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Highlights 9 

 Propose normal behaviour models based on performance curves to detect WTG faults; 10 

 Examine WTG performance under the normal conditions and with pitch faults; 11 

 Demonstrate the feasibility of the proposed approach based on performance curves; 12 

 Validate the criteria for electrical pitch system fault detection; 13 

 Prove the advantages of the proposed approach over the ANN/ANFIS based approaches. 14 

Abstract 15 

The fast growing wind industry requires a more sophisticated fault detection approach in pitch-16 

regulated wind turbine generators (WTG), particularly in the pitch system that has led to the highest 17 

failure frequency and downtime. Improved analysis of data from Supervisory Control and Data 18 

Acquisition (SCADA) systems can be used to generate alarms and signals that could provide earlier 19 

indication of WTG faults and allow operators to more effectively plan Operation and Maintenance 20 

(O&M) strategies prior to WTG failures. Several data-mining approaches, e.g. Artificial Neural 21 

Network (ANN), and Normal Behaviour Models (NBM) have been used for that purpose. However, 22 

practical applications are limited because of the SCADA data complexity and the lack of accuracy due 23 

to the use of SCADA data averaged over a period of 10 minutes for ANN training. This paper aims to 24 

propose a new pitch fault detection procedure using performance curve (PC) based NBMs. An 25 

advantage of the proposed approach is that the system consisting of NBMs and criteria, can be 26 

developed using technical specifications of studied WTGs. A second advantage is that training data is 27 

unnecessary prior to application of the system. In order to construct the proposed system, details of 28 

WTG operational states and PCs are studied. Power-generator speed (P-N) and pitch angle-generator 29 

speed (PA-N) curves are selected to set up NBMs due to the better fit between the measured data and 30 

theoretical PCs. Six case studies have been carried out to show the prognosis of WTG fault and to 31 

demonstrate the feasibility of the proposed method. The results illustrate that polluted slip rings and 32 

the pitch controller malfunctions could be detected by the proposed method 20 hours and 13 hours 33 

earlier than by the AI approaches investigated and the existing alarm system. In addition, the proposed 34 

approach is able to explain and visualize abnormal behaviour of WTGs during the fault conditions. 35 

Keywords: condition monitoring, wind turbine generator, pitch faults, performance curves, normal 36 

behaviour model 37 

Abbreviation 38 

WTG  Wind Turbine Generator 39 

SCADA Supervisory Control and Data Acquisition 40 

O&M  Operation and Maintenance 41 

ANN  Artificial Neural Network 42 

NBM  Normal Behaviour Model 43 

PC  Performance Curve 44 

CM  Condition Monitoring 45 

ANFIS  Adaptive Neuro-Fuzzy Interference System 46 

APK  A-Priori Knowledge 47 

SIMAP  Intelligent System for Predictive Maintenance 48 

CMS  Condition Monitoring System 49 
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GC  Grid Connection 1 

MPPT  Maximum Power Point Tracking 2 

PP  Power Production 3 

ES  Emergency Shutdown 4 

CS  Case Study 5 

MISO  Multiple inputs and Single Output 6 

DFIG  Doubly Fed Induction Generator 7 

PMSG  Permanent Magnet Synchronous Generator 8 
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Nomenclature 10 

nGCS The grid connection speed (rpm) 11 

nHPS The highest production generator speed (rpm) 12 

nLPS The lowest production generator speed (rpm) 13 

nr The rated generator speed (rpm) 14 

PGC The maximum grid connection power output (kW) 15 

Pmax The maximum of power output (kW) 16 

Pnr The power output when nr is reached (kW) 17 

Pr The rated power output (kW) 18 

vcut-in Cut-in wind speed (m/s) 19 

vcut-out Cut-out wind speed (m/s) 20 

vnr The wind speed where nr is reached (m/s) 21 

vr The rated wind speed (m/s) 22 

βES The feathered position (deg.) 23 

βf The setting of pitch angle under freewheeling (deg.) 24 

βMO The maximum pitch angle for operation (deg.) 25 

βPL The setting of pitch angle under unrated power (deg.) 26 

 27 

1. Introduction 28 

Wind turbine generators (WTG) are complex electromechanical devices that are prone to shut down 29 

due to subsystem faults [1]. The annual report of the onshore wind farm in China, which has provided 30 

the data for this investigation, gave the top three electrical pitch-regulated WTG fault frequencies 31 

during 2014 as: pitch faults (42.26%), converter faults (31.01%) and vibration faults (7.39%). In 32 

respect of these fault types, pitch faults were responsible for 34.46%, converter faults for 29.01% and 33 

generator faults for 12.35% of the annual downtime during 2014. Failures of WTGs result in high 34 

operation and maintenance (O&M) costs and negatively impact on operational performance [2]. 35 

Assessment of fault conditions, through monitoring of WTG operational data, would permit operators 36 

to identify early stage deterioration and to prioritise remedial actions, essential to reduce the 37 

downtime and O&M costs. 38 

Condition monitoring (CM) techniques, based on vibration analysis, oil analysis and strain 39 

measurement, have been widely studied, e.g. [3] and [4]. Although some have been highly effective in 40 

improving the O&M practice in the field of aerospace, power systems and rotational machines, those 41 

CM techniques require mounting additional sensors or devices and they focus on monitoring specific 42 

aspects of a device. Due to the high cost of fitting and maintaining such systems, not all WTGs have 43 

had the CM equipment installed. 44 

Supervisory Control and Data Acquisition (SCADA) systems are a standard installation on large 45 

WTGs monitoring and recording the operational conditions [5]. Achieved SCADA data provides 46 

comprehensive signal information, historical alarms and detailed fault logs. In the design of a SCADA 47 

system, fault detection and prognosis schemes are simple and are often conservative. WTGs are 48 

automatically shut down even during simple faults to wait for inspection and maintenance [6]. 49 

Each WTG’s systematic performance can be monitored through rigorous analysis of the information 50 

collected by the SCADA system, using data driven model-based condition monitoring schemes [7]. 51 
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Based on this database of information, data-mining based approaches and Normal Behaviour Models 1 

(NBM) have gained popularity in research methods attempting to provide early indication of faults. 2 

The NBMs are able to predict on-line reference condition parameters expected for each WTG 3 

component [8], according to its current operational and environmental conditions. Deviation from the 4 

expected output indicates an abnormal operational state. 5 

Sanz-Bobi et al. [9] applied an artificial neural network (ANN) approach to develop three NBMs 6 

using 10-minute averaged SCADA data, i.e. gearbox bearing temperature model, gearbox thermal 7 

difference model and gearbox oil temperature model. A predictive maintenance system, Intelligent 8 

System for Predictive Maintenance (SIMAP), is created for WTG gearbox condition monitoring, 9 

however, the ANN based NBM is a black-box model which fits globally a single function from the 10 

training data and thereby losing insight into a problem. It is disadvantageous that this model requires a 11 

large amount of accurate data for training prior to application. In addition, although using time 12 

averaged SCADA data may be suitable in the case of gearbox oil temperature fails. This may not be 13 

effective in other areas. 14 

Schlechtingen et al. [10] proposed a system for wind turbine condition monitoring applying Adaptive 15 

Neuro-Fuzzy Interference System (ANFIS) which is a combination of the ANN and fuzzy logic 16 

analysis. 45 NBMs were developed to analyse SCADA data, in this case the data had been averaged 17 

over 10-minute intervals. The second part of the work illustrated some example applications of the 18 

system, e.g. a hydraulic fault, cooling system fault, anemometer fault and turbine controller 19 

malfunctions [11]. However, the application of the ANFIS hinged on expert supervision and the 20 

expert input to the model was not provided. Moreover, researchers paid attention to data 21 

characteristics associated with failure events and ignored the physical mechanisms of failures. 22 

Chen et al. [12] applied a modified ANFIS approach, A-Priori Knowledge (APK) ANFIS, to achieve 23 

automated detection of significant pitch faults, again using 10-minute averaged SCADA data. In that 24 

work, variations of four SCADA signals (rotor speed, blade angle, motor torque and power output) 25 

against wind speed were monitored to identify pitch faults. However, they ignored the different 26 

operational characteristics between stop-to-operation process and operation-to-stop process, which is 27 

key to success of the approach as will be demonstrated in the paper. 28 

WTG performance curves (PC) depict the relationships among power output and other measurable 29 

parameters [13]. Three different PCs, namely power-wind speed (P-V) curve, rotor speed-wind speed 30 

(Nr-V) curve, and pitch angle-wind speed (PA-V) curve, were studied in [13] using 10-min averaged 31 

SCADA data. Applying k-means clustering and Mahalanobis distance, reference PCs were obtained to 32 

detect the bivariate data. As in [12], differences during different operational states were not 33 

considered. 34 

This paper considers whether NBMs based on PCs may be an effective tool to quantify the 35 

performance and detect abnormal conditions of WTGs. When applying PC based NBMs, it is 36 

important to identify reference PCs using valid physical functions. This paper aims to establish a full 37 

understanding of WTG operational states and develop a set of improved NBMs for use in the 38 

condition monitoring system (CMS) for WTGs based on PCs using instantaneous SCADA data (1 39 

second interval). The models or PCs used in this work include power-generator speed (P-N) 40 

relationship, and pitch angle-generator speed (PA-N) relationship. Knowledge of operational states 41 

and pitch fault mechanism are helpful to develop PC based models and criteria for fault prognosis. 42 

The paper is organized as follows. Section 2 presents a description of WTG operational states and PCs. 43 

In Section 3, the pitch fault symptoms are analysed in details. Based on the findings, a set of diagnosis 44 

criteria is proposed in Section 4. In Section 5 the developed method applied to pitch-regulated WTGs 45 

to show its ability in detecting pitch faults and forecasting the WTG failures. The results of AI based 46 

models and the existing alarm system are compared in this section. 47 

 48 
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2. Operational States and Performance Curves 1 

2.1. Operational states 2 

Fig. 1 illustrates the process of power conversion and the typical control loop of a pitch regulated 3 

WTG. The rotor is rotated by the wind and provides mechanical power to the drive train [14]. The 4 

drive train is a transmission system to transfer the mechanical power, Pm, and torque, Tm, to the 5 

generator. The generator produces electrical power under the influence of the converter. The main 6 

controller depends on power output and rotational speed of the generator to calculate expected pitch 7 

angle and generator torque. The pitch actuators rotate blades about their longitudinal axis to ensure 8 

the appropriate energy is extracted from the available wind power. 9 

Converter Generator
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Control

Torque 

Control

Main Controller
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speed

Torque 

Demand
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 Power conversion and control flow chart within a WTG system. Fig. 1.11 

Fig. 1 indicates that wind speed (v), mechanical torque (Tm and Tm’), generator speed (n), pitch angle 12 

(β) and power output (P) are important measurements for assessing the efficiency of power generation 13 

and, as will be demonstrated, condition monitoring. All of the named parameters, except the torque, 14 

can be easily obtained from the SCADA system. In this work, wind speed, power output, generator 15 

speed and pitch angle are observed when different operational states are studied. It will be shown that, 16 

although wind speed shows the condition of wind, this provides too variable a signal to consider it as 17 

a monitoring tool. Power output, generator speed and pitch angle more accurately depict the 18 

behaviour of WTGs. 19 

Details of the seven WTG operational states are illustrated in Fig. 2 [15]. The wind speed can be 20 

classified into five regions marked in different colours to facilitate understanding of WTG behaviour 21 

under different conditions. The operation under each condition is discussed in the next sections. It 22 

should be noted that there are three operational states for wind speeds below the cut-in wind speed 23 

(vcut-in). 24 

Stationary: When the wind speed below vcut-in, i.e. the wind speed at which WTGs start producing 25 

electrical power, there are three operational states due to different conditions of the WTG. The 26 

Stationary state is characterized by a stationary rotor and engaged parking brake. Therefore the WTG 27 

is at a standstill and blades are adjusted at the feathered position, i.e. where the pitch angle is the 28 

maximum (βES) and blades are under the least stress in this stationary state. The control system 29 

ensures that the WTG is ready to operate or to get it ready to operate when the wind conditions are 30 

suitable and there is demand for power. 31 

Freewheeling: In freewheeling state the WTG does not produce electrical power, but the generator 32 

rotor is rotating and the pitch angle is adjusted to βf, i.e. a setting of pitch angle which allows the rotor 33 

to gain energy form the available wind. The generator speed lies in the range (0, nGCS) and the power 34 



5 

 

output is 0. When the generator speed approaches nGCS, the generator or converter contactor is closed 1 

and the Grid Connection state is entered. 2 

Grid Connection (GC): In the stop-to-operation process, the brake is released and the generator rotor 3 

accelerates up to the grid connection operating speed (nGCS) when the WTG starts grid connection. 4 

Meanwhile, the pitch angle reduces from βES to a proper value for operation, as dictated by wind 5 

speed and other operational parameters. 6 

The wind speed has to be higher than vcut-in. Electrical power can be produced and the control system 7 

ensures a constant operating generator speed of nGCS, which is a design parameter avoiding the 8 

resonance [16]. During grid connection the WTG orients into the wind all the time. In this state, the 9 

ideal condition is that generator speed is remained at nGCS, and power output lies between 0 and PGC, 10 

i.e. the maximum of power output in grid connection state. When the wind speed reduces to vcut-in, the 11 

WTG disconnects and enters freewheeling state. 12 

Stationary

Grid connection

Operational 

States
Machine

Power production 1

Freewheeling

Power production 2

Power production 3

Emergency 

Shutdown

Control Strategies

n → 0

P → 0

β → βES

Monitoring for 

operation

Constant speed 

control

MPPT

Constant speed 

control

Constant power 

control

Protection

n = 0

P = 0

β = βES

0 < n ≤ nGCS

P = 0

β = βf

n = nGCS

0 ≤ P < PGC

0 < β < βf

nGCS < n < nr

PGC ≤ P < Pnr

β = βPL

n = nr

Pnr ≤ P < Pr

β = βPL

n = nr

P = Pr

βPL < β < βMO

v < vcut-in

v > vCut-out

v ≤ vcut-in

v = vcut-in

vcut-in < v < vnr

vnr ≤ v ≤ vr

vr < v < vCut-out

Wind

 13 

 Typical operational states of a pitch regulated WTG. Fig. 2.14 

Power Production 1 (PP1): Controller tasks depend on the wind velocities and operational conditions 15 

of the WTG [15]. When the wind speed is between vcut-in and vnr at which the generator reaches rated 16 

speed (nr), the Power Production 1 (PP1) state is entered. The WTG functions to capture as much 17 

wind power as possible. To do this maximum power point tracking (MPPT) is applied to control the 18 

system operation. In this state, the generator speed is monotonically increasing with wind speed and 19 

lies in the range (nGCS, nr). The rotor blade pitch angles are fixed at βPL, a pitch setting for partial 20 

power output. According to the similarity law in the fluid mechanics [17], the power output can be 21 

expressed as: 22 

33

nr( / ) rP nP n       (1) 23 

Where Pnr is the power output when generator speed reaches the rated (kW); nr is the rated generator 24 

speed (rpm). 25 

Power Production 2 (PP2): In PP2 wind speed lies in the range (vnr, vr), and constant speed control is 26 

used to limit the generator speed [15]. The generator rotor current can be controlled through a 27 
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converter to regulate the generator electromagnetic torque against the aerodynamic torque, and the 1 

power output continues to increase [18]. Therefore, generator speed maintains at nr, and the power 2 

output lies in the range (Pnr, Pr) in ideal conditions. The pitch angle should be maintained at βPL until 3 

the wind speed reaches the rated value (vr). 4 

Power Production 3 (PP3): Constant power control is employed when the wind speed lies between 5 

the rated (vr) and the cut-out wind speed (vcut-out). Not all the wind power can be converted to electrical 6 

power due to limitation of the generator rating. The blade pitch control is activated in this mode [14]. 7 

Due to the constant generator speed, the electromagnetic torque is controlled to balance with 8 

mechanical torque, Tm. When the wind speed increases, the pitch angle increases to reduce the 9 

mechanical torque in order to maintain the generator speed and power output. In the ideal condition, 10 

generator speed is nr; power output is Pr; and pitch angle lies between βPL and βMO, the maximum 11 

pitch angle for all operational states. 12 

Emergency Shutdown (ES): ES state is entered due to emergency conditions where the wind speed 13 

exceeds vcut-out. In this state, an operation-to-stop process is carried out. Pitch angle increases to the 14 

feathered position at the maximum velocity. The generator speed reduces to zero and, hence, the 15 

power output also reduces to zero. The emergency conditions involve when the normal shutdown 16 

procedure is deemed too slow to protect the WTG or when the normal shutdown is deemed ineffective 17 

due to a component failure. 18 

2.2. Performance curves 19 

There are five PCs for observation: power-wind speed (P-V) curve, generator speed-wind speed (N-20 

V) curve, pitch angle-wind speed (PA-V) curve, power-generator speed (P-N) curve and pitch angle-21 

generator speed (PA-N) curve. Due to the linear relationship between the rotor speed and generator 22 

speed, N-V and Nr-V curves have same characteristics. The P-V, N-V and PA-V curves are 23 

previously studied in literature, e.g. [13], and the other two P-N and PA-N are novel. 24 

Using four days’ of WTG operational data, which was made available to the authors, Fig. 3 shows 25 

examples of the five PCs of a DFIG-WTG. It should be noted that, despite existing monitoring 26 

systems being in operation, during the four days, the WTG was never shut down due to any fault. 27 

The relevant technical specifications of the WTG studied are shown in Table A (CS1): these were 28 

used to construct the theoretical PCs. It is noted that vnr and PGC which are used to separate the 29 

operational states of the WTG cannot be obtained exactly. The theoretical PA-N curve of three PP 30 

states and the theoretical P-N curve are shown as a solid red line in Fig. 3(d) and (e). 31 

A P-V curve indicates power generated by a WTG at various wind velocities, as shown in Fig. 3. A 32 

typical P-V curve resembles a sigmoid function; however, malfunctions of a WTG will impact its 33 

power generation [13]. Deviation from the theoretical line will also occur if there are variations in 34 

wind speed and wind direction which are not responded to by the control mechanism due to inertia of 35 

the system or rate of change differences. 36 

In Fig. 3, the measured data circled by the red dashed rectangle shows that there is positive power 37 

output when the measured wind speed is lower than the cut-in wind speed (4 m/s) due to the rotor 38 

inertia and constant speed control in grid connection state [19]. When the wind speed reduces to 39 

around vcut-in, for short periods of time the generator speed maintains at nGCS, and the GC state is 40 

maintained. Similarly, the data circled by the dashed red ellipses is related to when wind speed falls 41 

below the rated speed, vr, and the dashed black ellipse is indicative of when wind speed increases over 42 

vr. In Fig. 3, the double arrowed line shows that the variation of the wind speed of nearly 4 m/s, a 43 

constant power output of 1000 kW is remained. From this information, the wind speed does not 44 

correlate well with the power output and so variation within the P-V curve would be unreliable as an 45 

indicator of fault conditions. 46 

An N-V curve represents the mapping between rotor speed and wind speed, as shown in Fig. 3(b). 47 

Failures of turbine components can change the shape [13]. The double arrowed line shows that the 48 
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variation of the wind speed is nearly 4 m/s at a constant generator speed of 1400 rpm. The data in the 1 

red rectangle illustrates that the generator may still rotate when wind speed is lower than vr. When the 2 

wind speed reduces to the cut-in wind speed and further reduces, the change in the generator speed 3 

lags the wind speed due to the inertia of the rotor [19]. The red circled data demonstrates a similar 4 

relationship, i.e. as a result of inertia the generator speed will remain the rated value despite the wind 5 

speed falling below rated value. Combining the analysis of Fig. 3(a) and (b), it is found that the two 6 

constant speed control regions have boundary of ±2 m/s around vcut-in and vr respectively. 7 

A PA-V curve shows the relationship between the blade pitch angle and wind speed, as shown in Fig. 8 

3(c). Different designs of the pitch control systems result in different characteristics of the pitch angle 9 

[13][20]. Generally, the pitch angle is increased to reduce the wind power captured by the turbine [13] 10 

when wind speed is above a certain threshold. When wind speed reduces to below vcut-in, the pitch 11 

angle is adjusted to the feathered positions [12], as shown in red rectangle. When the wind speed lies 12 

between vcut-in of 4 m/s and vr of 10 m/s, the pitch angle should be maintained at βPL of 0º. However, in 13 

the red ellipse the pitch angle is higher than 0º. The poor relationship in the ellipse region is also 14 

shown through the remainder of the wind speed range: this is likely to be because pitch angle cannot 15 

change as quickly as the wind speed. 16 

 17 

 18 
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 3 

 Relationships using SCADA data of a DFIG-WTG in normal conditions: (a) P-V; (b) N-V; (c) Fig. 3.4 

PA-V; (d) P-N; (e) PA-N. 5 

The three PCs outlined above, all related to wind speed, have been used to study the operational 6 

behaviour of WTGs in [13]. However, as demonstrated above using real world data, these measured 7 

values have a large spread over the theoretical curves, due to the practical reaction times of the 8 

various system components. As discussed in [19], they cannot be relied on to model the theoretical 9 

relationship between the measurements and wind speed due to the rotor inertia. 10 

A P-N curve, which illustrates the relationship between the power output and generator speed, is 11 

shown in Fig. 3(d). It can be seen that the measured data fit the theoretical curve, indicated by the 12 

solid line, significantly better than previous PCs. 13 

A PA-N curve, which depicts the variation of pitch angle at different generator speed, is illustrated in 14 

Fig. 3(e). The characteristics of the pitch angle can be easily analysed in all three PP states and they 15 
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are corresponding to the theoretical analysis. When a shutdown occurs, pitch angle increases to the 1 

feather position of 90 degree and generator speed reduces below nGCS, as shown following the black 2 

arrow. When the stop-to-operation process is going on and the WTG changes from Stationary state to 3 

Freewheeling state: following the red arrow, pitch angle are adjusted to βf and generator speed 4 

increases. The black eclipse shows the GC state. It is seen that only in three PP states the PA-N 5 

relationship can be relied on to model, as shown in Fig. 3(e). 6 

In comparisons among the five PCs, P-N and PA-N curves show better consistency when fitting the 7 

measured data to the theoretical values and the variation from the curve under normal operational 8 

states is low. Therefore, a set of criteria can be established using envelopes around the PCs under 9 

normal conditions. Any deviations from the envelopes indicate a WTG pitching faults. Any pitch 10 

controller malfunction and slip ring pollution, critical failure modes of WTGs, results in that the pitch 11 

angle does not meet expectations and causes wind power extraction to differ from normal operational 12 

conditions [19]. 13 

3. Analysis of Pitch Faults and Change to the PCs 14 

Slip ring pollution and pitch controller malfunction are two dominant causes to pitch faults in 15 

electrical pitch systems of WTGs [1]. The slip ring mounted between the rotor and the nacelle to 16 

deliver the control signals, data and electrical power. Polluted slip ring causes poor communication 17 

and pitching malfunction. The pitch controller malfunction directly sends wrong command to pitch 18 

actuators.  19 
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 Ideal curves and abnormal data: (a) PA-N curve; (b) P-N curve. Fig. 4.21 

By comparing and analysing the difference between normal conditions and the WTG fault periods in 22 

different operational states, 2D views of PCs can be used to identify WTG pitch faults. Fig. 4 23 

illustrates the theoretical P-N and PA-N curves and also the scenarios when pitch control system 24 

malfunctions. The measured data point deviate from normal PCs, and therefore the distance between 25 

the point and the curve can be used as an indicator to identify the abnormal data and detect faults. It is 26 

noted that the abnormal data only means it has different relationship from the normal values. 27 

Scenario 1: This scenario occurs when the WTG operates at pitch fault condition in PP3 state. The 28 

pitch fault results in that the pitch angle is higher than the expected. It reduces the mechanical torque 29 

and decelerates the generator speed. Therefore, the measured data deviates to the left from the ideal 30 

PA-N curve in Fig. 4(a). Due to the reduction of generator speed, the generator torque will increase to 31 

remain the power output that equals to the product of generator speed and torque. Increasing generator 32 

torque will further decelerate the generator speed so that the WTG cannot operate in PP3 state. The P-33 

N relationship also differs from the theoretical PA-N curve, because the power output and generator 34 

speed cannot be remained at yellow point, as shown in Fig. 4(b). If the pitch fault results in that the 35 

pitch angle is lower than the expected, Scenario 1 will develop following the opposite direction. 36 

Power output and generator speed may exceed their operational ranges. 37 
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Scenario 2: This scenario would occur when the WTG operates under PP2 with a pitch fault, as 1 

shown in Fig. 4. The characteristics of measurements are similar with Scenario 1. When the pitch 2 

angle is higher than the expected due to a pitch fault, the generator torque will reduce to balance the 3 

reduced mechanical torque and to remain the generator speed. The power output reduces due to the 4 

reduced generator speed and torque, as shown in Fig. 4(b). If the pitch fault results in that the pitch 5 

angle is lower than the expected, Scenario 2 will develop following the opposite direction and 6 

generator speed may exceed the operational range. 7 

Scenario 3: If a pitch fault occurs when the WTG operates under PP1, Scenario 3 occurs as shown in 8 

Fig. 4. The generator speed would not reach the rated value, and the pitch angle should be βPL to 9 

capture the maximum wind power. Because the pitch angle is higher than βPL, the power captured by 10 

the rotor would not reach maximum, and the power output will be lower than the expected. Hence, the 11 

measured data locates below the ideal P-N curve, as shown in Fig. 4(b). 12 

Scenario 4: This scenario occurs during the start-to-operation process, as shown in Fig. 4(a). When 13 

the wind speed is higher than vr, WTGs will directly enter the PP3 after grid connection. It explains in 14 

this case, why the pitch angle is higher than 0 degree when the generator speed lies between nGCS and 15 

nr, as shown in Fig. 4(a). 16 

Scenario 5: This scenario occurs during the emergency shutdown state (operation-to-stop), as shown 17 

in Fig. 4(a). When emergency conditions occur, e.g. detected fault conditions or over cut-out wind 18 

speed, pitch angle increases to βES with the maximum velocity. In the normal shutdown state, the 19 

WTG operates from PP1 state to GC state and then to Stationary state due to below the cut-in wind 20 

speed.  21 

In the fault analysis of electrical pitch systems, the P-N and PA-N relationships both differ from the 22 

theoretical curves when the WTG operates at a pitch fault condition. The pitch fault can lead to 23 

abnormal behaviour of the pitch angle [12]. Therefore, the PA-N relationship should follow the 24 

theoretical PA-N curve when the WTG operates under non-fault conditions. It is noted that Scenario 4 25 

and 5 depict the behaviour that relates to the safe protection of WTG operations, but the data also 26 

deviates from the theoretical curve. In order to avoid false alarm, these two scenarios still need to be 27 

considered. 28 

4. NBMs and Criteria for Pitch Fault Detection 29 

4.1. Normal behaviour models based on performance curves 30 

The measured data indicates that the theoretical curve will not exist in the real world they cannot fit 31 

the ideal curve perfectly. The distance between the measured data and theoretical P-N curve can be 32 

used to estimate how far the data deviates from the ideal condition. When the normal locations of the 33 

measured data is identified in P-N and PA-N diagrams, normal behaviour models (NBMs) can be set 34 

up to detect pitch fault conditions. The deviation D that is a Euclidean distance between the measured 35 

data and theoretical PCs is applied to detect pitch faults. 36 

Due to the lack of a unified scale across different variables, the wind speed, generator speed and 37 

power output are normalized to their rated values. The pitch angle is normalized to the angle of the 38 

feathered position.  39 

The value DPNi is defined as the distance between the ith normalized data and its nearest point on the 40 

P-N curve:  41 

 2 2

min

( ) ( ) ,(n,P) CPNi i i P ND n n P P     

   

(2) 42 

Where CP-N is a set of points which locate on the reference curve; n is generator speed and P is power 43 

output. 44 
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The value DPANi is defined as the distance between the ith normalized data and its nearest point on the 1 

PA-N curve: 2 

 
min

1 ,PANi i iD n        (3) 3 

Using the P-N NBM and the PA-N NBM, every set of operational data produces a DPN and a DPAN. 4 

Therefore, NBMs can be tracked during operation every second. 5 

4.2. Criteria for pitch fault detection 6 

Based on the two selected NBMs a condition monitoring system (CMS) can be set up to detect WTG 7 

pitch faults. Fig. 5 illustrates the configuration of the system, which consists of a P-N NBM and a PA-8 

N NBM with the proposed criteria. The wind speed is only used to classify the operational states, and 9 

the generator speed, pitch angle and power output are used to calculate the deviation. DPN and DPAN 10 

are defined as the deviation from the P-N curve and the PA-N curve respectively. If DPN and DPAN lie 11 

out with the normal ranges, the WTG can be regarded as being under pitch fault conditions by the 12 

system. 13 

PA-N NBM

Power output

Generator speed

Pitch Fault

SCADA 

database

P-N Curve 

Equation

P-N NBM
Technical 

Specification 

of WTGs

Pitch angle

Wind speed

Criteria

Yes

D Calculation

vcut-in-2 < v < vcut-in +2

DPN >Lim

vr -2 < v < vr +2

DPN >Lim & DPAN >Lim

v > vr +2

DPN >Lim & DPAN >Lim

Normal or 

Other Faults

No

Or

Or

v < vcut-in -2

DPN >Lim

vcut-in+2 < v < vr -2

DPN >Lim & DPAN >Lim

Or

Or

 14 

 The configuration of NBMs based CMS of WTGs. Fig. 5.15 

Fig. 6 shows the operational ranges on P-N curve during different operational states. It is helpful to 16 

understand the criteria introduced next. In the freewheeling state, wind speed is smaller than (vcut-in-2). 17 

Power output should be maintained at 0, but the WTG may produce negative power output because 18 

the auxiliary equipment is supplied by the grid, shown as point A in Fig. 6. The maximum value of 19 

the negative power output is PMN that can be found in technical specifications. The thresholds can be 20 

expressed as: 21 

lim
PN

MN

D

r

P

P
       (4) 22 

In the GC state, wind speed lies in the interval of (vcut-in-2, vcut-in+2).  During the GC state, the lowest 23 

generator speed for power production is nLPS, shown as point B in Fig. 6. When the WTG cannot 24 

maintain above this generator speed, it has to disconnect to the grid. The thresholds can be identified 25 

as: 26 

lim
PN

LPS GCS

D

r

n n

n


      (5) 27 
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 The operational ranges of power output and generator speed during different operational states. Fig. 6.2 

In the PP1, wind speed belongs (vcut-in+2, vr-2). The generator speed is controlled to follow maximum 3 

wind power capture. The fluctuation of generator speed and power output is within 1.5% of rated 4 

values. The pitch angle is not higher by more than 1 degree. As shown in Fig. 6, if the generator speed 5 

and power output both have the maximum fluctuations, the deviation between the C’ and C should be 6 

the threshold for normal operation. The thresholds can be set as: 7 

2 2lim 0.015 2 0.02

lim 1/

PN

PAN

D

D ES

n P



       




   (6) 8 

In the PP2, wind speed belongs (vr-2, vr+2), shown as the point D in Fig. 6. Considering the transition 9 

between the fixed and variable pitch angle, the threshold of PA-N is set at the middle of thresholds in 10 

PP1 and 3. 11 

lim

1/
lim

2

PN

PAN

D HPS r

ES HPS r

D

n n

n n

  

  




    (7) 12 

In the PP3, wind speed is higher than (vr+2). The highest production generator speed for grid 13 

connection is nHPS and the highest production power output is Pmax, shown as the point E in Fig. 6. 14 

Due to the constant control strategy, the deviation cannot be more than the difference between the 15 

rated and the maximum value in normal conditions. The thresholds can be expressed as: 16 

 max min
lim ,

lim

PN

PAN

D HPS r r

D HPS r

n n P P

n n

   


 

   (8) 17 

 18 

There are two scenarios where the system cannot be regarded in abnormal conditions. One is the start 19 

process, shown as Scenario 4 in Fig. 4(b). 20 

4 3 2 1

4 3 2 1

i i i i i

i i i i i

n n n n n

    

   

   

   


   
    (9) 21 

Equation (9) depicts this criterion: when generator speed continuously increases and pitch angle 22 

continuously reduces for 5 seconds, the WTG is starting for operation. If the WTG operates in all PP 23 

states, generator speed and pitch angle will seldom monotonously vary. 24 
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The other is the shutdown state. Similarly, it can be expressed as: 1 

4 3 2 1

4 3 2 1

i i i i i

i i i i i

n n n n n

    

   

   

   


   
    (10) 2 

Or when the pitch angle exceeds the βMO, the WTG enters the shutdown state due to emergency 3 

conditions. 4 

4.3. Normal Behaviour Models Based on ANN and ANFIS 5 

AI approaches considering wind speed, generator speed and pitch angle are able to predict the 6 

expected power output of a WTG under different input parameters. These trained models are used to 7 

set up power output NBMs, as shown in Fig. 7. The inputs of this MISO NBM include measured wind 8 

speed, power output, generator speed, and a trained AI power prediction model. This NBM output 9 

allows a prediction error between predicted and measured power output to be determined with a set of 10 

input parameters. 11 

During normal operations the prediction error should be around zero. Any fault related to input 12 

parameter, such as measurement errors, pitch system faults, and generator faults may lead to 13 

differences between measured and predicted power output. 14 

The settings and training processes of the ANN to predict power output of a WTG can refer to [20]. 15 

Similarly, the settings and training processes of the ANFIS can refer to [10]. 16 

SCADA 

database

AI Power 

Prediction Model

Predicted 

Power output

Wind speed

Measured 

Power output
-

Prediction 

Error

Generator speed

Pitch angle

Power output NBM

Model Training
 17 

 A configuration of a power output NBM of a WTG using AI approaches. Fig. 7.18 

5. Case Studies and Discussion 19 

In order to demonstrate the feasibility of the proposed CMS, six case studies have been carried out to 20 

demonstrate the prognosis of pitch faults. Results were compared to the existing condition monitoring 21 

and alarm system which caused the WTG shutdowns. Results of AI based NBMs are also compared in 22 

this section. 23 

5.1. Case study 1 – slip ring pollution of a DFIG-WTG 24 

In this case a WTG alarmed a pitch system fault and entered the emergency shutdown state at 5 am on 25 

3/Mar/2015. After the inspection of the pitch system, maintenance personnel diagnosed that a polluted 26 

slip ring was the cause of the failure. 27 

The polluted slip ring caused the poor communication between the pitch actuators and the main 28 

controller. The pitch angle could not change because the pitch actuators do not receive any command. 29 

After the maintenance on the slip ring, the WTG continued operating and no faults were alarmed. 30 
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Except the warnings that the wind speed was not available for the WTG to operate in power 1 

production, there was no warning of any fault prior to the WTG shutdown. 2 

During the period, there were 292,693 sets of instantaneous SCADA data, each set of which contains 3 

a wind speed, a power output, a generator speed and a pitch angle. The instantaneous SCADA data of 4 

the WTG operating between 28 February 2015 and 3 March 2015 were collected to analyse, and 5 

investigate the behaviours of the WTG during this period prior to shut down. The 2D views of 6 

measured P-N and PA-N curves are shown in Fig. 8. 7 

 8 

 9 

 2D views of selected performance curves in Case Study 1: (a) P-N; (b) PA-N. Fig. 8.10 
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Generator speed and power output reduced following Scenario 1, as circled in yellow solid line in Fig. 1 

8(a). At the same time, the pitch angle lies in the red dashed circle in Fig. 8(b). There are 19 sets of 2 

data collected from 3:35:37 on 2/Mar/2015 in this Scenario. These data sets clearly deviate from the 3 

ideal curves. Next, when wind speed varied around Vr, the power output cannot reach the rated value 4 

because the pitch angle is higher than the expected, as circled in black solid line in Fig. 8(a). Fig. 8(b) 5 

shows the pitch angle delayed to change and generator speed reduced below the rated, and therefore 6 

the data located in the dashed circle. 7 

Scenario 2 and 3 occurred and 80 sets of abnormal data were regarded in pitch fault conditions, as 8 

shown in Fig. 8. The abnormal data following the Scenario 2 is circled by red dash line and the 9 

abnormal data following the Scenario 3 is circled by black dash line. 10 

Relevant technical specifications of this DFIG-WTG are shown in Table A (CS1). Therefore, the PC 11 

based NBMs and relevant criteria can be observed. The proposed system marked the time containing 12 

abnormal data as 1 to illustrate the pitch fault condition, as circled by black solid line in Fig. 9(a). The 13 

results of AI predictions are shown in Fig. 9(b) and (c). 14 

It is observed that the proposed system can detect the pitch fault conditions nearly 25.4 hours (91,463 15 

seconds) earlier than the existing alarm system, as shown in Fig. 9(a). ANN and ANFIS model are 16 

able to detect the abnormal data 16,177 and 17,740 second respectively earlier than the existing alarm 17 

system. As shown in Fig. 9(b) and (c), the AI models only detected the anomalies on 03/March/2015. 18 

Compared with the results of three models, the proposed system also can detect the pitch fault 19 

condition 20 hours earlier than the AI models. 20 

 21 

 22 
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 1 

 Comparisons of alarms using different CM techniques in Case Study 1: (a) the proposed Fig. 9.2 

system; (b) ANN; (c) ANFIS. 3 

 4 

5.2. Case study 2 – pitch controller malfunction of a DFIG-WTG 5 

In this case a WTG was shut down because a scheduled inspection to pitch system was carried out at 6 

20:09 on 9/Mar/2015. After inspection and updating the program of the pitch controller, the WTG 7 

continued operating and no faults were alarmed. Prior to the maintenance, no pitch fault was alarmed 8 

by the existing CMS but the pitch controller malfunction produced wrong signals and sent to pitch 9 

actuators to move blades. 10 

345,600 sets of the four measurements of the WTG operating between 6/Mar/2015 and 9/Mar/2015 11 

were recorded to show behaviours of the WTG. The measured P-N and PA-N curves using 12 

normalized data of the WTG are illustrated in Fig. 10. 202 sets of data were regarded as abnormal 13 

data because they deviate far from the ideal curves. 14 

At 18:47:37 on 8/Mar/2015 the proposed system firstly detected 66 sets of abnormal data. In this 15 

period the WTG operated under PP2 state and the pitch controller malfunction occurred. The pitch 16 

angle should be maintained at zero degree in this period, but the controller malfunction led to a 17 

positive pitch angle. Therefore, Scenario 3 was manifested, i.e. power output is lower than the 18 

expected, shown as black solid circle in Fig. 10(a). The PA-N curve shows some pitch angles are not 19 

zero when the generator speed is lower than the rated, as shown in black dashed circle of Fig. 10(b). 20 

Scenario 1 and 2 took place from 12:59:51 on 9/Mar/2015, and there were 136 sets of abnormal data 21 

in this period, shown in black dashed circle of Fig. 10. 22 
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 2 

 2D views of selected performance curves in Case Study 2: (a) P-N; (b) PA-N. Fig. 10.3 

This DFIG-WTG has the same configuration and technical specifications as the WTG of Cased study 4 

1. Therefore, the PC based NBMs and relevant criteria can be observed using the same values. The 5 

analysis results of the proposed system, ANN model and ANFIS model are shown in Fig. 11. In Fig. 6 

11(a), the solid and dash circles respectively show the times when the abnormal data has been shown 7 

in Fig. 10, because the thresholds of Equation (7) and (8) were exceeded respectively. 8 
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It is seen that the proposed system can detect the pitch fault conditions nearly 25.3 hours (91,283 1 

seconds) earlier than the existing alarm system as marked by the red star in Fig. 11. ANN and ANFIS 2 

models can detect the abnormal data 11,235 and 11,206 seconds later than the proposed system 3 

respectively, as shown in the solid circle in Fig. 11(b) and (c). In addition, the AI approaches lack of 4 

ability to explain the prediction error. During the Stationary state after emergency shutdown (13,879 5 

sets of data), as illustrated in dash circles in Fig. 11(b) and (c), the prediction errors exceed the 6 

limitation. 7 

 8 

 9 

 10 

 Comparisons of alarms using different CM techniques in Case study 2: (a) the proposed Fig. 11.11 

system; (b) ANN; (b) ANFIS. 12 

5.3. Case study 3 – pitch controller malfunction of a DFIG-WTG 13 

A WTG alarmed a pitch fault and entered shutdown state at 19:50 on 1/Apr/2015 in the same WF of 14 

Case study 1. Because the wind speed is higher than vr when the WTG alarm was activated, the 15 

inspection of the pitch system could not be carry out immediately to ensure safety of personnel. The 16 

inspection was carried out and the pitch controller was replaced on 2/Apr/2015. 17 
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Measured P-N and PA-N curves using SCADA data of the WTG during 27/Mar/2015 to 1/Apr/2015 1 

are illustrated in Fig. 12. During the period, there are 518,400 sets of SCADA data where 893 sets 2 

were regarded as abnormal data which were all due to a pitch controller malfunction. 3 

During the first two days, the WTG was shut down and re-operated for several times due to low wind 4 

speed. The pitch angle varied between 0 and 1 unit when the generator speed was lower than the 0.6 5 

of the rated value nGCS. The behaviour of pitch angle follows the red arrow for operation starts and the 6 

black arrow for shutdown processes, as shown in Fig. 12(b). The black circles indicate the abnormal 7 

data in Fig. 12(a) and (b). 8 

 9 
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 1 

 2D views of selected performance curves in Case Study 3: (a) P-N; (b) PA-N. Fig. 12.2 

At 22:28:09 on 31/Mar/2015 the proposed system firstly detected the abnormal data, and as shown in 3 

Fig. 13(a). The abnormal data occurs when the WTG operated under PP1 state and the measured data 4 

deviated from the theoretical curve following Scenario 3. The thresholds of Equation (5.11) were 5 

exceeded, and therefore, the pitch fault was detected. It is seen that the proposed system can detect the 6 

pitch fault conditions nearly 21.4 hours (76,911 seconds) earlier than the existing alarm system. The 7 

ANN and ANFIS models detected the abnormal data 29,476 and 29,484 seconds earlier than the 8 

existing alarm system respectively, as shown in Fig. 13(b) and (c). Therefore, the proposed system is 9 

able to detect the pitch controller malfunction 13 hours (47,427 seconds) earlier than the AI models. 10 

 11 

 12 
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 Comparisons of alarms using different CM techniques in Case study 3: (a) the proposed Fig. 13.3 

system; (b) ANN; (b) ANFIS. 4 

5.4. Case study 4 – normal operation of a DFIG-WTG 5 

Between 02/April/2015 and 05/April/2015, four days’ normal operations of a DFIG-WTG are 6 

illustrated using 2D views of the selected performance curves, as shown in Fig. 14. There are 345,600 7 

sets of instantaneous SCADA data, each set of which includes wind speed, power output, generator 8 

speed and pitch angle. It is observed that the Measured P-N and PA-N curves in this period well fit 9 

the theoretical curves illustrated in red line. 10 

The black arrow and the red arrow respectively illustrate the ES and the stop-to-operation process in 11 

Fig. 14(a) and (b). Following the red arrow, the generator speed and power output monotonously 12 

increase, and the pitch angle reduces monotonously. 13 

This DFIG-WTG has the same configuration and technical specifications as the WTG of Cased study 14 

1. Therefore, the PC based NBMs and the relevant criteria apply using the same values of 15 

nomenclatures. Fig. 15 shows the results of pitch fault detections by the proposed model, ANN model 16 

and ANFIS model. In these processes the deviated data were ignored by the proposed system riding of 17 

the false diagnostics using the criteria defined in Equation (9) and (10). No alarm is produced by the 18 

proposed system, but the AI models provided alarms on 3/April/2014 and 5/April/2014, because 19 

absolute values of prediction errors exceed 100 kW. It is noted that the AI models are trained by 20 

SCADA data from the DFIG-WTG. The AI model may accurately predict the power output of the 21 

WTG whose operational data are used to model training but failed to provide correct diagnosis in this 22 

case. The ANN and ANFIS models respectively produced 4,745 and 5,235 sets of wrong predictions. 23 
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 2D views of selected performance curves in Case Study 4: (a) P-N; (b) PA-N. Fig. 14.3 

 4 
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 Comparisons of alarms using different CM techniques in Case study 4: (a) the proposed Fig. 15.4 

system; (b) ANN; (b) ANFIS. 5 

5.5. Case study 5 – normal operation of a PMSG-WTG 6 

Thirty days’ normal operations of a PMSG-WTG are illustrated using 2D views of the selected 7 

performance curves, as shown in Fig. 16. There are 366,138 (measured every 7 seconds) sets of 8 

instantaneous SCADA data, each set of which includes wind speed, power output, generator speed 9 

and pitch angle. These data show behaviour of the WTG operating between 31/May/2015 and 10 

29/Jun/2015. It is observed that measured P-N and PA-N curves in this period are a good fit to the 11 

theoretical curves. 12 

Relevant technical specifications of this PMSG-WTG can be found in Table A (CS5). Based on this, 13 

the PC based NBMs and relevant criteria can be observed. 14 
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Fig. 17 illustrates the analysis results of the proposed system, ANN model and ANFIS model. It is 1 

observed that there is no alarm produced by the proposed model. Some points obviously deviated 2 

from the theoretical P-N curve, illustrated in dashed ellipses as shown in Fig. 16(a). However, in PP 3 

states (normalized generator speed is more that 0.6) no abnormal data could be obviously observed in 4 

the 2D view of the PA-N curve, as shown in Fig. 16(b). Due to the fact that only pitching fault data 5 

deviates from both P-N and PA-N curves, these data sets cannot be regarded as anomalies according 6 

to the criteria. In contrast, ANN and ANFIS models detected abnormal data occasionally, as shown in 7 

Fig. 17(b) and (c). The current control system reported no not faults in this period. The ANN and 8 

ANFIS models produced false alarm in this case. 9 

 10 

 11 

 2D views of selected performance curves in Case Study 5: (a) P-N; (b) PA-N. Fig. 16.12 

 13 
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 3 

 Comparisons of alarms using different CM techniques in Case study 5: (a) the proposed Fig. 17.4 

system; (b) ANN; (b) ANFIS. 5 

5.6. Case study 6 – normal operation of a PMSG-WTG 6 

On 18/August/2014, the control system of a PMSG-WTG was shut down and reported a series of 7 

pitching alarms and nacelle vibration alarms at 1:16 am. After inspection at the site at 9 am, it was 8 

observed that one of blades had broken off. 9 

The instantaneous SCADA data that was recorded between 3/August/2014 and 18/August/2014 has 10 

188,005 sets. Each set of data includes wind speed, power output, generator speed and pitch angle. 11 

Fig. 18 illustrates the measured P-N and PA-N curves in this period. The red lines show the 12 

theoretical P-N and PA-N curves in the ideal operational conditions. 13 
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 2D views of selected performance curves in Case Study 6: (a) P-N; (b) PA-N. Fig. 18.3 

In Fig. 18(a), the abnormal data indicated by the ellipse and rectangle deviates from the ideal curve. In 4 

the abnormal data sets, the measured wind speed is in error because the values of measurements are 5 

more than 100 m/s which is far out of the normal range.  6 

In the practical operation, the WF operators have to curtail the WTGs’ power output if there is a low 7 

grid demand. This manual intervention often results in some WTGs not performing to their factory 8 

supplied specification. An Energy Management System (EMS) was installed in this WF. This system 9 
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is able to limit the power output of each WTG in the WF to meet the load demand of the network. The 1 

pitch control is used in this constrained operation, as shown in Fig. 18(b). Two ellipses show the 2 

operational data during constrained operation, where the pitch control maintains the generator speed 3 

and power output of the WTG. A mark of constrained operation was recorded by the system to 4 

indicate that this data was recorded when the power output is limited. 5 

Relevant technical specifications of this PMSG-WTG are shown in Table A (CS6). Based on this, the 6 

PC based NBMs and relevant criteria can be observed. 7 

Fig. 19 illustrates the fault detecting result of the proposed system. There were insufficient WTG data 8 

for model training, and therefore, the AI approaches are not available for comparisons. It is observed 9 

that there is no alarm produced by the proposed model. The constrained operation may mislead the 10 

proposed system to produce false alarms, but the proposed criteria are capable of recognising the 11 

condition. In addition, it is noted that there is no abnormal data on measured P-N curve during the 12 

constrained operation. 13 

 14 

 Alarms using proposed approach in Case Study 6. Fig. 19.15 

5.7. Discussions 16 

Performance curves are effective tools to study and visualize behaviour of a WTG during operational 17 

conditions with the SCADA data. 18 

It is an important advantage of the proposed method that the NBMs and criteria can be obtained from 19 

technical specifications of the WTGs directly and applied on WTG condition monitoring without 20 

model training, the case with AI approaches. 21 

Table 1. Comparisons of the proposed techniques and AI approaches for WTG fault detection. 22 

Techniques Advantages Disadvantages 

PCs Do not require training models; 

Can adapt to different WTG 

concepts. 

Knowledge on parameter variances of 

WTG control and operations. 

ANN Do not require domain knowledge; 

Easy to apply. 

Black-box model; 

Cannot be interfered. 

ANFIS Can combine experts’ experience. Complicated training processes. 

 23 

The six case studies demonstrate the diagnostic ability of the proposed system for pitch faults of 24 

pitch-regulated WTGs. With scenario 1, 2 and 3 the WTG faults can be clearly identified in 2D view 25 
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of P-N curves and detected by following the proposed criteria in different operational states in pitch 1 

fault conditions. Pitch fault causes wrong PA-N and P-N relationships, although measurements lie in 2 

their operational range. 3 

Table 1 summarizes the advantages and disadvantages among the approaches of performance 4 
curves, ANN and ANFIS. The performance curves allow interpretation of WTGs’ behaviours in 5 
different conditions. The domain knowledge of the WTG operations removes the requirement of 6 
model training, and the mathematical model depicting WTG normal operations can be directly 7 
observed using the technical specifications of WTGs. 8 

 9 

6. Conclusion 10 

The paper proposed NBMs which can be developed using technical specifications of studied WTGs, 11 

and a PC based methodology for making advanced warning of pitch faults caused by pitch controller 12 

malfunction and slip ring pollution. The selected PCs were used to analyse the differences in 13 

behaviour of WTGs from normal operation conditions to pitch fault conditions in six Case studies. 14 

The proposed approach and other AI approaches all are able to detect the anomalies of WTGs earlier 15 

than the existing alarm system. The proposed system is able to detect a polluted slip ring 20 hours 16 

earlier than the AI approaches investigated. The pitch controller malfunctions could be detected by the 17 

proposed approach 13 hours earlier than by the AI approaches. Results demonstrate that the proposed 18 

method is more effective and detect faults earlier than all other approaches. 19 

 In addition, the proposed approach is able to explain and visualize the abnormal behaviour of 20 

different WTG types during different operational states. Comparing with the AI approaches, the 21 

proposed system will not produce warning in the normal conditions. The prosed approach refers to the 22 

physical characteristics of the WTG and therefore, the system can be directly set up using the 23 

technical specification of the WTG. Each WTG can have a proposed system to monitor its pitch 24 

conditions. 25 

Appendix 26 

Table A. The relevant technical specifications of the studied WTGs in Case Studies (CS). 27 

Parameter 
Value 

Unit 
CS1 CS5 CS6 

Vcut-in 4 3 4 

m/s Vr 10 12 11 

Vcut-out 25 22 25 

Pnr 1050 750 1125 

kW Pr 2000 1500 2250 

Pmax 2100 1580 2450 

nLPS 1000 8.8 9.0 

rpm 
nGCS 1100 9.8 9.8 

nr 1780 17.3 14.5 

nHPS 1870 19 16 

βPL 0 0 0 

degree 
βf 5 - 50 

βMO 25 28 20 

βES 90 88 90 

 28 
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