1,229 research outputs found

    Active Power Optimal Control of Wind Turbines with Doubly Fed Inductive Generators Based on Model Predictive Control

    Full text link
    Because of the randomness and fluctuation of wind energy, as well as the impact of strongly nonlinear characteristic of variable speed constant frequency (VSCF) wind power generation system with doubly fed induction generators (DFIG), traditional active power control strategies are difficult to achieve high precision control and the output power of wind turbines is more fluctuated. In order to improve the quality of output electric energy of doubly fed wind turbines, on the basis of analyzing the operating principles and dynamic characteristics of doubly fed wind turbines, this paper proposes a new active power optimal control method of doubly fed wind turbines based on predictive control theory. This method uses state space model of wind turbines, based on the prediction of the future state of wind turbines, moves horizon optimization, and meanwhile, gets the control signals of pitch angle and generator torque. Simulation results show that the proposed control strategies can guarantee the utilization efficiency for wind energy. Simultaneously, they can improve operation stability of wind turbines and the quality of electric energy

    Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time

    Get PDF
    Traditionally, inertia in power systems has been determined by considering all the rotating masses directly connected to the grid. During the last decade, the integration of renewable energy sources, mainly photovoltaic installations and wind power plants, has led to a significant dynamic characteristic change in power systems. This change is mainly due to the fact that most renewables have power electronics at the grid interface. The overall impact on stability and reliability analysis of power systems is very significant. The power systems become more dynamic and require a new set of strategies modifying traditional generation control algorithms. Indeed, renewable generation units are decoupled from the grid by electronic converters, decreasing the overall inertia of the grid. ‘Hidden inertia’, ‘synthetic inertia’ or ‘virtual inertia’ are terms currently used to represent artificial inertia created by converter control of the renewable sources. Alternative spinning reserves are then needed in the new power system with high penetration renewables, where the lack of rotating masses directly connected to the grid must be emulated to maintain an acceptable power system reliability. This paper reviews the inertia concept in terms of values and their evolution in the last decades, as well as the damping factor values. A comparison of the rotational grid inertia for traditional and current averaged generation mix scenarios is also carried out. In addition, an extensive discussion on wind and photovoltaic power plants and their contributions to inertia in terms of frequency control strategies is included in the paper.This work was supported by the Spanish Education, Culture and Sports Ministry [FPU16/04282]

    Back-to-back Converter Control of Grid-connected Wind Turbine to Mitigate Voltage Drop Caused by Faults

    Full text link
    Power electronic converters enable wind turbines, operating at variable speed, to generate electricity more efficiently. Among variable speed operating turbine generators, permanent magnetic synchronous generator (PMSG) has got more attentions due to low cost and maintenance requirements. In addition, the converter in a wind turbine with PMSG decouples the turbine from the power grid, which favors them for grid codes. In this paper, the performance of back-to-back (B2B) converter control of a wind turbine system with PMSG is investigated on a faulty grid. The switching strategy of the grid side converter is designed to improve voltage drop caused by the fault in the grid while the maximum available active power of wind turbine system is injected to the grid and the DC link voltage in the converter is regulated. The methodology of the converter control is elaborated in details and its performance on a sample faulty grid is assessed through simulation

    Nonlinear Dual-Mode Control of Variable-Speed Wind Turbines with Doubly Fed Induction Generators

    Full text link
    This paper presents a feedback/feedforward nonlinear controller for variable-speed wind turbines with doubly fed induction generators. By appropriately adjusting the rotor voltages and the blade pitch angle, the controller simultaneously enables: (a) control of the active power in both the maximum power tracking and power regulation modes, (b) seamless switching between the two modes, and (c) control of the reactive power so that a desirable power factor is maintained. Unlike many existing designs, the controller is developed based on original, nonlinear, electromechanically-coupled models of wind turbines, without attempting approximate linearization. Its development consists of three steps: (i) employ feedback linearization to exactly cancel some of the nonlinearities and perform arbitrary pole placement, (ii) design a speed controller that makes the rotor angular velocity track a desired reference whenever possible, and (iii) introduce a Lyapunov-like function and present a gradient-based approach for minimizing this function. The effectiveness of the controller is demonstrated through simulation of a wind turbine operating under several scenarios.Comment: 14 pages, 9 figures, accepted for publication in IEEE Transactions on Control Systems Technolog

    Wind Power Frequency Control in Doubly FED Induction Generator Using CFMPC-FOPID Controller Scheme

    Get PDF
    Because the majority of wind turbines operate in maximum output power tracking mode, power system frequency cannot be supported. However, if the penetration rate of wind power increases, the system inertia related to frequency modulation may decrease. In addition, frequency stability will be severely affected in the event of significant disturbances to the system load. Due to the high penetration of wind power in isolated power systems, this study suggests a coordinated frequency management approach for emergency frequency regulation. In order to prevent the phenomenon of load frequency control in doubly fed induction generators (DFIGs), a unique efficient control scheme is developed. The Cascaded Fractional Model Predictive Controller coupled with Fractional-Order PID controller (CFMPC-FOPID) is developed to provide the DFIG system with an efficient reaction to changes in load and system parameters. The proposed controller must have a robust tendency to respond quickly in terms of minimum settling time, undershoot, and overshoot. Nonlinear feedback controllers are designed using frequency deviations and power imbalances to achieve the reserve power distribution between generators and DFIGs in a variety of wind speed conditions. It makes upgrading quick and easy. In Matlab/Simulink, a simulation model is built to test the viability of the suggested approach

    On the contribution of wind farms in automatic generation control: Review and new control approach

    Get PDF
    © 2018 by the authors. Wind farms can contribute to ancillary services to the power system, by advancing and adopting new control techniques in existing, and also in new, wind turbine generator systems. One of the most important aspects of ancillary service related to wind farms is frequency regulation, which is partitioned into inertial response, primary control, and supplementary control or automatic generation control (AGC). The contribution of wind farms for the first two is well addressed in literature; however, the AGC and its associated controls require more attention. In this paper, in the first step, the contribution of wind farms in supplementary/load frequency control of AGC is overviewed. As second step, a fractional order proportional-integral-differential (FOPID) controller is proposed to control the governor speed of wind turbine to contribute to the AGC. The performance of FOPID controller is compared with classic proportional-integral-differential (PID) controller, to demonstrate the efficacy of the proposed control method in the frequency regulation of a two-area power system. Furthermore, the effect of penetration level of wind farms on the load frequency control is analyzed

    Prädiktive Regelung und Finite-Set-Beobachter für Windgeneratoren mit variabler Drehgeschwindigkeit

    Get PDF
    This dissertation presents several model predictive control (MPC) techniques and finite-position-set observers (FPSOs) for permanent-magnet synchronous generators and doubly-fed induction generators in variable-speed wind turbines. The proposed FPSOs are novel ones and based on the concept of finite-control-set MPC. Then, the problems of the MPC techniques like sensitivity to variations of the model parameters and others are investigated and solved in this work.Die vorliegende Dissertation stellt mehrere unterschiedliche Verfahren der modellprädiktiven Regelung (MPC) und so genannte Finite-Position-Set-Beobachter (FPSO) sowohl für Synchrongeneratoren mit Permanentmagneterregung als auch für doppelt gespeiste Asynchrongeneratoren in Windkraftanlagen mit variabler Drehzahl vor und untersucht diese. Für die Beobachter (FPSO) wird ein neuartiger Ansatz vorgestellt, der auf dem Konzept der Finite-Control-Set-MPC basiert. Außerdem werden typische Eigenschaften der MPC wie beispielsweise die Anfälligkeit gegenüber Parameterschwankungen untersucht und kompensiert

    Condition Assessment and Analysis of Bearing of Doubly Fed Wind Turbines Using Machine Learning Technique

    Get PDF
    Condition monitoring of wind turbines is progressively increasing to maintain the continuity of clean energy supply to power grids. This issue is of great importance since it prevents wind turbines from failing and overheating, as most wind turbines with doubly fed induction generators (DFIG) are overheated due to faults in generator bearings. Bearing fault detection has become a main topic targeting the optimum operation, unscheduled downtime, and maintenance cost of turbine generators. Wind turbines are equipped with condition monitoring devices. However, effective and reliable fault detection still faces significant difficulties. As the majority of health monitoring techniques are primarily focused on a single operating condition, they are unable to effectively determine the health condition of turbines, which results in unwanted downtimes. New and reliable strategies for data analysis were incorporated into this research, given the large amount and variety of data. The development of a new model of the temperature of the DFIG bearing versus wind speed to identify false alarms is the key innovation of this work. This research aims to analyze the parameters for condition monitoring of DFIG bearings using SCADA data for k-means clustering training. The variables of k are obtained by the elbow method that revealed three classes of k (k = 0, 1, and 2). Box plot visualization is used to quantify data points. The average rotation speed and average temperature measurement of the DFIG bearings are found to be primary indicators to characterize normal or irregular operating conditions. In order to evaluate the performance of the clustering model, an analysis of the assessment indices is also executed. The ultimate goal of the study is to be able to use SCADA-recorded data to provide advance warning of failures or performance issues
    corecore