16,750 research outputs found

    Observer-based event-triggered model-free adaptive sliding mode predictive control

    Get PDF
    For simple-input and simple-output (SISO) discrete-time nonlinear systems, an observer-based event-triggered model-free adaptive sliding mode predictive control technique (EMFASPC) is put forth in this study. The estimate of pseudo partial derivatives (PPD) and the transmission of I/O data are both carried out periodically at the time of event triggering to conserve network resources. A unified framework of event-triggered modelfree adaptive control with an adaptive observer and an event-triggered PPD estimation method is constructed based on the equivalent data model after compact format dynamic linearization (CFDL). The controller part adopts integral sliding mode control (SMC) combined with a rolling optimization idea of model predictive control (MPC) to predict the expected trajectory of the sliding mode state and generate the optimal control input. According to the relationship among the system tracking error, current measurement data, and the previous trigger time output, the event trigger condition is set to determine the next event trigger time, which reduces the unnecessary transmission on the premise of system stability. The stability performance of the closed-loop system is analyzed by the Lyapunov method. Finally, numerical simulation and the shell-and-tube heat exchanger control system simulation are carried out to verify that the proposed algorithm has good robustness and tracking accuracy under the limited bandwidth and computing resources

    MPC for Robot Manipulators with Integral Sliding Modes Generation

    Get PDF
    This paper deals with the design of a robust hierarchical multiloop control scheme to solve motion control problems for robot manipulators. The key elements of the proposed control approach are the inverse dynamics-based feedback linearized robotic multi-input-multi-output (MIMO) system and the combination of a model predictive control (MPC) module with an integral sliding mode (ISM) controller. The ISM internal control loop has the role to compensate the matched uncertainties due to unmodeled dynamics, which are not rejected by the inverse dynamics approach. The external loop is closed relying on the MPC, which guarantees an optimal evolution of the controlled system while fulfiling state and input constraints. The motivation for using ISM, apart from its property of providing robustness to the scheme with respect to a wide class of uncertainties, is also given by its capability of enforcing sliding modes of the controlled system since the initial time instant, allowing one to solve the MPC optimization problem relying on a set of linearized decoupled single-input-single-output (SISO) systems that are not affected by uncertain terms. The proposal has been verified and validated in simulation, relying on a model of a COMAU Smart3-S2 industrial robot manipulator, identified on the basis of real data

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft

    A robust PID autotuning method for steam/water loop in large scale ships

    Get PDF
    During the voyage of the ship, disturbances from the sea dynamics are frequently changing, and the ship's operation mode is also varied. Hence, it is necessary to have a good controller for steam/water loop, as the control task is becoming more challenging in large scale ships. In this paper, a robust proportional-integral-derivative (PID) autotuning method is presented and applied to the steam/water loop based on single sine tests for every sub-loop in the steam/water loop. The controller is obtained during which the user-defined robustness margins are guaranteed. Its performance is compared against other PID autotuners, and results indicate its superiority

    The application of a new PID autotuning method for the steam/water loop in large scale ships

    Get PDF
    In large scale ships, the most used controllers for the steam/water loop are still the proportional-integral-derivative (PID) controllers. However, the tuning rules for the PID parameters are based on empirical knowledge and the performance for the loops is not satisfying. In order to improve the control performance of the steam/water loop, the application of a recently developed PID autotuning method is studied. Firstly, a 'forbidden region' on the Nyquist plane can be obtained based on user-defined performance requirements such as robustness or gain margin and phase margin. Secondly, the dynamic of the system can be obtained with a sine test around the operation point. Finally, the PID controller's parameters can be obtained by locating the frequency response of the controlled system at the edge of the 'forbidden region'. To verify the effectiveness of the new PID autotuning method, comparisons are presented with other PID autotuning methods, as well as the model predictive control. The results show the superiority of the new PID autotuning method

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Switching frequency regulation in sliding mode control by a hysteresis band controller

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksFixing the switching frequency is a key issue in sliding mode control implementations. This paper presents a hysteresis band controller capable of setting a constant value for the steady-state switching frequency of a sliding mode controller in regulation and tracking tasks. The proposed architecture relies on a piecewise linear modeling of the switching function behavior within the hysteresis band, and consists of a discrete-time integral-type controller that modifies the amplitude of the hysteresis band of the comparator in accordance with the error between the desired and the actually measured switching period. For tracking purposes, an additional feedforward action is introduced to compensate the time variation of the switching function derivatives at either sides of the switching hyperplane in the steady state. Stability proofs are provided, and a design criterion for the control parameters to guarantee closed-loop stability is subsequently derived. Numerical simulations and experimental results validate the proposal.Accepted versio
    • …
    corecore