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Abstract 

Matching of heterogeneous knowledge sources is of 
increasing importance in areas such as scientific 
knowledge management, e-commerce, enterprise 
application integration, and many emerging Semantic 
Web applications. With the desire of knowledge 
sharing and reuse in these fields, it is common that the 
knowledge coming from different organizations from 
the same domain is to be matched. We propose a 
knowledge matching method based on our previously 
developed tree mining algorithms for extracting 
frequently occurring subtrees from a tree structured 
database such as XML. Using the method the common 
structure among the different representations can be 
automatically extracted. Our focus is on knowledge 
matching at the structural level and we use a set of 
example XML schema documents from the same 
domain to evaluate the method. We discuss some 
important issues that arise when applying tree mining 
algorithms for detection of common document 
structures. The experiments demonstrate the usefulness 
of the approach.   

1. Introduction 

Knowledge discovery task in general can be hard 
and time consuming, and hence sharing the already 
developed knowledge representations is desirable. This 
particularly occurs when a number of organizations 
coming from the same domain would like to have a 
knowledge basis on which they can integrate their 
organization specific knowledge. Having a general 
knowledge model would save time and costs 
associated with having to acquire general knowledge 
about the domain at hand. Furthermore, the knowledge 
base should be represented in a machine readable way 
so that it can also be used by communicating agents. 

This gave rise to the development of ontologies. 
Ontology in AI is defined as a formal, explicit 
specification of a shared conceptualization [1]. 
Developing domain ontologies for capturing domain 
specific knowledge is often characterized by merging 
of existing knowledge representations of the same 
domain [2, 3]. Automatic detection of common 
structures among existing domain knowledge 
representations can contribute to the process of 
automating the ontology building and matching task.  

While many general knowledge representations 
exist where the underlying structure is a graph, in this 
work we narrow our focus on the matching of 
knowledge representations where the information is 
represented in a tree or semi-structured form (eg. 
XML). Hence, our approach could only contribute to 
the automation of ontology building and matching 
process, if the underlying structure of the knowledge 
representation is in form of a tree. Many web services 
use XML as a unified exchange format, as it provides 
the extensibility and language neutrality that is the key 
for standard–based interoperability between different 
software applications [2, 4]. The process of 
discovering particular web services and composing 
them together in order to accomplish a specific goal is 
an important step toward the development of ‘semantic 
web services’ [2, 4, 5]. In this process, being able to 
detect common knowledge structures between the 
information presented by the services to be integrated 
will be a useful step toward automation.  

 Matching of knowledge structures has been of 
interest for a long time and many useful applications 
can be found in scientific knowledge management, e-
commerce, enterprise application integration, scientific 
knowledge management, etc. The emergence of semi-
structured data sources (such as XML) that are 
commonly used for describing domain knowledge has 
called for the development of methods capable of 
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efficiently analyzing such documents. The TreeDiff 
software package [6] takes two XML documents as 
input, represents them as ordered labeled trees and 
finds sequence of edit operations to transform one 
document tree into another. In [7] it is noted that 
finding common structures among semi-structured 
documents is useful for document clustering methods, 
since the structure is usually ignored by traditional 
clustering approaches. They presented an algorithm for 
finding the minimum number of operations for 
transforming one data tree into another. The tree 
matching problem in context of change detection of 
hierarchically structured information was studied in [8, 
9]. An algorithm that finds largest approximate 
common substructures between ordered labeled trees 
has been presented in [10]. In [11] an algorithm was 
presented for identifying changes in XML documents. 
It works by identifying unchanged portions of the 
documents and then inspecting the neighboring nodes 
using XML specific information to find further 
matches.  A structural similarity metric for measuring 
structural similarity among XML documents has been 
proposed in [12], and is based upon a specialized tree 
edit distance among ordered labeled trees. In [13] the 
authors proposed a lower and upper bound on the tree 
distance metric between ordered labeled trees. This 
extension to the metric is more computationally 
efficient and takes the structural property of XML into 
account. 

The XML matching method presented in this paper 
is based on the use of our previously developed tree 
mining algorithms in order to automatically extract 
shared document structures. By using the tree mining 
approach many of the structural differences among the 
knowledge representations can be detected and the 
largest common structure is automatically extracted. 
The implications of mining different subtree types are 
discussed and the most suitable subtree type within the 
current tree mining framework is indicated. The 
experiments are performed on a set of XML schemas 
used for describing organization specific information. 
In general, the method is applicable for matching of 
any tree structured knowledge representations. To limit 
the scope of the current work in this paper we focus 
solely on knowledge structure matching and do not yet 
consider the problem of matching at the conceptual 
level. Hence the main purpose of the work is to 
demonstrate the potential of applying tree mining 
methods to the problem of knowledge matching which 
brings it a step closer towards automation. We have 
previously applied our tree mining algorithms on large 
and complex tree structures and experimentally 
demonstrated their scalability [14, 15]. Other studies 
[16, 17] also indicate that tree mining algorithms are 

generally well scalable to large tree structures. In this 
paper we consider smaller trees in order to illustrate 
the underlying concept in a more comprehensible 
manner.  

The rest of the paper is organized as follows. 
Section 2 gives a brief overview of the tree mining 
problem and discusses some of our developed 
algorithms in the area. Our approach to matching of 
tree structured documents is described in Section 3. 
Section 4 describes the results of applying our tree 
mining algorithms for finding common XML schema 
structures. The paper is concluded in Section 5.  

2. Frequent Subtree Mining 

This section starts by providing formal definitions of 
some basic tree concepts, and then proceeds into an 
overview of our current contributions to the area of 
tree mining. Only concepts necessary for 
understanding the current work are defined. For a more 
extensive overview of the area including various 
implementation issues and algorithm comparisons we 
refer the interested reader to [14, 15, 17].

A tree can be denoted as T(v0,V,L,E), where (1) v0

V is the root vertex; (2) V is the set of vertices or 
nodes; (3) L is the set of labels of vertices, for any 
vertex v V, L(v) is the label of v; and (4) E = {(x,y)| 
x,y V } is  the set of edges in the tree. A root is the 
topmost node in the tree. The Parent of node v is 
defined as the predecessor of node v. A node v can 
only have one parent while it can have one or more 
children. A node without any child is a leaf node; 
otherwise, it is an internal node. If for each internal 
node, all the children are ordered, then the tree is an 
ordered tree. The number of children of a node is 
commonly termed as fan-out/degree of the node. A 
path from vertex vi to vj, is defined as the finite 
sequence of edges that connects vi to vj, and in a tree 
there is a single unique path between any two vertices. 
The length of a path p is the number of edges in p. If p
is an ancestor of q, then there exists a path from p to q.

The problem of frequent subtree mining can be 
generally stated as: given a tree database Tdb and 
minimum support threshold ( ), find all subtrees that 
occur at least  times in Tdb. Within this framework the 
two most commonly mined types of subtrees are 
induced and embedded. An induced subtree preserves 
the parent-child relationships of each node in the 
original tree. In addition to this, an embedded subtree 
allows a parent in the subtree to be an ancestor in the 
original tree and hence ancestor-descendant 
relationships are preserved over several levels. Formal 
definitions follow. 
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Induced subtree. A tree T’(r’, V’, L’, E’) is an 
induced subtree of a tree T (r, V, L, E) iff (1) V’ V, (2) 
E’ E and (3) L’ L and L’(v)=L(v).

Embedded subtree. A tree T’(r’, V’, L’, E’) is an 
embedded subtree of a tree T(r, V, L, E) iff (1) V’ V,
(2) if (v1,v2) E’ then parent(v2) = v1 in T’, only if v1

is ancestor of v2 in T and (3) L’ L and L’(v)=L(v).  
Level of embedding. If T’(r’, V’, L’, E’) is an 

embedded subtree of T, and two nodes p  V’ and q
V’ form an ancestor-descendant relationship, the 

level of embedding ( ) is defined as the length of the 
path between p and q. A maximum level of embedding
( ) is the limit on the level of embedding between any 
p and q. In other words, given a tree database Tdb and 

, then any embedded subtree to be generated will 
have the maximum length of a path between any two 
ancestor-descendant nodes equal to . In this regard, 
we could define an induced subtree T as an embedded 
subtree where the maximum level of embedding that
can occur in T is equal to 1, since the level of 
embedding of two nodes that form a parent-child 
relationship equals to 1. 

In addition to the previous definitions, the subtrees 
can be further distinguished based upon the ordering of 
siblings. An ordered subtree preserves the left-to-right 
ordering among the sibling nodes in the original tree 
while in an unordered subtree this ordering is not 
necessarily preserved. In other words, for an unordered 
subtree the order of the siblings (and the subtrees 
rooted at sibling nodes) can be exchanged and the 
resulting subtree would be considered the same. 
Examples of different subtree types are given in Figure 
1 below. 

Figure 1. Example of a tree T and its different 
subtree types (induced subtrees are also 

embedded). 

To determine the frequency of a subtree, most 
commonly used support definitions are transaction 
based and occurrence match support [14, 15, 16] and 
the choice is application dependant. In the data mining 
field the term transaction has been defined as a set of 

one or more items obtained from a finite item domain, 
and a dataset as a collection of transactions [18]. 
Hence, in context of a tree database, a transaction 
would correspond to a fragment of the database tree 
whereby an independent instance is described. 
Transaction based support (TS) is used when only the 
existence of items within a transaction is considered 
important, whereas occurrence match (OC) support 
takes the repetition of items in a transaction into 
account and counts the subtree occurrences in the 
database as a whole. Recently, we have provided the 
hybrid support definition [19]. Using hybrid support 
threshold of x|y, a subtree is considered frequent iff it 
occurs in x transactions and it occurs at least y times in 
each of those x transactions. Hence, in addition to 
transactional support it keeps the extra information 
about the intra-transactional occurrences of a subtree.  

Our work in the area of frequent subtree mining is 
characterized by adopting a Tree Model Guided 
(TMG) [20] candidate generation as opposed to the 
join approach which is commonly used. This non-
redundant systematic enumeration model ensures only 
valid candidates are generated which conform to the 
actual tree structure of the data. TMG can be applied to 
any data that has a model representation with clearly 
defined semantics that have tree like structures. In the 
cases where the model representation of the tree 
structure is unavailable the TMG approach will still 
perform the candidate generation according to the tree 
structure of the document, by obtaining the model from 
the document itself. Furthermore, our unique 
Embedding List [20] representation of the tree 
structure has allowed for an efficient implementation 
of the TMG approach which resulted in efficient 
algorithm MB3-Miner [20] for mining of ordered 
embedded subtrees. In the same work we presented the 
TMG mathematical model for estimating the worst 
case complexity of enumerating all embedded subtrees. 
The large complexity of mining embedded subtrees 
motivated our Level of Embedding [14] constraint so 
that one can decrease the level of embedding constraint 
gradually down to 1, from which all the obtained 
subtrees are induced. Razor algorithm [21] was a 
further extension developed for mining embedded 
subtrees where the distance of nodes relative to the 
root of the subtree needs to be considered. Motivated 
by the fact that in many applications of frequent 
subtree mining the order among siblings is not 
considered important we have recently extended our 
general TMG framework for the unordered tree mining 
problem. We developed the UNI3 [22] and U3 [15]
algorithms for mining frequent unordered induced and 
embedded subtrees, respectively. From the application 
perspective, in [23] we have indicated the potential of 
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the tree mining algorithms in providing interesting 
biological information when applied to tree structured 
biological data. Since the order of sibling concepts is 
not considered important when comparing different 
knowledge structures, it is the unordered tree mining 
that will have best applications for the problem of 
knowledge matching. 

3. Overview of the method 

In this section we provide an overview of our 
proposed method for knowledge structure matching. 
The approach described is motivated by a real world 
scenario of different organizations using different 
knowledge structures for representing their domain 
related information.  The organizations may want to 
discover the general knowledge of the domain that is 
shared in all knowledge representations in order to 
obtain a shared understanding of the domain. 
Furthermore, the shared knowledge structure can be 
used as the knowledge basis to be used by new 
organizations. It is also analogous to the problem of 
building a domain specific ontology from a number of 
existing knowledge bases. In real world, it is common 
that different organizations use different names for 
same concepts but this is a different problem of 
concept matching which is out of the scope of the 
current work. Hence, the current assumption is that all 
concept names are the same, or some concept matching 
algorithm has already been applied to find the 
corresponding mappings.  

Figure 2. Proposed knowledge matching 
approach. 

Figure 2 illustrates our general approach taken to 
the matching of tree structured knowledge and at the 
same time describes our experimental setup in this 
paper. While only two knowledge structures (KSs) are 
displayed in the figure the approach is valid when the 

number of available KSs is larger. Suppose that we 
have two document structures used by different 
organizations for representing the knowledge from the 
same domain. The aim is to merge them into one 
representation which captures the general knowledge 
for that specific domain.  Each KS is most likely to 
differ in the way the knowledge is represented and the 
amount of concept granularity. However since they are 
describing the same domain there will be some 
common parts of knowledge. This is where a tree 
mining approach will prove useful since sub-structures 
from large tree databases can be automatically 
extracted.  

The first step is to set up a tree database (TDB) so that 
each KS is represented as an independent subtree (i.e. 
transaction). A tree mining algorithm can then be 
applied to the TDB in order to extract the common 
knowledge structure (shared KS) among each KS. 
Since each KS is represented as a transaction, 
transactional support will be used and set to equal the 
number of KSs present in the TDB. Now we need to 
discuss which specific tree mining algorithm should be 
used, or in other words what subtree type should be 
extracted. 

As mentioned in the previous section, when 
comparing the similarity among knowledge structures 
the order of sibling nodes is irrelevant, since 
exchanging the order of sibling concepts does not 
change the general information content.  Hence, 
unordered as opposed to ordered subtrees will be 
mined. One further choice to make is whether we are 
interested in mining induced or embedded subtrees. 
The difference occurs in the fact that if embedded 
subtrees are mined we are allowing sub-structures to 
be considered common even if they occur at different 
levels in the KS. In an embedded subtree the 
relationships are not limited to parent-child, and hence 
allowing ancestor-descendant relationships enables the 
extraction of more sub-structures where the levels of 
embeddings are different. It is worth noting here that 
the specific knowledge about a concept is not always 
stored in a way just described. It is commonly the case 
that extra specific information about a concept is 
stored in form of additional child nodes of that 
concept. However since both induced and embedded 
subtrees keep all the parent-child information 
relationships from the original subtree this difference 
does not influence the choice of the subtree type to be 
mined.   In regards to these observations our U3 [15] 
algorithm will be used in order to extract the largest 
common unordered embedded subtree from the KSs in 
the TDB.

The shared KS detected could be less specific than 
the KS from a particular organization, but it is 

354354



therefore valid for all the organizations. Furthermore, 
each of the different organizations could have their 
own specific part of knowledge which is only valid 
from their perspective, and which can be added to the 
shared KS so that every aspect for that organization is 
covered. Hence, the shared KS can be used as the basis 
for structuring the knowledge for that particular 
domain and different communities of users can extend 
this model when required for their own organization 
specific purposes. 

4. Experimental Evaluation 

This section describes the knowledge models used 
in the experiments and shows the resulting common 
document structure as detected by the U3 [15] 
algorithm. The example XML (schema) documents 
were obtained from the ontology matching website 
[24]. The documents correspond to a representation of 
specific domain information used by different 
organizations. Please note that in our examples the 
node labels concepts describing the same concepts 
have been replaced where necessary by a common 
name, since we are not addressing the problem of 
concept matching in this work.  

Figure 3. XML schema structures about sale 
item description by Amazon (S1) and Yahoo (S2), 

and their shared document structure 

In Figure 3 we can see the underlying tree 
structures form the XML schema documents used by 
Amazon (S1) and Yahoo (S2) for describing a sales 
item. Each of those tree structures was represented as a 
separate transaction in the XML document that we 
used as input to our U3 algorithm [15] in order to 
extract the largest unordered embedded subtree. We 
have used the transaction support with the threshold set 
to 2 since we are comparing only two document 
structures. The largest detected subtree is presented at 
the bottom of Figure 3. The XML schema used by 
Amazon has more specific information for describing 
the sale information of an item. As can be seen in 
Figure 3, the sibling node order has changed in the 
shared structure. This is because an algorithm for 
mining unordered subtree has to use a canonical form 
of a subtree [25, 15, 22], according to which candidate 
subtrees will be converted and grouped. In the 
canonical form used by the U3 algorithm [15] the 
sibling nodes are ordered according to the alphabetical 
order and the node with the smallest starting letter is 
placed to the left of the subtree (as shown in shared 
structure of Figure3). This process is required so that 
all the subtrees with different order of sibling nodes 
describing the same concept, are still grouped to one 
candidate.  

In scenario from Figure 3, it would have even been 
sufficient to mine ordered induced subtrees since no 
specific concept information was stored at different 
levels of the tree and all the common concepts were 
presented in the same order. However, one cannot 
assume that the compared knowledge representations 
will have their common concepts ordered in the same 
way, and that a particular set of concepts will not be 
grouped under a certain criterion in different 
representations. In this paper we have used smaller 
examples for a clearer illustration of the underlying 
concept. However, when compared document 
structures are much larger it is more likely that the 
same concept information will be stored in different 
order and at different levels in the tree. In the next 
scenario we will consider an example to illustrate that 
it is important to relax the order of sibling nodes and to 
extend the relationships between the nodes from 
parent-child to ancestor-descendant (i.e. extracting 
embedded subtrees as opposed to induced).  

In Figure 4 we represent two trees which 
correspond to the XML schemas used by different 
organizations for describing their purchase order (PO) 
commercial document. The largest common document 
structure is displayed last and by comparing it to S1 
and S2 one can see that it was necessary to extract 
largest unordered embedded subtree. First of all the 
order of nodes describing the address information was 
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different, and the nodes were stored at different levels 
in the tree. Hence the common relationship between 
the ‘DeliverTo’ nodes and the address details would 
not be detected if largest induced subtree was 
extracted, since the level of embedding (see Section 3) 
is equal to 2, while the allowed level of embedding in 
an induced subtree is limited to 1. The largest common 
induced subtree would only consist of the root node 
‘PO’ and two nodes emanating from the node ‘PO’ i.e. 
‘DeliverTo’ and ‘BillTo’. The remaining common 
structures would be missed altogether and hence 
mining embedded subtrees in these scenarios is a 
necessity. 

Figure 4. XML schema structures describing 
different post order document (S1 and S2) and 

their shared document structure 

It is worth noting that it could be possible that some 
knowledge structures have a few nodes with the same 
label located deeper in the tree. In this case if 
embedded subtrees are mined misleading results could 
be returned since the level of embedding allowed in 
the subtrees is not limited.   To make the large change 
from mining embedded to induced subtrees runs the 
risk of missing many other common structures where 
the level of embedding among the nodes is different. In 
these cases the maximum level of embedding ( )
constraint [14] could be used to impose a limit on the 
allowed level of embedding in the extracted embedded 
subtrees. The  could also be progressively decreased 
until some differences are resolved. In this scenario 
where multiple nodes exist with the same label it 

probably would not provide only one matching 
document structure as for the induced case, but many 
common structures of same size could be detected. 
Which method to adapt is again dependent on the type 
of knowledge that is being matched as for some 
applications induced subtrees may be sufficient and the 
level of embedding can be ignored while for others it is 
important as it indicates that extra specific information 
is stored for a particular concept in a document 
structure. Even if the user is not a domain expert 
different options can be tried with respect to  and this 
should itself reveal some more detail about the 
similarities and differences among the compared 
document structures. Besides our focus on the 
application to the knowledge matching problem this 
capability of efficiently finding common structures is 
believed to be well suitable for general analysis and 
querying of domain knowledge.  

In this section we have demonstrated how a tree 
mining algorithm could be applied to knowledge 
matching problem. When mining different knowledge 
structures it can efficiently find the largest common 
structure which indicates the shared knowledge of the 
domain at hand. It is worth noting that, even though 
the examples used here are quite simple the tree 
mining algorithms are in general well applicable to 
large datasets composed of complex tree structures. 
This was experimentally demonstrated in [13, 14, 17].  

5. Conclusions and Future Work 

In this paper we have described a way in which the 
tree mining algorithms can be effectively used for 
detecting a shared knowledge structure from XML 
documents describing same domains. This is our 
preliminary work in the area, and as such the aim was 
to discuss how tree mining can be appropriately 
applied to the problem and to demonstrate its great 
potential in automating the task of knowledge 
matching. We have used real world XML schemas, 
and the application of our U3 algorithm for mining of 
unordered embedded subtrees has indeed shown its 
capability of detecting the shared document structures. 
To limit the scope of the work we have made the 
assumption that the concepts have already been 
matched, and hence our immediate future work is to 
find semantically correct matches among concepts 
through the utilization of tree mining for efficient 
knowledge structure analysis.    
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