy data cannot
create accuracy where none previously existed. At present, the methodology proposed to
work with uncertain data is applicable only to exponentially distributed data. Therefore,
it is worthwhile trying to develop novel methodologies or improve the existing approach
to work with non-exponentially distributed uncertain data.

Another area requiring improvement is the inclusion of repairable events in the dy-
namic analysis. At present, only the non-repairable components are considered in this
thesis, yet in many real world systems components can be repaired. Therefore, it is a
worthwhile try to develop methodologies to include the reparability of components when
carrying out dynamic analysis.

Closing this thesis, we want to emphasise that MBSA is an emerging field which pro-
vides tools and techniques to automate the dependability analysis process, but there are
many future developments and challenges remain in this area. This thesis has discussed
some of these challenges and proposed approaches to alleviate them. Several new generic
methodologies have been proposed to expand our ability to perform dependability anal-
ysis of dynamic systems, and they have been demonstrated in relation to the HiP-HOPS
approach in particular, helping to bring its other capabilities for optimisation and allo-
cation of safety requirements to a wider range of systems. The proposed approaches —
which utilise a range of techniques, from Petri Nets to Bayesian Networks to state charts
to fuzzy set theory — are used collectively to enhance the functionality of the Pandora
temporal fault tree approach and would be useful to any dependability engineers who

229

wish to determine the reliability of state-of-the-art dynamic systems, even systems with
uncertain or absent failure data. This latter capability in particular is important, as little
attention has so far been paid to analysing systems under conditions of uncertainty. .

The overall result of this work is a significant step forward in increasing our under-
standing and ability to analyse safety-critical systems using MBSA techniques. Given
our reliance on such systems, new techniques are always required to keep pace with their
continual growth in complexity and increasingly dynamic behaviour. It is our hope that
the work presented in this thesis can contribute to ensuring that developments in safety-
critical systems do not outpace our ability to ensure their dependability.

230

References

Adler, R., Domis, D., Höfig, K., Kemmann, S., Kuhn, T., Schwinn, J.-P. and Trapp,
M. 2011. Integration of Component Fault Trees into the UML. In: Workshops and

Symposia at MODELS. pp. 312–327.

Åkerholm, M., Carlson, J., Fredriksson, J., Hansson, H., Håkansson, J., Möller, A., Pet-
tersson, P. and Tivoli, M. 2007. The SAVE approach to component-based development
of vehicular systems. Journal of Systems and Software 80(5), pp. 655–667.

Andrews, J. 1998. Tutorial: Fault Tree Analysis. In: Proceed-

ings of the 16th International System Safety Conference. Available at:
http://www.fault-tree.net/papers/andrews-fta-tutor.pdf.

Aneziris, O. and Papazoglou, I. 2004. Fast Markovian method for dynamic safety analysis
of process plants. Journal of Loss Prevention in the Process Industries 17(1), pp. 1–8.

Arnold, A., Point, G., Griffault, A. and Rauzy, A. 2000. The AltaRica formalism for
describing concurrent systems. Fundamenta Informaticae 40(2), pp. 109–124.

Batteux, M., Prosvirnova, T., Rauzy, A. and Kloul, L. 2013. The AltaRica 3.0 project for
model-based safety assessment. In: 11th IEEE International Conference on Industrial

Informatics (INDIN). IEEE, pp. 741–746.

Bernardi, S. and Merseguer, J. 2007. A UML Profile for Dependability Analysis of Real-
Time Embedded Systems. In: 6th international workshop on Software and perfor-

mance. New York: ACM, pp. 115–124.

Bieber, P., Castel, C. and Seguin, C. 2002. Combination of fault tree analysis and model
checking for safety assessment of complex system. In: Proceedings of the 4th European

Depting Conference on Dependable Computing (EDCC). pp. 19–31.

Bobbio, A., Franceschinis, G., Gaeta, R. and Portinale, L. 1999. Exploiting Petri Nets to
Support Fault Tree Based Dependability Analysis. In: 8th International Workshops on

Petri Nets and Performance Models. Zaragoza: IEEE, pp. 146–155.

Bobbio, A., Portinale, L., Minichino, M. and Ciancamerla, E. 2001. Improving the anal-
ysis of dependable systems by mapping fault trees into Bayesian networks. Reliability

Engineering & System Safety 71(3), pp. 249–260.

231

Boiteau, M., Dutuit, Y., Rauzy, A. and Signoret, J. 2006. The AltaRica data-flow lan-
guage in use: modeling of production availability of a multi-state system. Reliability

Engineering & System Safety 91(7), pp. 747–755.

Boudali, H., Crouzen, P. and Stoelinga, M. 2007. Dynamic Fault Tree analysis using Input
/ Output Interactive Markov Chains. In: Proceedings of the 37th Annual IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks. Washington DC: IEEE
Computer Society, pp. 708–717.

Boudali, H., Crouzen, P. and Stoelinga, M. 2010. A Rigorous, Compositional, and Exten-
sible Framework for Dynamic Fault Tree Analysis. IEEE Transactions on Dependable

and Secure Computing 7(2), pp. 128–143.

Boudali, H. and Dugan, J. 2005. A new bayesian network approach to solve dynamic fault
trees. In: Proceedings of Annual Reliability and Maintainability Symposium. IEEE, pp.
451–456.

Boudali, H. and Dugan, J. B. 2006. A Continuous-Time Bayesian Network Reliability
Modeling, and Analysis Framework. IEEE Transaction on Reliability 55(1), pp. 86–
97.

Bozzano, M. and Villafiorita, A. 2003. Improving System Reliability via Model Check-
ing: The FSAP/NuSMV-SA Safety Analysis Platform. Computer Safety, Reliability,

and Security 2788, pp. 49–62.

Bozzano, M. and Villafiorita, A. 2007. The FSAP/NuSMV-SA Safety Analysis Platform.
International Journal on Software Tools for Technology Transfer (STTT) - Special Sec-

tion on Advances in Automated Verification of Critical Systems 9(1), pp. 5–24.

Bruns, G. and Anderson, S. 1993. Validating Safety Models with Fault Trees. In: Górski,
J., ed., SAFECOMP ’93, Springer London, pp. 21–30.

Bukowski, J. and Goble, W. 1995. Using Markov models for safety analysis of pro-
grammable electronic systems. ISA Transactions 34, pp. 193–198.

Cai, K.-y. 1996. System failure engineering and fuzzy methodology: an introductory
overview. Fuzzy Sets and Systems 83(2), pp. 113–133.

Carlson, J., Håkansson, J. and Pettersson, P. 2006. SaveCCM: An Analysable Component
Model for Real-Time Systems. Electronic Notes in Theoretical Computer Science 160,
pp. 127–140.

Chen, G.-b., Yang, Z.-c. and Sun, J.-h. 2010. Safety Analysis of Complex systems based
on Bayesian Networks. In: 2nd international conference on Industrial Mechatronics

and Automation. Wuhan: IEEE, pp. 92–95.

232

Chiacchio, F., Cacioppo, M., D’Urso, D., Manno, G., Trapani, N. and Compagno, L.
2013. A weibull-based compositional approach for hierarchical dynamic fault trees.
Reliability Engineering & System Safety 109, pp. 45–52.

Chiacchio, F., Compagno, L., D’Urso, D., Manno, G. and Trapani, N. 2011. Dynamic
fault trees resolution: A conscious trade-off between analytical and simulative ap-
proaches. Reliability Engineering & System Safety 96(11), pp. 1515–1526.

Codetta-Raiteri, D. 2005. The Conversion of Dynamic Fault Trees to Stochastic Petri
Nets, as a case of Graph Transformation. Electronic Notes in Theoretical Computer

Science 127(2), pp. 45–60.

Cozman, F. 2001. JavaBayes, [Online]. http://www.cs.cmu.edu/ javabayes/.

Desrochers, A. A., Deal, T. J. and Fanti, M. P. 2005. Complex-Valued Token Petri Nets.
IEEE Trannsactions on Automation Science and Engineering 2(4), pp. 309–318.

Deza, M. M. and Deza, E. 2009. Encyclopedia of distances. Springer.

Doguc, O. and Ramirez-Marquez, J. E. 2009. A generic method for estimating system
reliability using Bayesian networks. Reliability Engineering & System Safety 94(2),
pp. 542–550.

Dugan, J., Bavuso, S. and Boyd, M. 1993. Fault trees and Markov models for reliabil-
ity analysis of fault-tolerant digital systems. Reliability Engineering & System Safety

39(3), pp. 291–307.

Dugan, J., Sullivan, K. and Coppit, D. 2000. Developing a low-cost high-quality software
tool for dynamic fault-tree analysis. IEEE Transactions on Reliability 49(1), pp. 49–59.

Dugan, J. B., Bavuso, S. J. and Boyd, M. A. 1990. Fault Trees and Sequence Depen-
dencies. In: Proceedings of Annual Reliability and Maintainability Symposium. pp.
286–293.

Dugan, J. B., Bavuso, S. J. and Boyd, M. A. 1992. Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Transactions on Reliability 41(3), pp. 363–377.

Dutuit, Y. and Rauzy, A. 1996. A linear-time algorithm to find modules of fault trees.
IEEE Transactions on Reliability 45(3), pp. 422–425.

Edifor, E., Walker, M. and Gordon, N. 2012. Quantification of Priority-OR Gates in Tem-
poral Fault Trees. In: Ortmeier, F. and Daniel, P., eds., Computer Safety, Reliability, and

Security SE - 9, Springer Berlin Heidelberg, vol. 7612 of Lecture Notes in Computer

Science, pp. 99–110.

233

Edifor, E., Walker, M. and Gordon, N. 2013. Quantification of Simultaneous-AND Gates
in Temporal Fault Trees. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak,
T. and Kacprzyk, J., eds., New Results in Dependability and Computer Systems SE -

13, Springer International Publishing, vol. 224 of Advances in Intelligent Systems and

Computing, pp. 141–151.

Edifor, E., Walker, M., Gordon, N. and Papadopoulos, Y. 2014. Using Simulation to
Evaluate Dynamic Systems with Weibull or Lognormal Distributions. In: Proceedings

of the Ninth International Conference on Dependability and Complex Systems DepCoS-

RELCOMEX. pp. 177–187.

Ejlali, A. and Miremadi, S. G. 2004. Fpga-based monte carlo simulation for fault tree
analysis. Microelectronics Reliability 44(6), pp. 1017 – 1028.

Esary, J. D. and Proschan, F. 1963. Coherent Structures of Non-Identical Components.
Technometrics 5(2), pp. 191–209.

ESSaRel. 2005. Embedded Systems Safety and Reliability Analyser,, [Online]. Available
at: http://essarel.de.

Fan, Y., Zhang, J., Gong, Q. and Zhu, Y. 2011. Safety analysis for complex system based
on the finite state machine theory. In: Proceedings of the 9th International Conference

on Reliability, Maintainability and Safety(ICRMS). Guiyang: IEEE, pp. 594–598.

Fanti, M. P., Mangini, A. M., Ukovic, W., Lesage, J.-J. and Viard, K. 2014. A petri
net model of an integrated system for the health care at home management. In: IEEE

International Conference on Automation Science and Engineering (CASE). IEEE, pp.
582–587.

Feiler, P. and Rugina, A. 2007. Dependability Modeling with the Architecture Analysis &
Design Language (AADL). Tech. Rep. July, Software Engineering Institute, Carnegie
Mellon University.

Feiler, P. H., Gluch, D. P. and Hudak, J. J. 2006a. The Architecture Analysis & Design
Language (AADL): An Introduction. Tech. Rep. February.

Feiler, P. H., Lewis, B. A. and Vestal, S. 2006b. The SAE Architecture Analysis &
Design Language (AADL) a Standard for Engineering Performance Critical Systems.
In: Proceedings of the IEEE Conference on Computer Aided Control Systems Design.
Munich: IEEE, pp. 1206–1211.

Fenelon, P. and McDermid, J. A. 1993. An Integrated Toolset For Software Safety Anal-
ysis. Journal of Systems and Software 21(3), pp. 279–290.

234

Ferdous, R., Khan, F., Veitch, B. and Amyotte, P. R. 2009. Methodology for computer
aided fuzzy fault tree analysis. Process Safety and Environmental Protection 87(4), pp.
217–226.

Friedenthal, S., Moore, A. and Steiner, R. 2014. A practical guide to SysML: the systems

modeling language. Morgan Kaufmann.

Fussel, J. and Vesely, W. 1972. A new methodology for obtaining cut sets for fault trees.
Transactions of the American Nuclear Society 15(1), pp. 262–263.

Fussell, J., Aber, E. and Rahl, R. 1976. On the Quantitative Analysis of Priority-AND
Failure Logic. IEEE Transactions on Reliability R-25(5), pp. 324–326.

Gallina, B. and Punnekkat, S. 2011. FI4FA: A Formalism for Incompletion, Inconsis-
tency, Interference and Impermanence Failures’ Analysis. In: Proceedings of the 37th

EUROMICRO Conference on Software Engineering and Advanced Applications. Ieee,
pp. 493–500.

Ge, X., Paige, R. F. and Mcdermid, J. A. 2009. Probabilistic Failure Propagation and
Transformation Analysis. In: Proceedings of 28th International Conference on Com-

puter Safety, Reliability, and Security (SAFECOMP). pp. 215–228.

German, R. and Mitzlaff, J. 1995. Transient Analysis of Deterministic and Stochastic Petri
Nets with TimeNET. In: Proceedings of the 8th International Conference on Computer

Performance Evaluation, Modelling Techniques, and Tools and MMB. Springer-Verlag,
pp. 209–223.

Gmytrasiewicz, P., Hassberger, J. A. and Lee, J. C. 1990. Fault tree based diagnostics
using fuzzy logic. IEEE Transactions on Pattern Analysis and Machine Intelligence

12(11), pp. 1115–1119.

Grunske, L. 2006. Towards an Integration of Standard Component-Based Safety Evalu-
ation Techniques with SaveCCM. In: Hofmeister, C., Crnkovic, I. and Reussner, R.,
eds., Proceedings of the Second International Conference on Quality of Software Ar-

chitectures (QoSA’06). Berlin, Heidelberg: Springer Berlin Heidelberg, vol. 4214 of
Lecture Notes in Computer Science, pp. 199–213.

Grunske, L., Colvin, R. and Winter, K. 2007. Probabilistic Model-Checking Support for
FMEA. In: Fourth International Conference on the Quantitative Evaluation of Systems

(QEST 07). IEEE, pp. 119–128.

Grunske, L. and Han, J. 2008. A Comparative Study into Architecture-Based Safety Eval-
uation Methodologies Using AADL’s Error Annex and Failure Propagation Models. In:
11th IEEE High Assurance Systems Engineering Symposium. IEEE, pp. 283–292.

235

Grunske, L. and Kaiser, B. 2005. Automatic Generation of Analyzable Failure Prop-
agation Models from Component-Level Failure Annotations. In: Fifth International

Conference on Quality Software(QSIC 2005). pp. 117–123.

Grunske, L., Kaiser, B. and Papadopoulos, Y. 2005. Model-Driven safety evaluation with
state-event-based component failure annotations. In: Heineman, G. T., Crnkovic, I.,
Schmidt, H. W., Stafford, J. A., Szyperski, C. and Wallnau, K., eds., Proceedings of the

8th international conference on Component-Based Software Engineering (CBSE’05).
Berlin, Heidelberg: Springer Berlin Heidelberg, vol. 3489 of Lecture Notes in Com-

puter Science, pp. 33–48.

Güdemann, M. and Ortmeier, F. 2010. A Framework for Qualitative and Quantitative For-
mal Model-Based Safety Analysis. In: Proceedings of 12th International Symposium

on High-Assurance Systems Engineering (HASE). pp. 132–141.

Güdemann, M. and Ortmeier, F. 2011. Towards Model-driven Safety Analysis. In: 3rd

International Workshop on Dependable Control of Discrete Systems (DCDS). pp. 53–
58.

Güdemann, M., Ortmeier, F. and Reif, W. 2007. Using Deductive Cause-Consequence
Analysis (DCCA) with SCADE. In: 26th International Conference in Computer

Safety, Relaibility, and Security. pp. 465–478.

Güdemann, M., Ortmeier, F. and Reif, W. 2008. Computation of ordered minimal critical
sets. In: Proceedings of the 7th Symposium on Formal Methods for Automation and

Safety in Railway and Automotive Systems (FORMS/FORMAT 08).

Guimarees, A. C. F. and Ebecken, N. F. F. 1999. FuzzyFTA : a fuzzy fault tree system for
uncertainty analysis. Annals of Nuclear Energy 26, pp. 523–532.

Gulati, R. and Dugan, J. B. 1997. A modular approach for analyzing static and dynamic
fault trees. In: Proceedings of Annual Reliability and Maintainability Symposium.
IEEE, pp. 57–63.

Guo, H. and Yang, X. 2008. Automatic creation of Markov models for reliability assess-
ment of safety instrumented systems. Reliability Engineering & System Safety 93(6),
pp. 829–837.

Harel, D. 1987. Statecharts: a visual formalism for complex systems. Science of Com-

puter Programming 8(3), pp. 231 – 274.

He, L.-p., Huang, H.-z. and Zuo, M. 2007. Fault Tree Analysis Based on Fuzzy Logic.
In: Proceedings of Annual Reliability and Maintainability Symposium. FL: IEEE, pp.
77–82.

236

Hei, X., Chang, L., Ma, W., Gao, J. and Xie, G. 2011. Automatic Transformation
from UML Statechart to Petri Nets for Safety Analysis and Verification. In: Inter-

national Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineer-

ing(ICQR2MSE). Xi’an: IEEE, pp. 948–951.

Helmer, G., Wong, J., Slagell, M., Honavar, V., Miller, L., Wang, Y., Wang, X. and
Stakhanova, N. 2007. Software fault tree and coloured Petri net – based specification
, design and implementation of agent-based intrusion detection systems. International

Journal of Information and Computer Security 1(1), pp. 109–142.

Henley, E. J. and Kumamoto, H. 1981. Reliability engineering and risk assessment, vol.
193. Prentice-Hall Englewood Cliffs (NJ).

Hollnagel, E. 1998. Cognitive Reliability and Error Analysis Method (CREAM). London:
Elsevier.

Horváth, A., Paolieri, M., Ridi, L. and Vicario, E. 2012. Transient analysis of non-
Markovian models using stochastic state classes. Performance Evaluation 69(7-8),
pp. 315–335.

Hsu, H.-M. and Chen, C.-T. 1996. Aggregation of fuzzy opinions under group decision
making. Fuzzy Sets and Systems 79(3), pp. 279 – 285.

Huang, Y., McMurran, R., Dhadyalla, G. and Jones, R. P. 2008. Probability based vehicle
fault diagnosis : Bayesian network method. Journal of Intelligent Manufacturing 19(3),
pp. 301–311.

Hura, G. S. and Atwood, J. W. 1988. The Use Of Petri Nets To Analyze Coherent Fault
Trees. IEEE Transactions on Reliability 37(5), pp. 469–474.

IEC. 2006. Analysis techniques for system reliability – Procedure for failure mode and
effects analysis (FMEA) (IEC 60812). Tech. rep., Geneva.

ISO. 2011. ISO 26262: Road vehicles - functional safety. ISO standard, International
Organization for Standardization, Geneva, Switzerland.

Jensen, K. 1996. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical

Use. New York: Springer, 2nd ed.

Jensen, K., Kristensen, L. M. and Wells, L. 2007. Coloured Petri Nets and CPN Tools
for modelling and validation of concurrent systems. International Journal on Software

Tools for Technology Transfer 9(3-4), pp. 213–254.

Jiang, Y.-j., Sun, Z.-q., Xie, H.-w. and Gong, E.-l. 2010. A human error probability
quantification method based on CREAM+Bayes. In: 2010 3rd International Confer-

ence on Advanced Computer Theory and Engineering(ICACTE). Chengdu: IEEE, pp.
V1–509–V1–512.

237

Jianzhong, Y. and Julian, Z. 2011. Application Research of Markov in Flight Control
System Safety Analysis. Procedia Engineering 17, pp. 515–520.

Joshi, A., Vestal, S. and Binns, P. 2007. Automatic Generation of Static Fault Trees from
AADL Models. In: DSN Workshop on Architecting Dependable Systems.

Kabir, S., Edifor, E., Walker, M. and Gordon, N. 2014a. Quantification of Temporal
Fault Trees Based on Fuzzy Set Theory. In: Proceedings of the Ninth International

Conference on Dependability and Complex Systems DepCoS-RELCOMEX. Brunów:
Springer International Publishing, pp. 255–264.

Kabir, S., Walker, M. and Papadopoulos, Y. 2014b. Reliability Analysis of Dynamic
Systems by Translating Temporal Fault Trees into Bayesian Networks. In: Ortmeier, F.
and Rauzy, A., eds., Model-Based Safety and Assessment, Cham: Springer International
Publishing, vol. 8822 of Lecture Notes in Computer Science, pp. 96–109.

Kabir, S., Walker, M. and Papadopoulos, Y. 2015. Quantitative evaluation of pandora
temporal fault trees via petri nets. IFAC-PapersOnLine 48(21), pp. 458–463.

Kaiser, B., Gramlich, C. and Förster, M. 2007. State/event fault trees—A safety anal-
ysis model for software-controlled systems. Reliability Engineering & System Safety

92(11), pp. 1521–1537.

Kaiser, B., Liggesmeyer, P. and Mäckel, O. 2003. A New Component Concept for Fault
Trees. In: Proceedings of the 8th Australian Workshop on Safety Critical Systems and

Software (SCS’03). vol. 33, pp. 37–46.

Kim, M. C. and Seong, P. H. 2006. A computational method for probabilistic safety
assessment of I&C systems and human operators in nuclear power plants. Reliability

Engineering & System Safety 91(5), pp. 580–593.

Košecká, J. 1992. Control of Discrete Event Systems. Tech. rep., Department of Computer
and Information Science, University of Pennsylvania, Philadelphia, PA.

Kwiatkowska, M., Norman, G. and Parker, D. 2011. PRISM 4.0: verification of prob-
abilistic real-time systems. In: Proceedings of the 23rd international conference on

Computer aided verification (CAV’11). Springer-Verlag, pp. 585–591.

Langseth, H. and Portinale, L. 2007. Bayesian networks in reliability. Reliability Engi-

neering & System Safety 92(1), pp. 92–108.

Leveson, N. G. 1995. Safeware: System Safety and Computers. New York, NY, USA:
ACM.

Leveson, N. G. and Stolzy, J. L. 1987. Safety Analysis Using Petr Nets. IEEE Transac-

tions on Software Engineering 13(3), pp. 386–397.

238

Li, Y. F., Huang, H. Z., Liu, Y., Xiao, N. and Li, H. 2012. A new fault tree analysis
method : fuzzy dynamic fault tree analysis. Eksploatacja i Niezawodnosc-Maintenance

and Reliability 14(3), pp. 208–214.

Li, Y. F., Mi, J., Liu, Y., Yang, Y. J. and Huang, H. Z. 2015. Dynamic fault tree analysis
based on continuous-time Bayesian networks under fuzzy numbers. Proceedings of the

Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability pp. 1–12.

Liang, G.-S. and Wang, M.-J. J. 1993. Fuzzy fault-tree analysis using failure possibility.
Microelectronics Reliability 33(4), pp. 583–597.

Lin, C.-T. and Wang, M.-J. J. 1997. Hybrid fault tree analysis using fuzzy sets. Reliability

Engineering and System Safety 58(1997), pp. 205–213.

Lowrance, W. W. 1976. Of Acceptable Risk: Science and the Determination of Safety.
Los Altos, California: William Kaufmann, Inc.

Mahmood, Y. A., Ahmadi, A., Verma, A. K., Srividya, A. and Kumar, U. 2013. Fuzzy
fault tree analysis : a review of concept and application. International Journal of System

Assurance Engineering and Management 4(1), pp. 19–32.

Mahmud, N. 2012. Dynamic Model-based Safety Analysis : From State Machines to

Temporal Fault Trees. Ph.D. thesis, University of Hull.

Mahmud, N., Walker, M. and Papadopoulos, Y. 2012. Compositional synthesis of tem-
poral fault trees from state machines. ACM SIGMETRICS Performance Evaluation

Review 39(4), pp. 79–88.

Malhotra, M. and Trivedi, K. S. 1995. Dependability Modeling Using Petri-Nets. IEEE

Transactions on Reliability 44(3), pp. 428–440.

Manian, R., Dugan, J. B., Coppit, D. and Sullivan, K. J. 1998. Combining Various Solu-
tion Techniques for Dynamic Fault Tree Analysis of Computer Systems. In: Proceed-

ings of Third IEEE International High-Assurance Systems Engineering Symposium.
Washington: IEEE, pp. 21–28.

Marquez, D., Neil, M. and Fenton, N. 2008. Solving Dynamic Fault Trees using a New
Hybrid Bayesian Network Inference Algorithm. In: 16th Mediterranean Conference

on Control and Automation. IEEE, pp. 609–614.

Marsan, M. A., Balbo, G., Conte, G., Donatelli, S. and Franceschinis, G. 1996. Mod-

eling With Generalized Stochastic Petri Nets. West Sussex: Wiley. Available at:
http://www.di.unito.it/ greatspn/GSPN-Wiley/.

Marsan, M. A. and Chiola, G. 1987. On Petri nets with deterministic and exponentially
distributed firing times. Advances in Petri Nets 266, pp. 132–145.

239

Merle, G., Roussel, J.-M. and Lesage, J.-J. 2011. Algebraic determination of the structure
function of Dynamic Fault Trees. Reliability Engineering & System Safety 96(2), pp.
267–277.

Merle, G., Roussel, J.-M. and Lesage, J.-J. 2014. Quantitative Analysis of Dynamic Fault
Trees Based on the Structure Function. Quality and Reliability Engineering Interna-

tional 30(1), pp. 143–156.

Merle, G., Roussel, J.-m., Lesage, J.-j. and Bobbio, A. 2010. Probabilistic Algebraic
Analysis of Fault Trees With Priority Dynamic Gates and Repeated Events. IEEE

Transactions on Reliability 59(1), pp. 250–261.

Mi, J., Li, Y., Huang, H.-Z., Liu, Y. and Zhang, X. 2012. Reliability analysis of multi-
state systems with common cause failure based on Bayesian Networks. In: Interna-

tional Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering

(ICQR2MSE). Chengdu: IEEE, 2, pp. 1117–1121.

Mokos, K., Katsaros, P., Bassiliades, N., Vassiliadis, V. and Perrotin, M. 2008. Towards
compositional safety analysis via semantic representation of component failure be-
haviour. In: Proceedings of the Eighth Joint Conference on Knowledge-Based Software

Engineering. Amsterdam, The Netherlands: IOS Press, pp. 405–414.

Molloy, M. K. 1982. Performance analysis using stochastic Petri nets. IEEE Transactions

on Computers c-31(9), pp. 913–917.

Montani, S., Portinale, L., Bobbio, A. and Codetta-Raiteri, D. 2008. Radyban: A tool for
reliability analysis of dynamic fault trees through conversion into dynamic Bayesian
networks. Reliability Engineering & System Safety 93(7), pp. 922–932.

Montani, S., Portinale, L., Bobbio, A., Varesio, M. and Codetta-Raiteri, D. 2006. A tool
for automatically translating Dynamic Fault Trees into Dynamic Bayesian Networks.
In: Annual Reliability and Maintainability Symposium (RAMS’06). IEEE, pp. 434–441.

Murata, T. 1989. Petri Nets : Properties , Analysis and Applications. Proceedings of

IEEE 77(4), pp. 541–580.

Neil, M. and Marquez, D. 2012. Availability modelling of repairable systems using
Bayesian networks. Engineering Applications of Artificial Intelligence 25(4), pp. 698–
704.

Neil, M., Tailor, M., Marquez, D., Fenton, N. and Hearty, P. 2008. Modelling dependable
systems using hybrid Bayesian networks. Reliability Engineering & System Safety

93(7), pp. 933–939.

240

Niu, R., Tang, T., Lisagor, O. and McDermid, J. A. 2011. Automatic Safety Analysis of
Networked Control System based on Failure Propagation Model. In: IEEE Interna-

tional Conference on Vehicular Electronics and Safety (ICVES). pp. 53–58.

O’Connor, A. N. 2011. Probability distributions used in reliability engineering. RIAC.

Onisawa, T. 1988. An approach to human reliability in man-machine systems using error
possibility. Fuzzy Sets and Systems 27(2), pp. 87–103.

Ortmeier, F., Reif, W. and Schellhorn, G. 2005. Deductive Cause-Consequence Analysis.
In: Proceedings of the 6th IFAC World Congress. pp. 1434–1439.

Paige, R., Rose, L., Ge, X., Kolovos, D. and Brooke, P. 2008. FPTC: Automated safety
analysis for domainspecific languages. In: Proceedings of Workshop on NonFunctional

System Properties in Domain Specific Modeling Languages, co-located with 11th Inter-

national Conference of Model Driven Engineering Languages and Systems (MoDELS

2008). pp. 229–242.

Pais, R., Gomes, L. and Barros, J. P. 2011. From UML state machines to Petri nets: His-
tory attribute translation strategies. In: 37th Annual Conference of the IEEE Industrial

Electronics Society(IECON). Melbourne: IEEE, pp. 3776–3781.

Palshikar, G. K. 2002. Temporal fault trees. Information and Software Technology 44(3),
pp. 137–150.

Pande, P. K., Spector, M. E. and Chatterjee, P. 1975. Computerized Fault Tree Analy-
sis: TREEL and MICSUP. Tech. rep., University Of California Operations Research
Centre, California, USA.

Papadopoulos, Y. 2000. Safety-Directed System Monitoring Using Safety Cases. Ph.D.
thesis, University of York.

Papadopoulos, Y. 2012. HiP-HOPS, [Online]. Available at: http://hip-hops.eu/.

Papadopoulos, Y. and Grante, C. 2005. Evolving car designs using model-based auto-
mated safety analysis and optimisation techniques. Journal of Systems and Software

76(1), pp. 77–89.

Papadopoulos, Y. and Maruhn, M. 2001. Model-Based Synthesis of Fault Trees from
Matlab - Simulink models. In: International Conference on Dependable Systems and

Networks (DSN). pp. 77–82.

Papadopoulos, Y., Mcdermid, J., Sasse, R. and Heiner, G. 2001. Analysis and synthesis
of the behaviour of complex programmable electronic systems in conditions of failure.
Journal of Reliability Engineering and System Safety 71(3), pp. 229–247.

241

Papadopoulos, Y. and Mcdermid, J. A. 1999. Hierarchically Performed Hazard Origin
and Propagation Studies. In: Proceedings of the 18th International Conference on

Computer Safety, Reliability and Security. pp. 139–152.

Papadopoulos, Y., Parker, D. and Grante, C. 2004a. Automating the Failure Modes and
Effects Analysis of Safety Critical Systems. In: Proceedings of the Eighth IEEE Inter-

national Symposium on High Assurance Systems Engineering(HASE’04). pp. 310–311.

Papadopoulos, Y., Parker, D. and Grante, C. 2004b. A method and tool support for model-
based semi-automated failure modes and effects analysis of engineering designs. In:
Proceedings of the 9th Australian workshop on Safety critical systems and software-

Volume 47. Australian Computer Society, Inc., pp. 89–95.

Pearl, J. 1988. Probabilistic reasoning in intelligent systems: Networks of Plausible

Inference. Morgan Kaufmann.

Peterson, J. L. 1977. Petri Nets. ACM Computing Surveys 9(3), pp. 223–252.

Platis, A., Limnios, N. and Du, M. 1998. Dependability analysis of systems modeled by
non-homogeneous Markov chains. Reliability Engineering and System Safety 61, pp.
235–249.

Point, G. and Rauzy, A. 1999. AltaRica: Constraint automata as a description language.
European Journal on Automation 33(8-9), pp. 1033–1052.

Price, C. and Taylor, N. 2002. Automated multiple failure FMEA. Reliability Engineering

& System Safety 76(1), pp. 1–10.

Pukite, J. and Pukite, P. 1998. Modeling for Reliability Analysis: Markov Modeling for

Reliability, Maintainability, Safety, and Supportability Analyses of Complex Systems.
Wiley.

Rajakarunakaran, S., Kumar, A. M. and Prabhu, V. A. 2015. Applications of fuzzy faulty
tree analysis and expert elicitation for evaluation of risks in LPG refuelling station.
Journal of Loss Prevention in the Process Industries 33, pp. 109–123.

Rao, K., Gopika, V., Rao, V., Kushwaha, H., Verma, A. and Srividya, A. 2009. Dynamic
fault tree analysis using Monte Carlo simulation in probabilistic safety assessment.
Reliability Engineering & System Safety 94(4), pp. 872–883.

Rauzy, A. 2002. Mode automata and their compilation into fault trees. Reliability Engi-

neering & System Safety 78(1), pp. 1–12.

Reza, H., Pimple, M., Krishna, V. and Hilde, J. 2009. A Safety Analysis Method Us-
ing Fault Tree Analysis and Petri Nets. In: 2009 Sixth International Conference on

Information Technology: New Generations. Las Vegas: IEEE, pp. 1089–1094.

242

RoSPA. 2011. RoSPA Guide to Road Safety Projects, [Online]. Available at:
http://www.rospa.com/roadsafety/adviceandinformation/gene-

ral/road-safety-projects.aspx.

Ross, T. J. 2004a. Development of membership functions. In: Fuzzy Logic with Engi-

neering Applications, John Wiley & Sons, Ltd, pp. 174–210.

Ross, T. J. 2004b. Properties of membership functions, fuzzification, and defuzzification.
In: Fuzzy Logic with Engineering Applications, John Wiley & Sons, Ltd, pp. 89–116.

Rugina, A., Kanoun, K. and Kaâniche, M. 2007. A System Dependability Modeling
Framework Using AADL and GSPNs. In: Architecting Dependable Systems IV. pp.
14–38.

SAE. 2012. Architecture Analysis & Design Language (AADL) (AS5506B). Tech. rep.,
Society of Automotive Engineers Aerospace, Warrendale, PA.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K. and Teneketzis, D. C. 1996.
Failure diagnosis using discrete-event models. IEEE Transactions on Control Systems

Technology 4(2), pp. 105–124.

Semanderes, S. N. 1971. ELRAFT: A Computer Program for the Efficient Logic Re-
duction Analysis of Fault Trees. IEEE Transactions on Nuclear Science 18(1), pp.
481–487.

Sharvia, S., Kabir, S., Walker, M. and Papadopoulos, Y. 2015. Model-based Dependabil-
ity Analysis: State-of-the-art, Challenges, and Future Outlook . In: Software Quality

Assurance: In Large Scale and Complex Software-Intensive Systems, Morgan Kauf-
mann, pp. 251–278.

Sharvia, S. and Papadopoulos, Y. 2015. Integrating model checking with hip-hops in
model-based safety analysis. Reliability Engineering & System Safety 135, pp. 64 – 80.

Singer, D. 1990. A fuzzy set approach to fault tree and reliability analysis. Fuzzy Sets

and Systems 34(2), pp. 145–155.

Sinnamon, R. M. and Andrews, J. 1997. New approaches to evaluating fault trees. Relia-

bility Engineering & System Safety 58(2), pp. 89–96.

Steiner, M., Keller, P. and Liggesmeyer, P. 2012. Modeling the effects of software on
safety and reliability in complex embedded systems. In: Ortmeier, F. and Daniel, P.,
eds., Computer Safety, Reliability, and Security, Berlin, Heidelberg: Springer Berlin
Heidelberg, vol. 7613 of Lecture Notes in Computer Science, pp. 454–465.

Suresh, P., Babar, A. and Raj, V. 1996. Uncertainty in fault tree analysis : A fuzzy
approach. Fuzzy Sets and Systems 83(2), pp. 135–141.

243

Tanaka, H., Fan, L. T., Lai, F. S. and Toguchi, K. 1983. Fault-Tree Analysis by Fuzzy
Probability. IEEE Transactions on Reliability R-32(5), pp. 453–457.

Tao, C.-C. 2009. A two-stage safety analysis model for railway level crossing surveillance
systems. In: IEEE International Conference on Control and Automation. Christchurch:
IEEE, pp. 1497–1502.

Torres-Toledan, J. G. and Sucar, L. E. 1998. Bayesian networks for reliability analysis of
complex systems. In: Progress in Artificial Intelligence—IBERAMIA 98. pp. 195–206.

Tyagi, S. K., Pandey, D. and Kumar, V. 2011. Fuzzy Fault Tree Analysis for Fault Diagno-
sis of Cannula Fault in Power Transformer. Applied Mathematics 2(11), pp. 1346–1355.

Tyagi, S. K., Pandey, D. and Tyagi, R. 2010. Fuzzy set theoretic approach to fault tree
analysis. International Journal of Engineering, Science and Technology 2(5), pp. 276–
283.

US, D. o. D. 1980. Procedures for Performing a Failure Mode, Effects, and Criticality
Analysis (MIL-STD-1629A). Tech. rep., Washington DC, USA.

Verma, A., Srividya, A., Prabhudeva, S. and Vinod, G. 2006. Reliability analysis of
Dynamic fault tree models using fuzzy sets. Communications in Dependability and

Quality Management 9(4), pp. 68–78.

Vesely, W., Dugan, J., Fragola, J., Minarick, J. and Railsback, J. 2002. Fault Tree Hand-
book with Aerospace Applications. Tech. rep., NASA office of safety and mission
assurance, Washington, DC.

Vesely, W. E., Goldberg, F. F., Roberts, N. H. and Haasl, D. F. 1981. Fault Tree Handbook.
Tech. rep., US Nuclear Regulatory Commission, Washington DC, USA.

Villemeur, A. 1991. Reliability, Availability, Maintainability and Safety Assessment:

Methods and Techniques. Chichester: John Wiley & Sons.

Walker, M., Bottaci, L. and Papadopoulos, Y. 2007. Compositional Temporal Fault Tree
Analysis. In: Proceedings of the 26th International Conference on Computer Safety,

Reliability and Security (SAFECOMP’07). pp. 106–119.

Walker, M., Manmud, N., Papadopoulos, Y., Tagliabò, F., Torchiaro, S., Schierano, W.
and Lönn, H. 2008. ATESST2: Review of relevant Safety Analysis Techniques. Tech.
rep.

Walker, M. and Papadopoulos, Y. 2009. Qualitative temporal analysis: Towards a full
implementation of the Fault Tree Handbook. Control Engineering Practice 17(10), pp.
1115–1125.

244

Walker, M., Papadopoulos, Y., Parker, D., Lönn, H., Törngren, M., Chen, D., Johansson,
R. and Sandberg, A. 2009. Semi-Automatic FMEA supporting complex systems with
combinations and sequences of failures. In: SAE World Congress.

Walker, M. D. 2009. Pandora: A Logic for the Qualitative Analysis of Temporal Fault

Trees. Ph.D. thesis, University of Hull.

Wallace, M. 2005. Modular Architectural Representation and Analysis of Fault Propa-
gation and Transformation. Electronic Notes in Theoretical Computer Science 141(3),
pp. 53–71.

Wan, Y. and Wu, C. 2009. Software Reliability Model Based on Stochastic Theory.
In: 2nd International Conference on Biomedical Engineering and Informatics. Tianjin:
IEEE, 20070533, pp. 1–5.

Wang, D., Zhang, P. and Chen, L. 2013. Fuzzy fault tree analysis for fire and explosion
of crude oil tanks. Journal of Loss Prevention in the Process Industries 26(6), pp. 1390
– 1398.

Wang, L. X. 1997. A course in fuzzy system and control. Prentice-Hall PTR.

Weber, P., Medina-Oliva, G., Simon, C. and Iung, B. 2012. Overview on Bayesian net-
works applications for dependability, risk analysis and maintenance areas. Engineering

Applications of Artificial Intelligence 25(4), pp. 671–682.

Yang, L. 2011. Analysis on Dynamic Fault Tree Based on Fuzzy Set. Applied Mechanics

and Materials 110-116, pp. 2416–2420.

Yang, Y., Zeckzer, D., Liggesmeyer, P. and Hagen, H. 2011. ViSSaAn : Visual Support
for Safety Analysis. Dagstuhl Follow-Ups 2, pp. 378–395.

Yuge, T. and Yanagi, S. 2008. Quantitative analysis of a fault tree with priority AND
gates. Reliability Engineering & System Safety 93(11), pp. 1577–1583.

Yuhua, D. and Datao, Y. 2005. Estimation of failure probability of oil and gas transmis-
sion pipelines by fuzzy fault tree analysis. Journal of Loss Prevention in the Process

Industries 18(2), pp. 83–88.

Zadeh, L. 1965. Fuzzy Sets. Information and Control 8(3), pp. 338–353.

Zhang, P. and Chan, K. W. 2012. Reliability evaluation of phasor measurement unit using
monte carlo dynamic fault tree method. IEEE Transactions on Smart Grid 3(3), pp.
1235–1243.

Zhang, X., Miao, Q., Fan, X. and Wang, D. 2009. Dynamic fault tree analysis based
on Petri nets. In: 8th International Conference on Reliability, Maintainability and

Safety(ICRMS). Chengdu: IEEE, pp. 138–142.

245

Zhong, X. and Li, Q. 2013. Component importance and sensitivity analysis in Bayesian
networks. In: 2013 International Conference on Quality, Reliability, Risk, Mainte-

nance, and Safety Engineering (QR2MSE). Chengdu: IEEE, pp. 320–325.

Zurawski, R. and Zhou, M. 1994. Petri nets and industrial applications: A tutorial. IEEE

Transactions on Industrial Electronics 41(6), pp. 567–583.

Zwick, R., Carlstein, E. and Budescu, D. V. 1987. Measures of similarity among fuzzy
concepts: A comparative analysis. International Journal of Approximate Reasoning

1(2), pp. 221 – 242.

246

