5,466 research outputs found

    Model Checking Single Agent Behaviours by Fluid Approximation

    Get PDF
    In this paper we investigate a potential use of fluid approximation techniques in the context of stochastic model checking of CSL formulae. We focus on properties describing the behaviour of a single agent in a (large) population of agents, exploiting a limit result known also as fast simulation. In particular, we will approximate the behaviour of a single agent with a time-inhomogeneous CTMC, which depends on the environment and on the other agents only through the solution of the fluid differential equation, and model check this process. We will prove the asymptotic correctness of our approach in terms of satisfiability of CSL formulae. We will also present a procedure to model check time-inhomogeneous CTMC against CSL formulae

    Fluid Model Checking of Timed Properties

    Get PDF
    We address the problem of verifying timed properties of Markovian models of large populations of interacting agents, modelled as finite state automata. In particular, we focus on time-bounded properties of (random) individual agents specified by Deterministic Timed Automata (DTA) endowed with a single clock. Exploiting ideas from fluid approximation, we estimate the satisfaction probability of the DTA properties by reducing it to the computation of the transient probability of a subclass of Time-Inhomogeneous Markov Renewal Processes with exponentially and deterministically-timed transitions, and a small state space. For this subclass of models, we show how to derive a set of Delay Differential Equations (DDE), whose numerical solution provides a fast and accurate estimate of the satisfaction probability. In the paper, we also prove the asymptotic convergence of the approach, and exemplify the method on a simple epidemic spreading model. Finally, we also show how to construct a system of DDEs to efficiently approximate the average number of agents that satisfy the DTA specification

    Design and Optimisation of the FlyFast Front-end for Attribute-based Coordination

    Get PDF
    Collective Adaptive Systems (CAS) consist of a large number of interacting objects. The design of such systems requires scalable analysis tools and methods, which have necessarily to rely on some form of approximation of the system's actual behaviour. Promising techniques are those based on mean-field approximation. The FlyFast model-checker uses an on-the-fly algorithm for bounded PCTL model-checking of selected individual(s) in the context of very large populations whose global behaviour is approximated using deterministic limit mean-field techniques. Recently, a front-end for FlyFast has been proposed which provides a modelling language, PiFF in the sequel, for the Predicate-based Interaction for FlyFast. In this paper we present details of PiFF design and an approach to state-space reduction based on probabilistic bisimulation for inhomogeneous DTMCs.Comment: In Proceedings QAPL 2017, arXiv:1707.0366

    Hybrid Behaviour of Markov Population Models

    Full text link
    We investigate the behaviour of population models written in Stochastic Concurrent Constraint Programming (sCCP), a stochastic extension of Concurrent Constraint Programming. In particular, we focus on models from which we can define a semantics of sCCP both in terms of Continuous Time Markov Chains (CTMC) and in terms of Stochastic Hybrid Systems, in which some populations are approximated continuously, while others are kept discrete. We will prove the correctness of the hybrid semantics from the point of view of the limiting behaviour of a sequence of models for increasing population size. More specifically, we prove that, under suitable regularity conditions, the sequence of CTMC constructed from sCCP programs for increasing population size converges to the hybrid system constructed by means of the hybrid semantics. We investigate in particular what happens for sCCP models in which some transitions are guarded by boolean predicates or in the presence of instantaneous transitions

    Applying Mean-field Approximation to Continuous Time Markov Chains

    Get PDF
    The mean-field analysis technique is used to perform analysis of a systems with a large number of components to determine the emergent deterministic behaviour and how this behaviour modifies when its parameters are perturbed. The computer science performance modelling and analysis community has found the mean-field method useful for modelling large-scale computer and communication networks. Applying mean-field analysis from the computer science perspective requires the following major steps: (1) describing how the agents populations evolve by means of a system of differential equations, (2) finding the emergent deterministic behaviour of the system by solving such differential equations, and (3) analysing properties of this behaviour either by relying on simulation or by using logics. Depending on the system under analysis, performing these steps may become challenging. Often, modifications of the general idea are needed. In this tutorial we consider illustrating examples to discuss how the mean-field method is used in different application areas. Starting from the application of the classical technique, moving to cases where additional steps have to be used, such as systems with local communication. Finally we illustrate the application of the simulation and uid model checking analysis techniques

    Fluid Model Checking

    Full text link
    In this paper we investigate a potential use of fluid approximation techniques in the context of stochastic model checking of CSL formulae. We focus on properties describing the behaviour of a single agent in a (large) population of agents, exploiting a limit result known also as fast simulation. In particular, we will approximate the behaviour of a single agent with a time-inhomogeneous CTMC which depends on the environment and on the other agents only through the solution of the fluid differential equation. We will prove the asymptotic correctness of our approach in terms of satisfiability of CSL formulae and of reachability probabilities. We will also present a procedure to model check time-inhomogeneous CTMC against CSL formulae

    On Formal Methods for Collective Adaptive System Engineering. {Scalable Approximated, Spatial} Analysis Techniques. Extended Abstract

    Full text link
    In this extended abstract a view on the role of Formal Methods in System Engineering is briefly presented. Then two examples of useful analysis techniques based on solid mathematical theories are discussed as well as the software tools which have been built for supporting such techniques. The first technique is Scalable Approximated Population DTMC Model-checking. The second one is Spatial Model-checking for Closure Spaces. Both techniques have been developed in the context of the EU funded project QUANTICOL.Comment: In Proceedings FORECAST 2016, arXiv:1607.0200

    The Mean Drift: Tailoring the Mean Field Theory of Markov Processes for Real-World Applications

    Full text link
    The statement of the mean field approximation theorem in the mean field theory of Markov processes particularly targets the behaviour of population processes with an unbounded number of agents. However, in most real-world engineering applications one faces the problem of analysing middle-sized systems in which the number of agents is bounded. In this paper we build on previous work in this area and introduce the mean drift. We present the concept of population processes and the conditions under which the approximation theorems apply, and then show how the mean drift is derived through a systematic application of the propagation of chaos. We then use the mean drift to construct a new set of ordinary differential equations which address the analysis of population processes with an arbitrary size

    Programmable models of growth and mutation of cancer-cell populations

    Full text link
    In this paper we propose a systematic approach to construct mathematical models describing populations of cancer-cells at different stages of disease development. The methodology we propose is based on stochastic Concurrent Constraint Programming, a flexible stochastic modelling language. The methodology is tested on (and partially motivated by) the study of prostate cancer. In particular, we prove how our method is suitable to systematically reconstruct different mathematical models of prostate cancer growth - together with interactions with different kinds of hormone therapy - at different levels of refinement.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Fluid approximation of broadcasting systems

    Get PDF
    Nature-inspired paradigms have been proposed to design and forecast behaviour of open distributed systems, such as sensor networks and the internet of things. In these paradigms system behaviour emerges from (complex) interactions among a large number of agents. Modelling these interactions in terms of classical point-to-point communication is often not practical. This is due to the large scale and the open nature of the systems, which means that partners for point-to-point communication may not be available at any given time. Nevertheless the need for efficient formal verification of qualitative and quantitative properties of these systems is of utmost importance, especially given their proposed pervasive and transparent nature. CARMA is a recently proposed formal modelling language for open distributed systems, which is equipped with a broadcast communication in order to meet the communication challenges of such systems. The inclusion of quantitative information about the timing and probability of actions gives rise to models suitable for analysing questions such as the probability that information will achieve total coverage within a system, or the expected market share that might be gained by competing service providers relying on viral advertising. The ability to express models is not the only challenge, because the scale of the systems we are interested in often defies discrete state-based analysis techniques such as stochastic simulation. This is the problem that we address in this paper as we consider how to provide an efficient fluid approximation, supporting efficient and accurate quantitative analysis of large scale systems, for a language that incorporates broadcast communication
    • …
    corecore