
Tree Model Guided Candidate Generation for

Mining Frequent Subtrees from XML Documents
Henry Tan, Fedja Hadzic, Tharam S. Dillon, Elizabeth Chang

Curtin University of Technology, Digital Ecosystems and Business Intelligence Institute,

Perth, Australia

Ling Feng

Tsinghua University, Beijing. China

Due to the inherent flexibilities in both structure and semantics, XML association rules mining faces few

challenges, such as: a more complicated hierarchical data structure and ordered data context. Mining frequent

patterns from XML documents can be recast as mining frequent tree structures from a database of XML

documents. In this study, we model a database of XML documents as a database of rooted labeled ordered

subtrees. In particular, we are mainly coneerned with mining frequent induced and embedded ordered subtrees.

Our main contributions arc as follows. We describe our unique embedding list representation of the tree

structure, which enables efficient implementation ofour Tree Model Guided (TMG) candidate generation. TMG

is an optimal, non-redundant enumeration strategy which enumerates all the valid candidates that conform to the

structural aspects of the data. We show through a mathematical model and experiments that TMG has better

complexity compared to the commonly used join approach. In this paper, we propose two algorithms, MB3­

Miner and iMB3-Miner. MB3-Miner mines embedded subtrees. iMB3-Miner mines induced and/or embedded

subtrees by using the maximum level of embedding constraint. Our experiments with both synthetic and real

datasets against two well known algorithms for mining induced and embedded subtrees, demonstrate the

effeetiveness and the efficiency of the proposed techniques.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Seareh and

Retrieval - lriformation filtering; H.3.4 [Information Storage and Retrieval]: Systems and Software ­

Performance evaluation (efficiency and effectiveness); I. 7.0 [Document and Text Processing]: General

General Terms: Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Tree Mining, TreeMiner, FREQT, TMG, Tree Model Guided

1. Introduction
Research in both theory and applications of data mining is expanding driven by a need to

consider more complex structures, relationships and semantics expressed in the data.

Association mining has been very successful in discovering useful associations between

data, pankularly for relational data. Due to the inherent flexibilities in both structure and

semantics, XML association mining faces several challenges, such as: I) more

complicated hierarchical data structure; 2) ordered data context; and 3) much bigger data

size. The bigger data size arises from two sources: a) an XML record is more annotated

through the tags than a relational record, and b) the actual amount of semi-structured (or

unstructured) data (documents) greatly exceeds the amount of relational data [Luk et al.

2002]. Most of the research done in association mining was tailored for structured data

with only a few cases addressing semi-structured data. While some approaches have

focused on mining for patterns in databases containing general graphs [Ruckert and

Kramer 2004; Yan and Han 2002], the increase in the amount of XML data and the need

for mining semi-structured data has sparked a lot of interest in finding frequent trees from

a database of rooted ordered labeled trees. This problem is known as frequent subtree

mining and can be generally stated as: given a tree database Tdb and minimum support

threshold (u), find all subtrees that occur at least u times in Tda.

The two known types of subtrees are induced and embedded [Abe et al. 2002; Chi et

al. 2005, Tan et al. 2005a, 2005b, 2006a; Zaki 2005]. An induced subtree is a subtree

where the parent-child relationships must be the same to those in the original tree. In

addition to this, an embedded subtree allows a parent in the subtree to be an ancestor in

the original tree and hence the information about ancestor-descendant relationships is

kept. Furthermore, if the subtree is ordered then the left-to-right ordering among sibling

nodes in the database tree is preserved. Examples of ordered induced and embedded

subtrees are given in Figure 1 and formal definitions are provided in Section 3.

T: Ti5:

Figure I: example of induced subtrees (Tl. T2, T4, T6) and embedded subtrees (T3, T5) of tree T

(note that induced subtrees are also embedded subtrees)

While more interesting patterns can be obtained when mining embedded subtrees,

unfortunately mining such embedding relationships can be very costly. Induced subtrees

are subset of embedded subtrees and the complexity of mining embedded subtrees is

higher than mining induced subtrees [Chi et al. 2005; Tan et al. 2005b; Zaki 2005].

Another issue is how subtree occurrences are counted in the database. Currently the

most commonly used support definitions are occurrence-match and transaction-based

support [Zaki 2005; Tan et al. 2005b]. The term transaction was originally introduced in

the data management field where it refers an atomic interaction with a database

management system. However, in the data mining field the term transaction has adopted

a different meaning. To clarity its use in the context of tree mining, we find the following

definition suitable. A transaction is a set of one or more items obtained from a finite item

domain, and a dataset is a collection of transactions [Bayardo et al. 1999]. Hence, in the

context of a tree database, a transaction would correspond to a fragment of the database

tree whereby an independent instance is described. Transaction-based support is used

when only the existence of items within a transaction is considered important, whereas

occurrence-match support takes the repetition of items in a transaction into account and

counts the subtree occurrences in the database as a whole. Formal definitions will be

provided in Section 3.

In this study, we are mainly concerned with mining frequent ordered

induced/embedded subtrees from a database of rooted ordered labeled subtrees. Our

primary objectives are as follows: (1) to present an efficient and scalable technique, (2) to

provide a method to control and limit the inherent complexity present in mining frequent

embedded subtrees, (3) to evaluate the use of occurrence-match support as well as

transaction-based support. To achieve the first objective, we utilize a novel tree

representation called embedding list (EL), and employ an optimal enumeration strategy

called Tree Model Guided (TMG). The second objective can be attained by restricting the

maximum level of embedding that can occur in each embedded subtree. The level of

embedding is defined as the length of the path between two nodes that form an ancestor­

descendant relationship. Intuitively, when the level ofembedding inherent in the database

of trees is high, numerous numbers of embedded subtrees exist. Thus, when it is too

costly to mine all frequent embedded subtrees, one can restrict the maximum level of

embedding gradually up to 1, from which all the obtained frequent subtrees are induced

subtrees. Finally, we analyze the issue of using occurrence-match support for mining

frequent subtrees and highlight the importance of full (k-J) pruning [Zaki 2005; Tan et al.

2005b] when this support definition is considered.

In contrast to our previous works [Tan et al. 2005b, 2006a], this paper provides

supplementary theoretical and experimental discussion of some important aspects of

induced and embedded subtree mining. Introducing the level of embedding concept has

established a clearer picture of the relationship between the tasks of mining induced and

embedded subtrees. A discussion of implementation issues that commonly arise when

developing algorithms for frequent subtree mining is provided and experimentally

confmned. Some of the commonly used hash functions were experimentally evaluated in

regards to their efficiency for storing and counting subtree occurrences. We have also

extended our technique so that the transaction-based support definition can be used.

Comparisons of Algorithms were done on a more diverse set of experiments, choosing

tree databases with different characteristics, and different settings of support thresholds.

This indicated certain database characteristics where applying one particular technique

would be more advantageous over others, and in more general terms it provided further

insight into some strengths as well as limitations of the compared techniques for mining

induced/embedded subtrees. The key contribution is the development of a comprehensive

theoretical and implementation framework, which addresses induced and embedded

subtrees, clarifies the relationship between those and utilizes both transaction-based and

occurrence-match support. This is experimentally shown to be more efficient than

existing algorithms. A powerful tree model guided approach heavily reduces candidate

generation. The novel data structure, embedding list, is used to speed up the handling of

enumeration at the implementation level. In addition, the nature of data and its influence

on the efficacy of different algorithms is investigated.

The paper is organized as follows. Section 2 presents related works. The emergence

of semi-structured documents and the challenges of mining such data are discussed

together with some of the important issues that arise when developing tree mining

algorithms. In Section 3, the problem definitions are given and the important aspects of

the tree mining area necessary for understanding the work presented in this paper are

discussed. Section 4 describes the details of the algorithm. The mathematical model of

the TMG candidate enumeration technique is provided in Section 5. iMB3-Miner as

extension to MB3-Miner is presented in Section 6. In Section 7 we empirically evaluate

the performance of our algorithms by comparing it with some state-of-the-art algorithms

for mining induced and embedded subtrees. The paper is concluded in Section 8.

2. Previous works

Unlike traditional well-structured data whose schema is known in advance, XML

data may not have a fixed schema, and the structure of data may be incomplete or

irregular. This is why XML data is referred to as semi-structured data [Suciu 2000].

Several works have been proposed for mining XML documents [Abe et al. 2002; Chi et

al. 2005; Feng et al. 2003; Feng and Dillon 2004; Wang and Liu 1998; Yang et al. 2003,

Zhang et at. 2004; Zhang et at. 2005]. If the focus is purely on values associated with the

tags, this is by and large no different from traditional association rule mining. One

interesting work is to discover similar structures among a collection of semi-structured

objects [Abe et al. 2002; Feng et al. 2003; Feng and Dillon 2004; Tan et at. 2005a].

Association mining consists of two important problems, i.e. frequent patterns

discovery and rule construction [Agrawal et al. 1993, Agrawal and Srikant 1994;

Agrawal et al. 1996]. The former task is considered to be a more difficult problem to

solve than the latter and has become the focus of many studies [Abe et al. 2002; Chi et al.

2005; Nijssen and Kok 2003; Ruckert and Kramer 2004; Tan et al. 2005a, 2005b, 2006a;

Wang et al. 2004; Zaki 2005].

An XML-enabled framework for representation of association rules in databases was

first presented in Feng and Dillon [2003]. It extends the notion of associated items to

XML fragments to present associations among trees. Despite the strong foundation

established in Feng and Dillon [2003], an efficient way to implement the framework had

not been discussed. Recently, a hybrid approach XAR-Miner was proposed in Zhang et

al. [2004] and Zhang et al. [2005] for efficient data selection and association rule mining.

Depending on the size of the XML documents, the data is either transformed into Indexed

XML Tree (IX-Tree) or Multi-relational databases (Multi-DB) through which the

hierarchical information is maintained and data is indexed. The desire to focus on certain

interesting rules leads Feng and Dillon [2004] to use a template approach to focus the

search on the interestingness of the rule. An extension of this approach to define language

constructs that allow one to carry out rule mining for a language such as XQuery is put

forward in Feng and Dillon [2005]. In general, XQuery-based approaches [Feng and

Dillon 2004, 2005; Wan and Dobbie 2003] suffer from a poor performance if they are

used to mine association rules by exhausting a large search space. It has been suggested

in Zaki [2005] and Tan et al. [2005a] that one of the main issues in XML association rule

mining is mining frequent subtrees in a database ofXML documents.

There arc different types of trees. One can distinguish between unrooted unordered

trees (free trees) [Chi et al. 2004; Ruckert and Kramer 2004], rooted unordered trees

[Nijssen and Kok 2003], and rooted ordered trees [Abe et al. 2002; Tan et al. 2005a,

2005b, 2006a]. The three types of trees have increasing topological structure as one

progresses from the first to the third [Chi et al. 2005]. A rooted tree is a tree with a

special node called the root node which does not have a parent. Tan et al. (2005 a]

suggested that mining frequent patterns from XML documents can be recast as mining

frequent tree structures from the database of rooted labeled ordered subtrees.

A related but not identical problem is to consider the issue of mining sub-sequences

from a database of sequences. A sequence contains no hierarchical relationship but only

horizontal (linear) relationships. Each item in a sequence has fan-out 1. By definitions the

order of items in a sequence is important. A tree structure on the other hand has

hierarchical relationships and horizontal relationships. A uniform tree with degree 1 has

only hierarchical relationships. By definition, hierarchical relationships imply that the

order between nodes is vertically significant. By corollary, we can then view a sequence

as a uniform tree with nodes degree I. With this definition, we can define a sequence of

itemsets as a collection of uniform trees with nodes degree 1 rooted on the same root

node, and we refer to this tree as a vertical tree [Tan et al. 2006b].

A tree structure can be represented using the acfjacency matrix and the acfjacency list

representation. In the data mining community, a string-like representation is becoming

very popular [Abe et al. 2002; Chi et al. 2005; Wang et al. 2004; Yang et al. 2003; Zaki

2005]. Each item in the string can be accessed in 0(1) time and the representation itself

has been reported to be space efficient and provides ease of manipulation [Chi et al.

[2005]; Tan et al. 2005a, 2005b, 2006a]. When using depth-first string-like

representation, a notion of scope is used to denote the position of its descendant's node

position. Thus the hierarchical structure embedded in tree data is semantically preserved

and the original tree structure can be reconstructed from the string-like representation.

There are various algorithms that mine different types of tree patterns.

FreeTreeMiner for graphs [Ruckert and Kramer 2004] extracts free trees in a graph

database. PathJoin [Xiao et al. 2003], uFreqt [Nijssen and Kok 2003], and

HybridTreeMiner [Chi et al. 2004], mine induced, unordered trees. Zaki presented

TreeMiner [Zaki 2005], an algorithm to discover all frequent embedded subtrees in a

forest using a data structure called the vertical scope-list and utilizing the join approach

for candidate generation. TreeMiner consists of two versions, one, which adopts a depth­

first search (VTreeMiner) and one which uses the breadth-first search (Pattern Matcher)

for frequent subtrees. Generally speaking the depth-first approach is more efficient for

processing long-patterns and is also more space efficient than the breadth-first approach.

The breadth-first approach requires more memory, since when enumerating all k-subtrees

(Le. subtrees consisting of k nodes) the occurrence of all (k-l)-subtrees is kept in memory

to perform the extension. On the other hand, the depth-first approach does not need to

keep all subtree occurrences in memory since all possible extensions of a particular

subtree have already been enumerated. However one significant drawback of depth-first

approach is that it cannot ensure that all (k-l)-subtrees of a k-subtree are frequent (Le.

perfonn full k-J pruning). It becomes a challenge because infonnation of(k-J) subtrees is

not guaranteed to be readily available. VTreeMiner overcomes this issue by

implementing opportunistic pruning [Zaki 2005] which is a work around over performing

full pruning (i.e. enumerating (k+ l)-subtree from k-subtrees). TreeMiner is one of the

most efficient current approaches to tree mining and the algorithm could be extended for

the purpose of mining frequent tree structures in XML documents.

The two known enumeration strategies are enumeration by extension and join [Chi et

al. 2005]. Recently, Zaki [2005] adapted the join enumeration strategy for mining

frequent embedded rooted ordered subtrees. Another kind of enumeration technique is to

utilize structural infonnation from the data. The utilization of schema or structural

infonnation was essential for many tasks. An idea of utilizing schema infonnation for

mining frequent patterns from XML documents appeared in Yang et a!. [2003]. The

approach uses the XML schema to guide the candidate generation so that all candidates

generated are valid because they confonn to the schema. Another study about utilization

of schema infonnation was reported in Papakonstantinou and Vianu [2000]. They

developed a technique to generate views of XML data from its schema. The technique

utilizes the schematic infonnation of the data to enable an automatic inference of Data

Type Definitions (DTDs) for views of XML data. If it is done manually, this is not only

difficult to do but also error-prone.

We have developed a candidate enumeration method for mining embedded rooted

ordered labeled subtree, which we refer to as Tree Model Guided (TMG) [Tan et al.

2005a, 2005b, 2008]. The TMG can be applied to any data that has a model

representation with clearly defined semantics (schema) that have tree-like structures.

However, the TMG does not need an explicit schema definition to perfonn the candidate

generation as it can infer the tree structural infonnation just from the document itself.

Hence, this enables the TMG to generate only valid candidate subtrees. A candidate

subtree can be considered valid in two ways. Firstly, by confonning to an available model

representation of the document tree structure, and secondly by confonning to the tree

structure through which the infonnation presents in the examined document is

represented. By defining a sequence as a vertical tree, Tan et al. [2006b] has

demonstrated that the TMG approach can also be generalized and applied to a database of

sequences.

The enumeration strategy used by TMG is a specialization of the right-mast-path

extension approach [Abe et al. 2002; Zaki 2005]. However, it is different from the one

that is proposed in FREQT [Abe et al. 2002] as TMG enumerates embedded subtrees and

FREQT enumerates only induced subtrees. The right-most-path extension method is

reported to be complete and all valid candidates are enumerated at most once (non­

redundant) [Abe et al. 2002; Tan et al. 2005a, 2005b]. This is in contrast to the

incomplete method TreeFinder [Termier et al. 2002] that uses an Inductive Logic

Programming approach to mine unordered, embedded subtrees. TreeFinder can miss

many frequent subtrees. The extension approach utilized in the TMG generates fewer

candidates as opposed to the join approach [Zaki 2005]. Independently, XSpanner [Wang

et al. 2004] extends the Pattern-Growth concept into tree structured data and its

enumeration model also generates only valid candidates. XSpanner only reports distinct

embedded subtrees similar to the recently published TreeMinerD [Zaki 2005].

Tree MinerD is different from TreeMiner in the sense that TreeMiner reports all

embedding subtrees. Despite the fact that the experimental study performed by the

XSpanner authors suggested that XSpanner outperforms TreeMiner, a very recent study

by Tatikonda et al. [2006] suggested the opposite. They reported that XSpanner performs

much worse than that of TreeMiner for the many datasets they used. XSpanner suffers

from poor cache performance due to expensive pseudo-projection step. They suggested

that in general the problems with the FP-growth based approaches are very large memory

footprint, memory trashing issue, and costly 110 processing [Ghoting et at 2005].

The occurrences of candidate subtrees need to be counted in order to determine if

they are frequent whilst the infrequent ones would be pruned. As the number of

candidates to be counted can be enormous, an efficient and rapid counting approach is

extremely important. Efficiency of candidate counting is heavily determined by the data

structure used. More conventional approaches use a direct checking approach. For each

candidate generated its frequency is increased by one if it exists in the transaction. A

Hash-tree [Agrawal and Srikant 1994; Chi et al. 2005] data structure can be used to

accelerate direct checking. Another approach projects each candidate generated into a

vertical representation [Chi et al. 2005; Zaki 2003, 2005], which associates an occurrence

list with each candidate subtree. If transaction-based support [Chi et al. 2005] is used,

the vertical format will consist of transaction IDs of the transactions that support it. In

contrast, if occurrence-match [Tan et al. 2005b] or weighted-support definition [Zaki

2005] is used, each list will correspond to each candidate occurrence in the whole

database of trees. Occurrence-match support takes repetition of items in a transaction into

account, whilst transaction-based support only checks for existence of items in a

transaction. With the vertical representation approach the frequency of a candidate

subtree corresponds to the size of the occurrence list. With the advantage of being able to

determine the support count of each candidate directly the vertical format has been

reported to be faster than the direct checking approach [Chi et al. 2005; Tan et al. 2005b;

Zaki 2003, 2005].

In Tan et al. [2005aJ, a vertical list format is utilized for performing efficient

frequency counting. In this paper, we modify this vertical list format in two ways. First,

the performance is expedited by storing only the hyper links [Wang et al. 2004J of

subtrees in the tree database instead of creating a local copy for each generated subtree.

The format is different than the scope-list [Zaki 2005] representation as our vertical list

does not store any scope information. Secondly, we transform and map the string-labeled

trees data into integer-labeled trees as opposed to processing time consuming string labels

directly. Representing labels as integers instead of string labels has performance and

space advantages [Tan et aL 2005b]. Therefore, when a hashtable is used for candidate

frequency counting, hashing integer labels over string labels can have significant impact

on the overall candidates counting performance.

3. Problem Definitions
General tree concepts and definitions. A tree is an acyclic connected graph with

one node defined as the root. A tree can be denoted as T(vo, V,L,E), where (1) Vo E Vis the

root vertex; (2) V is the set of vertices or nodes; (3) L is the set of labels of vertices, for

any vertex v E V, L(v) is the label of v; and (4) E = {(x,y)lx,y E V) is the set of edges in

the tree. A root is the topmost node in the tree. In a labeled tree, there is a labeling

function mapping vertices to a set of labels so that a label can be shared among many

vertices. The parent of node v is defined as its predecessor, denoted as paren/(v). The

predecessor of parent(v) is defined as its ancestor, denoted as ancestor(v). The ancestor

of ancestor(v) is also defined as anceslOr(v). Each node in the tree can have only one

parent, but it can have one or more children, which are defined as its successors. The

parent of node v is defined as the predecessor of node v. There is only one parent for each

v in the tree. A node v can have one or more children which are defined as its successors.

A node without any child is a leaf node; otherwise, it is an internal node. If for each

internal node, all the children are ordered, then the tree is an ordered tree. In an ordered

tree, the right-most-child is referred to as the last child. The number of children of a node

is commonly termed as fan-out/degree of the node. A path from vertex Vi to vi> is defined

as the finite sequence of edges that connects Vi to VI' The length of a path p is the number

of edges in p. IfP is an ancestor of q and q is a descendant of p, then there exists a path

from p to q. The height of a node is the length of the path from that node to its furthest

leaf. The right-mast-path of T is defined as the path connecting the right-mast-leaf with

the root node. The height of a tree is defined as the height of its root node. The

depth/level of a node is the length of the path from root to that node. The size of a tree is

determined by the number of nodes in the tree. A uniform tree T(n,r) is a tree with height

equal to n and all of its internal nodes have degree r. The closed form of an arbitrary tree

is defined as a uniform tree with degree equal to the maximum degree of internal nodes in

the arbitrary tree. In this paper, aU trees we consider are ordered, labeled, and rooted

trees. In this paper, the term' k-subtree' refers to a subtree that consists of k number of

nodes.

Definition I: A tree r(r', V', L', E ') is an ordered induced subtree of a tree T (r, V,

L, E) iff (1) V'bV, (2) E's;;;E, (3) Land L '(v)=L(v), (4) the left-to-right ordering

among the siblings in r is preserved. An induced subtree r of T can be obtained by

repeatedly removing leaf nodes or the root node if its removal does not create a forest in

T.

Definition 2: A tree T(r', V', L', E') is an embedded subtree of a tree T(r, V, L, E)

if, and only if, (1) n;;;;V, (2) L'd and L '(v)=L(v), (3) \tv' E V', \tVE V, v' is not the root

node, and v' has a parent in T, thenparent(v')=ancestor(v) and the sets ancestor(v,) n

ancestor(v) t $ (form a non-empty intersection). Examples of induced and embedded

subtrees are given in Figure 1, where for each node, the label is shown inside the circle

whereas its pre-order position is shown as an index at the left side ofthe circle.

Definition 3: If r(r', V', L', E ') is an embedded subtree of T, and there is a path

between two nodes p and q. the level ofembedding A(P,q) is defined as the length of the

path between p and q, where peV' and qEV', and p and q form an ancestor-descendant

relationship. A maximum level of embedding (~ is the limit on the level of embedding

between any p and q. In other words, given a tree database Tdb and t5, then any embedded

subtree to be generated will have the maximum length of a path between any two

ancestor-descendant nodes equal to o. In this regard, we could define induced subtree T

as an embedded subtree where the maximum level of embedding that can occur in T is

equal to 1, since the level ofembedding of two nodes that form a parent -child relationship

equals to 1.

Definition 4: The notation t -< k, is used to denote an embedded subtree t which is

supported by transaction k c K in database of tree Tdb A transaction k supports subtree t if

it contains at least one occurrence of subtree t. If there are L occurrences of t in k, a

function g(t,k) denotes the number of occurrences of t in transaction k. For transaction­

based support, t -< k= 1 when there exists at least one occurrence of t in transaction k. In

other words, for transaction-based support, the support of a subtree t is equal to the

numbers of transactions that support subtree t.

Definition 5: For occurrence-match support, t-< k corresponds to the number of all

occurrences of t in transaction k, t -< k=g(t, k). Suppose that there are N transactions kJ to

kN of tree in Tab, the support of an embedded subtree t in Tab is defined as:
NI> -< k, (1)
,~\

Transaction-based support has been used in [Chi et al. 2005; Wang et al. 2004; Zaki

2005]. However occurrence-match support has been less utilized and discussed. In this

study we are in particular interested in exploring the application and the challenge of

using occurrence-match support. Occurrence-match support takes repetition of items in a

transaction into account whilst transaction-based support only checks for existence of

items in a transaction. There has not been any general consensus which support definition

is used for which application. However, it is intuitive to say that whenever order is

important and repetition of items in each transaction is to be accounted for, occurrence­

match support would be more applicable, i.e. when we are considering items as structured

entities. Generally, transaction-based support is very applicable for relational data, since

order and structure is generally not important in this case. To illustrate the importance of

occurrence match support, consider the partial XML representation of protein data

displayed in Figure 2. The original dataset describes a protein ontology instance store for

Human Prion Proteins in XML format [Sidhu and Dillon 2005]. Protein Ontology (PO)

provides a unified vocabulary for capturing declarative knowledge about the protein

domain and classifies that knowledge to allow reasoning. Information captured by PO is

classified in a rich hierarchy of concepts and their inter-relationships. Using the PO

format, A TOMSequence labels can be compared easily across PO datasets for distinct

protein families to determine sequence and structural similarity among them. Structured

A TOMSequence labels, with repetition of Chain, Residue and Atom details can be used

to compare a new unknown protein sequence and structure with existing proteins in the

PO dataset, which helps users in drug discovery and design. In this case the repetition in

the structure ofthe protein is of considerable importance.

Another scenario where occurrence-match support may be important is when

performing specialized queries on a tree structured database. As an example, consider a

library based application where author information may be separately stored in each

transaction. A user may be interested in finding out information about the authors that

have published at least X books with publisher Y.

<ATOMSequence>
<ProteinOntologyID>POOOOOOOOOUi<lProteinOntologyI D>
<_ATOM_Chain>C<I_ATOM_Chain>
<_ATOM_Residue>ALA<I_ATOM_Residue>
<AtomID>4011</AtomID>
<Atom> N</Atom>
<ATOMResSeqNum>196</ATOMResSeqNum>
<X>14.052<1X>

<Y>77.339<1Y>

<Z>-2.999<1Z>
<Occupancy>4011</Occupancy>

<TempratureFactor>4011<ITempratureFactor>

<Element>N</Element>

</ATOMSequence>
<ATOMSequence>

<ProteinOntolo gyID>P00000000026<lProteinOntologyID>
<_ATOM_Chain>C<I_ATaM_Chain>
<_ATOM_Residue::>ALA<I_ATOM_Residue::>
<AtomID::>4012</AtomID::>
<Atom>CA</Atom>
<ATOMResSeqNum>196</ATOMResSeqNum>
<X>13.5<1X>
<Y::>76.085<1Y>
<Z>-3.4S1</Z>
<Occupancp4012</Occupancy>
<TempratureFactor::>4012</TempratureFactor>
< Element>CA</Ele:ment>

</ATOMSequence::>

Figure 2: snapshot of the representation of Human Prien Protein dataset in XML format

To satisfy this query, the repetition of author-book-publisher relation within a

transaction will need to be considered. In these scenarios the repetition of items within a

transaction is considered important and the knowledge of the number of repetitions

provides useful information. Hence, for these purposes occurrence-match support would

be more suitable than the transaction-based support.

71:

o~

'~'0~

51

~
52:

~
rfJ'0

Figure 3: tree n, T2, and T3 with subtree 81 and 82 to illustrate transaction-based and occurrence-match

support definitions

The following example illustrates the effect of applying different support definitions

described above. In Figure 3 there are three transactions, Tl, 1'2, and T3. Suppose that

transaction-based support is considered, the support of subtree S I is equal to 2 as S 1 is

supported by Tl and T2 but not T3, i.e. S1 -< TI and S 1-< T2. The support of subtree S2

is also equal to 2 as S2 is supported by Tl and T2 but not T3, i.e. S2 -< Tl and S2 -< T2. If

occurrence-match support is considered, the support of subtree S I is equal to the sum of

its occurrences in Tl, T2, and T3, i.e. g(SI,Tl)+g(SI,1'2)+g(SI,TJ). It can be seen from

Figure 3 that there are three occurrences of S1 in T 1, two occurrences of S I in 1'2 and

none in T3, and hence the occurrence-match support of subtree S I equals to 5. Counting

the occurrence-match support of subtree S2 in the same way, gives us the occurrence­

match support of 4 as there are three occurrences of S2 in Tl and one occurrence of S2 in

T2.

String encoding (¢). We utilize the pre-ordering string encoding (¢) as described

in [Tan et al. 2005b; Zaki 2005]. We denote the encoding ofa subtree Tas ¢(1) and as an

example from Figure 1, ¢(TJ):'b c / b e / /' and ¢(T3):'b e / c 1', respectively. The

backtrack symbol ('I') is used whenever we have to move up a node in the tree during the

pre-order traversal of the tree being represented by the encoding. We could omit

backtrack symbols after the last node, i.e. ¢(TJ):'b c / be'. We refer to a group of

subtrees with the same encoding L as candidate subtrees Ct. Throughout the paper, the

'+' operator is used to denote the operation of appending two or more tree encodings.

However, this operator should be contrasted with the conventional string append

operator, as in the encoding used above the backtrack symbols need to be computed

accordingly. For example, when appending a subtree 'b e' {O,3} with 'c' {4}, denoted as

'b e' + 'c', the resulting subtree is 'b e I c' {O,3,4}. The operator '+' in this case appends

'b e' with 'c' by inserting one backtrack symbol '!'. As mentioned earlier, the number of

backtracks are determines by the number of times we have to move up a node in the tree

during the pre-order traversal of the tree being represented by the encoding.

Mining (inducedlembedded) frequent subtrees. Let Tdb be a tree database

consisting of N transactions of trees, KN• The task of frequent (inducedlembedded)

subtree mining from Tdb with given minimum support (0), is to find all the candidate

(inducedlembedded) subtrees that occur at least (1 times in Tdh . Based on the downward­

closure lemma [Agrawal and Srikant 1994], every sub-pattern ofa frequent pattern is also

frequent. In relational data, given a frequent item set all its subsets are also frequent. A

question however arises as to whether the same principle applies to tree structured data

when the occurrence-match support definition is used. To show that the same principle

does not apply, we need to find a counter-example.

Definition 6. Given a tree database Tdb, if there exist candidate subtrees CL and CL ·,

where C,> is a subset of Cc (CL c Cd, such that CL is frequent and CL is infrequent, we

say that CL · is a pseudo-frequent candidate subtree. In the light of the downward closure

lemma these candidate subtrees are infrequent because one or more of its subtrees are

infrequent.

Lemma 1. The anti-monotone property of frequent patterns suggests that the

frequency of a superpattern is less than or equal to the frequency of a subpattern. If

pseudo-frequent candidate subtrees exist then the anti-monotone property does not hold

for frequent subtree mining.

In the following example we will illustrate a pseudo-frequent subtree by drawing up

instances as a case in point. First we will show an example of a frequent subtree and then

an example of a pseudo-frequent subtree. We will use Figure 3 to draw examples.

Suppose that the minimum support (J is set to 2. A candidate subtree CL where L:'b c I b',

is an example of a frequent subtree since there are three occurrences of embedded

subtrees CL that occur at position {(O, 4, 7), (0, 5, 7), (0, 6, 7)} and all of its (k-l)-subtrees

'b c' and 'b b' are also frequent. Similarly, when induced subtree is considered, C/> is also

frequent as there are two occurrences of induced subtrees that occur at position {(O, 5, 7),

(0, 6, 7)} and all of its (k-l)-subtrees 'b c' and 'b b' are also frequent. To show an

example of a pseudo-frequent subtree we can now extend CL with a node at position 8 so

that we obtain a C,. where L ':L+ 'e' 'b c I be'. In Figure 4, we show Cc with all its

valid (k-l)-subtrees Sf, S2, and S3. From Figure 4 we can see that subtree S3 is

infrequent since it occurs only once at position (0, 7, 8). Therefore, in the light of

definition 6, Cc is a pseudo-frequent candidate subtree because one of its (k-l)-subtree is

infrequent, i.e. subtree S3.

~ ~
00 00

Figure 4: pseudo frequent subtree CL' (at support = 2) and all its k- J subtrees

Subsequently, since pseudo-frequent candidate subtrees exist, according to Lemma

I, the anti-monotone property does not hold for frequent subtree mining when

occurrence-match support is used. Hence, in the case where there exists a frequent

subtree s with one or more of its subtrees infrequent, then s also needs to be considered

infrequent for the anti-monotone property to hold. Tree structured data has a hierarchical

structure where I-to-many relationships can occur, as opposed to relational data where

only I-to-1 relationships exist between the items in each transaction. This multiplication

between one node to its many children/descendants makes the anti-monotone property

not hold for tree structured data. However, if transaction-based support is used no

pseudo-frequent subtrees will be generated since the repetition of items is reported only

once per transaction. This makes the I-to-many relationship between a node to its

children/descendants be treated as a set of items like in a relational database.

4. MB3-Miner Algorithm

This section provides an overview of the proposed approach for mining frequent

embedded subtrees. We provide a short overview of the basic steps of the algorithm here

and later in the section each step is explained in more detail. Step 1: As the input to the

algorithm is a database of XML documents. For faster processing the database of XML

documents is first transformed into a database of rooted integer-labeled ordered tree. Step

2: the tree database is traversed and a global sequence is created which stores each node

in the pre-order traversal together with the necessary node information. The encountered

node labels are hashed and the set of frequent (k)-subtrees is obtained. Step 3: the

embedding list is created which for each node n in the dictionary stores n's descendant

nodes' hyperlinks in pre-order traversal ordering. At the same time the candidate

subtrees' encodings are hashed which determines all the frequent 2-subtrees. Step 4:

TMG candidate generation using the embedding list generated in Step 3 takes place and

for each k>2 the set of k-subtree candidates is hashed to the Fk hashtable. The coordinates

of each k-subtree are stored in Fk and each k-subtree is extended one node at time,

starting from the last node of its right-mast-path, up to its root. This enumerates all

embedded k+ I-subtrees and the whole process repeats until all k-subtrees are enumerated

and counted. At each k step we check that all the (k-1)-subtrees of the frequent k-subtree

are also frequent in order to avoid the generation ofpseudo-frequent subtrees. The details

of how each step is performed and how the maximum level of embedding constraint is

introduced are given in the sections that follow.

Step I - XML Data Pre-processina. Our previous algorithm, X3-Miner [Tan et aL

2005a], represents a database of XML documents as a database of rooted string-labeled

ordered trees. When doing frequency counting using a hashtable, processing integer­

labeled trees has a computational advantage over string-labeled trees, especially when the

labels are long [Tan et al. 2005a, 2005b]. To expedite the frequency counting, the

database ofXML documents can be transformed into a database of roored integer-labeled

ordered trees. One format to represent the database of rooted integer-labeled ordered trees

is proposed in Zaki [2005]. Each tag in an XML document can be encoded as an integer.

Each integer will identify each tag uniquely. To encode a particular tree, these integers

are used in the same way that string labels were used in the string encoding explained in

Section 3. The only difference is that the backtrack (lf/lf) symbol(s) is replaced by a

negative integer indicating the number of backtrack symbols ("1") occurring at that place

in the encoding. For example, if labels b, c and e are mapped to integers I, 2 and 3,

respectively, then from Figure 1, qi..Tl)·I1 2 -I 1 3 ' and qi..T3):'l 3 -1 2 I, and from

Figure 3, qi..TJ):'1 J -1 3 3 -1 2 -2 2 -1 2 -1 I I 3'. For each XML tag, we consider

tagname, attribute(s) and value(s). Hence, each unique system-generated integer

corresponds to each unique tag combination. To mine the structure of XML documents

one can modify this easily by omitting the presence of attribute(s) and value(s) for each

tag.

Step 2 - Database Scanning. The process of frequent subtree mining is initiated by

scanning a tree database, Td/>, and generating a global pre-order sequence D in memory

(dictionary). The dictionary consists of eaeh node in Tdh following the pre-order traversal

indexing. For each node its position, label, scope, and parent position are stored. The

scope of a node refers to the position of its right-mast-leafnode or its own position if it is

a leaf node itself. An item in the dictionary D at position i is referred as Dri]. The notion

of position of an item refers to its index position in the dictionary. The purpose of the

dictionary is to provide a shared global nodes' related information that allows for direct

access and thereby avoid the space cost which would be caused if this information

is copied (stored) locally for every occurrence of a node [in the embedded list] (see

Figure 5 for an example). For iMB3, each node in dictionary contains additional level

information of a node. When generating the dictionary, we compute all the frequent 1­

subtrees. The set of all frequent I-subtrees are denoted by Fl' After the dictionary is

constructed our approach does not require further database scanning.

Legenos

o Root-list

Tall-hst

1 2 3 4 5 6
2 3 4 5
4­
<I 5
~

~

~

Figure 5: EL and the dictiOnary (label, scope, parent position) oftrce TJ

Step 3 - Constructing Embedding List (EL). In this section we describe the

process of constructing the embedding list which allows for an efficient implementation

of the TMG candidate enumeration. For each frequent internal node in F;, a list is

generated which stores its descendant nodes' hyperlinks [Wang et al. 2004] in pre-order

traversal ordering such that the embedding relationships between nodes are preserved.

The notion of hyperlinks of nodes refers here to the positions of nodes in the dictionary.

For a given internal node at position i, such ordering reflects the enumeration sequence of

generating 2-subtree candidates rooted at i (Figure 6). Hereafter, we call this list an

embedding list (EL).

All2-subtree candidates generated from T

'§j'l'".[q,[:[.[
2: 3 4

7: &

Figure 6: the EL representation ofT in Figure I.

We use notation i-EL to refer to an embedded list of nodes at position i. The position

of an item in EL is referred to as the slot. Thus, i-EL[n] refers to the item in the list at slot

n, whereas Ii-ELI refers to the size of the embedded list of node at position i. Figure 6

illustrates an example of the EL representation of tree T (Figure I). In Figure 6, O-EL for

example refers to the list: 0:[1,2,3,4,5,6,7,8], O-EL[O]=1 and O-EL[6]=7. The pseudo code

for EL construction is shown below.

Inputs: 0 (dictionary). C1 (min. support), F, (frequent 1.subtrees)
Outputs: EL (embedded list), F2 (frequent 2-subtrees)

ConstructEmbeddingUst (F" 0):
for each frequent 1-subtree t, E F,

vo/-f, = GetVOL(t,) /I returns a list of coordinates where t, occurs
for each occummce coordinate oc C vO/-f,

(oc{Oj-EL,C,) '" Generate-EL (oc/OJ, OJ
IEL = EL uoc{Oj-EL

for each 2-subtree t2 eG2
if(support(t2J?!C1) F2 ;;: F2 U t2

return EL, F2

Generate-EL (i, 0):

line 1: i-scope =GetScope(I, OJ /I get scope of i

line 2: for (j;;: ;+1 to i-scope)

line 3: i-EL i-EL +j /I add j to i-EL

line 4: C2 ;;: C2 uEnumerate-Candidate(i,j)

return i-EL, G2

Figure 7: EL and F] construction pseudo-code

Line 3 of Generate-EL procedure constructs embedded list of node i. Line 4, generates 2­

subtree candidates rooted at node i. 2-subtree candidates are computed while the EL is

constructed. An example of an embedding list and the corresponding dictionary is shown

in Figure 5.

Occurrence Coordinate (OC). A candidate subtree can occur at different positions in

the database and OC is used to denote the node positions of that particular subtree so that

it can be distinguished from other subtrees having the same encoding. When generating

k-subtree candidates from (k-l)-subtree, we consider only frequent (k-l)-subtrees for

extension. Each occurrence of k-subtree in Tab is encoded as occurrence coordinate

r:[eJ, ... e.-Ii; r refers to k-subtree root position and e;, ... ,e._J refer to slots in r-EL. Each ej

corresponds to node (i+ 1) in k-subtree and eJ < ek+ We refer to ek-l as tail slot. From

Figure 1 the OC of 3-subtree (1'2) with encoding' b b e' is encoded as 0:[6,7]; 4-subtrees

T 1 with encoding' b c I b e' are encoded as 0:[5,6,7], and so on. Each OC of a subtree

describes an instance of each occurrence of the subtree in Tdb . Hence, each candidate

instance has an OC associated with it.

The scope of extension of a node. We denote the range of nodes that can be

appended to that node for the formation of new candidate subtrees as the scope of

extension of a node (Figure 8). The EL representation preserves the ordering as well as

the embedding relationships of nodes in a tree. i-EL defines the scope of extension of

node i and it spans from i-EL[O] to i-EL[j] where j Ii-ELl-I. We refer to the first scope

extension position as the left-most scope and the last as the right-most scope.

Consequently, given a 4-subtree T with occurrence coordinate 1:[3,4,5], the left-most

scope ofT is defined by I-EL[31 and the right-most scope of T is defined by l-EL[5]. An

occurrence coordinate of a valid candidate is defined by r:[m nJ where m < n, Thus, a

valid candidate has an increasing scope ordering such that r-EL[m] < r-EL[n].

TtJii :;iCf

-El. ~
(0;1 1 I ;: I 3 I " I (I : 1 ~ I g I ~ I l'~ I

Figure 8: TMG enumeration: extending (k-l)-subtree Ik.} where rp(tk.}): 'a be' oewrs at position (0, 4,5) with

node. at positions 6. 7. 8, 9, and 10

Step 4 - Generating Candidate Subtree. We are concerned with a systematic way

of generating candidate subtrees. An optimal enumeration method should generate each

subtree at most once and only generate valid candidates according to the tree model. It

should also be complete, in the sense that it generates all possible candidate subtrees from

a given database of trees. We utilize the TMG [Tan et al. 2005a] candidate generation

approach for an optimal, non-redundant [Chi et al. 2005; Tan et al. 2005b; Zaki 2005]

candidate subtree enumeration. Our candidate generation approach makes efficient use of

the novel embedding list representation.

TMG enumeration formulation. TMG is a specialization of the right-most-path

extension method which has been reported to be complete and where all valid candidates

are enumerated at most once (non-redundant) [Tan et al. 2005b; Zaki 2005]. To

enumerate all embedded k-subtrees from a (k-l)-subtree, the TMG enumeration approach

extends one node at a time to the right-most-path of (k- I)-subtree as illustrated in Figure

8. We refer to each node in the right-most-path as an extension point. One important

property of EL is that the positions of nodes are stored in pre-order manner. Hence, given

a (k-l)-subtree with known tail slot, the subsequent slots in EL will fonn the scope of

extension from i to j. All embedded k-subtrees are generated by attaching a node at

position i to j to the (k-I)-subtree. Suppose 10) denotes a labeling function of node at

position i. Given frequent (k-I)-subtree tk.' with fIl(h.,):L, the root position r, tail position

t, and occurrence coordinate r:{m, ... ,n), k-subtrees are generated by extending a subtree

tk-l with j E r-EL such that t<j-Slr-ELI-l. Thus its occurrence coordinate becomes

r:[m, nJ} and its encoding becomes L ':L+/(i) where i=r.ELU] and m<n<j.

Pruning. In this section we discuss the importance of pruning when occurrence­

match support is considered. As previously discussed in Section 3, when using

occurrence-match support there can be pseudo-frequent candidate subtrees generated

when generating k-subtrees from (k-I)-subtrees. To make sure that all generated subtrees

do not contain infrequent subtrees, full (k- I) pruning must be perfonned. The rationale of

this has been discussed in Tan et aL [2005b] and Zaki [2005]. From this point onward we

refer to full (k-l) pruning as full pruning. This implies that at most (k-l) numbers of (k­

I)-subtrees need to be generated from the currently expanding k-subtrees. An exception is

made whenever the 8 constraint is set to I, i.e. mining induced subtree, as in this case we

only need to generate I numbers of (k-l)-subtrees where 1< (k-l) and 1 is equal to the

number of leaf nodes in k-subtrees. If the removal of the root node of the k-subtree does

not generate a forest [Zaki 2005], then an additional (k-l)-subtree is generated by taking

the root node off from the expanding k-subtree. The expanding k-subtree is pruned if at

least one (k-l)-subtree is infrequent, otherwise it is added to the frequent k-subtree set.

This ensures that the method generates no pseudo-frequent subtrees. While full pruning is

easily done in a BFS based method, it is a challenge for a Depth-First-Search (DFS)

based approach such as VTreeMiner (VTM). When generating a k-subtree using the DFS

traversal method information regarding the frequency of its (k-l)-subtrees may not be

available at that time, whereas with the BFS method the frequency of all its (k-J)-subtrees

has been determined. Therefore, full pruning can be done in a more complete way in the

BFS approach than in the DFS approach. Because of this difficulty, a DFS approach such

as VTM [Zaki 2005] is forced to employ an opportunistic pruning strategy that only

prunes infrequent subtrees in an opportunistic way. On the other hand, the DFS method is

a more space efficient approach compared to the BFS method. A DFS traversal will

generate all different length candidate subtrees from each transaction completely before

moving to the next transaction and the information about that transaction can be removed

from memory. In contrast, the BFS method will need to store the occurrence coordinate

of generated (k)-subtrees which is later used for generating (k+ 1)-subtrees from the same

transaction.

Accelerating (k-l) pruning. As for each k-subtree candidate there can be (k-l)

checks involved for determining whether all its (k-l)-subtrees are frequent, the process

can be quite time consuming and expensive. Fortunately, some time is saved by checking

whether a candidate is already a part of the frequent k-subtree set. This way if a (k-J)­

subtree candidate is already in the frequent k-subtree set, it is known that all its subtrees

are frequent, and hence only 1 comparison is required.

Candidate subtree counting. In the candidate enumeration step, the process utilizes

the notion of a coordinate. To determine if a subtree is frequent, we count the occurrences

of that subtree and check if it is greater or equal to the specified minimum support G. In a

database of labeled trees many instances of subtrees can occur with the same encoding.

Hence, the notion of encoding is utilized in the candidate counting process. We say that a

subtree with encoding L has a frequency n if there are n instances of subtrees with the

same encoding L, i.e. we group subtree occurrences by its encoding.

Vertical Occurrence List (VOL). Each occurrence of a subtree is stored as an

occurrence coordinate as previously described. The vertical occurrence list of a subtree

groups the occurrence coordinates of the subtree by its encoding. Computing the

frequency of a subtree can be easily determined from the size of the VOL. We use the

notation VOL(L) to refer to the vertical occurrence list of a subtree with encoding L.

Consequently, the frequency of a subtree with encoding L is denoted as IVOL(L)I. We can

use VOL to count the occurrence-match support and transaction-based support. For

occurrence-match support we suppress the notion of the transaction id (tid) that is

associated with each occurrence coordinate. For transaction-based support the notion of

tid of each occurrence coordinate is accounted for when determining the support. As an

example when the occurrence-match support is used, the frequency of a subtree of tree T

(Figure 1) with encoding'b c / e', denoted by IVOLCb c / e ')1 is equal to the size of the

VOL, i.e. 3 (Figure 9a). When transaction-based support is used the 1VOL('b c / e ')1 is

equal to I because from the transaction-based support definition in Section 3, the support

of a subtree t is equal to the numbers of transactions that support subtree t. From the

example in Figure 9b there is only 1 transaction (tid:O) that supports subtree 'b c / e' of

tree T (Figure 1).

(a) when occurrence-match support is used

o I 0 I 6 I S
o I 0 I 5 I 8
o I 0 I 4 I 8

'b c I e'

(b) when transaction-based support is used

Figure 9: pictures of VOL(, be / e ') ofT in Figure I

The cost of the frequency counting process comes from at least two main areas. First,

it comes from the VOL construction itself. With numerous numbers of occurrences of

subtrees the list can grow very large. Thus space compression is an important issue to be

kept into a perspective, especially for a BFS method like ours. A strategy that allows the

utilization of smaller size occurrence coordinates can further help improving the

proposed technique. Our approach constructs and stores full coordinates of subtrees in

memory to perform the TMG enumeration completely and help the pruning process. As

described earlier in Section 3, the TMG enumeration is a specialization of the right-most­

path extension method. Essentially the only information it requires for performing

enumeration is the right-most-path coordinates of subtrees. However, due to the time and

space limitation we will leave the investigation of storing only the right-most-path

coordinates for enumeration and frequency counting in our future work. Secondly, for

each candidate generated its encoding needs to be computed. Constructing an encoding

from a long tree pattern can be very expensive. An efficient and fast encoding

construction can be employed by a step-wise encoding construction so that at each step

the computed value is remembered and used in the next step. This way a constant

processing cost that is independent of the length of the encoding is achieved. Thus, fast

candidate counting can be achieved. Overall, our algorithm can be described by the

following pseudo-code:

Inputs: Tdb(Tree database),o(min.support),<t>(max. level of embedding)
Outputs: Fk(Frequent subtrees), D(dictionary)
{D, F1} : DatabaseScanning (Tdb)
(EL, FJ : ConstructEmbeddedUst (F1,D,tP)
k=3

while(IF.I :2: 0)
F. = GenerateCandidateSubtrees(F•.1, tP)
k =k+1

GenerateCandidateSubtrees(Fk. 1,<t»:
for each frequent k-subtree t"., E F".,

L•.t =GetEncoding (t".,)
VOL-t•., = GetVOL(t".l)
for each occurrence coordinate OC'.1 (r:{m", .n]) E VOL-t•.1

for (j = n+1 to Ir-ELI-1)
(oc., LJ = TMG-extend(OC•. l.L•. j,j)
iff Contains(L., FJ)

Insert(hashkey(LJ,oc",F,,)
else

return F"

"(k-1Pruning (LJ = false) /I if all k-1 patterns frequent
Insert(hashkey(LJ,oc.,F,,)

Figure 10: pseudo-code ofiMB3-Miner

5. TMG Mathematical Model

In this section, we present the mathematical model of the TMG approach for

enumerating embedded subtrees. The TMG enumeration approach belongs to the family

of the horizontal enumeration approaches. It is an optimal enumeration strategy as it

always generates unique subtrees (non-redundant) and it exhausts the search space

completely. The unique subtrees generated by the TMG enumeration approach refer to

instances of subtrees in the tree database. Unique instances of subtrees have unique

occurrence coordinate, however, it may have the same encoding. Due to the fact that the

TMG enumeration approach is optimal and all candidate subtrees enumerated by the

TMG approach are valid, it is most likely that any other horizontal enumeration approach

would need to enumerate at least as many candidates if not more. Throughout this

chapter, we assume that all candidate subtrees generated are of embedded subtree type.

There is no simple way to parameterize a tree structure unless it is specified as a

uniform tree (Section 3). The closed form of an arbitrary tree is defined as a uniform tree

with degree equal to the maximum degree of internal nodes in the arbitrary tree. Thus, the

worst case complexity of enumerating embedded subtrees from any arbitrary trees is

given by their closed/orm (Section 3). We denote a uniform tree as T(n,r) where n refers

to its height and r refers to the degree of every node in the tree. The size ofa uniform tree

T(n,r) can be computed by counting the number of nodes at each depth. For a uniform

tree with degree r there will be l numbers of nodes at depth d. Hence, there are rO + / +

r2 + ... + rn numbers of nodes in a uniform tree T(n,r). This can be computed using the

geometrical series formula (J-r"~JY(J-r). When the root node is omitted the following

formula is used, rV-1)1(r-1). If r I, the size of the uniform tree is equal to its height n

and it becomes a sequence.

/0~
o A
\ 8 '0

\ -.1\ _/\ _/\
80 (0) GC0 (0

Figure II· example of an arbitrary tree T I and its closed fonn 1'2 (3.2)

The task of frequent subtree mining is to discover all candidate subtrees whose

support is equal or greater than the user-specified minimum support I:f. Since we are

considering labeled trees, to discover such candidate subtrees, we have to count their

support by counting the number of occurrences of the candidate subtrees that have the

same string encoding. This means that for one candidate subtree with an encoding cp,

there can be many instances of this subtree with the same encoding, Henceforth, we refer

to an instance ofa candidate subtree as a candidate (subtree) instance.

Given that the TMG enumeration approach uses the structural aspect of tree structures

to guide the enumeration of subtrees, the enumeration complexity of the TMG

enumeration approach is bounded by the height and degree of tree structures rather than

by their label set. For the problem of mining frequent subtrees most of the time and space

complexity comes from the candidate enumeration and counting phase. Thus, we define

the cost of enumeration (complexity) as the number of candidate instances enumerated

throughout the candidate generation process as opposed to the number of candidate

subtrees generated.

The mathematical model of the TMG enumeration is formulated as follows. Given a

uniform tree 1'(n,r), the worst case complexity of candidate generation of T(n,r) is

expressed mathematically in terms of its height n and degree r.

Complexity of I-subtree enumeration Since there are 111 number of candidate 1­

subtree instances that can be enumerated from a uniform tree 1'(n,r), the complexity of 1­

subtree enumeration, denoted as IITIII, is equal to the size of the tree l1'(n,r)l.

Complexity of 2-subtree enumeration. Earlier in the paper, we mentioned that the

construction of the EL can be constructed by joining all the 2-subtree candidates that have

common root node position and inserting each leaf node in the list with the same root

key. In other words, a1l2-subtrees with root key n are enumerated by constructing the EL

with root key n and the size of the n-EL equates to the number of 2-subtrees generated

with the root key n . Therefore, the total sum of the lists size in the EL reflects the total

number of 2-subtree candidates and the complexity of generating the EL would be equal

to the complexity of enumerating 2-subtrees.

Let s be a set with n objects. The combinations of k objects from this set s (sCk) are

subsets of shaving k elements each (where the order of listing the elements does not

distinguish two subsets). The combination sCk formula is given by s'/(s-k)!kL Thus, for 2­

subtree enumeration, the following relation exists. Let an r-EL consist of I number of

items; each item is denoted by j. The number of all generated valid 2-subtree candidates

(r:[jD rooted at r is equal to the number of combinations of I nodes from r-EL having I

element each. As a corollary, the complexity of 2-subtree enumeration, denoted as IIT211,

of tree Twith size l1'(n,r)1 is equal to the sum of all generated 2-subtree candidates given

by expo 1.

IT{n.rll-l
exp.lLir-FLICI

r=O

From expression I since IEJ[r1IC I is equal to Ir-ELI and 10-ELI=IT(n,r)l, and we sum Ir-ELI

for r=O, ... ,I1'(n,r)I-1. It appears that the complexity of 2-subtree enumeration is

0(1 T(n,r)1 2). However, since the II-ELI is zero for I E LT and LT is a set of leaf nodes in T,

the complexity of2-subtree enumeration ofa uniform tree T(n,r) is.s 0(IT(n,r)12-r") since

there are r" leaf nodes in a uniform tree T(n,r). Furthermore, the size of each Ir-ELI, for

r=0, ... ,IT(n,r)I-I is not equal, i.e. 10-ELI<II-ELI and 10-ELI<12-ELI, 10-ELI<I(1'(n,r)-1)-ELI,

and so on. Also, for the case of a uniform tree 1'(n,r), given that dJ;,: {Cl, ..,Cr } is a set of

the pre-order positions of the children nodes of node P at position p and all nodes in

dJ;,:{C" ..,cr} have depth d, the sum oflcrELI, ... , Ic,-ELI is equal to iP-ELI-(rJ+ ...+rd) for

d < n-l. Therefore, the sum of Ir-ELI for r=O, ... ,IT(n,r)I-1 can be computed by 10-ELi+10­

ELI-rl+10-ELI-(rl+/)+10-ELI-(rl+r2+r3)+ ...+IO-ELI-(rl+/+ ... +r"-I), where IO-ELI=IT(n,r)l­

I. Suppose that our aim is to express the above expression in a form of C.(A)-M, and

rl+ ...+/ can be computed by the geometrical series formula r(rd_1)/(r-I), the sum of Ir­

ELI for r=O, ... ,1T(n,r)l-l can be given by eq. 2, as follows:

IT(n.rll-1 /1-1 r(I 1)
L:li-ELI=n.QT(n,r)I-t)- L: r - eq.2
;=0 1=1 r-l

Since the complexity of generating 2-subtrees is equal to the sum of the size of Ir-ELI for

r=O, ... ,IT(n,r)I-I, we can infer that the complexity of generating 2-subtrees is also equal

to eq. 2.

11-\ r(rl -1)
Since n.IT(n,r)1 > n.(lT(n,r)I-I) :;::: n.~T(n,r)1 1)-L: ' eq. 2 can be

1=1 r 1

approximated by n.IT(n,r)l.

In contrary, the complexity of 2-subtree enumeration of the join approach is

O(IT(n,r)I.IT(n,r)1), assuming that each label of the uniform tree T(n,r) is unique. Given

that n < IT(n,r)1 and r i I, the following relation is always true: n.lT(n,r)1 <

IT(n,r)l· IT(n,r)l· In the case when r 1, IT(n,l)1 = n, thus n.IT(n,r)1 IT(n,r)I.IT(n,r)l.

However, from eq. 2 the complexity of our approach will still be less than the join

n-I r(rl -1)
approach due to the additional term L: being subtracted.

1=1 r-l

Complexity of k-subtree enumeration IITllk' The generalization of 2-subtrees

enumeration complexity can be formulated as follows. Let r-EL consist of / number of

items; each item is denoted by j. The number of all generated valid k-subtree candidates

(r:fef, ... ,ek.d) rooted at r is equal to the number of combinations of I nodes from i-EL

having (k-l) elements each. In Section 4, a valid occurrence coordinate of valid

candidates has the property that el<ek_l· Thus, all valid combinations have the (k-l)

element in increasing order. As a corollary, the complexity of k-subtrees enumeration of

tree Twith size 111 is equal to the sum of all generated k-subtree candidates:

11'(II,r)I-1

exp.3L: Ir-HICk-1
r=O

In expression (exp) 1 and 2, the size of each EL (r-EL) is unknown. Ifwe consider Tas a

uniform tree T(n,r), a relationship between height n and degree r of a uniform tree T with

the size of each EL for each node can be derived.

Determining ron-d of the uniform tree T(n, r). ,lJn-d denotes the size of embedded list

of node i with depth d of a unifonn tree T(n,r). By the definition in Section 3, ,lJn-d, is

described by the geometrical series fonnula r(r(n-dl-ly(r-J). In a unifonn tree T(n. r),

there are ,.d number of nodes at each level d. Thus, for each level in T(n,r) there are rd

number of lists that have the same size ,lJn-d, as given by expo 4.

r d r8n-d

Using the fact that for each level in T(n,r) there are rd number of lists that have the same

size ,lJn-d, expo 3 can be expressed as shown below in expo 5, summed over n levels.

exp.5

Further, expo 5 can be written as follows.

exp.6

Substituting ,lJn-d with r(r(n-dl-J)/(r-l) in expo 6 gives us expo 7.

n-I 1 r(r"-I -1) >:L> r(r"-' _1) Ck_1 , for - (k -1) exp.7
i=O --- r-1

r-I

Please note that if the JELj < (k-J), no candidate subtrees would be generated, thus

the constraint ,lJn-l :::: (k-J) takes care of this condition. Hence, using the expressions

developed, the complexity of total k-subtree candidates from a unifonn tree T(n,r) for

k=1, ... ,IT(n,r)j is given by eq. 8.

IT{n,r)1 IT(II,r)1

eq. 8
k~1 "=2
LIIT(n,r)t IIT(n,r)lI, + LIIT(n,r)llk

From expo 7, the second tenn of eq. 8 can be further expanded as follows in expo 9.

IT{n,r)1 r(rn
-
i -1)LIIT(n,rt = rO CH + ... +rn1rCH,for (r-1) 2k-1

k=2 r-l

r(r n
-

i -1)
exp.9

r-1

Finally, eq. 8 can be restated as follows:

U 1
1_r - .. }

IT(II,r)1 (1- r"+l) n-I -1-­

eq.10~ IIT(n,rt= (1 r) +~rl
{

b1'«~I-t)Ck-1

Thus, given an arbitrary tree T and its closed form T'(n,r), the worst case complexity

of enumerating embedded subtrees using the TMG approach from T can be computed

using eq. 10 where n is the height of T' and r is the degree of T'. Suppose you have a

complete tree with degree 2 and height 3 denoted by T(3,2), using eq. 10, we could

compute that the enumeration cost for generating all possible subtrees is 16,536, i.e. there

are 16,536 subtrees enumerated. When the height of the tree is increased by I, T(4,2), the

enumeration cost for generating all possible subtrees is 1,073,774,896. Further, if we

increase the degree by I, T(3, 3), the number of subtrees generated blows up to

549,755,826,275. Although TMG is an optimal enumeration approach the formula clearly

demonstrates that the complexity of generating embedded subtrees from a complete tree

structure can be intractable. It also suggests that the worst case complexity of

enumerating all possible candidates from data in a tree structure form is mainly

determined by the structure ofthe tree (height and degree).

Figure 12 shows the enumeration cost graph of a uniform tree T(3,2). The produced

curve is not exactly symmetric, i.e. the left hand side of the curve (from the beginning to

the middle of the curve) has slightly higher enumeration cost than the right hand side of

the curve (from the middle to the end ofthe curve).

4000

3500

//I 3000·Go e
+-' .c 2500
:::l
en
'0 2000..
! 1500
E
:::l
Z 1000

500

3432

3005 3003
(

!
20144

1001

\~
';§.' 14 1

0 ~~~~-r'-.-.-,,~~~~
1 2 3 4 5 6 7 8 9 1011 12 13 14 15

Length

Figure 12: enumeration cost graph ofunitbrm tree T(3,2)

It is interesting to analyze the curve produced byeq. 10 above for T(3,2). To help us

understand the curve we will use the embedding list representation of T(3,2) as shown in

Figure 13. Please see Figure II for the topological structure of the uniform tree 1'(3,2).

r .. ~ & c? Ie· 11 11 n 14
1: ,

i: 11 11 13 14
?:

141" 13

9 10
1,;) 11

Figure 13: embedding list (EL) of a uniform tree T(3.2)

To illustrate how the enumeration cost of T(3.2) can be computed, using expo 7, we

show the computation for k=2,3, and 4 and leave out the computation for k> 4 as this can

be easily obtained using the same procedure.

IIT(3,2)II2 = 2° HC1+ 21 6C, + 22 2Ct = 34

IIT(3,2t = 2° 14C2 + 21 6C2 + 22 2C2 125

The enumeration cost is governed by the size of each list in EL. Intuitively one can

see that for k=4, 2-EL, 5-EL, 9-EL, 12-EL do not contribute anymore to the enumeration

cost of 1'(3,2) since their size is less than (k-J) as explained above (exp. 6 and 7). For the

same reason, J-EL and 8-EL would cease to contribute to the enumeration cost of T(3,2)

for k > 7. Then, for 7 < k::; 15 the enumeration cost simply comes from O-EL. If the lists

in EL (Figure 13) are grouped by their size, 3 ditlerent categories are obtained. The

graphs in Figure 14 are obtained by plotting the enumeration cost for those 3 different

categories separately.

12

2 345 6 7 8

Length

(b) size:6

4

(c) size:2

Figure 14: enumeration cost of T(3,2) from embedding list in Figure J3

Exp. I suggests that the complexity of enumerating 2-subtrees from a tree T using the

TMG approach is equal to the sum of each list size in EL of T. In other words, the

complexity of enumerating 2-subtrees from a uniform tree T(n,r) using the TMG

approach, is bounded by O(ClT(n,r)l) where C is the height of the uniform tree T(n,r) and

n < IT(n,r)l. Using the join approach [Zaki 2005], the complexity of enumerating 2­

subtrees is bounded by O(iT(n.r)/*/T(n.r)/). Thus, the TMG approach using the tree model

guided eoncept has a lower complexity for enumerating 2-subtrees. However, it is rather

difficult to compare the TMG approach with the join approach for enumerating k-subtrees

for k > 2, as we do not have mathematical model for the join approach. For this particular

reason, we will compare the two approaches directly through the experiment, which wiJI

be described in Section 7. In addition, the mathematical model of TMG approach

suggests that the size of the database of trees is not the main determining factor for the

complexity of enumerating embedded subtrees. The structural property of a tree structure

plays a more important role here. Moreover, eq. 10 helps us to understand that it is far

more difficult to mine frequent embedded subtrees from a single transaction of a uniform

tree with a large height n and degree r than thousands of transactions of a uniform tree

with a small height n and degree r. Let's consider an example. The enumeration cost of

T(3,2) is 16,536 and the enumeration cost of T(3,3) is 549,755,826,275. In other words,

the enumeration cost of a database of trees that contain 1 transaction of T(3,3) is

comparable to the enumeration cost of a database of trees with 33,245,998 transactions of

1'(3,2). This indicates that mining frequent embedded subtrees is a more difficult problem

to solve than mining frequent sequence or induced subtrees.

To conclude this section it is worth mentioning that even though we have shown here

that the complexity of the task can easily become infeasible, in reality the developed

algorithms are still well scalable even for quite large databases. To be able to obtain a

mathematical formula for worst case analysis of TMG candidate enumeration we had to

assume a uniform tree with support set to one. In real world, the tree databases would

have varying depth and degree as well as support thresholds would be set higher. The

number of candidate subtrees to be enumerated would reduce since many infrequent

candidates would be pruned throughout the process. As the frequency distribution can

generally not be known beforehand the support threshold could not be integrated into the

TMC mathematical formula. At this stage, we aim at obtaining some insight into the

worst case complexity of the task and in future we will strive to obtain an analysis on a

more average case basis. Hence, despite the large complexity indicated by the formula,

the developed tree mining algorithms are stilI well scalable for large databases of varying

depth and degree, as is demonstrated in experiments provided in Section 7.

6. iMB3-Miner - Mining Induced/embedded subtree

In the previous section we discussed how the task of mining embedded subtrees can

become infeasible, especially when large embeddings exist in the data. In this section we

describe our approach to alleviate the problem by restricting the maximum level of

embedding. In fact the distinctive characteristic between embedded subtrees and induced

subtrees lies in the level of embedding. An induced subtree, as has been defined in

Section 3 is an embedded subtree where the maximum level of embedding equals to I.

The mathematical model of TMG (eq. 10) can be used to determine the complexity of

candidate generation. Whenever the complexity becomes intractable, we could restrict the

maximum level ofembedding of each subtree, which would produce a good estimate in a

much shorter time. We demonstrate such a scenario in our experimental findings given in

Section 7.

T

i~:2 ~
~

S, An'a'" ·f.
' ~1

I 11' 2 'c' .j.

~, {I il." ''''t
: .l1··A

I 11' .l. 'e' *

:h A'l 'a' "!.'.... ~ .J.:]

1 11' .; 'd' t

....' 'J a ..". "t :

i~3~'A
1"1.5T .•

Figure 15: illustration of restricting the maximum level ofembedding when generating SJ-4 subtrees from

subtree 'a b' with OC 0:[0.1] of tree T

Extensions to MB3. The originally developed MB3 algorithm only needs a slight

adjustment when integrating the maximum level of embedding constraint. We simply

avoid producing candidate subtrees where the level of embedding .1 between any two

nodes is higher than the specified maximum level ofembedding constraint threshold 0. To

restrict the level ofembedding of each node, at each extension a check is performed if the

level of embedding is less than or equal to the specified maximum level of embedding

constraint. Only when the level ofembedding of a node to its extension point is less than

the specified maximum level of embedding constraint, the extension is performed. from

Figure 15 the level of embedding between nodes at position 0 with nodes with position 2,

3, 4 and 5, denoted by ~(O,2), ~(0,3), 1'1(0,4), A(0,5) respectively, are indicated by the

dotted line with arrow and marked with the level of embedding 1'1 specified on its right.

For instance in Figure 15 the level ofembedding between node at position 0 and node at

position 5, denoted by ~(0,5), in tree Tis 3. Suppose that J is set to 2, when we extend a

subtree with OC 0:[0,]] with node with position 2, 3, and 4, the level of embedding

between nodes at position 2, 3 and 4 to their extension point, ~(0,2), ~(0,3), A(0,4)

respectively, are equal to 2 and it is less than or equals to the specified 0, and thus the

candidate subtrees (SI, S2, and S3) are generated. However when it is extended with node

at position 5 the level of embedding between node at position 5 to its extension point,

A(0,5), is greater than 2 (8), and hence the candidate subtree S4 is not generated.

According to our definition of induced and embedded subtree in Section 3, SI is an

i

example of an induced subtree and S2, S3, and S4 are examples of embedded subtrees.

Here we show that by restricting the maximum level ofembedding we can obtain different

types of subtrees, induced and embedded subtrees.

7. Results and Discussions

We compare iMB3-Miner (iMB3), FREQT (FT) for mining induced subtrees and

MB3-Miner (MB3), X3-Miner (X3), VTreeMiner (VTM) and PattemMatcher (PM) for

mining embedded subtrees. We created an artificial database of trees with varying: max.

size (s), max. height (h), max. fan-out (t), and number of transactions (IT,I). Notation

XXX-T, XXX-C, and XXX-F are used to denote execution time (including data

preprocessing, variables declaration, etc), number of candidate subtrees ICI, and the

number of frequent candidate subtrees IFI obtained from XXX approach respectively.

Additionally, iMB3-(NP)-dx notation is used where x refers to the maximum level of

embedding 0 and (NP) is optionally used to indicate that full pruning is not performed.

The minimum support 0' is denoted as (sxx), where xx is the minimum frequency.

Occurrence-match support was used for all algorithms unless it is indicated that the

transaction-based support is used. In order to avoid redundant discussion, for each of the

experiment we only provide a small discussion of the observed facts and a lengthier

discussion is provided at the end of the section. Experiments were run on 3Ghz (Intel­

CPU), 2Gb RAM, Mandrake 10.2 Linux machine and compilation were performed using

GNU g++ (3.4.3) with -g and -03 parameters. We use the Kudo's FT implementation

[Kudo 2003] and disable the output mode so that it does not spend its execution time

printing all the frequent subtrees when timing its performance.

Scalability (s:IO,h:3,f:3). IT,I was varied to lOOK, 500K and IOOOK, with 0' set to

25, 125 and 250, respectively. From Figure 16a we can see that all algorithms are

scalable. MB3 outperforms VTM and PM for mining embedded subtrees and iMB3

outperforms FT for mining induced subtrees. Figure 16b shows the number of candidates

generated by MB3, VTM and PM for IT,I: lOOOK, 0-:250. It can be seen that VTM and PM

generate more candidates (VTM-C and PM-C) by using the join approach. The extra

candidates are invalid, i.e. they do not conform to the tree model.

1,000.00

100.00

Iii'
'0
C
0
0
Q)

2.- 10.00
Q)

E
f=

1.00

1,000,000

III
Q)

....f .c
::::I

(f)

100,000 -
..0

Q)
.c
E
::::I

~VfM..T Z
-fJ... MB3-T-<ll

FREQT·T

Tl00K-S25 T500K-S125 T1 OOOK·S250 10,000

Minimum Support

VTM-C,
818,559

T1000K-S2S0

Figure 16: scalability test: (a) time performance (left) (b) number of subtrees ICI (right)

Pseudo-frequent (s:9,h:2,f:5,IT r l:l). We created a datasets describing the tree

shown in Figure I to illustrate the importance of full pruning when occurrence-match

support is used. We set a to 2 and compared the number of frequent subtrees generated

by various algorithms. From Figure 17, we can see that the number of frequent subtrees

detected by VTM (DFS) is larger when compared to PM, MB3 and X3 (BFS).

u. u...E u. IT.., l'r.., ~ ::::I :E ~
Z f- In X ~ 0 tl.a. ::;: M w 2:> n:l cr: u;.LL ..,~

In
~

Figure 17: pseudo-frequent test: number offrequent subtrees Ifl

The difference comes from the fact that the three BFS based algorithms perfonn full

pruning whereas the DFS based approach such as VTM relies on opportunistic pruning

which does not prune pseudo-frequent candidate subtrees. Figure 17 shows that FT and

iMB3-NP generate more frequent induced subtrees in comparison to iMB3. This is

because they do not perform full pruning, and as such generate extra pseudo-frequent

subtrees.

40

35 34
,--­...

30G.I: 25.t::I

29 29 29
r -

::::I
en 20->=
II> 15::::I
c:r
2! 10
u.- 50 ...
CII 0.t::I

14 14

nI
-

http:2.-10.00
http:1,000.00

Deep Tree (s:28,h: 17,f:3,ITrl: 10,000) vs Wide Tree (s:428,h:3,f:50,ITrl:6,000). For

deep tree (273,090 nodes), when comparing the algorithms for mining frequent

embedded subtrees, MB3 has the best performance (Figure 18a). The reason for VTM

aborting when cr < 150 can be seen in Figure 18b where the number of frequent subtrees

increases significantly when cr is decreased. At cr: 150, VTM generates a superfluous 688x

more frequent subtrees compared to MB3 and PM. In regards to mining frequent induced

subtrees, Figure 18a shows that iMB3 has a slightly better time performance than FT. At

s80, FT starts to generate pseudo-frequent candidates.

" MB3·T -+-VTM·T
--'",-PM·T ..;::;...iMB3-T-d1

iMB3·T-NP-d1 ~"'FREQT.T

100000

10000 "aborted

0' / . "­
"0 1000 ! ~r--

/
/I:

0 /
/

U ./ /
Q/ 100 ~-j,!
Q/

:--::"..-"'~ __ - - "o-E "-/ .." - "',10j::

s300 s200 s150 5100 sSO0.1
Minimum Support

(a) time perfonnance

• MB3-F ...,....VTM·F
~ PM·F ..g.. iMB3-F-d1

iMB3-F-NP-d1 -'- FREQT-F100000000

aborted)K32692085

10000000

III 1000000
<I>
!... 100000
..a
III
::I 10000 ... c
<I> 1000
::I
I:T 100!
u. 100..
<I>
..a
E s300 s200 5150 s100::I s80
Z Minimum Support

(b) number of frequent subtrees

-:*- VTM·T MB3·T ...Q- PM-T90
\,80

~ 70
III

-g 60
8
III

50

e40
~ 30
i= 20

1~ j ~~----**--.JI)i(aborted

s10 58 57 s6 55
Minimum Support

(e) wide tree time performance

Figure 18: deep tree test

For wide tree 0,303,424 nodes), the DFS based approach like VTM outperforms MB3 as

expected. However, VTM fails to finish the task when cr < 7, due to the extra number of

pseudo-frequent subtrees generated throughout the process. In general, the DFS and BFS

based approaches suffer from, deep and wide trees respectively. In Figure 18c we omit

iMB3 and FT because the support threshold at which they produce interesting results is

too low for embedded subtrees algorithms.

Prions (s: 17,h:l,f:16,ITrl: 17551). This real world data describes a protein ontology

database for Human Prion proteins in XML format [Sidhu and Dillon 2005J. For this

dataset we map the XML tags to integer indexes similar to the format used in Zaki

[2005]. The maximum height is I. In this case all candidate subtrees generated by all

algorithms would be induced subtrees. Figure 19a shows the time performance of

different algorithms with varying cr. MB3 has the best time performance for this data.

1000 M83-T -'I!'-VTM-T 1200000
-;;;-PM-T -&- MB3-T-dl

MB3-T-NP-d1 FREQT-T

132.532
III 1000000
CD

_ 100
III aborted

I!.... 800000.c
= ~

c
0
u
III
.!!.
CD

10

27.0206 U)

1: 600000
CD

=tT
CD 400000..

E
i=

IL.
"­
0.. 200000
CD
.c:I
E
::I 0

5100 s50 s10 52 z
Minimum Support

MB3-F -+-VTM-F

+-- ~'itfF-NP-dl !:: ~~tcir"$1 ~

_ S!l

5100 s50 $10 1i2
Minimum Support

Figure 19: prions protein data: (a) time perfonmmee (left) (b) number offrequent subtrees (right)

Quite interestingly, with this dataset the number of frequent candidate subtrees

generated is identical for all algorithms (Figure 19b). Another observation is that when (J

< 10, PM aborts and VTM performs poorly. The rationale for this could be because the

utilized join approach enumerates additional invalid subtrees. Note that original MB3 is

faster than iMB3 due to additional checks performed to restrict the maximum level of

embedding.

CSLogs (s:214,h:28,f:21). This dataset was previously used by Zaki [2005] to test

VTM and PM using transactional support. When used for occurrence-match support, the

tested algorithms had problems in returning frequent subtrees. This is a quite large dataset

(ITrl:59,69I), and for occurrence-match support each of the transactions needs to be

traversed to the full in order to count all occurrences of a subtree. Hence, during the

process many more subtree occurrences have to be stored and processed which can cause

memory problems. To handle such situations, one could make use of distributed parallel

processing so that the tree database is split, and load balanced over a number of

autonomous processing units. Merging of results would then take place to obtain a

complete solution to the task. Alternatively, one can consider using secondary storage

devices as additional storage resources. Assuming that the right mechanism is in place,

with this approach, most of the processing can still be performed in the main memory and

only when the space reaches a certain threshold, then some portions of the data in the

main memory will be transferred to the secondary storage. We are certain that there are

trade-offs with these solutions but we will not go into full details here and readers can use

these ideas as possible solutions.

1000000

100000

10000

1000
(j)
'0 100c:
0
(.)
l!) 10
~
<ll

E
i=

MB3-T -'*- VTM-T 100000
-&- PM-T -9- iMB3·T-<11

iMB3-T·NP-<ll iMB3·T-<l6
FREQT·T 10000

r/'_.l\:aborted

Xl 1000
!!!
lS
::J
U) 100

//"'L"_":'''' 'E
~

F ! 10

b

Minimum Support

aborted ~ "[]
/'1: ' /­

".;/~? MB3·F
," . ". -4- VTM-F

-;;""PM-F
iMB3-F-d6

--B- iMB3-F-d1
iMB3-F-NP-dl

"r FREQT-F

51500 51000 5500 5200 sl00 sao
Minimum Support

(a) time performance (b) number of frequent subtrees

100000
..,
CIl fr,_·El
I!! 10000 /'.Ii
::I
(f)...
I: 1000<II
:::I
a"
I!! ./ -"

1.1.

"//
100 wYCI -...

CIl
,Q

10E
::I -++- PM-F MB3-Fz

~VTM-F -8-iMB3-FB

53000 51500 S1000 S500 S200

Minimum Support

(c) number of frequent subtrees for unconstrained vs constrained approach

Figure 20: test on 54% transactions of original CSLogs data (Zaki [2005])

The dataset was progressively reduced and at IT r l:32,24I interesting results appeared.

VTM aborts when a < 200 due to numerous numbers of candidates generated. We

demonstrate the usefulness of constraining the maximum level ofembedding and provide

results between the algorithms when (J is varied. From Figure 20b, we can see that the

number of frequent subtrees generated by FT and iMB3-NP is identical. Both FT and

iMB3-NP generate pseudo-frequent subtrees as they do not performfu// pruning. Because

of this, the number of frequent induced subtrees detected by FT and iMB3-NP can

unexpectedly exceed the number of frequent embedded subtrees found by MB3 and PM

(Figure 20b, s80). Figure 20a shows that both iMB3-NP and iMB3 outperform FT. A

large time increase for FT and iMB3 -NP is observed at s200 as a large number ofpseudo­

frequent subtrees are generated (Figure 20b). Secondly, we compare the results from

VTM, PM and MB3 to the result obtained when the maximum level of embedding is

restricted to 6 (iMB3-d6) (Figure 20c). By restricting the embedding level, we expect to

decrease the execution time without missing many frequent subtrees. The complete set of

frequent subtrees was detected at (J 2: 200, while only less than 2% were missed with (J <

200. Overall, MB3 and its variants have the best performance.

Mixed (deep and wide) dataset (s:428,h:17,f:50,\T.\:76,OOO). Since the DFS

approach and BFS approach suffer from, deep and wide trees respectively, it would be

interesting to test the performance on a mixed dataset. which is both deep and wide.

When comparing algorithms for mining embedded subtrees MB3 has the best

performance as is shown in Figure 21 .

• MB3-T -+-VTM-T
-9- PM-T --B-IMB3-T-{j1

IMB3-T-NP-{j1 --2r- FREQT-T
10000 aooned 7iQ4.1e

885,0!3'iii1000
~
c::

1~1§ 100 90.e
~
41

~ 10

5300 5150 5100 s50

Minimum Support

Figure 21: mixed datasel

VTM gets aborted when (J < 150, and the drawback of opportunistic pruning is even more

noticeable. With regards to mining induced subtrees, iMB3 performs better than FT, the

main reason being that FT does not perform full (k-J) subtrees and thereby enumerates

additional subtrees as frequent.

Transaction-based support experiments. The paper focuses on the use of

occurrence-match support. Previous experimental results show that in overall our

approach performs better than other techniques when occurrence-match support is

considered. In this experiment the comparison is made using the transaction-based

support. As discussed earlier, our framework is flexible and generic enough to consider

different support defintions. From Figure 22a it can be seen that MB3 performs better

than VTM, and when (f is lowered to 50, VTM aborts. VTM performance degrades with

the increase in subtree length, as is shown in Figure 22b. In Figure 22c we can see a spike

of the total number of candidate 2-subtrees generated by the VTM. VTM generates

131,769 whereas MB3 only generates 4,470 candidate 2-subtrees.

1000

100
0;
't>
C
0
U
GI
.!... 10
.S
I ­

500
-lI!- VTM-T .-~ MB3-T

+ M83-T --rVTM-T

400 r/'~'d
450

350 !
Iii1 't>

300

/ c 250
0
u
GI 200
.!. IGI 150
.5
I- 100 J

/50

0 -I-<if-T-*-'-;':,••,m,;. , ~ , :""F"':'"

8200 s150 s100 s80 550 2 3 4 5 5 8 9

Length of Subtrees Length of Subtrees

(a) time perfonnance over different min. support (b) time perfonnance over subtree length (0':80)

140000 1000000

~ 131769 ~- MB3-C --'O!- VT M-C

IffM.C
1200001/1

,!
If 100000!\
J:J 100000 ""'£
:;J U>I I .,en I 1\ 10000
.! 80000 I \ iftI

.....3-1' IfTM.l':::s:!:! en't> I \ 150000c: I \ '0 1000
II!

U
 I ...

i
\ GI

40000 .Q'0 \.. E 100,If \ ::J
.Q \ z20000e
:;J .'.470;~ .

',,<,. -,Z 10,lk,*,'¥

Length of Su btrees

(c) number of candidate subtrees over subtree length (u:80) (d) total number of generated subtrees (cr:80)

Figure 22: benchmarking the usage of transaction-based support for minmg embedded subtrees

For generation of candidate 2-subtrees alone, VTM generates 29.47852 times more

candidates in comparison to MB3. However, the total number of frequent subtrees

produced by VTM and MB3 is identical, as evident from Figure 22d. The problem of

generating pseudo-frequent subtrees, which was a major issue in our previous

experiments, is eliminated here because the transaction-based support is considered. The

flexibility inherent in our framework allows MB3 to swap from occurrence-match

support to transaction-based support without a noticable performance penalty. The

performance comparison for induced subtrees case can be seen from Figure 23. Overall

iMB3 performs slightly better than FREQT.

45

40

35

30

'i)
25'0 c

0
0 	 20
II>
.'!.

15
E
i= 10

5

0

4>

-c~	 iMB3-T-d1

iMB3-T-NP

FREQT-T

.SQ s25 510 .9

Length of Subtrees

Figure 23: benchmarking the usage of transaclion-based suppon for mining induced subtrees

Overall Discussion. MB3 and all its variants demonstrate high performance and

scalability which comes from the efficient use of the EL representation and the optimal

TMG approach that ensures only valid candidates are generated. The join approach

utilized in VTM and PM could generate many invalid subtrees which degrades the

performance. MB3 performs expensive full pruning, whereas VTM utilizes less

expensive opportunistic pruning but suffers from the trade-off that it generates many

pseudo-frequent candidate subtrees. This can cause memory blow-up and serious

performance problems (Figure 18a. Figure 20 and Figure 21). This problem is evident in

cases when VTM failed to finish for lower support thresholds. Some domains aim to

acquire knowledge about exceptional events such as fraud, security attacks, terrorist

detection, unusual responses to medical treatments and others. Often exceptional cases

are one of the means by which the current common knowledge is extended in order to

explain the irregularity expressed by the exception. In order to find the exceptional

patterns the user needs to lower the support constraint as exceptional patterns are

exceptional in the sense that they do not occur very often. It is therefore preferable that a

frequent subtree mining algorithm is well scalable with respect to varying support.

In the context of association mining, regardless of which approach is used, for a

given dataset with minimum support (1, the discovered frequent patterns should be

identical and consistent. Assuming pseudo-frequent subtrees are infrequent, techniques

that do not perform full pruning would have limited applicability to association rule

mining. When representing subtrees, FT [Abe et at 2002] uses string labels. VTM, PM,

and MB3 (and its variants) use integer labels. As mentioned earlier, when a hashtable is

used for candidate frequency counting, hashing integer labels is faster than hashing string

labels especially for long patterns. As we can see, iMB3 and iMB3-NP always

outperform FT. When experimenting with the maximum level of embedding constraint

(Figure 20c), we have found that restricting the maximum level of embedding at a

particular level leads to speed increases at the low cost of missing a very small

percentage of frequent subtrees. This indicates that when dealing with very complex tree

structures where it would be infeasible to generate all the embedded subtrees, a good

estimate could be found by restricting the maximum level ofembedding.

The flexibility inherent in our framework allows the MB3 and iMB3 algorithms to

consider the transaction-based support with only a slight change to the way subtree

occurrences are counted. Despite the fact that the implementation was not tailored for

transaction-based support, our algorithms still exhibit a good performance when

compared to other algorithms (Figure 22 and Figure 23),

8. Concluding Remarks
In this study we present technique to efficiently mining frequent embedded and

induced subtrees from a database ofXML documents. We proposed an efficient approach

to tackle the complexity of mining embedded subtrees by utilizing a novel embedding list

representation, Tree Model Guided (TMG) enumeration, and introducing the maximum

level of embedding constraint. Representing a tree structure using embedding list has

simplified the implementation of the TMG enumeration approach. Despite the fact that it

requires more memory storage, we have shown that the embedding list can be very useful

in the amount of information it provides. It allows us to easily formulate a precise

mathematical model of the TMG candidate generation approach. Moreover, an additional

benefit of such a representation is that it reduces the dimension complexity inherent in

hierarchical tree structures. Throughout our experiments the TMG approach has proven to

be more efficient than the join approach. Furthermore, using the developed mathematical

model, one can predict the worst case scenario of mining frequent embedded subtrees

from certain datasets in advance. When it is too costly to mine all frequent embedded

subtrees, one can decrease the maximum level ofembedding constraint gradually up to I,

from which all the obtained frequent subtrees are induced subtrees. Hence, it helps us to

avoid difficult situations. The implications of using occurrence-match support instead of

the simpler transaction-based support were investigated. High performance and

scalability of the proposed approach was demonstrated in our experiments by contrasting

it with the state of the art algorithms TreeMiner and FREQT. We use both synthetic and

real datasets in the experimental studies. The results show the flexibility and efficiency of

our approach when either support-definition was used.

Acknowledgements

A special thanks to Prof. M. J. Zaki [Zaki 2005] for providing us the TreeMiner

source code and discussing the results obtained from it with us. Weare also indebted to

Mr. Amandeep S. Sidhu [Sidhu and Dillon 2005] for providing us with prions dataset.

We would also like to thank the anonymous referees for providing many useful

comments, which helped us improve the quality and clarity of this paper.

References

AGRAWAL, R. AND SRI KANT, R. 1994. Fast algorithm for mining association rules. In

Proceedings ofthe 20th Very Large Data Bases (VLDB 1994), Santiago de Chile, Chile, 487-499.

AGRA WAL, R., AND IMIELlNSKI, L SWAMI, A 1993. Mining association rules between sets

of items in large databases. In Proceedings of the ACM SIGMOD Conference on Management of

Data (SIGMOD /993), Washington, DC, USA, 207-216.

AGRAWAL, R., MANNI LA, H., SRIKANT, R.o TOIVONEN, H., VERKAMO, AI. 1996. Fast

discovery of association rules. In Advances in Knowledge Discovery and Data Mining, Usama M.

Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, Ramasamy Uthurusamy, Eds. American

Association for Artificial Intelligence, CA USA, 307-328.

AGRA W AL, R. AND SRIKANT, R. 1995. Mining sequential patterns. In Proceedings ofthe 11th

International Conference on Data Engineering (ICDE 1995), Taipei, Taiwan, 3-14.

ABE, K., KA WASOE, S., ASAI, L ARIMURA, H., ARIKA WA, S. 2002. Optimized substructure

discovery for semistructured data. In Proceedings ofthe 6th European Conference on Principles of

Data Mining and Knowledge Discovery (PKDD 2002), Helsinki, Finland, 1-14

BA Y ARDO, R 1. 1998. Efficiently mining long patterns from databases. In Proceedings ofACM

SIGMOD Conference on Management ofData (SIGMOD 1998). Seattle, WA, USA, 85-93.

BODON. F. 2003. A fast apriori implcmentation. Informatics Laboratory, Computer and

Automation Research Institute, Hungarian Academy of Sciences.

BRIN, S., MOTWAN1. R, ULLMAN, 1. D, TSUR, S. 1997. Dynamic itemset counting and

implication rules for market basket data. In Proceedings of ACM SIGMOD Conference on

Management afData (SIGMOD 1997), Arizona. USA 255-264.

CHI, Y., YANG, Y., MUNTZ, RR. 2004. HybridTreeMiner: An efficient algorihtm for mining

frequent rooted trees and free trees using canonical forms. In Proceedings ofthe 16th International

Conference on SCientific and Statistical Database Management. Santorini Island, Greece, 11-20.

CHI, Y., NIJSSEN, S., MUNTZ. R.R .• KOK. J.N. 2005. Frequent subtree mining an overview.

Fundamenta Informaticae. Special Issue on Graph and Tree Mining, vol. 65, no. 1-2, 161-19&.

FENG, L., DILLON, T.S" WEIGAND, H., CHANG, E. 2003. An XML-Enabled association rule

framework. In Proceedings of the 14th Database and F..xpert Systems Applications (DEXA 2003),

Prague, Czech Republic, &8-97.

FENG, L., AND DILLON, 1'.S. 2004. Mining XML-Enabled association rule with templates. In

Proceedings of the 3"" International Workshop on Knowledge Discovery in Inductive Databases

(KDlD 2004), Pisa, Italy, 66-88.

FENG, L., AND DILLON, T.S. 2005. An XML-Enabled data mining query language XML-DMQL

(invited paper). International Journal ofBusiness Intelligence and Data Mining, vol. I, no. I, 22­

41.

GHOTlNG, A, BUEHRER, G., PARTHASARATHY, S., KIM. D., NGUYEN, A, CHEN, Y-K.,

& DUBEY, P. 2005. Cache-conscious Frequent Pattern Mining on a Modem Processor, In

Proceedings of the 31 s, International Conference on Very Large Database (VLDB), Trondheim,

Norway, 577-588.

HAN, 1., PEl, 1., YIN, Y. 2000. Mining frequent patterns without candidate generation. In

Proceedings ofACM SIGMOD Conforence Management ofData, DaIlas, Texas, USA, 1-12.

JENKINS, B. 1997. Hash Functions. Dr. Dobb'sJournal, September 1997.

KUDO, T. 2003. An implementation of FREQT, http://www.chasen.orgl-taku/software/freqtl.

(Last accessed 1 Jan 2006).

KURAMOCHI, AND M., KARYPIS, G. 2004. An efficient algorithm for discovering frequent

subgraphs. IEEE Transactions Knowledge and Data Engineering, vol. 16, no. 9, 1038-1051.

LUK, R.W., LEONG, H., DILLON, T.S., CHAN, A.T., CROFT, W.B., ALLEN, J. 2002. A Survey

in Indexing and Searching XML Documents. Journal of the American Society for information

Science and Technology, vol. 53, no. 6, 415-438.

NIJSSEN, S., AND KOK, J.N. 2003. Efficient discovery of frequent unordered trees. In

Proceedings of the)" International Workshop Mining Graphs, Trees, and Sequences (MGTS­

2003), Dubrovnik, Croatia, 55-64.

PAPAKONSTANTINOU Y., AND VIANU, V. 2000. DTD inference for views of XML data. In

Proceedings of the Nineteenth ACM SIGMOD-SiGACT-SIGART Symposium on Principles of

Database Systems (PODS'OO), Dallas, Texas, USA, 35-46.

PARK, J. S., CHEN, M.-S., YU, P.S. 1997. USing a Hash-based method with transaction trimming

for mining association rules. IEEE Transactions on Knowledge and Data Engineering, vol. 9, no. 5,

813-825.

RUCKERT, U., AND KRAMER, S. 2004. Frequent free tree discovery in graph data. In

Proceedings ofthe 2004 ACM symposium on Applied computing, Nicosia, Cyprus, 564-570.

SIDHU, A. S., AND DILLON T. S., CHANG, E, SIDHU, B. S. 2005. Protein ontology:

vocabulary for protein data. In Proceedings of the 3rd IEEE International Conference on

information Technology and ApplicatiOns (iCJT A 2005), Sydney, Australia, 465-469.

SUCIU, D. 2000. Semistructured data and XML. Information Organization and Databases:

Foundations of Data Organization, K. Tanaka, S. Ghandeharizadeh, and Y. Kambayashi, Eds.

Kluwer International Series In Engineering And Computer Science Series, voL 579. Kluwer

Academie Publishers, Norwell, MA 9-30.

TAN, H., DILLON, T.S., FENG, L., CHANG, E., HADZIC, F. 2005a. X3-Miner: mining patterns

from XML database. In Proceedings of the 6,h international Data Mining 2005, Skiathos, Greece,

287-297.

TAN, H., DILLON, T.S .. HADZIC, F., FENG, L., CHANG, E. 2005b. MB3-Miner: mining

eMBedded subTREEs using tree model guided candidate generation. In Proceedings of the Jsf

international Workshop on Mining Complex Data 2005 in conjunction with iCDM 2005. Houston,

Texas. USA, 103-110.

http://www.chasen.orgl-taku/software/freqtl

TAN, H., DILLON, T.S., HADZIC, F., FENG. L., CHANG, E. 2006a. iMB3-Miner: Mining

induced/embedded subtrees by constraining the level of embedding. In Proceedings ofPacific-Asia

Conference on Knowledge Discovery and Data J"vlining (PAKDD 2006), Singapore, 450-461.

T AN, H., DILLON, T.S., HADZIC, F., FENG, L., CHANG, E. 2006b. SEQUEST: mining frequent

subsequences using DMA Strips. In Proceedings ofData Mining and Information Engineering '06,

11-13 July, Prague, Czech Republic, 3 15-328.

TAN, H. 2008. Tree Model Guided (TMG) enumeration as the basis for mining frequent patterns

from XML documents. PhD Thesis, University of Technology Sydney (UTS).

TATIKONDA, S., PARTHASARATHY, S., and KURC, T. 2006. TRIPS and TIDES: new

algorithms for tree mining, In Proceedings of the 15th ACM international Conference on

information and Knowledge Management (CIKM '06). Arlington, Virginia, USA, 455-464.

TERMIER, A., ROt..:SSET, M-c', SEBAG, M. 2002. Trcefinder: A first step towards XML data

mining. In Proceedings of the 1'" IEEE International Conference on Data Mining (ICDM 2002).

Maebashi City, Japan, 450-458.

WAN, J.W. AND DOBBIE. G. 2003. Extracting association rules from XML documents using

XQuery. In Proceedings of the 5th ACM international Workshop on Web information and Data

Managemen (WIDM '03). New Orleans, Louisiana. USA, 94-97.

WANG, c., HONG, M., PEl, J., ZHOU, H., WANG, W., SHJ, B. 2004. Efficient Pattern-Growth

methods for frequent tree pattern mining. In Proceedings ofPacific-Asia Conference on Knowledge

Discovery and Data Mining (PAKDD 2004), Sydney, Australia, 441-451.

WANG, K., AND LlU, H. 1998. Discovering typical structures of documents: a road map

approach. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, Melbourne, Australia, 146-154.

YAN, X., AND HAN, J. 2002. gSpan: Graph-based substructure pattern mining. In Proceedings of

the 2nd IEEE international Conference on Data Mining (ICDM 2002), Maebashi City, Japan, 721­

724.

YANG, L.H., LEE, M.L., HSU, W. 2003. Efficient mining of XML query patterns for caching. In

Proceedings of the 29th International Very Large Dolo Bases (VLDB) Conference, Berlin,

Germany, 69-80.

XIAO, Y, Y AO, J.-F., LI, Z., DUNHAM, M.H. 2003. Efficient data mining for maximal frequent

subtrees. In Proceedings of the 3rd IEEE International Conference on Data Mining (/CDM 2003).

Melbourne, Florida, USA, 379-386.

ZHANG. J., LING, T. W., BRUCKNER, R_M., TJOA, A.M.. Lit..:. H. 2004. On efficient and

effective association rule mining from XML data. In Proceedings of the I5th International

Conference Database and Expert Systems Applications (DEXA 2004), Zaragoza, Spain, 497-507.

ZHANG, S.. ZHANG, J., Lit..:, H., WANG, W. 2005. XAR-miner: efficient association rules

mining for XML data. In Proceedings ofthe Fourteenth international World Wide Web Conference

(Special interest tracks andposters), Chiba, Japan, 894·895.

ZAKI, M.J. 2003. Fast Vertical Mining Using Diffsets. In Proceedings of the ninth A CAl SIGKDD

International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA,

August 2003.

ZAKI, M.J. 2005. Efficiently mining frequent trees in a forest: algorithms and applications. IEEE

Transaction on Knowledge and Data Engineering, vol. 17, no. 8, 1021-1035.

APPENDIX 1: Implementation issues

Accelerating Object Oriented (00) approach. 00 development approach is one

of the common practices today in software development and it has been claimed to result

in a more manageable, extensible and easy to understand code. We have developed our

algorithms in C++ making use of some of the 00 features of the language such as class

and function overloading. There are a few important things worth noting when

implementing time critical systems using the 00 approach. Constructor calls on objects

have overheads and one should keep them as low as possible. Inheritance between objects

should be avoided whenever possible. We found that performing equivalent computations

through primitive objects such as array of integers instead of thick objects such as vector

objects or link list objects could improve the performance, especially when we need to

construct a heap of objects in memory. Another reason not to use thick objects is that

they may implement inheritance. An additional way to avoid expensive constructor calls

is by only storing a hyperlink [Wang et al. 2004] or a kind of pointer to the existing

object and using that pointer to access information from the same object. Another well

known way to increase the performance is by passing an object through function by

reference instead of by value. Moreover, when copying a block of memory from one

location to another location, performing the operation through the use of a memory block

copying routine such as memcpy in C library instead of using the for loop could also be

the next step in performance tweaking. Last but not least, one can consider writing inline

functions when they are called very frequently. However it is not always a good practice

to create all functions in inline mode.

Hash Functions. In the context of mining frequent patterns, one of the most

common approaches to do frequency counting is to use a hashtable. When using a

hashtable choosing a good hash function is a very important task. Unfortunately,

choosing a hash function can be more than a trivial task [Jenkins 1997]. The following

are several known hash functions that were compared: Rotation Hash (RH), Additive

Hash (AH), Bernstein Hash (BH), Zobrist Hash (ZH), and One-At-A-Time Hash (OH).

Detailed descriptions of each ha'lh function and a few others hash functions can be found

in Jenkins [1997]. To see the effect of using different hash functions we ran experiments

on reduced CSLogs [Zaki 2005] dataset that consists of 32,241 transactions of trees with

max. size: 214, max. height28, and max. fan-out:21.

10000

~ 1000
fJ)

-0
c:
8
<I> 100
~
<I>
E
i= 10

RH
::

AH BH ZH OH

51000

RH ,.. ­

AH
-

BH ZH

:nnP-l
5S00

RH
-

AH
.-­

BHZH -.-­
OH
.-­

.200

Minimum Support

Figure 24: number of collisions plotted over different minimum support

90

80 AH
-

70 BH ZH

~60 RH -­
,-­ ,-- OH

550 ZH r­
(.) BH -~ OH
~ 40 RH

r-T~n
AH­ -­

RH ,.­
<I> 30 ,-­

£ 20

10

0
51000 5500 s200

Minimum Support

Figure 25: time performance plotted over different minimum support

From Figure 24 and Figure 25 it is not quite obvious which function is truly the

winner. When minimum support set to 1000, BH is the fastest. At minimum support 500

and 200, RH and OH are the fastest respectively. In terms of number of collisions

produced, RH is consistently the worst for different minimum support and OH seems to

be the best of all. One interesting point to note is that at minimum support 500, RH has a

faster execution time than RH at minimum support 1000, whereas the other functions

seem to have increasing execution time when the minimum support threshold is

decreased. There is no direct explanation for this but we can see an indication that certain

functions can have varying performances at different minimum support threshold. In

general simple functions like AH and RH are not recommended as they do not handle

collisions very well [Jenkins \997]. Our experiment supports this view. AH and RH are

the two functions that produce the worst number of collisions (Figure 24). From Figure

24 and Figure 25, we can infer that BH and OH are the two top performers. For all the

experiments used in Section 7 we use BH. BH can produce fewer collisions than a hash

that gives a more truly random distribution if all 32 bits in the keys are used [Jenkins

[1997]. However, if you do not use all the 32 bits, this function has detected flaws. There

is a possibility that if a better hash function is used further optimization can be attained.

Hashing Int vs String In our algorithm, we transform and map the tree structure

data into integer indexes as opposed to consuming string labels directly [Tan et aL 2005a,

2005b; Zaki 2005]. Representing label as integer opposed to string label has considerable

performance and space advantages. When a hashtable is used for candidate frequency

counting, hashing integer over string label can have significant impact on the overall

candidates counting performance. In an experiment we discovered how the time taken to

hash a string versus and integer can differ by more than lOx when the dataset is large and

patterns become relatively long.

Label sensitivity. Let's consider a very large database of integer-labeled trees with

large labels set. In this case the labels can be a very big integer value. We performed

label sensitivity test and created 4 synthetic datasets by varying the maximum integer

label values: 24; 24,000; 24,000,000; 240,000,000. It is important to see that the

algorithms can handle databases of small and big integer-labeled trees.

200
leo
160

ii 140

"c 120 ..0
100<II

.& 80

~ 60
~ 40

20
0

ao
:"""1-- . ··~'----~~i\

I\II33-T

~VTM-T

...:e.... PM·T

ab
~.....~-j'l;....

1>- #~ #~1''' ~.1" I'\:

Max. integill' label yalue

Figure 26: label sensitivity test

As we can see from Figure 26, MB3 can handle both small and big integer-labeled

trees very well. The performance of MB3 remains the same for all 4 different datasets.

On the contrary, we find that both TreeMiner algorithms VTreeMiner (VTM) and

PatternMatcher (PM) suffer performance degradation whenever the maximum value of

the integer-labeled trees is increased. Surprisingly, for the last dataset with maximum

integer-labeled value equal to 240,000,000 both VTM and PM get aborted. We observe

that the implementation of the TreeMiner for generating I and 2-subtrees employs a

perfect hashing scenario using array objects and using the label as the key for each cell in

the array. What essentially happens with this implementation is that it is performance

optimized but space inefficient. In the last scenario where the maximum label can go up

to 240,000,000, VTM and PM will unnecessarily allocate an array with 240,000,001 cells

even when there is only I node with label equal to 240,000,000 in the tree database.

Using a hashtable as opposed to using an array based implementation would solve this

problem.

