
©2007 IEEE. Personal use of this material is
permitted. However, permission to reprint/republish
this material for advertising or promotional purposes
or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works
must be obtained from the IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195643081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tree Mining Application to Matching of Heterogeneous Knowledge
Representations

Fedja Hadzic1, Tharam S. Dillon1, Elizabeth Chang1

1Digital Ecosystems and Business Intelligence Institute, Curtin University of Technology, Perth,
Australia

 fedja.hadzic@postgrad.curtin.edu.au
{tharam.dillon, elizabeth.chang}@cbs.curtin.edu.au

Abstract

Matching of heterogeneous knowledge sources is of
increasing importance in areas such as scientific
knowledge management, e-commerce, enterprise
application integration, and many emerging Semantic
Web applications. With the desire of knowledge
sharing and reuse in these fields, it is common that the
knowledge coming from different organizations from
the same domain is to be matched. We propose a
knowledge matching method based on our previously
developed tree mining algorithms for extracting
frequently occurring subtrees from a tree structured
database such as XML. Using the method the common
structure among the different representations can be
automatically extracted. Our focus is on knowledge
matching at the structural level and we use a set of
example XML schema documents from the same
domain to evaluate the method. We discuss some
important issues that arise when applying tree mining
algorithms for detection of common document
structures. The experiments demonstrate the usefulness
of the approach.

1. Introduction

Knowledge discovery task in general can be hard
and time consuming, and hence sharing the already
developed knowledge representations is desirable. This
particularly occurs when a number of organizations
coming from the same domain would like to have a
knowledge basis on which they can integrate their
organization specific knowledge. Having a general
knowledge model would save time and costs
associated with having to acquire general knowledge
about the domain at hand. Furthermore, the knowledge
base should be represented in a machine readable way
so that it can also be used by communicating agents.

This gave rise to the development of ontologies.
Ontology in AI is defined as a formal, explicit
specification of a shared conceptualization [1].
Developing domain ontologies for capturing domain
specific knowledge is often characterized by merging
of existing knowledge representations of the same
domain [2, 3]. Automatic detection of common
structures among existing domain knowledge
representations can contribute to the process of
automating the ontology building and matching task.

While many general knowledge representations
exist where the underlying structure is a graph, in this
work we narrow our focus on the matching of
knowledge representations where the information is
represented in a tree or semi-structured form (eg.
XML). Hence, our approach could only contribute to
the automation of ontology building and matching
process, if the underlying structure of the knowledge
representation is in form of a tree. Many web services
use XML as a unified exchange format, as it provides
the extensibility and language neutrality that is the key
for standard–based interoperability between different
software applications [2, 4]. The process of
discovering particular web services and composing
them together in order to accomplish a specific goal is
an important step toward the development of ‘semantic
web services’ [2, 4, 5]. In this process, being able to
detect common knowledge structures between the
information presented by the services to be integrated
will be a useful step toward automation.

 Matching of knowledge structures has been of
interest for a long time and many useful applications
can be found in scientific knowledge management, e-
commerce, enterprise application integration, scientific
knowledge management, etc. The emergence of semi-
structured data sources (such as XML) that are
commonly used for describing domain knowledge has
called for the development of methods capable of

2007 IEEE International Conference on Granular Computing

0-7695-3032-X/07 $25.00 © 2007 IEEE
DOI 10.1109/GrC.2007.134

351

2007 IEEE International Conference on Granular Computing

0-7695-3032-X/07 $25.00 © 2007 IEEE
DOI 10.1109/GrC.2007.134

351

efficiently analyzing such documents. The TreeDiff
software package [6] takes two XML documents as
input, represents them as ordered labeled trees and
finds sequence of edit operations to transform one
document tree into another. In [7] it is noted that
finding common structures among semi-structured
documents is useful for document clustering methods,
since the structure is usually ignored by traditional
clustering approaches. They presented an algorithm for
finding the minimum number of operations for
transforming one data tree into another. The tree
matching problem in context of change detection of
hierarchically structured information was studied in [8,
9]. An algorithm that finds largest approximate
common substructures between ordered labeled trees
has been presented in [10]. In [11] an algorithm was
presented for identifying changes in XML documents.
It works by identifying unchanged portions of the
documents and then inspecting the neighboring nodes
using XML specific information to find further
matches. A structural similarity metric for measuring
structural similarity among XML documents has been
proposed in [12], and is based upon a specialized tree
edit distance among ordered labeled trees. In [13] the
authors proposed a lower and upper bound on the tree
distance metric between ordered labeled trees. This
extension to the metric is more computationally
efficient and takes the structural property of XML into
account.

The XML matching method presented in this paper
is based on the use of our previously developed tree
mining algorithms in order to automatically extract
shared document structures. By using the tree mining
approach many of the structural differences among the
knowledge representations can be detected and the
largest common structure is automatically extracted.
The implications of mining different subtree types are
discussed and the most suitable subtree type within the
current tree mining framework is indicated. The
experiments are performed on a set of XML schemas
used for describing organization specific information.
In general, the method is applicable for matching of
any tree structured knowledge representations. To limit
the scope of the current work in this paper we focus
solely on knowledge structure matching and do not yet
consider the problem of matching at the conceptual
level. Hence the main purpose of the work is to
demonstrate the potential of applying tree mining
methods to the problem of knowledge matching which
brings it a step closer towards automation. We have
previously applied our tree mining algorithms on large
and complex tree structures and experimentally
demonstrated their scalability [14, 15]. Other studies
[16, 17] also indicate that tree mining algorithms are

generally well scalable to large tree structures. In this
paper we consider smaller trees in order to illustrate
the underlying concept in a more comprehensible
manner.

The rest of the paper is organized as follows.
Section 2 gives a brief overview of the tree mining
problem and discusses some of our developed
algorithms in the area. Our approach to matching of
tree structured documents is described in Section 3.
Section 4 describes the results of applying our tree
mining algorithms for finding common XML schema
structures. The paper is concluded in Section 5.

2. Frequent Subtree Mining

This section starts by providing formal definitions of
some basic tree concepts, and then proceeds into an
overview of our current contributions to the area of
tree mining. Only concepts necessary for
understanding the current work are defined. For a more
extensive overview of the area including various
implementation issues and algorithm comparisons we
refer the interested reader to [14, 15, 17].

A tree can be denoted as T(v0,V,L,E), where (1) v0

V is the root vertex; (2) V is the set of vertices or
nodes; (3) L is the set of labels of vertices, for any
vertex v V, L(v) is the label of v; and (4) E = {(x,y)|
x,y V } is the set of edges in the tree. A root is the
topmost node in the tree. The Parent of node v is
defined as the predecessor of node v. A node v can
only have one parent while it can have one or more
children. A node without any child is a leaf node;
otherwise, it is an internal node. If for each internal
node, all the children are ordered, then the tree is an
ordered tree. The number of children of a node is
commonly termed as fan-out/degree of the node. A
path from vertex vi to vj, is defined as the finite
sequence of edges that connects vi to vj, and in a tree
there is a single unique path between any two vertices.
The length of a path p is the number of edges in p. If p
is an ancestor of q, then there exists a path from p to q.

The problem of frequent subtree mining can be
generally stated as: given a tree database Tdb and
minimum support threshold (), find all subtrees that
occur at least times in Tdb. Within this framework the
two most commonly mined types of subtrees are
induced and embedded. An induced subtree preserves
the parent-child relationships of each node in the
original tree. In addition to this, an embedded subtree
allows a parent in the subtree to be an ancestor in the
original tree and hence ancestor-descendant
relationships are preserved over several levels. Formal
definitions follow.

352352

Induced subtree. A tree T’(r’, V’, L’, E’) is an
induced subtree of a tree T (r, V, L, E) iff (1) V’ V, (2)
E’ E and (3) L’ L and L’(v)=L(v).

Embedded subtree. A tree T’(r’, V’, L’, E’) is an
embedded subtree of a tree T(r, V, L, E) iff (1) V’ V,
(2) if (v1,v2) E’ then parent(v2) = v1 in T’, only if v1

is ancestor of v2 in T and (3) L’ L and L’(v)=L(v).
Level of embedding. If T’(r’, V’, L’, E’) is an

embedded subtree of T, and two nodes p V’ and q
V’ form an ancestor-descendant relationship, the

level of embedding () is defined as the length of the
path between p and q. A maximum level of embedding
() is the limit on the level of embedding between any
p and q. In other words, given a tree database Tdb and

, then any embedded subtree to be generated will
have the maximum length of a path between any two
ancestor-descendant nodes equal to . In this regard,
we could define an induced subtree T as an embedded
subtree where the maximum level of embedding that
can occur in T is equal to 1, since the level of
embedding of two nodes that form a parent-child
relationship equals to 1.

In addition to the previous definitions, the subtrees
can be further distinguished based upon the ordering of
siblings. An ordered subtree preserves the left-to-right
ordering among the sibling nodes in the original tree
while in an unordered subtree this ordering is not
necessarily preserved. In other words, for an unordered
subtree the order of the siblings (and the subtrees
rooted at sibling nodes) can be exchanged and the
resulting subtree would be considered the same.
Examples of different subtree types are given in Figure
1 below.

Figure 1. Example of a tree T and its different
subtree types (induced subtrees are also

embedded).

To determine the frequency of a subtree, most
commonly used support definitions are transaction
based and occurrence match support [14, 15, 16] and
the choice is application dependant. In the data mining
field the term transaction has been defined as a set of

one or more items obtained from a finite item domain,
and a dataset as a collection of transactions [18].
Hence, in context of a tree database, a transaction
would correspond to a fragment of the database tree
whereby an independent instance is described.
Transaction based support (TS) is used when only the
existence of items within a transaction is considered
important, whereas occurrence match (OC) support
takes the repetition of items in a transaction into
account and counts the subtree occurrences in the
database as a whole. Recently, we have provided the
hybrid support definition [19]. Using hybrid support
threshold of x|y, a subtree is considered frequent iff it
occurs in x transactions and it occurs at least y times in
each of those x transactions. Hence, in addition to
transactional support it keeps the extra information
about the intra-transactional occurrences of a subtree.

Our work in the area of frequent subtree mining is
characterized by adopting a Tree Model Guided
(TMG) [20] candidate generation as opposed to the
join approach which is commonly used. This non-
redundant systematic enumeration model ensures only
valid candidates are generated which conform to the
actual tree structure of the data. TMG can be applied to
any data that has a model representation with clearly
defined semantics that have tree like structures. In the
cases where the model representation of the tree
structure is unavailable the TMG approach will still
perform the candidate generation according to the tree
structure of the document, by obtaining the model from
the document itself. Furthermore, our unique
Embedding List [20] representation of the tree
structure has allowed for an efficient implementation
of the TMG approach which resulted in efficient
algorithm MB3-Miner [20] for mining of ordered
embedded subtrees. In the same work we presented the
TMG mathematical model for estimating the worst
case complexity of enumerating all embedded subtrees.
The large complexity of mining embedded subtrees
motivated our Level of Embedding [14] constraint so
that one can decrease the level of embedding constraint
gradually down to 1, from which all the obtained
subtrees are induced. Razor algorithm [21] was a
further extension developed for mining embedded
subtrees where the distance of nodes relative to the
root of the subtree needs to be considered. Motivated
by the fact that in many applications of frequent
subtree mining the order among siblings is not
considered important we have recently extended our
general TMG framework for the unordered tree mining
problem. We developed the UNI3 [22] and U3 [15]
algorithms for mining frequent unordered induced and
embedded subtrees, respectively. From the application
perspective, in [23] we have indicated the potential of

353353

the tree mining algorithms in providing interesting
biological information when applied to tree structured
biological data. Since the order of sibling concepts is
not considered important when comparing different
knowledge structures, it is the unordered tree mining
that will have best applications for the problem of
knowledge matching.

3. Overview of the method

In this section we provide an overview of our
proposed method for knowledge structure matching.
The approach described is motivated by a real world
scenario of different organizations using different
knowledge structures for representing their domain
related information. The organizations may want to
discover the general knowledge of the domain that is
shared in all knowledge representations in order to
obtain a shared understanding of the domain.
Furthermore, the shared knowledge structure can be
used as the knowledge basis to be used by new
organizations. It is also analogous to the problem of
building a domain specific ontology from a number of
existing knowledge bases. In real world, it is common
that different organizations use different names for
same concepts but this is a different problem of
concept matching which is out of the scope of the
current work. Hence, the current assumption is that all
concept names are the same, or some concept matching
algorithm has already been applied to find the
corresponding mappings.

Figure 2. Proposed knowledge matching
approach.

Figure 2 illustrates our general approach taken to
the matching of tree structured knowledge and at the
same time describes our experimental setup in this
paper. While only two knowledge structures (KSs) are
displayed in the figure the approach is valid when the

number of available KSs is larger. Suppose that we
have two document structures used by different
organizations for representing the knowledge from the
same domain. The aim is to merge them into one
representation which captures the general knowledge
for that specific domain. Each KS is most likely to
differ in the way the knowledge is represented and the
amount of concept granularity. However since they are
describing the same domain there will be some
common parts of knowledge. This is where a tree
mining approach will prove useful since sub-structures
from large tree databases can be automatically
extracted.

The first step is to set up a tree database (TDB) so that
each KS is represented as an independent subtree (i.e.
transaction). A tree mining algorithm can then be
applied to the TDB in order to extract the common
knowledge structure (shared KS) among each KS.
Since each KS is represented as a transaction,
transactional support will be used and set to equal the
number of KSs present in the TDB. Now we need to
discuss which specific tree mining algorithm should be
used, or in other words what subtree type should be
extracted.

As mentioned in the previous section, when
comparing the similarity among knowledge structures
the order of sibling nodes is irrelevant, since
exchanging the order of sibling concepts does not
change the general information content. Hence,
unordered as opposed to ordered subtrees will be
mined. One further choice to make is whether we are
interested in mining induced or embedded subtrees.
The difference occurs in the fact that if embedded
subtrees are mined we are allowing sub-structures to
be considered common even if they occur at different
levels in the KS. In an embedded subtree the
relationships are not limited to parent-child, and hence
allowing ancestor-descendant relationships enables the
extraction of more sub-structures where the levels of
embeddings are different. It is worth noting here that
the specific knowledge about a concept is not always
stored in a way just described. It is commonly the case
that extra specific information about a concept is
stored in form of additional child nodes of that
concept. However since both induced and embedded
subtrees keep all the parent-child information
relationships from the original subtree this difference
does not influence the choice of the subtree type to be
mined. In regards to these observations our U3 [15]
algorithm will be used in order to extract the largest
common unordered embedded subtree from the KSs in
the TDB.

The shared KS detected could be less specific than
the KS from a particular organization, but it is

354354

therefore valid for all the organizations. Furthermore,
each of the different organizations could have their
own specific part of knowledge which is only valid
from their perspective, and which can be added to the
shared KS so that every aspect for that organization is
covered. Hence, the shared KS can be used as the basis
for structuring the knowledge for that particular
domain and different communities of users can extend
this model when required for their own organization
specific purposes.

4. Experimental Evaluation

This section describes the knowledge models used
in the experiments and shows the resulting common
document structure as detected by the U3 [15]
algorithm. The example XML (schema) documents
were obtained from the ontology matching website
[24]. The documents correspond to a representation of
specific domain information used by different
organizations. Please note that in our examples the
node labels concepts describing the same concepts
have been replaced where necessary by a common
name, since we are not addressing the problem of
concept matching in this work.

Figure 3. XML schema structures about sale
item description by Amazon (S1) and Yahoo (S2),

and their shared document structure

In Figure 3 we can see the underlying tree
structures form the XML schema documents used by
Amazon (S1) and Yahoo (S2) for describing a sales
item. Each of those tree structures was represented as a
separate transaction in the XML document that we
used as input to our U3 algorithm [15] in order to
extract the largest unordered embedded subtree. We
have used the transaction support with the threshold set
to 2 since we are comparing only two document
structures. The largest detected subtree is presented at
the bottom of Figure 3. The XML schema used by
Amazon has more specific information for describing
the sale information of an item. As can be seen in
Figure 3, the sibling node order has changed in the
shared structure. This is because an algorithm for
mining unordered subtree has to use a canonical form
of a subtree [25, 15, 22], according to which candidate
subtrees will be converted and grouped. In the
canonical form used by the U3 algorithm [15] the
sibling nodes are ordered according to the alphabetical
order and the node with the smallest starting letter is
placed to the left of the subtree (as shown in shared
structure of Figure3). This process is required so that
all the subtrees with different order of sibling nodes
describing the same concept, are still grouped to one
candidate.

In scenario from Figure 3, it would have even been
sufficient to mine ordered induced subtrees since no
specific concept information was stored at different
levels of the tree and all the common concepts were
presented in the same order. However, one cannot
assume that the compared knowledge representations
will have their common concepts ordered in the same
way, and that a particular set of concepts will not be
grouped under a certain criterion in different
representations. In this paper we have used smaller
examples for a clearer illustration of the underlying
concept. However, when compared document
structures are much larger it is more likely that the
same concept information will be stored in different
order and at different levels in the tree. In the next
scenario we will consider an example to illustrate that
it is important to relax the order of sibling nodes and to
extend the relationships between the nodes from
parent-child to ancestor-descendant (i.e. extracting
embedded subtrees as opposed to induced).

In Figure 4 we represent two trees which
correspond to the XML schemas used by different
organizations for describing their purchase order (PO)
commercial document. The largest common document
structure is displayed last and by comparing it to S1
and S2 one can see that it was necessary to extract
largest unordered embedded subtree. First of all the
order of nodes describing the address information was

355355

different, and the nodes were stored at different levels
in the tree. Hence the common relationship between
the ‘DeliverTo’ nodes and the address details would
not be detected if largest induced subtree was
extracted, since the level of embedding (see Section 3)
is equal to 2, while the allowed level of embedding in
an induced subtree is limited to 1. The largest common
induced subtree would only consist of the root node
‘PO’ and two nodes emanating from the node ‘PO’ i.e.
‘DeliverTo’ and ‘BillTo’. The remaining common
structures would be missed altogether and hence
mining embedded subtrees in these scenarios is a
necessity.

Figure 4. XML schema structures describing
different post order document (S1 and S2) and

their shared document structure

It is worth noting that it could be possible that some
knowledge structures have a few nodes with the same
label located deeper in the tree. In this case if
embedded subtrees are mined misleading results could
be returned since the level of embedding allowed in
the subtrees is not limited. To make the large change
from mining embedded to induced subtrees runs the
risk of missing many other common structures where
the level of embedding among the nodes is different. In
these cases the maximum level of embedding ()
constraint [14] could be used to impose a limit on the
allowed level of embedding in the extracted embedded
subtrees. The could also be progressively decreased
until some differences are resolved. In this scenario
where multiple nodes exist with the same label it

probably would not provide only one matching
document structure as for the induced case, but many
common structures of same size could be detected.
Which method to adapt is again dependent on the type
of knowledge that is being matched as for some
applications induced subtrees may be sufficient and the
level of embedding can be ignored while for others it is
important as it indicates that extra specific information
is stored for a particular concept in a document
structure. Even if the user is not a domain expert
different options can be tried with respect to and this
should itself reveal some more detail about the
similarities and differences among the compared
document structures. Besides our focus on the
application to the knowledge matching problem this
capability of efficiently finding common structures is
believed to be well suitable for general analysis and
querying of domain knowledge.

In this section we have demonstrated how a tree
mining algorithm could be applied to knowledge
matching problem. When mining different knowledge
structures it can efficiently find the largest common
structure which indicates the shared knowledge of the
domain at hand. It is worth noting that, even though
the examples used here are quite simple the tree
mining algorithms are in general well applicable to
large datasets composed of complex tree structures.
This was experimentally demonstrated in [13, 14, 17].

5. Conclusions and Future Work

In this paper we have described a way in which the
tree mining algorithms can be effectively used for
detecting a shared knowledge structure from XML
documents describing same domains. This is our
preliminary work in the area, and as such the aim was
to discuss how tree mining can be appropriately
applied to the problem and to demonstrate its great
potential in automating the task of knowledge
matching. We have used real world XML schemas,
and the application of our U3 algorithm for mining of
unordered embedded subtrees has indeed shown its
capability of detecting the shared document structures.
To limit the scope of the work we have made the
assumption that the concepts have already been
matched, and hence our immediate future work is to
find semantically correct matches among concepts
through the utilization of tree mining for efficient
knowledge structure analysis.

6. References

356356

[1] T.R., Gruber, “A Translation Approach to Portable
Ontology Specifications”, Knowledge Acquisition, 5 (2),
1993, pp. 199-220.

[2] Fensel, D., Lausen, H., Polleres, A., Bruijn, J.D.,
Stollberg, M., Roman, D., and Domingue, J., Enabling
Semantic Web Services: The Web Service Modeling
Ontology, Springer-Verlag, Berlin, 2007.

[3] Gómez-Pérez, A., Fernández-López, M., and Corcho, O.,
Ontological Engineering, with examples from the areas of
Knowledge Management, e-commerce and the Semantic
Web, Springer-Verlag, London, 2004.

[4] Alesso, H.P., and Smith, C.F. Thinking on the Web :
Berners-Lee, Gödel, and Turing, John Wiley & Sons, Inc.,
Hoboken, New Jersey, 2006.

[5] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara,
“Semantic matching of web services capabilities”, In
Proceedings of the International Semantic Web Conference
(ISWC), 2002, pp. 333–347.

[6] J. T. L. Wang, D. Shasha, G. Chang, L. Relihan, K.
Zhang, and G. Patel, “Structural matching and discovery in
document databases, ACM SIGMOD Int’l Conf. on
Management of Data, 1997, pp. 560-563.

[7] K. Wang, and H. Liu, “Discovering Structural
Association of Semistructured Data”, IEEE Transactions on
Knowledge and Data Engineering, 1999.

[8] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J.
Widom, “Change detection in hierarchically structured
information”, ACM SIGMOD Int’l Conf. on Management of
Data, 1996, pp. 493–504.

[9] S. Chawathe, “Comparing hierarchical data in external
memory”, Proceedings of the Twentyfifth International
Conference on Very Large Data Bases (1999), p. 90-101

[10] J. T. L. Wang, B. A. Shapiro, D. Shasha, K. Zhang, and
K. M. Currey, “An algorithm for finding the largest
approximately common substructures of two trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
1998, 20(8), pp. 889–895.

[11] G. Cobena, S. Abiteboul, and A. Marian, “Detecting
changes in XML documents” In Proceedings of the 18th
International Conference on Data Engineering, 2002.

[12] A. Nierman and H. V. Jagadish. "Evaluating Structural
Similarity in XML Documents". In Int'l Workshop on the
Web and Databases (WebDB), Madison,WI, Jun. 2002.

[13] S. Guha, H. V. Jagadish, N. Koudas, D. Srivastava, and
T. Yu. "Approximate XML Joins". In ACM SIGMOD,
Madison, WI, Jun. 2002. 175

[14] H. Tan, T.S. Dillon, F. Hadzic, L. Feng, E. Chang,
“IMB3-Miner: Mining Induced/Embedded subtrees by
constraining the level of embedding” PAKDD’06, Singapore,
2006.

[15] F. Hadzic, H. Tan, T.S Dillon, and E. Chang, “U3 –
Mining unordered embedded subtrees using model guided
candidate generation”, Submitted to the 1st ACM Int’l Conf.
on Web Search and Data Mining, San Francisco Bay Area,
California, USA, 2008.

[16] M.J. Zaki, “Efficiently Mining Frequent Trees in a
Forest: Algorithms and Applications” IEEE Transaction on
Knowledge and Data Engineering, 17, 8, 2005, pp. 1021-
1035.

[17] Y. Chi, S. Nijssen, R.R. Muntz, and J.N. Kok, “Frequent
Subtree Mining--An Overview”, Fundamenta Informaticae,
Special Issue on Graph and Tree Mining, vol. 66, No. 1-2,
2005, pp. 161-198.

[18] R. J. Bayardo, R. Agrawal, and D. Gunopulos,
“Constraint-based rule mining on large, dense data sets” Int.
Conf. Data Engineering (ICDE’99), Sydney, 1999.

[19] F. Hadzic, H. Tan, T.S. Dillon, and E. Chang,
“Implications of frequent subtree mining using hybrid
support definition”, Data Mining & Information Engineering
2007, 18-20 June, The New Forest, UK, 2007.

[20] H. Tan, T.S. Dillon, F. Hadzic, E. Chang, and L. Feng,
“MB3-Miner: mining eMBedded sub-TREEs using Tree
Model Guided candidate generation”, 1st Int’l Workshop on
Mining Complex Data (MCD’05), held in conjunction with
ICDM’05, Houston, Texas, USA, 2005.

[21] H. Tan, T.S. Dillon, F. Hadzic, and E. Chang, “Razor:
mining distance constrained embedded subtrees” IEEE
ICDM 2006 Workshop on Ontology Mining and Knowledge
Discovery from Semistructured documents (MSD 2006), 28-
22 December, Hong Kong, 2006.

[22] F. Hadzic, H. Tan, and T.S. Dillon, “UNI3 – Efficient
Algorithm for Mining Unordered Induced Subtrees Using
TMG Candidate Generation” IEEE Symposium on
Computational Intelligence and Data Mining (CIDM 2007),
Honolulu, Hawaii, 2007.

[23] F. Hadzic, T.S. Dillon, A. Sidhu, E. Chang, and H. Tan,
“Mining Substructures in Protein Data”, IEEE ICDM 2006
Workshop on Data Mining in Bioinformatics (DMB 2006),
18-22 December, Hong Kong, 2006.

[24] Ontology Matching [www.ontologymatching.org].

[25] Y. Chi, Y. Yirong, and R.R. Muntz, “Canonical Forms
for Labeled Trees and Their Applications in Frequent
Subtree Mining” Knowledge and Information Systems, 2004.

357357

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

