2,078 research outputs found

    The Modeling and Advanced Controller Design of Wind, PV and Battery Inverters

    Get PDF
    Renewable energies such as wind power and solar energy have become alternatives to fossil energy due to the improved energy security and sustainability. This trend leads to the rapid growth of wind and Photovoltaic (PV) farm installations worldwide. Power electronic equipments are commonly employed to interface the renewable energy generation with the grid. The intermittent nature of renewable and the large scale utilization of power electronic devices bring forth numerous challenges to system operation and design. Methods for studying and improving the operation of the interconnection of renewable energy such as wind and PV are proposed in this Ph.D. dissertation.;A multi-objective controller including is proposed for PV inverter to perform voltage flicker suppression, harmonic reduction and unbalance compensation. A novel supervisory control scheme is designed to coordinate PV and battery inverters to provide high quality power to the grid. This proposed control scheme provides a comprehensive solution to both active and reactive power issues caused by the intermittency of PV energy. A novel real-time experimental method for connecting physical PV panel and battery storage is proposed, and the proposed coordinated controller is tested in a Hardware in the Loop (HIL) experimental platform based on Real Time Digital Simulator (RTDS).;This work also explores the operation and controller design of a microgrid consisting of a direct drive wind generator and a battery storage system. A Model Predictive Control (MPC) strategy for the AC-DC-AC converter of wind system is derived and implemented to capture the maximum wind energy as well as provide desired reactive power. The MPC increases the accuracy of maximum wind energy capture as well as minimizes the power oscillations caused by varying wind speed. An advanced supervisory controller is presented and employed to ensure the power balance while regulating the PCC bus voltage within acceptable range in both grid-connected and islanded operation.;The high variability and uncertainty of renewable energies introduces unexpected fast power variation and hence the operation conditions continuously change in distribution networks. A three-layers advanced optimization and intelligent control algorithm for a microgrid with multiple renewable resources is proposed. A Dual Heuristic Programming (DHP) based system control layer is used to ensure the dynamic reliability and voltage stability of the entire microgrid as the system operation condition changes. A local layer maximizes the capability of the Photovoltaic (PV), wind power generators and battery systems, and a Model Predictive Control (MPC) based device layer increases the tracking accuracy of the converter control. The detail design of the proposed SWAPSC scheme are presented and tested on an IEEE 13 node feeder with a PV farm, a wind farm and two battery-based energy storage systems

    Performance Improvement of Hybrid System Based DFIG-Wind/PV/Batteries Connected To DC And AC Grid By Applying Intelligent Control

    Get PDF
    One of the main causes of CO2 emissions is the production of electrical energy. Therefore, many researchers goal’s is to develop renewable power systems. This paper proposes a new intelligent control development of hybrid PV–Wind-Batteries. Neuro-Fuzzy Direct Power Control (NF-DPC) is invested in order to enhance system performance and generated currents quality. An improved MPPT algorithm based on Fuzzy Controller (FC) is invested for PV power optimization. In addition, a new Modified Fuzzy Direct Power Control (MF-DPC) is developed and applied to the grid side converter to control the active and reactive power by monitoring the involved active power flow and providing a unit power factor by imposing a zero reactive power. An Energy Management Algorithm (EMA) is developed to maintain energy balance, meet the DC load demand, mitigate fluctuations caused by weather condition variations (wind speed and solar irradiance), and minimize battery overcharge and deep discharge. To test the proposed hybrid microgrid system operation, the different parts of the system are modeled, the wind turbine associated to the DFIG, the photovoltaic system as well as the battery storage system. Furthermore, the associated power converters with their control strategies are also presented. Global system simulation, using MATLAB/Simulink, is carried out to validate the effectiveness of both EMA and control techniques. The obtained results show significant reduction of active/reactive power ripples and THD by about 64%, 72%, and 50%, respectively. The EMA ability to manage the energy flow, produced and requested by the load. The THD rate of all injected currents is less than 4%, meaning that the proposed controls will increase the used equipments’ life span, minimize their maintenance and then reduce the hybrid power system cost

    Microgrid, Its Control and Stability: The State of The Art

    Get PDF
    Some of the challenges facing the power industries globally include power quality and stability, diminishing fossil fuel, climate change amongst others. The use of distributed generators however is growing at a steady pace to address these challenges. When interconnected and integrated with storage devices and controllable load, these generators operate together in a grid, which has incidental stability and control issues. The focus of this paper, therefore, is on the review and discussion of the different control approaches and the hierarchical control on a microgrid, the current practice in the literature concerning stability and the control techniques deployed for microgrid control; the weakness and strength of the different control strategies were discussed in this work and some of the areas that require further research are highlighted

    Energy Management Control for Multimode Microgrid Renewable Integration

    Get PDF
    The need for storing energy has grown in correlation with the need for renewable and distributed energy resources. Designing a storage unit system which complements the distributed generation is required for increased efficiency and reducing the burden on the utility grid. The energy storage model used in this thesis is the Li-ion battery which is efficient, has high energy density and has applications in field of electronics, transportation and electric power industry. The wind turbine generator, photovoltaic (PV) and the energy storage unit modeled in this work share a symbiotic relationship even though they are completely separate entities which can be connected at separate locations. This study contributes better control as well as ease of connection to the system. To show the effect of storage unit on microgrid distribution system two test systems were considered, standalone system and standard IEEE 13 node feeder system with wind turbine generator and photovoltaic panel. The integration and control of energy storage system is achieved using a battery energy management control (BEMC) at the upper level and a real/reactive power controlled voltage source converter at the lower level. To enhance the control, optimization is performed where the proportional gain and the integral time constant of the PI controller are optimized using genetic algorithm which reduces the losses and increases the efficiency of the system. The results show that the battery energy management control system is effective in controlling the modes of operation of energy storage module based on the wind and solar conditions and is able to completely balance the power produced by the wind generator and PV modules. In this thesis all the test systems and the control were implemented in PSCAD as it is emerging as the new industry standard for transient power applications research

    Smoothing of wind farm output by prediction and supervisory-control-unit- based FESS

    Get PDF
    This paper presents a supervisory control unit (SCU) combined with short-term ahead wind speed prediction for proper and effective management of the stored energy in a small capacity flywheel energy storage system (FESS) which is used to mitigate the output power fluctuations of an aggregated wind farm. Wind speed prediction is critical for a wind energy conversion system since it may greatly influence the issues related to effective energy management, dynamic control of wind turbine, and improvement of the overall efficiency of the power generation system. In this study, a wind speed prediction model is developed by artificial neural network (ANN) which has advantages over the conventional prediction schemes including data error tolerance and ease in adaptability. The proposed SCU-based control would help to reduce the size of the energy storage system for minimizing wind power fluctuation taking the advantage of prediction scheme. The model for prediction using ANN is developed in MATLAB/Simulink and interfaced with PSCAD/EMTDC. Effectiveness of the proposed control system is illustrated using real wind speed data in various operating conditions

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Control strategy based on wavelet transform and neural network for hybrid power system

    Get PDF
    Published version of an article in the journal: Journal of Applied Mathematics. Also available from the publisher at: http://dx.doi.org/10.1155/2013/375840 Open AccessThis paper deals with an energy management of a hybrid power generation system. The proposed control strategy for the energy management is based on the combination of wavelet transform and neural network arithmetic. The hybrid system in this paper consists of an emulated wind turbine generator, PV panels, DC and AC loads, lithium ion battery, and super capacitor, which are all connected on a DC bus with unified DC voltage. The control strategy is responsible for compensating the difference between the generated power from the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into smoothed component and fast fluctuated component. In consideration of battery protection, the neural network is introduced to calculate the reference power of battery. Super capacitor (SC) is controlled to regulate the DC bus voltage. The model of the hybrid system is developed in detail under Matlab/Simulink software environment

    DC & Hybrid Micro-Grids

    Get PDF
    This book is a printed version of the papers published in the Special Issue “DC & Hybrid Microgrids” of Applied Sciences. This Special Issue, co-organized by the University of Pisa, Italy and Østfold University College in Norway, has collected nine papers and the editorial, from 28 submitted, with authors from Asia, North America and Europe. The published articles provide an overview of the most recent research advances in direct current (DC) and hybrid microgrids, exploiting the opportunities offered by the use of renewable energy sources, battery energy storage systems, power converters, innovative control and energy management strategies

    Model Predictive Control Based Wind-Solar Hybrid Energy Conversion System

    Get PDF
    Presently a lot of work is being carried in the field of distributed renewable generation. Many distributed generation systems are being designed and connected to the electric grid. At the time when the conventional sources of energy such as coal, oil, gas etc. are fast disappearing, a study of distributed renewable generation systems becomes very important
    corecore