
Abstract—This paper presents a supervisory control unit (SCU)
combined with short-term ahead wind speed prediction for proper
and effective management of the stored energy in a small capacity
flywheel energy storage system (FESS) which is used tomitigate the
output power fluctuations of an aggregated wind farm.Wind speed
prediction is critical for a wind energy conversion system since it
may greatly influence the issues related to effective energy man-
agement, dynamic control of wind turbine, and improvement of
the overall efficiency of the power generation system. In this study,
a wind speed prediction model is developed by artificial neural
network (ANN) which has advantages over the conventional pre-
diction schemes including data error tolerance and ease in adapt-
ability. The proposed SCU-based control would help to reduce the
size of the energy storage system for minimizing wind power fluc-
tuation taking the advantage of prediction scheme. The model for
prediction using ANN is developed in MATLAB/Simulink and in-
terfaced with PSCAD/EMTDC. Effectiveness of the proposed con-
trol system is illustrated using real wind speed data in various op-
erating conditions.

Index Terms—Flywheel energy storage system (FESS), induction
generator (IG), power smoothing, supervisory control unit (SCU),
wind speed prediction.

I. INTRODUCTION

B EING socially beneficial, economically competitive, and
environment friendly, wind energy is now considered to

be the world’s fastest growing renewable energy. However, the 
stochastic nature of wind imposes a considerable challenge in 
the optimal management and operation of wind power gener-
ating systems. A larger number of wind turbine generators are 
going to be integrated into the power systems in the near future 
to meet the increasing demand of the loads. The intermittent na-
ture of the wind speed is a serious issue for the power grid com-
panies or transmission system operators (TSOs). As a result, it is 
essential to emphasize research on the power smoothing of the 
wind farm. Integrating an energy storage system (ESS) into the 
wind farm can mitigate the wind power fluctuation and hence 
improves the overall power quality of the wind farm output 
power. In general, the energy capacitor systems (ECS), super-
conducting magnetic energy storage systems (SMES), battery
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energy storage system (BESS), or flywheel energy storage sys-
tems (FESS), etc. [1]–[6] are used for the purpose of power
smoothing. Since a fast response is necessary to compensate the
output power fluctuations in the wind farm, battery storage sys-
tems might not be a good option because the charging and dis-
charging of the battery is not so fast due to its chemical process
[4]. In addition, it requires the same capacity power converters
as the battery ratings. Frequent replacement of the battery cell
is necessary as battery lifetime is not so long. ECS and SMES
can also be used for power smoothing of wind farm due to their
response speed and efficiency but their practical installation for
large MW application is limited because of their higher mainte-
nance cost.
Recently, FESS using rotational machines have become

more popular because of their reliability, long life, large en-
ergy storage capacity, and less overall cost. FESS using the
doubly-fed induction generator (DFIG) which is an adjustable
speed generator, can improve the power system stability ef-
fectively. DFIG not only supplies the real power but also
compensates reactive power demand rapidly and indepen-
dently. Moreover, the small capacity power converter (typically
25%–30% of the total power) is required for DFIG operation
and thus makes the overall system cost-effective [4]. Hence,
the reactive power compensation of the system can be achieved
at lower cost. It is also necessary to determine the capacity of
the FESS required for smoothing the output power fluctuations
effectively. It is expected that large capacity FESS s
will give better performance in case of the output power
smoothing [4]. But it will increase the system cost significantly.
Therefore, a small capacity energy storage system requires
having an efficient and proper energy management control
strategy to keep the output power fluctuation of the wind farm
within an acceptable range. Reducing the size of the FESS
system is one of the objectives of this study.
Accurate prediction of wind speed is beneficial for power

grid management, matching demand and supply, and in stabi-
lization of the power system [7]. Precise prediction of wind
speed accommodates the wind generating schedules in a wind
farm efficiently. Numerous studies have been conducted on
the accuracy of the predicted output both on long-term and
short-term scenarios. The short-term wind speed prediction
is extremely important for managing of energy reserve, pitch
control mechanism, and changing gear for optimal wind turbine
performance [8]. Several methods have been already proposed
for the forecasting of the wind speed using different techniques
such as persistence method, physical approach, statistical
approach [8]–[25], etc. The statistical approach is based on
training with measurement data and the difference between

This is the author's version of an article published in IEEE Transactions on Sustainable Energy. Changes were made to this version by the publisher prior to 
publication. DOI: 10.1109/TSTE.2013.2256944

Smoothing of Wind Farm Output by Prediction and
Supervisory-Control-Unit-Based FESS

Farzana Islam, Member, IEEE, Ahmed Al-Durra, Member, IEEE, and S. M. Muyeen, Senior Member, IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195648556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


predicted and actual wind speeds in the immediate past to
tune the model [10], [13]. Time series [14] and artificial neural
network (ANN)-based [15]–[28] methods are classified as the
statistical approach.
ANN simulates the human brain in processing information

through a series of interconnected neurons and has an excel-
lent ability of mapping complex and highly nonlinear input and
output patterns without the actual model structure [15]. In ANN,
the neurons are organized in layers, usually, an input, an output,
and one or more hidden layers. Each of the neuron’s connec-
tions has an adjustable weight. The feedforward network [16],
multilayer perception network (MLP) [17]–[19], or recurrent
neural network systems [20]–[22] are used extensively for wind
speed prediction. Elman recurrent neural network (ERNN) is
a kind of recurrent network (RNN) with great adaptability for
time-varying patterns [23], [24]. Generally, compared with the
static feedforward neural networks, the training for the ERNN is
faster than the static feedforward neural networks. Radial basis
function (RBF), owing to its superior performance of linear/
nonlinear algorithm with respect to fast convergence and accu-
rate prediction, is also very suitable for wind speed prediction.
RBF exhibits high approximation precision, and nonexistence
of local minimum problems [25]–[28]. In the field of approx-
imation capability, analysis ability, and learning speed, RBF
neural network has superior performance compared to other ar-
tificial networks. Hence, this study is motivated to design a wind
speed prediction model using ERNN and radial basis function
neural network (RBFNN) followed by a comparative study be-
tween the two methods to develop a better control strategy in
mitigating the output power fluctuation of wind farm.
Output power fluctuation of the wind farm can be effectively

mitigated by a cooperative control of the wind farm and the
FESS. In addition, use of an accurate prediction method like
ANNs to predict the wind speed can be also applied to improve
the overall power quality of the wind farm, especially for the
power systems with small capacity energy storage systems.
Because of the heavy inertia, a large capacity energy storage
system mitigates random variation in the wind farm output
power effectively. If the required power can be predicted and
utilized properly to revise the final output power reference,
then better performance can be achieved by reducing the size
of the energy storage system and effective smoothing of the
output power fluctuations can be achieved at lower cost. A
new control strategy is necessary to provide the opportunities
to improve the existing control strategies for enhancing the
overall performances of the wind farm. Hence, in this study,
a supervisory control unit (SCU) considering the advantage
of short-term-ahead wind speed prediction scheme and small
capacity energy storage system is developed to make the wind
farm more reliable and efficient.

II. MODEL SYSTEM

An aggregated type wind farm [29] is considered in this study
where multiple small size wind generators are represented with
a large wind generator, mainly to speed up the simulation. The
wind farm is composed of fixed speed wind turbine generator
systems where an induction generator (IG) is used as the wind
generator. The model system used for the simulation is shown in

Fig. 1. Model system.

TABLE I
PARAMETERS FOR IG AND FESS [4]

Fig. 1. The IG (10 MVA) is connected to an infinite bus through
the transformer and a transmission line. A DFIG with the sec-
ondary excitation system is considered as FESS (4 MVA). The
parameters used for IG and FESS are given in Table I.

III. MODELING OF WIND TURBINE AND FLYWHEEL ENERGY
STORAGE SYSTEM

A. Fixed Speed Wind Turbine Modeling

The aerodynamic power captured by wind is given by

(1)

where is the wind turbine output [W], is the radius of the
blade [m], is the angular velocity of the wind turbine [rad/s],
is the wind speed [m/s], and is the air density kg/m . The

tip speed ratio and power coefficient can be expressed
as follows [30]–[34]:

(2)

(3)

(4)

The torque coefficient and the turbine torque

(5)

(6)



Fig. 2. Secondary excitation system of FESS.

B. Configuration of FESS

In FESS, the stator winding is connected directly to the grid
and a bidirectional power converter is feeding the rotor winding.
The power converter consists of two back-to-back IGBT bridges
linked by a dc bus. The rotor side converter (RSC) is connected
to the rotor winding. The inverter controls the active and reac-
tive power output of the generator and the converter controls
the dc link voltage and the reactive power that is flowing into
the secondary excitation system. The dc link voltage is stabi-
lized by the dc link capacitor and converted further by the grid
side converter (GSC) into ac which is supplied to the grid. The
secondary excitation system for FESS is shown is Fig. 2. The
maximum and minimum energy that can be stored in FESS is
limited to 30% of the rated energy. As shown in Fig. 2, the
d-axis current in the RSC controls the active power of
FESS while the q-axis current controls the reactive power
of FESS. After to transformation, and are sent
to the PWM signal generator and three phase voltage, de-
sired at the RSC are achieved. A sinusoidal PWM operation is
carried out and switching signals are generated by applying tri-
angular carrier wave comparison.
In GSC, d-axis current regulates the dc link voltage at

1 p.u. while q-axis current controls the reactive power.
After to transformation, and are sent to the
PWM signal generator and are the three phase voltage
desired at the GSC. The carrier frequency for IGBT is chosen
2 kHz. Conventional PI controllers are used for converter and
inverter control.

IV. PROPOSED CONTROL SCHEME FOR SMOOTHING
OF WIND FARM

A wind farm consisting of a large capacity FESS can smooth
the output power fluctuation effectively because of its heavy
inertia. But this increases the overall system cost. In order to
achieve better smoothing effect using a small capacity FESS, it
is essential to utilize the available energy in an optimum way.
If the wind speed can be predicted in advance, based on this
prediction, a proper control scheme can be designed to charge/
discharge of FESS more effectively.

Fig. 3. Structure of RBFNN.

A. Wind Speed Prediction by Using Artificial Neural Network

In this study, two different kinds of neural networks, RBF
and ERNN, have been modeled and analyzed for the purpose of
wind speed prediction.
1) Radial Basis Function Neural Network (RBFNN):

RBFNN is a feedforward network. The RBF network offers
superior performance of linear/nonlinear algorithm with respect
to fast convergence and accurate prediction and characterized
by a combination of unsupervised (in the hidden layer) and
supervised (in the output layer) training. The structure of RBF
is shown in Fig. 3.
For the RBFNN learning algorithm, three parameters are nec-

essary to be considered. They are the center of the base func-
tion, themean square deviation, and the weights from the hidden
layer to the output layer. The common RBF is a Gauss function
in the RBFNN. From the structure of the RBFNN, the output of
the network is given by [35]

(7)
where is the th input sample,

, with is the total number of samples, is the
center of hidden nodes, is the connection weights from the
hidden layer to the output layer, is the number
of hidden layer nodes, and is the real output of the th output
node corresponding to the input sample.
2) Elman Recurrent Neural Network (ERNN): The ERNN is

a partial recurrent network model which was first proposed by
Elman [36]. The Elman network is two-layer back propagation
network, with an addition of a feedback connection from the
output of the hidden layer to its input. This feedback path allows
the Elman network to learn to recognize and generate temporal
patterns as well as spatial patterns [37].
The nonlinear state equation of the Elman network shown in

Fig. 4 is built as follows [23]:

(8)



Fig. 4. ERNN model [23].

where are the weight values between recurrent link
layer and input layer, weight values between input layer and
hidden layer, and weight values between hidden layer and re-
current link layer, , , , and are the scalar
input, the values in hidden layer, the scalar output, and feedback
values in the recurrent layer, respectively. and are the
transfer functions. Elman network has “tansig” neurons in its
hidden layer and “purelin” in the output layer.
3) Prediction Results: For evaluating the wind speed

prediction method, RBFNN and ERNN are implemented in
MATLAB/Simulink. In this study, time series methodology
is adopted where the past values of the process are used for
estimating the future values after the model identification. Real
wind speed data from Hokkaido Island, Japan has been used
for simulation. The available wind speed data is partitioned
into training set and test set. Here, 100 samples (each sample
at every 3-s interval) are considered for the training purpose
and the network model performance is evaluated by another
60 samples of data for both RBFNN and ERNN. In order to
avoid the convergence problems during the training process,
the network input data and corresponding target vector for
the prediction model are normalized such that they fall within
the range . In this study, the data is normalized by the
following:

(9)

The error function of NN is chosen to be mean squared error
(MSE) of each pattern on the training set and given by

(10)

A comparative study is carried out between RBFNN and
ERNN methods using two different wind patterns (WPs) and
three different network architectures (NAs). The network
parameters used in different network architectures are given in
Table II. The parameters relevant in the training algorithm, error
goal, and number of epochs are chosen appropriately. RBFNN
model is trained using “trainlm” (Lavenberg-Marquardt algo-
rithm) and ERNN is trained with “traingdx” (gradient descent
algorithm with adaptive momentum training algorithm) in

TABLE II
WIND SPEED PREDICTION BY DIFFERENT NETWORK ARCHITECTURES

the neural network training toolbox of MATLAB/Simulink.
Here, for ERNN, the learning rate is varied from 0.1 to 0.35.
For RBFNN, the spread constant is varied between 0.1 and
0.7, and the value giving the best predictive performance is
chosen. Each network is simulated and their performance is
observed by varying the number of inputs, number of hidden
neurons, etc., as shown in Fig. 5. The error performances for
all network architectures are also calculated using both wind
patterns based on the MSE and summarized in Table II. It is
found that RBFNN gives less error as compared to ERNN in
all the architectures and among the three architectures; NA3
has the lowest MSE for both WP1 and WP2. Therefore, in this
study, RBFNN is chosen to model the 3-min-ahead wind speed
prediction.

B. Supervisory Control Unit (SCU)

An SCU shown in Fig. 6 helps the proposed control scheme
to adjust the output power reference of FESS considering the
rotor speed of FESS, actual energy stored in FESS ,
actual wind speed , and predicted wind speed . Here,
“Flag” is another input variable which indicates whether the
output of WF is in charging mode or discharge mode. in-
dicates the power difference between the actual and predicted
wind power. The output power reference 1 is generated
using a low pass filter function where the input of the filter func-
tion is output power from wind generator . In order to apply
the short-term-ahead (3 min) wind speed prediction model by
ANN into the proposed control scheme, the time constant, T1
for the filter function is chosen to be 180 s. When the output of
the IG is higher than the final output power reference, FESS is
in charging mode and absorbs the fluctuating part of wind farm
output power. But when the generated output is lower than the
final output power reference, FESS is in discharge mode and
supplies active power to the grid. However, when the stored en-
ergy reaches close to its maximum limit, output power reference
for the system is modified in such a way that the stored energy is
forced to be in dischargemode so that it does not exceed its max-
imum limit anymore. Similarly, when the FESS almost reaches
its minimum limit, then the reference is corrected in such a way
that it is forced back to charging mode again.
An efficient energy management in the FESS is configured

considering different operating cases. Higher switching fre-
quencies of SCU are eliminated by filtering it through a low



Fig. 5. Wind speed prediction using (a) NA1 and WP1, (b) NA2 and WP1, (c) NA3 and WP1, (d) NA1 and WP2, (e) NA2 and WP2, and (f) NA3 and WP2.

Fig. 6. Reference signal generation using SCU for the proposed control
scheme.

pass filter with a time constant of 5 s. Different operating
conditions for SCU are shown in Fig. 7 and explained as
follows.
Case 1 : This case indicates that the stored energy

in FESS is going to reach its maximum level. As a result, the
final output power reference has to be modified in such a way
that no more energy will be stored in the FESS.
In this case, the final output power reference will be shifted

up above the output of wind farm so that the FESS is in dis-
charging mode and thus FESS will be prevented from charging
any more. The output power reference is set by SCU

.
Case 2 : This case

indicates that FESS is already charging and if it continues to
charge then it will reach its maximum level. Therefore, only
discharging of FESS is allowed for this situation. In order to
discharge, the final output power reference is set by SCU

gain. The value of gain is chosen depending on

the value of the , as shown in the Fig. 7. If ,
then the value of gain will be , and if , then the
value of gain will be .
Case 3 : This case

indicates that FESS has not reached its maximum energy level
yet. So charging/discharging of FESS is allowed without any
restriction. The output power reference is set by SCU

.
Case 4 : In this state, the FESS is in normal

operating range. So there is no restriction. The power fluctuation
is mitigated by the stored energy in FESS.
Case 5 : This case

also indicates that the minimum level of FESS has not been ac-
complished yet and there is no restriction for charging or dis-
charging. So the output power reference will be the same as dis-
cussed in Case 3.
Case 6 : This case

indicates that the FESS is already in discharging mode. So, if it
continues to discharge then it will reach to its minimum limit.
That is why the control for output power reference is set to
charge forcefully. This is done by setting output power refer-
ence, SCU gain. The value of gain will be
chosen depending on the value of as explained in Case 2.
Case 7 : This case indicates that the FESS is

operating almost at minimum stored energy level. In order to
avoid any instability in the system, the output power reference
is forcefully set to charge by setting the value for SCU

.
The value of gain varies depending on the difference of ac-

tual and predicted wind speed. Table III shows the values for



Fig. 7. Flowchart for control signal generation using SCU.

TABLE III
DIFFERENT VALUES OF GAIN

different gains which are used in Fig. 7. The effectiveness of
the proposed system is verified by simulation results.

C. Interfacing Between MATLAB/Simulink and
PSCAD/EMTDC

In this study, the model for wind speed prediction is devel-
oped using ANN in MATLAB/Simulink and it is used from
PSCAD/EMTDC software where the model system including
the control scheme is developed. The MATLAB interface fea-
ture is not supported by the default GNU FORTRAN complier
used in PSCAD. Hence, Intel FORTRAN Compiler V 9.0 has to
be used to interface PSCAD/EMTDC and MATLAB/Simulink.
The key subroutine for using the MATLAB interfacing feature
is “MLAB_INT.” To speed up the overall simulation, an im-
pulse generator is used with an enable/disable pulse.

V. SIMULATION RESULTS

Fig. 8 shows the real wind speed data and 3-min-ahead
predicted wind speed data which are used for simulation in
PSCAD/EMTDC. From this figure, it is seen that the wind
speed fluctuates between a high wind speed and low wind speed

Fig. 8. Real and 3-min-ahead predicted wind speed data.

Fig. 9. Output power reference 1; final output power reference; grid output
power; WF output power [p.u.].

in a short period. The time step and run time for the simulation
are chosen 20 000 s and 600 s, respectively. It is also found
that a small capacity energy storage system with s is
not sufficient enough to smoothen the power fluctuation as well
as maintaining system stability if the final output power refer-
ence is set to . The overall system will become unstable
if the final output power reference is not modified according
to the proposed SCU scheme. Fig. 9 shows the wind generator
output power, the smoothed grid power, output power reference
1, and the final reference power using the proposed control
scheme. The wind generator output power varies according to
the wind speed. In Fig. 9, it is seen that and are
overlapped as FESS properly charges and discharges to follow
the reference command signal shown in Fig. 2. The stored
energy level and the rotor speed of FESS shown in Figs. 10
and 11, respectively, are controlled by the control of SCU. For
example, in Fig. 9, at around 110 s, the FESS is supposed to
be in discharging mode as the output of is at lower level
than the . However, at the same instant, it is observed in
Fig. 8 that is also higher as compared to . In this situation,
if FESS continues to discharge normally, then it will exceed
its minimum limit and the system will collapse as DFIG is not
allowed to be operated at a speed which is less than 30% from
the rated speed. As a result, SCU sets the command in such
a way that it starts charging forcefully up to a certain limit.
Hence, the FESS is prevented from reaching its minimum limit
as mentioned in Case 6. The output of the SCU for different



Fig. 10. Stored energy in FESS [MJ].

Fig. 11. Rotor speed of FESS [p.u.].

Fig. 12. Output of SCU.

operating condition has been demonstrated in Fig. 12. Higher
switching frequencies of the signal SCU are omitted by
passing it through a first-order delay function. Response for
active power of FESS is shown in Fig. 13. The FESS supplies or
absorbs the real power according to the output power reference
and hence smooths the total power supplied to the grid. The dc
link voltage and the terminal voltage of the system
are maintained constant at 1.0 p.u., as shown in Figs. 14 and 15,
respectively. The benefit of the proposed control scheme lies in
the fact that the rotor speed of FESS is operating in between its
normal operating range which is defined as .
Due to the proper energy storage management with SCU, the

overall system is still able to supply the output power to the grid

Fig. 13. Active power of FESS [p.u.].

Fig. 14. DC link voltage [p.u.].

Fig. 15. Terminal voltage [p.u.].

even though the performance deteriorates when FESS operated
at its maximum/minimum speeds.

VI. CONCLUSION

A coordinated control strategy combined with short-term-
ahead wind speed prediction and a small capacity SCU-based
FESS has been proposed in this study to reduce the output
power fluctuations of the grid connected wind farm. RBFNN
and ERNN both are modeled for the purpose of wind speed
prediction. RBFNN is found to perform better compared to
the performance of ERNN and has been chosen to carry out
simulation and evaluate the performance of the proposed
control strategy. The model for wind speed developed in



MATLAB/Simulink is interfaced with PSCAD/EMTDC. Sim-
ulation results verify that taking the benefits of prediction of
the wind speed and modification of output power by an SCU
makes the small capacity FESS more effective and smooths the
output power fluctuations more efficiently.
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