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Abstract Finding interesting tree patterns hidden in large

datasets is a central topic in data mining with many prac-

tical applications. Unfortunately, previous contributions

have focused almost exclusively on mining-induced pat-

terns from a set of small trees. The problem of mining

homomorphic patterns from a large data tree has been

neglected. This is mainly due to the challenging unbounded

redundancy that homomorphic tree patterns can display.

However, mining homomorphic patterns allows for dis-

covering large patterns which cannot be extracted when

mining induced or embedded patterns. Large patterns better

characterize big trees which are important for many mod-

ern applications in particular with the explosion of big data.

In this paper, we address the problem of mining frequent

homomorphic tree patterns from a single large tree. We

propose a novel approach that extracts non-redundant

maximal homomorphic patterns. Our approach employs an

incremental frequency computation method that avoids the

costly enumeration of all pattern matchings required by

previous approaches. Matching information of already

computed patterns is materialized as bitmaps, a technique

that not only minimizes the memory consumption, but also

the CPU time. Our contribution also includes an

optimization technique which can further reduce the search

space of homomorphic patterns. We conducted detailed

experiments to test the performance and scalability of our

approach. The experimental evaluation shows that our

approach mines larger patterns and extracts maximal

homomorphic patterns from real and synthetic datasets

outperforming state-of-the-art embedded tree mining

algorithms applied to a large data tree.

1 Introduction

Extracting frequent tree patterns which are hidden in data

trees is central for analyzing data and is a base step for

other data mining processes including association rule

mining, clustering and classification. Trees have emerged

in recent years as the standard format for representing,

exporting, exchanging and integrating data on the web

(e.g., XML and JSON). Tree data are adopted in various

application areas and systems such as business process

management, NoSQL databases, key-value stores, scien-

tific workflows, computational biology and genome

analysis.

Because of its practical importance, tree mining has

been extensively studied [2, 3, 5, 6, 8–11, 14–19, 25–27].

The approaches to tree mining can be basically character-

ized by two parameters: (a) the type of morphism used to

map the tree patterns to the data structure and (b) the type

of mined tree data.

Mining homomorphic tree patterns The morphism

determines how a pattern is mapped to the data tree. The

morphism definition depends also on the type of pattern

considered. In the literature, two types of tree patterns have

been studied: patterns whose edges represent parent-child
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relationships (child edges) and patterns whose edges rep-

resent ancestor-descendant relationships (descendant

edges). Over the years, research has evolved from con-

sidering isomorphisms for mining patterns with child edges

(induced patterns) [2, 5] to considering embeddings for

mining patterns with descendant edges (embedded pat-

terns) [17, 26, 27]. Because of the descendant edges,

embeddings are able to extract patterns ‘‘hidden’’ (or

embedded) deep within large trees which might be missed

by the induced pattern definition [26]. Nevertheless,

embeddings are still restricted because: (a) They are

injective (one-to-one), and (b) they cannot map two sibling

nodes in a pattern to two nodes on the same path in the data

tree. On the other hand, homomorphisms are powerful

morphisms that do not have those two restrictions of

embeddings. We term patterns with descendant edges,

mined through homomorphisms, homomorphic patterns.

Formal definitions are provided in Sect. 2. As homomor-

phisms are more relaxed than embeddings, the mined

homomorphic patterns are a superset of the mined

embedded patterns.

Figure 1a shows four data trees corresponding to dif-

ferent schemas to be integrated through the mining of large

tree patterns. The frequency threshold is set to three. Fig-

ure 1b shows induced mined tree patterns, embedded pat-

terns and non-redundant homomorphic patterns. Figure 1b

includes the largest patterns that can be mined in each

category. As one can see, the shown embedded patterns are

not induced patterns, and the shown homomorphic patterns

are neither embedded nor induced patterns. Further, the

homomorphic patterns are larger than all the other patterns.

Large patterns are more useful in describing data.

Mining tasks usually attach much greater importance to

patterns that are larger in size, e.g., longer sequences are

usually of more significant meaning than shorter ones in

bioinformatics [29]. As mentioned in [28], large patterns

have become increasingly important in many modern

applications.

Therefore, homomorphisms and homomorphic patterns

display a number of advantages. First, they allow the

extraction of patterns that cannot be extracted by embedded

patterns. Second, extracted homomorphic patterns can be

larger than embedded patterns. Finally, homomorphisms

can be computed more efficiently than embeddings.

Indeed, the problem of checking the existence of a

homomorphism of an unordered tree pattern to a data tree

is polynomial [13], while the corresponding problem for an

embedding is NP-complete [12].

Mining patterns from a large data tree The type of

mined data can be a collection of small trees

[2, 5, 17, 26, 27] or a single large tree. Surprisingly, the

problem of mining tree patterns from a single large tree has

only very recently been touched even though a plethora of

interesting datasets from different areas are in the form of a

single large tree. Examples include encyclopedia databases

like Wikipedia, bibliographic databases like PubMed, sci-

entific and experimental result databases like UniprotKB,

and biological datasets like phylogenetic trees. These

datasets grow constantly with the addition of new data. Big

data applications seek to extract information from large

datasets. However, mining a single large data tree is more

complex than mining a set of small data trees. In fact, the

former setting is more general than the latter, since a col-

lection of small trees can be modeled as a single large tree

rooted at a virtual unlabeled node. Existing algorithms for

mining embedded patterns from a collection of small trees

[26] cannot scale well when the size of the data tree

increases. Our experiments show that these algorithms

cannot scale beyond some hundreds of nodes in a data tree

with low-frequency thresholds.

The problem Unfortunately, previous work has focused

almost exclusively on mining-induced and embedded pat-

terns from a set of small trees. The issue of mining ho-

momorphic patterns from a single large data tree has been

neglected.

The challenges Mining homomorphic tree patterns is

a challenging task. Homomorphic tree patterns are dif-

ficult to handle as they may contain redundant nodes. If

their structure is not appropriately constrained, the

number of frequent patterns (and therefore the number of

candidate patterns that need to be generated) can be

infinite.

Fig. 1 Different types of mined tree patterns occurring in three of the four data trees. a Data trees, b mined tree patterns
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Even if homomorphic patterns are successfully con-

strained to be non-redundant, their number can be much

larger than that of frequent embedded patterns from the

same data tree. In order for the mining algorithm to be

efficient, new, much faster techniques for computing the

support of the candidate homomorphic tree patterns need to

be devised.

The support of patterns in the single large data tree

setting cannot be anymore the number of trees that contain

the pattern as is the case in the multiple small trees setting.

A new way to define pattern support in the new setting is

needed which enjoys useful monotonic characteristics.

Typically, one can deal with a large number of frequent

patterns, by computing only maximal frequent patterns. In

the context of induced tree patterns, a pattern is maximal if

there is no frequent superpattern [5]. A non-maximal pat-

tern is not returned to the user as there is a larger, more

specific pattern, which is frequent. However, in the context

of homomorphic patterns, which involve descendant edges,

the concept of superpattern is not sufficient for capturing

the specificity of a pattern. A tree pattern can be more

specific (and informative) without being a superpattern. For

instance, the homomorphic pattern P4 of Fig. 1b is more

specific than the homomorphic pattern P5 without being a

superpattern of P5. Therefore, a new sophisticated defini-

tion for maximal patterns is required which takes into

account both the particularities of the homomorphic pat-

terns and the single large tree setting.

Contribution In this paper, we address the problem of

mining maximal homomorphic unordered tree patterns

from a single large data tree. Our main contributions are:

• We define the problem of extracting homomorphic and

maximal homomorphic unordered tree patterns with

descendant relationships from a single large data tree.

This problem departs from previous ones which focus

on mining-induced or embedded tree patterns from a set

of small data trees.

• We constrain the extracted homomorphic patterns to be

non-redundant in order to avoid dealing with an infinite

number of frequent patterns of unbounded size. In order

to define maximal patterns, we introduce a strict partial

order on patterns characterizing specificity. A pattern

which is more specific provides more information on

the data tree.

• We design an efficient algorithm to discover all

frequent maximal homomorphic tree patterns. Our

algorithm wisely prunes the search space by generating

and considering patterns that are maximal and frequent

or can contribute to the generation of maximal frequent

patterns. It also exploits an optimization technique

which relies on pattern ordering to further reduce the

space of homomorphic patterns.

• Our algorithm employs an incremental frequency

computation method that avoids the costly enumeration

of all pattern matchings required by previous

approaches. An originality of our method is that

matching information of already computed patterns is

materialized as bitmaps. Exploiting bitmaps not only

minimizes the memory consumption, but also reduces

CPU costs.

• We run extensive experiments to evaluate the perfor-

mance and scalability of our approach on real datasets.

The experimental results show that: (a) The mined

maximal homomorphic tree patterns are larger on the

average than maximal embedded tree patterns on the

same datasets, (b) our approach mines homomorphic

maximal patterns up to several orders of magnitude

faster than state-of-the-art algorithms mining embed-

ded tree patterns when applied to a large data tree,

(c) our algorithm consumes only a small fraction of the

memory space and scales smoothly when the size of the

dataset increases, and(d) the optimization technique

substantially improves the time performance of the

algorithm.

Paper outline The next section introduces various related

concepts and formally defines the problem. Section 3

presents our algorithm that discovers all frequent maximal

homomorphic tree patterns. Our comparative experimental

results are presented and analyzed in Sect. 4. Related work

is reviewed in Sect. 5. Section 6 concludes and suggests

future work.

2 Preliminaries and Problem Definition

Trees and inverted lists We consider rooted labeled trees,

where each tree has a distinguished root node and a

labeling function lb mapping nodes to labels. A tree is

called ordered if it has a predefined left-to-right ordering

among the children of each node. Otherwise, it is unor-

dered. The size of a tree is defined as the number of its

nodes. In this paper, unless otherwise specified, a tree

pattern is a rooted, labeled, unordered tree.

For every label a in an input data tree T, we construct an

inverted list La of the data nodes with label a ordered by

their pre-order appearance in T. Figure 2a, b shows a data

tree and inverted lists of its labels.

Tree morphisms There are two types of tree patterns:

patterns whose edges represent child relationships (child

edges) and patterns whose edges represent descendant

relationships (descendant edges). In the literature of tree

pattern mining, different types of morphisms are

employed to determine whether a tree pattern is included

in a tree.

Homomorphic Pattern Mining from a Single Large Data Tree 205
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Given a pattern P and a tree T, a homomorphism from P

to T is a function m mapping nodes of P to nodes of T, such

that: (1) for any node x 2 P, lb(x) = lb(m(x)); and (2) for

any edge (x, y) 2 P, if (x, y) is a child edge, (m(x), m(y)) is

an edge of T, while if (x, y) is a descendant edge, m(x) is an

ancestor of m(y) in T.

Previous contributions have constrained the homomor-

phisms considered for tree mining in different ways. Let P

be a pattern with descendant edges. An embedding from P

to T is an injective function m mapping nodes of P to nodes

of T, such that: (1) for any node x 2 P, lb(x) = lb(m(x));

and (2) (x, y) is an edge in P iff m(x) is an ancestor of

m(y) in T. Clearly, an embedding is also a homomorphism.

Notice that, in contrast to a homomorphism, an embedding

cannot map two siblings of P to two nodes on the same

path in T. Patterns with descendant edges mined using

embeddings are called embedded patterns. We call patterns

with descendant edges mined using homomorphisms ho-

momorphic patterns. In this paper, we consider mining

homomorphic patterns. The set of frequent embedded

patterns on a data tree T is a subset of the set of frequent

homomorphic patterns on T since embeddings are restric-

ted homomorphisms.

Pattern nodes occurrence lists We identify an occur-

rence of P on T by a tuple indexed by the nodes of P whose

values are the images of the corresponding nodes in P

under a homomorphism of P to T. The set of occurrences of

P under all possible homomorphisms of P to T is a relation

OC whose schema is the set of nodes of P. If X is a node in

P labeled by label a, the occurrence list of X on T is a

sublist LX of the inverted list La containing only those

nodes that occur in the column for X in OC.

As an example, in Fig. 2c, the second and third columns

give the occurrence relation and the node occurrence lists,

respectively, of the pattern P on the tree T of Fig. 2a.

Support We adopt for the support of tree patterns root

frequency: The support of a pattern P on a data tree T is the

number of distinct images (nodes in T) of the root of

P under all homomorphisms of P to T. In other words, the

support of P on T is the size of the occurrence list of the

root of P on T.

A pattern S is frequent if its support is no less than a

user-defined threshold minsup. We denote by Fk the set

of all frequent patterns of size k, also known as a k-

pattern.

Constraining patterns When homomorphisms are con-

sidered, it is possible that an infinite number of frequent

patterns of unrestricted size can be extracted from a data-

set. In order to exclude this possibility, we consider and

define next non-redundant patterns. We say that two pat-

terns P1 and P2 are equivalent, if there exists a homo-

morphism from P1 to P2 and vice-versa. A node X in a

pattern P is redundant if the subpattern obtained from P by

deleting X and all its descendants is equivalent to P. For

example, the rightmost node C of P3 and the rightmost

node B of P5 in Fig. 3 are redundant. Adding redundant

nodes to a pattern can generate an infinite number of fre-

quent equivalent patterns which have the same support.

These patterns are not useful as they do not provide addi-

tional information on the data tree. A pattern is non-re-

dundant if it does not have redundant nodes. In Fig. 3,

patterns P3 and P5 are redundant, while the rest of the

patterns are non-redundant. Non-redundant patterns corre-

spond to minimal tree pattern queries [1] in tree databases.

Their number is finite. We discuss later how to efficiently

check patterns for redundancy by identifying redundant

nodes. We set forth to extract only frequent patterns which

are non-redundant, but in the process of finding frequent

non-redundant patterns, we might generate also some

redundant patterns.

Maximal patterns In order to define maximal homo-

morphic frequent patterns, we introduce a specificity rela-

tion on patterns: A pattern P1 is more specific than a pattern

P2 (and P2 is less specific than P1) iff there is a homo-

morphism from P2 to P1 but not from P1 to P2. If a pattern

P1 is more specific than a pattern P2, we write P1 � P2. For

instance, in Fig. 3, P1 � Pi; i ¼ 2; . . .; 7, and P2 � P6.

Similarly, in Fig. 1, P2 � P1, P5 � P3, P4 � P2 and

P4 � P5. Note that P4 is more specific than P5 even though

it is smaller in size than P5. Clearly, � is a strict partial

order. If P1 � P2, P1 conveys more information on the

dataset than P2.

Fig. 2 A tree T, its inverted lists and occurrence info. of pattern P on T. a A tree T, b inverted lists, c occurrence information for pattern P on

tree T
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A frequent pattern P is maximal if there is no other

frequent pattern P1, such that P1 � P. For instance, in

Fig. 1, all the patterns shown are frequent homomorphic

patterns and P4 is the only maximal pattern.

Problem statement Given a large tree T and a minimum

support threshold minsup, our goal is to mine all maximal

homomorphic frequent patterns from T.

3 Proposed Approach

Our approach for mining homomorphic tree patterns from a

large tree iterates between the candidate generation phase

and the support counting phase. In the first phase, we use a

systematic way to generate candidate patterns that are

potentially frequent. In the second phase, we develop an

efficient method to compute the support of candidate

patterns.

3.1 Candidate Generation

To generate candidate patterns, we adapt in this section the

equivalence class-based pattern generation method pro-

posed in [26, 27] so that it can address pattern redundancy

and maximality. A candidate pattern may have multiple

alternative isomorphic representations. To minimize the

redundant generation of the isomorphic representations of

the same pattern, we employ a canonical form for tree

patterns [7].

3.1.1 Equivalence Class-Based Pattern Generation

Let P be a pattern of size k-1. Each node of P is identified

by its depth-first position in the tree, determined through a

depth-first traversal of P, by sequentially assigning num-

bers to the first visit of the node. The rightmost leaf of P,

denoted rml, is the node with the highest depth-first posi-

tion. The immediate prefix of P is the subpattern of P

obtained by deleting the rml from P. The equivalence class

of P is the set of all the patterns of size k that have P as

their immediate prefix. We denote the equivalence class of

P as [P]. Any two members of [P] differ only in their rmls.

We use the notation Pi
x to denote the k-pattern formed by

adding a child node labeled by x to the node with position

i in P as the rml.

Given an equivalence class [P], we obtain its successor

classes by expanding patterns in [P]. Specifically, candi-

dates are generated by joining each pattern Pi
x 2 ½P� with

any other pattern Pj
y in [P], including itself, to produce the

patterns of the equivalence class ½Pi
x�. We denote the above

join operation by Pi
x � Pj

y. There are two possible outcomes

for each Pi
x � Pj

y: One is obtained by making y a sibling

node of x in Pi
x (cousin expansion), the other is obtained by

making y a child node of x in Pi
x (child expansion). We call

patterns Pi
x and Pj

y the left parent and right parent of a join

outcome, respectively.

As an example, in Fig. 3, patterns P1, P2, P3, P5, and P7

are members of class [a / b / c]; P4 is a join outcome of

P3 � P7, obtained by making the rml d of P7 a child of the

rml c of P3.

3.1.2 Checking Pattern Redundancy

The pattern generation process may produce candidates

which are redundant (defined in Sect. 2). We discuss below

how to efficiently check pattern redundancy by identifying

redundant nodes. We exploit a result of [1] which states

that: A node X of a pattern P is redundant iff there exists a

homomorphism h from P to itself such that hðXÞ 6¼ X. A

brute-force method for checking whether a pattern is

redundant computes all the possible homomorphisms from

P to itself. Unfortunately, the number of the homomor-

phisms can be exponential on the size of P. Therefore, we

have designed an algorithm called computeHoms which,

given patterns P and Q, compactly encodes all the homo-

morphisms from P to Q in polynomial time and space. This

algorithm enhances the previous one presented in [13]

which checks whether there exists a homomorphism from

one tree pattern to another, while achieving the same time

and space complexity.

Algorithm computeHoms Algorithm computeHoms is

presented in Fig. 4. It deploys a standard dynamic pro-

gramming technique for computing a Boolean matrixM(p,

Fig. 3 A data tree and

homomorphic patterns. a A data

tree T, b Homomorphic patterns

on T
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q), p 2 nodes(P), q 2 nodes(Q), such that M(p, q) is true

if: (1) There exists a homomorphism from the subpattern

rooted at p to the subpattern rooted at q (Function Bot-

tomUpTraversal); and (2) there exists a homomorphism

from the prefix path of p to the prefix path of q, where

prefix path of a node is the path from the pattern root to that

node (Function TopDownTraversal). Without loss of gen-

erality, we assume that both P and Q have a virtual root

r. We now describe the algorithm in more detail.

The algorithm first performs a bottom-up traversal of P

and Q (Function BottomUpTraversal) to compute a Boo-

lean matrix C. Entry C(p, q) is true if there exists a

homomorphism from the subpattern rooted at p to the

subpattern rooted at q. To eliminate redundant computa-

tions, the bottom-up traversal also computes a second

matrix D. Entry D(p, q) is true if there exists a homo-

morphism from the subpattern rooted at p to some sub-

pattern of Q whose root is either q or a descendant of q.

If BottomUpTraversal returns true, the algorithm

proceeds to perform a top-down traversal of P and Q

(Function TopDownTraversal) to compute a Boolean

matrix P. Entry P(p, q) is true if C(p, q) (computed by

the bottom-up traversal) is true and there exists a

homomorphism from the prefix path of p to the prefix

path of q. As with the bottom-up traversal, a second

matrix A is computed. Entry A(p, q) is true if there exists

a homomorphism from the prefix path of p to some prefix

path of either q or an ancestor of q.

Proposition 1 There exists a homomorphism from pat-

tern P to pattern Q that maps node p 2 P to node q 2 Q iff

entry M(p,q) is true, where M is the Boolean matrix

computed by Algorithm computeHoms on P and Q.

The proof of Proposition 1 is straightforward by the

definition of pattern homomorphisms and the construction

process of Boolean matrix M.

We now analyze the complexity of Algorithm com-

puteHoms. The entry D(u, v) of function Bot-

tomUpTraversal is checked once for every pair of nodes

(u 2 childrenðpÞ, v 2 childrenðqÞ) (line 4). The entry D(p,

v) is checked once for every pair of nodes (p 2 P,

v 2 childrenðqÞ) (line 5). Therefore, the total number of

times these two entries are checked is no more than

jPj � jQj.
The entry A(parent of p, parent of q) in line 4 and the

entry A(p, parent of q) in line 5 of function

TopDownTraversal are checked once for every pair of

nodes (p 2 P, q 2 Q). The total number of times these two

entries are checked is no more than jPj � jQj. Therefore,
the time and memory complexities of Algorithm com-

puteHoms are both OðjPj � jQjÞ.
During the candidate generation, we cannot, however,

simply discard candidates that are redundant, since they

may be needed for generating non-redundant patterns. For

instance, the pattern P5 shown in Fig. 3b is redundant, but

it is needed (as the left operand in a join operation with P7)

to generate the non-redundant pattern P6 shown in the same

figure. Clearly, we want to avoid as much as possible

generating patterns that are redundant. In order to do so, we

introduce the notion of expandable pattern.

Definition 1 (Expandable pattern) A pattern P is ex-

pandable, if it does not have a redundant node X such that:

(1) X is not on the rightmost path of P, or (2) X is on the

rightmost path of P and LX is equal to LX1
[ . . . [ LXk

,

where X1; . . .;Xk are the images of node X under a homo-

morphism from P to itself.

Based on Definition 1, if a pattern is not expandable,

every expansion of it is redundant. Therefore, only

expandable patterns in a class are considered for expansion.

3.1.3 Expandable Pattern Refining

The number of expandable patterns enumerated by the

equivalence class expansion process can still be very large,

particularly when the frequent patterns to find have both a

high depth and a high branching factor. In order to further

reduce the number of generated patterns, we present below

a pattern refining method which exploits properties of the

equivalence class-based pattern expansion. We observe

that the specificity relation � induces a linear order on

Input: two patterns P and Q.
Output: a Boolean matrix M that encodes all the homomorphisms
from P to Q.

1. Initialize a boolean matrix C(p, q), p ∈ nodes(P ), q ∈ nodes(Q);
2. if (BottomUpTraversal(C)) then
3. M := TopDownTraversal(C);
4. else
5. there is no homomorphism from P to Q;

Function BottomUpTraversal(Matrix C)

1. Initialize a boolean matrix D(p, q), p ∈ nodes(P ), q ∈ nodes(Q);
2. for (every node q of Q in bottom-up order) do
3. for (every node p of P in bottom-up order) do
4. C(p, q) := (lb(q) = lb(q)) ∧

u∈children(p)( v∈children(q) D(u, v));
5. D(p, q) := C(p, q)∨ v∈children(q) D(p, v);
6. return D(root(p), root(q));

Function TopDownTraversal(Matrix C)

1. Initialize two boolean matrices P(p, q) and A(p, q), p ∈ nodes(P ),
q ∈ nodes(Q);

2. for (every node q of Q in top-down order) do
3. for (every node p of P in top-down order) do
4. P(p, q) := (C(p, q)) ∧ A(parent of p, parent of q);
5. A(p, q) := P(p, q)∨A(p, parent of q);
6. return P;

Fig. 4 Algorithm computeHoms
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patterns in a given equivalence class whose rightmost leaf

nodes have the same label: for any two patterns Pi
x and Pj

x

in the equivalence class [P], Pi
x � Pj

x if i[ j. Clearly, the

occurrence set of Pi
xðxÞ is a subset of the occurrence set of

Pj
xðxÞ, for i[ j.

Let P1;P2; . . .;Pn stand for a sequence of n expandable

patterns satisfying the above linear order. Each pattern in

the sequence has a rightmost leaf node x. For a pattern Pk,

if the occurrence set of PkðxÞ is the same as the union of the

occurrence sets of PiðxÞ, i ¼ 1; . . .; k � 1, then the set of

occurrences of Pk is the same as the union of occurrence

sets of Pi’s. In this case, it is not useful to further expand

Pk, since it is refined by a set of more specific patterns. We

call Pk a refinable pattern. In Fig. 7, pattern Q2 is refined by

Q1.

In order to efficiently identify refinable patterns, we

keep the patterns Pi
x in each class sorted by the node label

x primarily and by the position p (in descending order)

secondarily. Figure 6 shows patterns of a class in sorted

order. Given a sorted pattern list; the equivalence class

expansion process considers ordered pairs of patterns in the

class for expansion. This way, the candidate generation

process outputs a new class list which is also sorted based

on this order, and no explicit sorting is needed.

In the implementation, we scan patterns of a given class

in descending order. For each pattern P under considera-

tion, we check whether it has a preceding pattern Q, such

that the rightmost leaf nodes of P and Q have the same

label and the same occurrence list. If it is the case, P is a

refinable pattern and is excluded from further expansion.

The process is summarized in Procedure CheckClassEle-

ments shown in Fig. 5. Our experiments show that the

pattern pruning technique can effectively reduce the pattern

search space.

3.1.4 Finding Maximal Patterns

One way to compute the maximal patterns is to use a post-

processing pruning method. That is, first compute the set S

of all frequent homomorphic patterns, and then do the

maximality check and eliminate non-maximal patterns by

checking the specificity relation on every pair of patterns in

S. However, the time complexity of this method is O(jSj2).
It is, therefore, inefficient since the size of S can be

exponentially larger than the number of maximal patterns.

We have developed a better method which can reduce

the number of frequent patterns that need to go through the

maximality check. During the course of mining frequent

patterns, the method locates a subset of frequent patterns

called locally maximal patterns. A pattern P is locally

maximal if it is frequent and there exists no frequent pattern

in the class [P]. Clearly, a non-locally maximal pattern is

not maximal. Then, in order to identify maximal patterns,

we check only locally maximal patterns for maximality.

Our experiments show that this improvement can dramat-

ically reduce the number of frequent patterns checked for

maximality.

3.2 Support Computation

Recall that the support of a pattern P in the input data tree T

is defined as the size of the occurrence list LR of the root R

of P on T (Sect. 2). To compute LR, a straightforward

method is to first compute the relation OC which stores the

set of occurrences of P under all possible homomorphisms

of P to T and then ‘‘project’’ OC on column R to get LR.

Fortunately, we can do much better using a twig-join

approach to compute LR without enumerating all homo-

morphisms of P to T. Our approach for support computa-

tion is a complete departure from existing approaches.

A holistic twig-join approach In order to compute LX ,

we exploit a holistic twig-join approach (e.g., TwigStack

[4]), the state-of-the-art technique for evaluating tree pat-

tern queries on tree data. Algorithm TwigStack works in

two phases. In the first phase, it computes the matches of

the individual root-to-leaf paths of the pattern. In the sec-

ond phase, it merge-joins the path matches to compute the

results for the pattern. TwigStack ensures that each solution

to each individual query root-to-leaf path is guaranteed to

be merge-joinable with at least one solution of each of the

other root-to-leaf paths in the pattern. Therefore, the

algorithm can guarantee worst-case performance linear to

the size of the data tree inverted lists (the input) and the

size of the pattern matches in the data tree (the output), i.e.,

the algorithm is optimal.

By exploiting the above property of TwigStack, we can

compute the support of P at the first phase of TwigStack

when it finds data nodes participating in matches of root-to-

leaf paths of P. There is no need to enumerate the occur-

rences of pattern P on T (i.e., to compute the occurrence

relation OC).

The time complexity of the above support computation

method is OðjPj � jT jÞ, where |P| and |T| denote the size of

Procedure CheckClassElements(Class [P ])
1. for (each P i

x ∈ [P ] in descending order) do
2. check if P i

x is expandable; {Ref. Definition 1 and Algorithm
computeHoms of Fig. 4}

3. if (P i
x is not expandable and contains a redundant node not on

the rightmost path) then
4. remove P i

x from [P ];
5. check if P i

x is refinable; {Ref. Section 3.1.3}
6. if (P i

x is refinable) then
7. remove P i

x from [P ];

Fig. 5 Procedure CheckClassElements
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pattern P and of the input data tree T, respectively. Its

space complexity is the minðjT j; jPj � heighðTÞÞ. We note

that, on the other hand, the problem of computing an

unordered embedding from P to T is NP-complete [12]. As

a consequence, a state-of-the-art unordered embedded

pattern mining algorithm Sleuth [26] computes pattern

support in OðjPj � jT j2jPjÞ time and OðjPj � jT jjPjÞ space.
Nevertheless, the TwigStack-based method can still be

expensive for computing the support of a large number of

candidates, since it needs to scan fully the inverted lists

corresponding to every candidate pattern. We present

below an incremental method, which computes the support

of a pattern P by leveraging the computation done at its

parent patterns in the search space.

Computing occurrence lists incrementally Let P be a

pattern and X be a node in P labeled by a. Using TwigS-

tack, P is computed by iterating over the inverted lists

corresponding to every pattern node. If there is a sublist,

say LX , of La such that P can be computed on T using LX
instead of La, we say that node X can be computed using LX
on T. Since LX is non-strictly smaller than La, the com-

putation cost can be reduced. Based on this idea, we pro-

pose an incremental method that uses the occurrence lists

of the two parent patterns of a given pattern P to compute

P.

Let pattern Q be a join outcome of Pi
x � Pj

y. By the

definition of the join operation, we can easily identify a

homomorphism from each parent Pi
x and Pj

y to Q.

Proposition 2 Let X0 be a node in a parent Q0 of Q and X

be the image of X0 under a homomorphism from Q0 to Q.

The occurrence list LX of X on T is a sublist of the

occurrence list LX0 of X0 on T.

Sublist LX is the inverted list of data tree nodes that

participate in the occurrences of Q to T. By Proposition 2,

X can be computed using LX0 instead of using the corre-

sponding label inverted list. Further, if X is the image of

nodes X1 and X2 defined by the homomorphisms from the

left and right parent of Q, respectively, we can compute X

using the intersection, LX1
\ LX2

, of LX1
and LX2

which is

the sublist of LX1
and LX2

comprising the nodes that appear

in both LX1
and LX2

:

Using Proposition 2, we can compute Q using only the

occurrence list sets of its parents. Thus, we only need to store

with each frequent pattern its occurrence list set. Ourmethod

is space efficient since the occurrence lists can encode in

linear space an exponential number of occurrences for the

pattern [4]. In contrast, the state-of-the-art methods for

mining embedded patterns [26, 27] have to store information

about all the occurrences of each given pattern in T.

Occurrence lists as bitmaps The occurrence list LX of a

pattern node X labeled by a on T can be represented by a

bitmap on La. This is a bit array of size jLaj which has a

‘‘1’’ bit at position i iff LX comprises the tree node at

position i of La. Then, the occurrence list set of a pattern is

the set of bitmaps of the occurrence lists of its nodes.

Figure 2c shows an example of bitmaps for pattern

occurrence lists.

As verified by our experimental evaluation, storing the

occurrence lists of multiple patterns as bitmaps results in

important space savings. Bitmaps offer CPU cost saving as

well by allowing the translation of pattern evaluation to

bitwise operations. This bitmap technique is initially

introduced and exploited in [20, 21, 23, 24] for material-

izing tree pattern views and for efficiently answering

queries using materialized views.

Example 1 Figure 7 shows an example of the incremental

method for computing the support of Q1 and Q2, the two

outcomes of P1 � P2 on the data tree T of Fig. 2a. We

assume minsup is one. Each node of the patterns P1 and P2

is associated with its occurrence list together with the

corresponding bitmap vector. To compute Q1 and Q2, the

bitmaps of P1 and P2 are ANDed and the resulting bitmaps

are attached to nodes of Q1 and Q2. These bitmaps are used

as input to compute Q1 and Q2 using TwigStack. The bit-

map output associated with each pattern node indicates the

occurrence list of that node on T. Note that pattern Q2 is

refined by Q1 and thus will not be further expanded.

3.3 The Tree Pattern Mining Algorithm

We present now our homomorphic tree pattern mining

algorithm called HomTreeMiner (Fig. 8). The first part of

the algorithm computes the sets containing all frequent 1-

patterns F1 (i.e., nodes) and 2-patterns F2 (lines 1–2). F1

can be easily obtained by finding inverted lists of T whose

size (in terms of number of nodes) is no less than minsup.

The total time for this step is O(|T|). F2 is computed by the

following procedure: Let X / Y denote a 2-pattern formed

by two elements X and Y of F1. The support of X / Y is

computed via algorithm TwigStack on the inverted lists

LlbðXÞ and LlbðYÞ that are associated with labels lb(X) and

Fig. 6 Sorted patterns in class [a / b / c]
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lb(Y), respectively. The total time for each 2-pattern can-

didate is O(|T|).

The main part of the computation is performed by

procedure MineHomPatterns which is invoked for every

frequent 2-pattern (Lines 3–4). This is a recursive proce-

dure. It tries to join every Pi
x 2 ½P� with any other element

Pj
y 2 ½P� including Pi

x itself. Then, it computes the support

of the child expansion and the cousin expansion outcomes

in that order and adds them to ½Pi
x� if they are frequent

(Lines 1–8). Once all Pj
y have been processed, Procedure

CheckClassElements of Fig. 5 is invoked on class ½Pi
x�

(Line 9). Subsequently, the algorithm checks whether Pi
x is

a locally maximal pattern. If so, Pi
x is added to the maximal

pattern set M (Line 10). Then, the new class ½Pi
x� is

recursively explored in a depth-first manner (Line 11). The

recursive process is repeated until no more frequent pat-

terns can be generated.

Once all the locally maximal patterns have been found,

the maximality check procedure described in Sect. 3.1 is

run to identify maximal patterns among the locally maxi-

mal ones and the results are returned to the user (Lines

5–6).

Before expanding a class [P], we make sure that P is

expandable and is in canonical form (line 2 in

MineHomPatterns). Our approach is independent of any

particular canonical form; it can work with any systematic

way of choosing a representative from isomorphic repre-

sentations of the given pattern, such as those presented in

[7, 26]. Efficient methods for checking canonicity can also

be drawn from [7, 26].

ComplexityThe total cost for generating a new class ½Pi
x� is

Oðn2 � jT j � jPjÞ, where n is the number of elements of [P].

In terms of memory consumption, observe that the algorithm

only needs to load in memory the classes along a path in a

depth-first traversal of the search space. In fact, it only needs

to store in memory occurrence lists for two classes at a time:

the current class [P] and a new class ½Pi
x�. Since occurrence

lists of each pattern in a class arematerialized as bitmaps, the

memory footprint of the algorithm is very small. This is

verified by our experimental results presented in Sect. 4.

4 Experimental Evaluation

We implemented our algorithm HomTreeMiner and we

conducted experiments to: (a) compare the features of the

extracted (maximal) homomorphic patterns with those of

(maximal) embedded patterns and (b) study the perfor-

mance of HomTreeMiner in terms of execution time,

memory consumption and scalability. To evaluate the

Fig. 7 An example of incremental support computation for the outcomes of P1 � P2 on tree T

Input: inverted lists L of tree T and minsup.
Output: all the frequent maximal patterns M in T .

1. F1 := {frequent 1-patterns};
2. F2 := {classes [P ]1 of frequent 2-patterns};
3. for (every [P ] ∈ F2) do
4. MineHomPatterns([P ], M = ∅);
5. run the maximality checking procedure on M;
6. return M;

Procedure MineHomPatterns([P ], M)

1. for (each P i
x ∈ [P ]) do

2. if (P i
x is in canonical form and is expandable) then

3. [P i
x] := ∅

4. for (each P j
y ∈ [P ]) do

5. Q := the child expansion outcome of P i
x ⊗ P j

y ;
6. add Q to [P i

x] if Q is frequent;
7. Q := the cousin expansion outcome of P i

x ⊗ P j
y ;

8. add Q to [P i
x] if Q is frequent;

9. CheckClassElements([P i
x]); {Ref. Fig. 5}

10. add P i
x to M if none of the elements of [P i

x] is in canonical
form;

11. MineHomPatterns([P i
x], M);

Fig. 8 Homomorphic tree pattern mining algorithm
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effect of the pattern refining technique described in Sect.

3.1.3, we consider also a basic version of HomTreeMiner

that does not employ that optimization in its mining pro-

cess. That basic version was introduced in [22] and is

called HomTMBasic in the following paragraphs.

To the best of our knowledge, there is no previous

algorithm computing homomorphic patterns from data

trees. Therefore, we compared the performance of our

algorithm with state-of-the-art algorithms that compute

embedded patterns on the same dataset.

Our implementation was coded in Java. All the experi-

ments reported here were performed on a workstation

equipped with an Intel Xeon CPU 3565 @3.20 GHz pro-

cessor with 8 GB memory running JVM 1.7.0 on Windows

7 Professional. The Java virtual machine memory size was

set to the default 4 GB.

Datasets We have ran experiments on three real and

benchmark datasets with different structural properties.

Their main characteristics are summarized in Table 1.

Treebank1 is a real XML dataset derived from compu-

tation linguistics. It models the syntactic structure of

English text and provides a hierarchical representation of

the sentences in the text by breaking them into syntactic

units based on part of speech. The dataset is deep and

comprises highly recursive and irregular structures.

XMark2 is an XML benchmark dataset generated using

the data generator with factor = 0.05. It is deep and has

many regular structural patterns. It includes very few

recursive elements.

CSlogs3 is a real dataset and is composed of users’

access trees to the CS department Web site at RPI. The

dataset contains 59,691 trees that cover a total of 13,355

unique web pages. The average size of each tree is 12.94.

4.1 Algorithm Performance

We compare the performance of HomTreeMiner with two

unordered embedded tree mining algorithms Sleuth [26]

and EmbTreeMiner [19]. Sleuth was designed to mine

embedded patterns from a set of small trees. In order to

allow the comparison in the single large tree setting, we

adapted Sleuth by having it return as support of a pattern

the number of its root occurrences in the data tree. Emb-

TreeMiner is a newer embedded tree mining algorithm

which, as HomTreeMiner, exploits the twig-join approach

and bitmaps to compute pattern support.

To the best of our knowledge, direct mining of maximal

embedded patterns has not been studied in the literature.

We therefore use post-processing pruning which eliminates

non-maximal patterns after computing all frequent

embedded patterns. For this task, we implemented the

unordered tree inclusion algorithm described in [12]. As

our experiments show, the cost of this post-processing step

is in general not significant compared to the frequent pat-

tern mining cost.

To allow Sleuth—which is slower—to extract some

patterns within a reasonable amount of time, we used a

fraction of the Treebank dataset which consists of 35% of

the nodes of the original tree. We measured execution

times over the entire Treebank dataset in the scalability

experiment.

Candidate pattern generated Figs. 9c, 10c and 11c

compare the total candidates generated by sleuth, Emb-

TreeMiner, HomTMBasic and HomTreeMiner, respec-

tively, under different support thresholds on the Treebank,

XMark and CSlogs datasets.

As one can see, the search space of a homomorphic

pattern mining can be larger than that of embedded pattern

mining for low support levels. On Treebank, for instance,

HomTreeMiner computes 17 times more candidates than

EmbTreeMiner at minsup = 30 k. Since Treebank contains

many deep, highly recursive paths, the search space of

homomorphic patterns becomes substantially large at low

support levels. Like Treebank, XMark has many deep

paths, and therefore, the search space of homomorphic

patterns becomes large at low support levels. For example,

on XMark at minsup = 700, HomTreeMiner generates

about 2.23 times more candidates than EmbTreeMiner. The

number of candidates generated by HomTreeMiner and

EmbTreeMiner is comparable on CSlogs. The difference in

the number of candidates generated by sleuth and Emb-

TreeMiner is not noticeable on all the testing cases.

We notice that HomTMBasic generates substantially

more candidates than HomTreeMiner for low support

levels. For instance, on XMark at minsup = 650,

HomTMBasic generates about 9 times more candidates

than HomTreeMiner. On CSlogs at minsup = 250,

HomTMBasic generates about 5 times more candidates

than HomTreeMiner. This indicates that the pattern refining

technique enables HomTreeMiner to reduce substantially

the search space when it is applicable.

Execution time We measure the total elapsed time for

producing maximal frequent patterns at different support

Table 1 Dataset statistics

Dataset Tot. #nodes #labels Max/avg depth #paths

Treebank 2,437,666 250 36/8.4 1,392,231

XMark 83,533 74 12/5.6 60,853

CSlogs 772,188 13,355 86/4.4 59,691 (#trees)

1 http://www.cis.upenn.edu/*treebank.
2 http://monetdb.cwi.nl/xml/.
3 http://www.cs.rpi.edu/*zaki/software/.
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thresholds. The total time involves the time to generate

candidate patterns, compute pattern support and check

maximality of frequent patterns.

Figures 9a, 10a and 11a compare the total elapsed time

of the four algorithms under different support thresholds on

the Treebank, XMark and CSlogs datasets. Due to pro-

hibitively long times, we stopped testing Sleuth when

support levels are below certain values on each dataset.

We can see that HomTreeMiner runs orders of magni-

tude faster than Sleuth, especially for low support levels.

The rate of increase of the running time for HomTreeMiner

is slower than that for Sleuth as the support level decreases.

This is expected, since HomTreeMiner computes the sup-

port of a homomorphic pattern in time linear to the input

data size, whereas this computation is exponential for

embedded pattern miners (Sect. 3.2). Furthermore, Sleuth

has to keep track of all possible embedded occurrences of a

candidate to a data tree and to perform expensive join

operations over these occurrences.

The large number of candidate homomorphic patterns

can negatively affect the time performance of Hom-

TreeMiner at low support levels. For instance, on Tree-

bank, HomTreeMiner shows similar or better performance

than EmbTreeMiner when support levels are above 40 K

and both generate a similar number of candidates. When

minsup decreases below 40 K, the execution time of

HomTreeMiner increases noticeably faster than that of

EmbTreeMiner due to the substantially larger number of
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Fig. 9 Performance comparison on a fraction of treebank. a Run time versus support. b Memory usage. c Candidate patterns
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candidates evaluated by HomTreeMiner. At minsup = 30k,

in order to evaluate 17 times more candidates, Hom-

TreeMiner runs about 15 times slower than EmbTreeMiner.

However, even though the number of (candidate and

frequent) homomorphic patterns is always larger than the

number of embedded patterns, this difference is not so

pronounced in shallower datasets like CSlogs. As we can

see from Fig. 11a, HomTreeMiner can largely outperform

EmbTreeMiner at low support levels. This is due to its

efficient computation of pattern support which does not

require the enumeration of pattern occurrences and the

embedding checking as is the case with EmbTreeMiner

[19].

From the results,weobserve thatHomTreeMinercan largely

outperform HomTMBasic, when it is able to substantially

reduce the search space with the refinement technique. For

instance, onXMark atminsup=650,HomTreeMiner runsmore

than 13 times faster than HomTMBasic.

Memory usage We measured the memory footprint of

the four algorithms with varying support thresholds. The

results are shown in Figs. 9b, 10b and 11b. We can see

that HomTreeMiner always has the best memory per-

formance. It consumes substantially less memory than

both Sleuth and EmbTreeMiner in all the test cases. This

is mainly because Sleuth needs to enumerate and store in

memory all the pattern occurrences for candidates under

consideration. In contrast, HomTreeMiner avoids storing

pattern occurrences by storing only bitmaps of occur-

rence lists which are usually of insignificant size.

Although EmbTreeMiner does not store pattern occur-

rences, it still has to generate pattern occurrences as

intermediate results, the size of which can be substantial

at low support levels. The memory performance of

HomTMBasic is similar to that of HomTreeMiner. The

results indicate that the memory performance of a min-

ing algorithm is mainly determined by its pattern support

computation.

4.2 Algorithm Scalability

In our final experiment, we studied the scalability of the

three algorithms EmbTreeMiner, HomTMBasic and

HomTreeMiner as we increase the input data size. We

omit the comparison with sleuth, since sleuth was unable

to finish within a reasonable time even on the smallest

size of input.

For Treebank, we generated ten fragments of increasing

size and fixed minsup at 4.5%. For XMark, we generated

10 XMark trees by setting factor = 0.01, 0.02, ..., 0.1 and

fixed minsup at 1%. For CSlogs, we generated 7 datasets of

different sizes (from 40 k trees and up to 100 k) by ran-

domly choosing trees from the original CSlogs. We fixed

minsup at 400.

The results show that HomTreeMiner has the best time

performance on both XMark and CSlogs (Fig. 12b, c); it

runs slightly slower than EmbTreeMiner on Treebank

(Fig. 12a). The reason is that, on both XMark and

CSlogs, the number of candidates evaluated by Hom-

TreeMiner is similar to that by EmbTreeMiner, whereas

on Treebank, it needs to evaluate 56% more candidates

on average. On CSlogs, the growth of the running time of

EmbTreeMiner becomes much sharper with datasets

containing 80 k trees and up. EmbTreeMiner is unable to

finish within 5 hours on CSlogs containing 90 k trees and

up. HomTMBasic has similar time performance with

HomTreeMiner on both Treebank and XMark. However,

on CSlogs of size 90 k and 100 k, HomTreeMiner out-

performs HomTMBasic by a factor of more than 2.5. The

reason is that, in these two cases, HomTMBasic has to

evaluate about 47 k more candidates in total and gen-

erates twice as many frequent patterns on average than

HomTreeMiner.

Figure 13a–c show that HomTreeMiner always has the

smallest memory footprint. The growth of its memory

consumption is much slower than that of EmbTreeMiner.
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Fig. 12 Run time scalability comparison on the three datasets with increasing size. a Treebank (minsup = 4.5%). b XMark (minsup = 1%).

c CSlogs (minsup = 400)
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4.3 Comparison of Mined Maximal Homomorphic

and Embedded Patterns

We computed different statistics on frequent and maximal

frequent patterns mined by HomTreeMiner and Emb-

TreeMiner from the three datasets varying the support; the

results are summarized in Table 2. For the comparison, we

considered only maximal embedded patterns that contain

no redundant nodes. We show the total number of maximal

embedded patterns in parenthesis in Column 5. We can

make the following observations.

First, HomTreeMiner is able to discover larger patterns

than EmbTreeMiner for the same support level. As one can

see in Table 2, the maximum size of frequent homomor-

phic patterns and the maximum size and average number of

nodes, height and fanout of maximum frequent homo-

morphic patterns is never smaller (substantially larger in

many cases) than that of the embedded patterns for the

same support level.

Second, the number of homomorphic and embedded

frequent patterns is substantially reduced if only maximal

patterns are selected (Column 6 of Table 2). However, the

effect is larger on homomorphic patterns as the number of

frequent homomorphic patterns is usually larger than that

of embedded patterns for the same support level (Column 3

of Table 2).

Third, by further looking at the mined maximal patterns,

we find that the embedded maximal patterns at a certain

support level can be partitioned into sets which correspond

one-to-one to the maximal homomorphic patterns at the

same support level so that all the embedded patterns in a

set are less specific than the corresponding homomorphic

pattern. Figure 14 shows, for each of the three datasets,

examples of embedded maximal patterns each from the

same set in the partition and the corresponding maximal

homomorphic pattern. Therefore, for a number of appli-

cations, maximal homomorphic patterns can offer more

information in a more compact way.
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Fig. 13 Memory usage scalability comparison on the three datasets with increasing size. a Treebank (minsup = 4.5%). b XMark (minsup = 1%).

c CSlogs (minsup = 400)

Table 2 Statistics for maximal frequent patterns mined from the three datasets

Dataset Morphism # freq. # loc.max # max. non. %max. over Average Average Average maximum #common

patterns patterns red.patterns freq. patterns #nodes height fanout #nodes max.patterns

Treebank Emb 78 n/a 2 (8) 2.6 0.63 0.375 0.25 3 1

(minsup = 35k) Hom 521 158 9 1.7 5 2.11 2.11 8

Treebank Emb 175 n/a 13 (32) 7.4 1.47 0.66 0.78 5 5

(minsup = 30k) Hom 2937 915 35 1.2 6.14 2.23 2.57 9

XMark Emb 934 n/a 14 (19) 1.5 2.63 1.05 1.58 5 6

(minsup = 800) Hom 853 26 15 1.76 4.67 1.93 2.6 10

XMark Emb 43,441 n/a 27 (54) 0.06 3.33 1 2.09 15 14

(minsup = 550) Hom 56,160 302 35 0.06 8.74 2.29 5.71 15

CSlogs Emb 638 n/a 133 (164) 20.8 2 0.896 1.1 5 119

(minsup = 400) Hom 816 307 152 18.6 2.53 1.11 1.41 6

CSlogs Emb 2192 n/a 250 (375) 11.4 1.68 0.728 0.95 6 192

(minsup = 280) Hom 1625 676 312 19.2 2.8 1.22 1.57 6
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5 Related Work

We now discuss how our work relates to the existing lit-

erature. The problem of mining tree patterns from a set of

small trees has been studied since the last decade. Among

the many proposed algorithms [2, 3, 5, 6, 8–11, 14–19,

25–27], only few mine unordered embedded patterns

[9, 17, 26].

Mining unordered embedded patterns TreeFinder [17] is

the first unordered embedded tree pattern mining algo-

rithm. It is a two-step algorithm. In the first step, it clusters

the input trees by the co-occurrence of labels pairs. In the

second step, it computes maximal trees that are common to

all the trees of each cluster. A known limitation of

TreeFinder is that it tends to miss many frequent patterns

and is computationally expensive.

WTIMiner [9] transfers the frequent tree pattern mining

to itemset mining. It first finds all the frequent itemsets, and

then for each itemset found, it scans the database to count

all the corresponding tree patterns. Although WTIMiner is

complete, it is inefficient since the structural information is

lost while mining for frequent itemsets. Further, the over-

head for processing false positives may potentially reduce

the performance.

Sleuth [26] extends the ordered embedded pattern min-

ing algorithm TreeMiner [27]. Unlike TreeFinder, Sleuth

uses the equivalence class pattern expansion method to

generate candidates. To avoid repeated invocation of tree

inclusion checking, Sleuth maintains a list of embedded

occurrences with each pattern. It defines also a quadratic

join operation over pattern occurrence lists to compute

support for candidates. The join operation becomes inef-

ficient when the size of pattern occurrence lists is large.

Our approach relies on an incremental stack-based

approach that exploits bitmaps to efficiently compute the

support in time linear to the size of input data.

Mining maximal and closed induced patterns There

exist algorithms [5, 18, 25] which focus on mining closed

and maximal (induced) patterns. A frequent pattern P is

closed if none of P’s proper superpatterns has the same

support as that P has; P is maximal if none of P’s proper

superpatterns is frequent. The number of both maximal and

closed patterns is usually much smaller, yet represents the

same information as that of all frequent patterns. We below

briefly mention about these algorithms.

CMTreeMiner [5] mines both closed and maximal fre-

quent patterns from a set of small trees. Their method relies

on a concept called blanket. The blanket of a pattern pro-

vides the set of immediate super patterns that are frequent.

By comparing the occurrences of a given pattern with the

occurrences of its blanket patterns, the algorithm determi-

nes whether the original pattern is closed or not. It uses

pruning and heuristic techniques to reduce the search

space. CMTreeMiner is the first algorithm which directly

mines closed and maximal patterns without first generating

all frequent patterns. However, it mines only for induced

patterns; extending it to embedded patterns is not trivial.

PathJoin [25] finds maximal unordered induced patterns

from a set of small trees. PathJoin assumes that no two

siblings in data trees have the same label. It first discovers

the set of maximal frequent paths and then it finds the tree

patterns by joining the paths. After obtaining all frequent

patterns, PathJoin keeps only maximal patterns by using a

post-processing pruning, which eliminates those that are

not maximal. Such a strategy will suffer from a significant

overhead if the number of false positive paths is very high.

DryadeParent [18] mines closed induced patterns from

a set of small trees. Observing that the performances of

Fig. 14 Examples of maximal patterns mined from the three datasets
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existing algorithms are dramatically affected by the

branching factor of the tree patterns to find, DryadeParent

makes the assumption that no two siblings in the data trees

can have the same label (similar to PathJoin). The method

first computes a set of tiles, which are closed frequent

patterns of depth 1. Then, it develops a hooking strategy

that reconstructs the closed frequent patterns from these

tiles. Similar to PathJoin, DryadeParent is designed based

on the assumption that no two siblings in the data trees can

have the same label. While this simplifies the problem, it

limits the usage of the method in real applications.

The work on mining tree patterns in a single large tree or

graph setting has so far been very limited. The only known

papers are [8, 10, 11] which focus on mining tree patterns

with only child edges from a single graph and [19] which

leverages homomorphisms to mine embedded tree patterns

from a single tree. To the best of our knowledge, our work

is the first one for efficiently mining (maximal) homo-

morphic tree patterns with descendant edges from a single

large tree.

A preliminary version of algorithm HomTreeMiner was

presented in [22]. The algorithm described in the present

paper extends the previous version with an optimization

technique which exploits the specificity relation to prune

the space of candidate homomorphic patterns. The per-

formance of the new version of HomTreeMiner is com-

pared with that of its old version in the experimental

section.

6 Conclusion

In this paper, we have addressed the problem of mining

maximal frequent homomorphic tree patterns from a single

large tree. We have provided a novel definition of maximal

homomorphic patterns which takes into account homo-

morphisms, pattern specificity and the single tree setting.

We have designed an efficient algorithm that discovers all

frequent non-redundant maximal homomorphic tree pat-

terns. Our approach employs an incremental stack-based

frequency computation method that avoids the costly

enumeration of all pattern occurrences required by previ-

ous approaches. An originality of our method is that

matching information of already computed patterns is

materialized as bitmaps, which greatly reduces both

memory consumption and computation costs. An opti-

mization technique further prunes the search space of

candidate patterns. We have conducted extensive experi-

ments to compare our approach with tree mining algo-

rithms that mine embedded patterns when applied to a large

data tree. Our results show that maximal homomorphic

patterns are fewer and larger than maximal embedded tree

patterns. Further, our algorithm is as fast as the state-of-

the-art algorithm mining embedded trees from a single tree

while outperforming it in terms of memory consumption

and scalability.

Several applications are interested in extracting not all

the frequent patterns, but only those that comply with a

number of restrictions. We are currently working on

incorporating user-specified constraints to the proposed

approach to enable constraint-based homomorphic pattern

mining.
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