206 research outputs found

    Tree model guided (TMG) enumeration as the basis for mining frequent patterns from XML documents

    Full text link
    University of Technology, Sydney. Faculty of Information Technology.Association mining consists of two important problems, namely frequent patterns discovery and rule construction. The former task is considered to be a more challenging problem to solve. Because of its importance and application in a number of data mining tasks, it has become the focus of many studies. A substantial amount of research has gone into the development of efficient algorithms for mining patterns from large structured or relational data. Compared with the fruitful achievements in mining structured data, mining in the semi-structured world still remains at a preliminary stage. The most popular representative of the semi-structured data is XML. Mining frequent patterns from XML poses more challenges in comparison to mining frequent patterns from relational data because XML is a tree-structured data and has an ordered data context. Moreover, XML data in general is larger in data size due to richer contents and more meta-data. Dealing with XML, thus involves greater unprecedented complexity in comparison to mining relational data. Mining frequent patterns from XML can be recast as mining frequent tree structures from a database of XML documents. The increase of XML data and the need for mining semi-structured data has sparked a lot of interest in finding frequent rooted trees in forests. In this thesis, we aim to develop a framework to mine frequent patterns from XML documents. The framework utilizes a structure-guided enumeration approach, Tree Model Guided (TMG), for efficient enumeration of tree structure and it makes use of novel structures for fast enumeration and frequency counting. By utilizing a novel array-based structure, an embedded list (EL), the framework offers a simple sequencelike tree enumeration technique. The effectiveness and extendibility of the framework is demonstrated in that it can be utilized not only for enumerating ordered subtrees but also for enumerating unordered subtrees and subsequences. Furthermore, the framework tackles the unprecedented complexity in mining frequent tree-structured patterns by generating only valid candidates with non-zero frequency count and employing a constraint-driven approach. Our experimental studies comparing the proposed framework with the state-of-the-art algorithms demonstrate the effectiveness and the efficiency of the proposed framework

    Tree mining application to matching of hetereogeneous knowledge

    Get PDF
    Matching of heterogeneous knowledge sources is of increasing importance in areas such as scientific knowledge management, e-commerce, enterprise application integration, and many emerging Semantic Web applications. With the desire of knowledge sharing and reuse in these fields, it is common that the knowledge coming from different organizations from the same domain is to be matched. We propose a knowledge matching method based on our previously developed tree mining algorithms for extracting frequently occurring subtrees from a tree structured database such as XML. Using the method the common structure among the different representations can be automatically extracted. Our focus is on knowledge matching at the structural level and we use a set of example XML schema documents from the same domain to evaluate the method. We discuss some important issues that arise when applying tree mining algorithms for detection of common document structures. The experiments demonstrate the usefulness of the approach

    Mining substructures in protein data

    Get PDF
    In this paper we consider the 'Prions' database that describes protein instances stored for Human Prion Proteins. The Prions database can be viewed as a database of rooted ordered labeled subtrees. Mining frequent substructures from tree databases is an important task and it has gained a considerable amount of interest in areas such as XML mining, Bioinformatics, Web mining etc. This has given rise to the development of many tree mining algorithms which can aid in structural comparisons, association rule discovery and in general mining of tree structured knowledge representations. Previously we have developed the MB3 tree mining algorithm, which given a minimum support threshold, efficiently discovers all frequent embedded subtrees from a database of rooted ordered labeled subtrees. In this work we apply the algorithm to the Prions database in order to extract the frequently occurring patterns, which in this case are of induced subtree type. Obtaining the set of frequent induced subtrees from the Prions database can potentially reveal some useful knowledge. This aspect will be demonstrated by providing an analysis of the extracted frequent subtrees with respect to discovering interesting protein information. Furthermore, the minimum support threshold can be used as the controlling factor for answering specific queries posed on the Prions dataset. This approach is shown to be a viable technique for mining protein data

    Razor: Mining distance-constrained embedded subtrees

    Get PDF
    Our work is focused on the task of mining frequent subtrees from a database of rooted ordered labelled subtrees. Previously we have developed an efficient algorithm, MB3 [12], for mining frequent embedded subtrees from a database of rooted labeled and ordered subtrees. The efficiency comes from the utilization of a novel Embedding List representation for Tree Model Guided (TMG) candidate generation. As an extension the IMB3 [13] algorithm introduces the Level of Embedding constraint. In this study we extend our past work by developing an algorithm, Razor, for mining embedded subtrees where the distance of nodes relative to the root of the subtree needs to be considered. This notion of distance constrained embedded tree mining will have important applications in web information systems, conceptual model analysis and more sophisticated ontology matching. Domains representing their knowledge in a tree structured form may require this additional distance information as it commonly indicates the amount of specific knowledge stored about a particular concept within the hierarchy. The structure based approaches for schema matching commonly take the distance among the concept nodes within a sub-structure into account when evaluating the concept similarity across different schemas. We present an encoding strategy to efficiently enumerate candidate subtrees taking the distance of nodes relative to the root of the subtree into account. The algorithm is applied to both synthetic and real-world datasets, and the experimental results demonstrate the correctness and effectiveness of the proposed technique

    Tree model guided candidate generation for mining frequent subtrees from XML

    Get PDF
    Due to the inherent flexibilities in both structure and semantics, XML association rules mining faces few challenges, such as: a more complicated hierarchical data structure and ordered data context. Mining frequent patterns from XML documents can be recast as mining frequent tree structures from a database of XML documents. In this study, we model a database of XML documents as a database of rooted labeled ordered subtrees. In particular, we are mainly coneerned with mining frequent induced and embedded ordered subtrees. Our main contributions arc as follows. We describe our unique embedding list representation of the tree structure, which enables efficient implementation ofour Tree Model Guided (TMG) candidate generation. TMG is an optimal, non-redundant enumeration strategy which enumerates all the valid candidates that conform to the structural aspects of the data. We show through a mathematical model and experiments that TMG has better complexity compared to the commonly used join approach. In this paper, we propose two algorithms, MB3Miner and iMB3-Miner. MB3-Miner mines embedded subtrees. iMB3-Miner mines induced and/or embedded subtrees by using the maximum level of embedding constraint. Our experiments with both synthetic and real datasets against two well known algorithms for mining induced and embedded subtrees, demonstrate the effeetiveness and the efficiency of the proposed techniques

    Mining Rooted Ordered Trees under Subtree Homeomorphism

    Full text link
    Mining frequent tree patterns has many applications in different areas such as XML data, bioinformatics and World Wide Web. The crucial step in frequent pattern mining is frequency counting, which involves a matching operator to find occurrences (instances) of a tree pattern in a given collection of trees. A widely used matching operator for tree-structured data is subtree homeomorphism, where an edge in the tree pattern is mapped onto an ancestor-descendant relationship in the given tree. Tree patterns that are frequent under subtree homeomorphism are usually called embedded patterns. In this paper, we present an efficient algorithm for subtree homeomorphism with application to frequent pattern mining. We propose a compact data-structure, called occ, which stores only information about the rightmost paths of occurrences and hence can encode and represent several occurrences of a tree pattern. We then define efficient join operations on the occ data-structure, which help us count occurrences of tree patterns according to occurrences of their proper subtrees. Based on the proposed subtree homeomorphism method, we develop an effective pattern mining algorithm, called TPMiner. We evaluate the efficiency of TPMiner on several real-world and synthetic datasets. Our extensive experiments confirm that TPMiner always outperforms well-known existing algorithms, and in several cases the improvement with respect to existing algorithms is significant.Comment: This paper is accepted in the Data Mining and Knowledge Discovery journal (http://www.springer.com/computer/database+management+%26+information+retrieval/journal/10618

    SEQUEST: Mining frequent subsequences using DMA strips

    Get PDF
    Sequential patterns exist in data such as DNA string databases, occurrences of recurrent illness, etc. In this study, we present an algorithm, SEQUEST, to mine frequent subsequences from sequential patterns. The challenges of mining a very large database of sequences is computationally expensive and require large memory space. SEQUEST uses a Direct Memory Access Strips (DMA-Strips) structure to efficiently generate candidate subsequences. DMA-Strips structure provides direct access to each item to be manipulated and thus is optimized for speed and space performance. In addition, the proposed technique uses a hybrid principle of frequency counting by the vertical join approach and candidate generation by structure guided method. The structure guided method is adapted from the TMG approach used for enumerating subtrees in our previous work [8]. Experiments utilizing very large databases of sequences which compare our technique with the existing technique, PLWAP [4], demonstrate the effectiveness of our proposed technique

    Homomorphic Pattern Mining from a Single Large Data Tree

    Get PDF
    • …
    corecore