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Abstract 

 
In this paper we consider the ‘Prions’ database that 

describes protein instances stored for Human Prion 
Proteins. The Prions database can be viewed as a database 
of rooted ordered labeled subtrees. Mining frequent 
substructures from tree databases is an important task and 
it has gained a considerable amount of interest in areas 
such as XML mining, Bioinformatics, Web mining etc. This 
has given rise to the development of many tree mining 
algorithms which can aid in structural comparisons, 
association rule discovery and in general mining of tree 
structured knowledge representations. Previously we have 
developed the MB3 tree mining algorithm, which given a 
minimum support threshold, efficiently discovers all 
frequent embedded subtrees from a database of rooted 
ordered labeled subtrees. In this work we apply the 
algorithm to the Prions database in order to extract the 
frequently occurring patterns, which in this case are of 
induced subtree type. Obtaining the set of frequent induced 
subtrees from the Prions database can potentially reveal 
some useful knowledge. This aspect will be demonstrated 
by providing an analysis of the extracted frequent subtrees 
with respect to discovering interesting protein information. 
Furthermore, the minimum support threshold can be used 
as the controlling factor for answering specific queries 
posed on the Prions dataset. This approach is shown to be 
a viable technique for mining protein data.  

 
Keywords 

Protein discovery, association mining, frequent subtree 
mining, structure matching 

 
1. Introduction 

 
Data mining or knowledge discovery from data (KDD), 

in its most fundamental form, is to extract interesting, 
nontrivial, implicit, previously unknown and potentially 
useful information from data [1, 2]. In bioinformatics, this 
process could refer to summarizing rules for multiple DNA 
or protein sequences, finding motifs in sequences to predict 
folding patterns, discovering genetic mechanisms 
underlying a disease, and so on. With substantial growth of 
biological data, KDD is playing a more significant role in 

analyzing the data and in solving emerging problems. A 
critical problem in biological data analysis is to classify 
biological sequences and structures based on their critical 
features and functions. For example, gene sequences 
isolated from diseased and healthy tissues can be compared 
to identify critical differences between the two of the 
classes of genes. Such features can be used for classifying 
biological data and predicting behaviors.  A lot of methods 
have been developed for biological data classification [3]. 

All biological experiments are driven by a plethora of 
experimental design hypotheses to be proven or rejected 
based on data values stored in multiple distributed 
biomedical databases, for example, genome or proteome 
databases. To extract and analyze the data perhaps poses a 
much bigger challenge for researchers than to generate the 
data [4]. To extract and analyze information from 
distributed biomedical databases, distributed heterogeneous 
data must be gathered, characterized and cleaned. However, 
domain specific ontologies such as Gene Ontology [5], 
MeSH [6] and Protein Ontology [7, 8, 9] exist to provide 
context and semantics to distributed biomedical data. 

Frequent pattern analysis has been a focused theme of 
study in data mining, and a lot of algorithms and methods 
have been developed for mining frequent patterns, 
sequential patterns and structural patterns [2, 10]. However, 
not all the frequent pattern analysis methods can be adopted 
for analysis of complex biological data because many 
frequent pattern analysis methods are trying to discover 
perfect patterns, whereas most biological data patterns 
contain a substantial amount of noise or faults. For 
example, a DNA sequential pattern usually allows a 
nontrivial number of insertions, deletions, and mutations. 
Frequent sequential pattern discovery has been an active 
research area for years. Many algorithms have been 
developed and deployed for this purpose [11, 12, 13, 14]. 
One of the most popular pattern discovery algorithms for 
bioinformatics data is BLAST [15]. 

Besides finding sequential patterns, many biological 
data analysis tasks need to find frequent structured patterns, 
such as frequent protein or chemical compound structures 
from the data. In this paper we consider the ‘Prions’ 
database which describes a protein ontology instance store 
for Human Prion Proteins. XML format is used to store this 
data. The Prions database can be viewed as a database of 
rooted ordered labeled subtrees.  
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Tree Mining has attracted lots of interest among the data 
mining community, due to the increasing use of semi-
structured data sources for more meaningful knowledge 
representations. This is particularly evident in areas such as 
Bioinformatics, XML Mining, Web applications, scientific 
data management, and more generally in any area where 
the knowledge is represented in a tree-structured form. 
Many powerful tree mining algorithms have been 
developed to aid in structural comparisons, association rule 
discovery and in general, for mining of tree structured 
knowledge representations. The problem of frequent 
subtree mining can be generally stated as follows. Given a 
tree database Tdb and minimum support threshold (σ), find 
all subtrees that occur at least σ times in Tdb The two 
known types of subtrees are induced and embedded. An 
induced subtree is a subtree where the parent-child 
relationships must be the same to those in the original tree. 
In addition to this, an embedded subtree allows a parent in 
the subtree to be an ancestor in the original tree and hence 
the information about ancestor-descendant relationships is 
kept. Furthermore, two different support definitions used 
are occurrence-match and transactional support. 
Occurrence-match support takes repetition of items within 
a transaction into account, while the transaction based 
support only checks for the existence of the items in a 
transaction.   

Our work in the area of frequent subtree mining is 
characterized by adopting a Tree Model Guided (TMG) 
candidate generation [16, 17] as opposed to the join 
approach which is commonly used. This non-redundant 
systematic enumeration model ensures only valid 
candidates are generated which conform to the actual tree 
structure of the data. Furthermore, our unique Embedding 
List representation of the tree structure has allowed for an 
efficient implementation of the TMG approach which has 
resulted in efficient algorithms for mining embedded 
(MB3) [16] and induced (IMB3) [18] subtrees, from a 
databases of labeled rooted ordered subtrees. MB3-R and 
IMB3-R algorithms [19] are latest implementations that 
adopt a more space efficient global representation and only 
store the right most path information for candidate subtrees.  

 In this paper we apply the MB3-R algorithm to the 
Prions database in order to extract the frequently occurring 
subtrees.  Since the maximum depth of the subtree present 
in the Prions database is equal to one, all the extracted 
subtrees will be of induced type. Different support 
thresholds will be used and the extracted patterns will be 
accompanied with an in-depth analysis which explains the 
higher potential of the method for the discovery of useful 
protein information.  

The rest of the paper is organized as follows. Section 2 
briefly defines the problem of frequent subtree mining. The 
related works in the area of tree mining and some 
applications in bioinformatics are overviewed in Section 3. 
An overview of the MB3-R algorithm is provided in  
Section 4. In section 5, we apply the algorithm to the Prions 

dataset, and a biological explanation of the results is given 
in Section 6. Section 7 concludes the paper.   

 
2. Problem definition 
 
This section provides a general definition of the problem of 
frequent subtree mining. Due to the space limitations and 
the current scope of our work, we do not provide a detailed 
overview of the basic tree concepts, but refer the reader to 
our previous works [16, 17, 19], where such detailed 
overview has been provided.  

Mining frequent subtrees. Let Tdb be a tree database 
consisting of N transactions of trees, KN. Given a minimum 
support threshold (σ), the task of frequent subtree mining is 
to find all the candidate embedded subtrees that occur at 
least σ times in Tdb.  
 

3. Related Works 
 

Tree mining algorithms are increasingly being 
developed and the scope of their application usually 
depends on the assumptions made about the tree structure 
that the algorithm can be applied to. Naturally, these 
assumptions depend upon the domain of interest, where the 
developed algorithm is to be applied.  

Hence, many tree mining algorithms exist and they can 
be distinguished based upon the types of tree patterns that 
they extract. PathJoin [20], uNot [21], uFreqt [22], and 
HybridTreeMiner [23], mine induced, unordered trees. 
AMOT [24], mines induced ordered trees, and by using 
‘right-and-left tree join’ method it efficiently enumerates 
only those candidates that have a high probability of being 
frequent. Treeminer [25], is an efficient algorithm for 
discovering all frequent embedded subtrees in a forest 
using a data structure called the vertical scope-list. Zaki has 
developed an efficient algorithm for mining frequent 
embedded unordered subtrees, SLEUTH [26], to be applied 
to the cases when the information about the order of the 
sibling nodes in the data tree is not important or available. 
TreeFinder [27] uses an Inductive Logic Programming 
approach to mine unordered, embedded subtrees, but in the 
process many frequent subtrees can be missed. In regards to 
the application of tree mining to biological data, some 
approaches have been developed for analysis of 
phylogenetic databases [28, 29]. 

Besides the tree mining work there have been many 
recent developments in graph mining. Apriori-based Graph 
Mining (AGM) approach was introduced in [30] and it 
mines induced subgraphs which can be disconnected. FSG 
algorithm [31], guarantees that the extracted subgraphs are 
connected.  Warmr algorithm is a level-wise Inductive 
Logic Programming based technique, used in [32] for 
discovering frequent substructures of chemical compounds 
in relation to their possible carcinogenicity. FreeTreeMiner 
[33] extracts unrooted unordered trees from a graph 
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database. Yan and Han in 2002 [34] have introduced a 
lexicographical ordering system among graphs, based upon 
which the gSpan algorithm uses a depth first search 
strategy to mine frequent connected subgraphs. Heymans, 
and Singh in 2003 [35] have presented a graph comparison 
algorithm for computing the evolutionary distance between 
two metabolic pathways, useful for phylogenetic analysis. 

  
4. MB3-R algorithm 
 

Due to the space limitations and the scope of this work, 
this section only provides a brief overview of the MB3-R 
algorithm. For a more detailed description please refer to 
[19]. Those interested in obtaining the source code of the 
algorithm, should feel free to email the authors.  

The database of XML documents is first transformed 
into a database of rooted integer-labeled ordered tree.  The 
tree database is traversed once to create a global sequence 
which stores each node in the pre-order traversal together 
with the necessary node information.  At the same time the 
set of frequent 1-subtrees is obtained by hashing the 
encountered node labels. Once the databases is traversed 
the global sequence is used to construct the Recursive List 
(RL) [19]. Thereafter, the TMG candidate generation using 
the RL structure takes place and for each k ≥1 the RMP 
coordinates of each frequent (k-1)-subtree are stored in ‘Fk-
1’ hashtable. Before a subtree is stored in the frequent 
hashtable, full k-1 pruning [16, 18] is performed to ensure 
that all its subtrees are also frequent.  Each frequent (k-1)-
subtree is extended one node at a time, starting from the 
last node of its RMP (right most node), up to its root, 
whereby all k-subtrees are enumerated. The whole process 
is repeated until all k-subtrees are enumerated and counted. 

 
5. MB3-R application to Prions database 
 

Prion (short for proteinaceous infectious particle) is a 
type of infectious agent. Prions are abnormally structured 
forms of host protein, which are able to convert normal 
molecules of protein into abnormally structured form. 
Prions dataset describes Protein Ontology [7] database for 
Human Prion proteins in XML format [9]. The XML tags 
are first mapped to integer indexes similar to the format 
used in TMGJ [16] and [25]. Representing label as integer 
instead of a string label has considerable performance and 
space advantages [16]. Since the maximum height of the 
Prions tree structure is 1, all candidate subtrees generated 
are induced subtrees. The experiments were run on 3Ghz 
(Intel-CPU), 2Gb RAM, Mandrake 10.2 Linux machine 
and compilation was performed using GNU g++ (3.4.3) 
with –g and –O3 parameters. Occurrence-match support 
definition was used. The total run-time and memory usage 
of the MB3 algorithm is displayed in Fig. 1, for varying 
support thresholds. The next section provides an analysis 
and explanation of some of the extracted frequent patterns. 
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Fig. 1 MB3-R run-time and memory usage profile 
 

6. Biological Interpretation 
 

In bioinformatics, the discovery of  structural patterns 
by matching data representation structures is essential for 
analysis and understanding of biological data. If a structural 
pattern occurs frequently, it is ought to be important in 
some way. On the other hand, infrequent patterns may also 
provide meaningful information. Thus to extract 
meaningful information from biological data we need to 
mine both sequence and structural patterns. In this section 
show how patterns discovered in prion dataset by the MB3-
R algorithm, when applied to the Prions dataset  help in 
extracting meaningful information. 

ATOMSequence 
_ATOM_Chain[L] 

_ATOM_Residue[ALA] 
This pattern was discovered 40 times in the dataset. Here 
ATOMSequence  contains refers to chain of residue 
sequence for the atom list in question (_ATOM_Chain = 
L). Description of the structure of the Chain refers to 
numerous instances of Residues  defined like 
(_ATOM_Residue = ALA). Each residue has a number of 
Atoms linked to it, which make up the atom list for the 
residue. Similarly collection of atom lists for all residues in 
the chain describes the entire ATOMSequence. 
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ATOMSequence 
_ATOM_Chain[A] 

_ATOM_Residue[ALA] 
Atom[H] 

This pattern was discovered 101 times in the data. The 
pattern is a similar extension of the pattern discussed 
above, with the inclusion of identifying the Atom (Atom = 
H) linked to the residue.  

ATOMSequence 
_ATOM_Chain[H] 

_ATOM_Residue[THR] 
Atom[CA] 

Occupancy[1] 
Element[C] 

The pattern shown above is discovered 100 times in the 
data. This pattern identifies more details about the Atom 
linked to the Residue (like: Occupancy = 1 and Element = 
C). 

These are some the patterns discovered by the patterns 
discovered by the MB3-R algorithm. The algorithm aids in 
discovering useful pattern structures in Protein Ontology 
datasets, which makes it useful for comparison of protein 
datasets taken across protein families and species and helps 
in discovering interesting similarities and differences. 

 

7. Conclusions & future work 
 

This paper has presented the application of the MB3-R 
tree mining algorithm to the tree structured Prions protein 
database. The aim was to extract the frequently occurring 
subtrees which have the potential of providing useful 
information and knowledge related to these proteins. The 
experiments were accompanied with a biological 
interpretation of some   interesting patterns that were 
discovered. This indicates the potential of the tree mining 
algorithms providing interesting biological information 
when applied to tree structured biological data. Graph and 
Tree structured data is increasingly in use for many 
representations of biological knowledge and hence some of 
our future work will involve the development of graph 
mining algorithms that can efficiently extract frequently 
occurring sub-graphs from a large graph structured 
database. We also intend to use these tree mining 
algorithms to examine other classes of protein datasets, and 
to fine tune their use for such data.  
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