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Abstract. We address the problem of verifying timed properties of
Markovian models of large populations of interacting agents, modelled
as finite state automata. In particular, we focus on time-bounded prop-
erties of (random) individual agents specified by Deterministic Timed
Automata (DTA) endowed with a single clock. Exploiting ideas from
fluid approximation, we estimate the satisfaction probability of the DTA
properties by reducing it to the computation of the transient probability
of a subclass of Time-Inhomogeneous Markov Renewal Processes with
exponentially and deterministically-timed transitions, and a small state
space. For this subclass of models, we show how to derive a set of De-
lay Differential Equations (DDE), whose numerical solution provides a
fast and accurate estimate of the satisfaction probability. In the paper,
we also prove the asymptotic convergence of the approach, and exem-
plify the method on a simple epidemic spreading model. Finally, we also
show how to construct a system of DDEs to efficiently approximate the
average number of agents that satisfy the DTA specification.

Keywords: Stochastic Model Checking, Fluid Model Checking, Deter-
ministic Timed Automata, Time-Inhomogeneous Markov Renewal Pro-
cesses, Fluid Approximation, Delay Differential Equations.

1 Introduction

One of the major technological challenges in computer science and engineering
is the design and analysis of large-scale distributed systems, where many au-
tonomous components interact in an open environment. Examples include the
public and shared transportation in smart cities, the power distribution in smart
grids, and the robust communication protocols of online multimedia services.
In this context, the mathematical and computational modelling plays a crucial
role in the management of such Collective Adaptive Systems (CAS), due to the
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need of understanding and control of their emergent behaviours in open work-
ing conditions. The intrinsic uncertainty of CAS can be properly captured by
stochastic models, but the large number of interacting entities always results in a
severe state space explosion, introducing exceptional computational challenges.
In particular, the scalability of the models and of their analysis techniques is
a major issue in the development of stochastic model checking procedures for
the verification of formal properties. In this context, up to now, the numerical
approaches [24] are deeply hampered by the state space explosion of the large
stochastic models, and the statistical methods based on simulation require a
large computational effort.

A recent line of work tries to address the issue of scalability by exploit-
ing stochastic approximation techniques [10, 11], like the Fluid Approximation
[8, 9, 18]. In this method, a stochastic discrete model is replaced by a simpler
continuous one, whose dynamics is described by a set of differential equations.
In [8], the authors exploit this limit construction to verify properties that asses
the behaviour of a single individual in a collective system, and define a procedure
called the Fluid Model Checking (FMC) [7, 25]. This technique is based on the
Fast Simulation Theorem [16], which ensures that in a large population, a single
entity is influenced only by the mean behaviour of the rest of the agents.

In this work, we extend [8] to more complex time-bounded properties specified
by Deterministic Timed Automata endowed with a single clock [1, 3, 17]. As
in [8,10,13,23], we combine the agent and the DTA specification with a product
construction, obtaining a Time-Inhomogeneous Markov Renewal Process [15].
We then exploit results [6,22], defining the Fluid Approximation of this type of
models as the solution of a system of Delay Differential Equations (DDE) [16].
Other works dealing with the verification of DTA properties are [4, 12,14,19].

Main Result. We introduce a new fast and efficient Fluid Model Checking
procedure to accurately approximate the probability that a single agent satisfies
a single-clock DTA specification up to time T . Similarly to [8], the technique is
based of the Fast Simulation Theorem, and couples the Fluid Approximation of
the collective system with a set of Delay Differential Equations for the transient
probability of the Time-Inhomogeneous Markov Renewal Process obtained by
the product construction between the single agent and the DTA specification.

In the paper, we discuss the theoretical aspects of our approach, proving
the convergence of the estimated probability to the true one in the limit of an
infinite population. We also show the procedure at work on a running example
of a simple epidemic process, emphasising the quality of the approximation and
the gain in terms of computational time. Finally, by exploiting the construction
of [10, 22], we also show how to define a set of DDEs approximating the mean
number of agents satisfying a single-clock DTA specification up to time T .

Paper structure. In Sec. 2, we introduce the modelling language, the Fluid Ap-
proximation, the Fast Simulation Theorem, and the DTA specification for the
timed properties. In Sec. 3, we present our FMC procedure, defining the DDEs
for the probability that the single agent satisfies the timed property. In Sec. 3.1,
we adapt our verification technique to compute the mean number of agents that
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meet the DTA requirement. In Sec. 4, we discuss the quality of the approximation
on the epidemic example. Finally, in Sec. 5, we draw the final conclusions. The
proofs of the theoretical results are omitted and can be found in the extended
version available at http://arxiv.org/abs/1506.05909.

2 Background and Modelling Language

Agent Classes and Population Models. A collective system is comprised
of a large number of interacting agents. To describe its dynamics, we define a
population model [10,11] in which the agents are divided into classes, called agent
classes, according to their behaviour.

Definition 1 (Agent Class). An agent class A is a pair (S,E) in which S =
{1, . . . ,m} is the (finite) state space and E = {ε1, . . . , εη} ⊆ S ×L × S is the

(finite) set of local transitions of the form εi = si
αi−→ s′i, where si, s

′
i ∈ S are the

initial and arrival states, and αi ∈ L is the unique label of εi, i.e. αi 6= αj for
i 6= j3.

Intuitively, an agent in class A = (S,E) is a finite state automaton that
can change state by performing the actions in E. Then, assuming that agents
in the same state are indistinguishable, to define the population model, we rely
on the counting abstraction, counting how many agents are in each state at time
t. Hence, for each agent class, we define the collective or counting variables

X
(N)
1 (t), . . . , X

(N)
m (t) given by X

(N)
j (t) =

∑
k 1{Y (N)

k (t)=j}, where Y
(N)
k (t) ∈

{1, . . . ,m} is the random variable denoting the state of agent k at time t, and

N =
∑

A

∑
j X

(N)
j is the population size, that we assume constant in time (cf.

also [8]). Then, given n =
∑

A |S|, the state of the population model is given
by the vector X(N)(t) ∈ (R≥0)n that enlists the counting variables of the agent
classes.

Definition 2 (Population Model). A population model X (N) is a tuple X (N) =

(A, T (N),x
(N)
0 ), where A = {A1, . . . ,Aν} is the set of agent classes, as in Defi-

nition 1; x
(N)
0 = X(N)(0) is the initial state; and T (N) = {τ1, . . . , τ`} is the set

of global transitions of the form τi = (Si, f (N)
i ,v

(N)
i ), where:

– Si = {|s1
α1−→ s′1, . . . , sp

αp−−→ s′p|} is the (finite) multi-set of local transitions
synchronized by τi;

– f
(N)
i : (R≥0)n −→ R≥0 is the (Lipschitz continuous) global rate function;

– vi =
∑
αj∈Si |{|αj |}|(1sj − 1s′j ) is the update vector, where |{|αj |}| is the mul-

tiplicity of αi in Si, and 1sj is the vector equal to 1 on sj and 0 elsewhere.

3 The restriction on the uniqueness of the labels can be dropped (as in [10]) at the
price of heavier notation and combinatorics in the definitions of the rest of the paper.
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IS q0 q1 q2

inf

rec pass
rec

c ≥ 0, {c}
inf

c ≤ 5, ∅

inf, c > 5,∅

Fig. 1. The agent class A (left) and property D (right) of the running example.

When a global transition τi = (Si, f (N)
i ,vi) is taken, the transitions in Si fire at

the local level, meaning that, for each s
α−→ s′ in Si, an agent moves from s to

s′. Hence, the update vector vi encodes the net change in the state X(N)(t) of
X (N) due to transition τi. Moreover, for the model to be meaningful, whenever
at time t it is not possible to execute τi, because there are not enough agents
available, i.e.

(
X(N)(t)− vi

)
j
< 0 for some j ∈ {1, . . . , n} with n = |X(N)(t)|,

we require the rate function to be zero, i.e. f
(N)
i (X(N)(t)) = 0.

Example. The running example that we consider is a simple SIS model, describ-
ing the spreading of a disease inside a population. All agents belong to the same
agent class A , depicted in Fig. 1, and can be either susceptible (S) or infected
(I). When they are susceptible, they can be infected (inf ), and when they are in-
fected, they can either pass the infection (pass) or recover (rec). Hence, the state

X(N)(t) of the population model is X(N)(t) = (X
(N)
S (t), X

(N)
I (t)), and we define 2

global transitions: τr = ({I rec−−→ S}, f (N)
r ) and τi = ({S inf−−→ I, I

pass−−−→ I}, f (N)
i ).

The former, τr, mimics the recovery of one entity inside the population, while

τi synchronises two local actions, namely S
inf−−→ I and I

pass−−−→ I, and mod-
els the transmission of the virus from an infected agent to a susceptible one.
Finally, the rate functions depend on the number of agents involved in the tran-

sitions and follow the classical rule of mass action [2]: f
(N)
r (t) = krX

(N)
I (t) and

f
(N)
i (t) = 1

N kiX
(N)
S (t)X

(N)
I (t), where kr, ki ∈ R≥0.

Fluid Approximation. The Fluid Approximation [8, 9, 18] of a population

model X (N) = (A, T (N),x
(N)
0 ) is an estimate of the mean behaviour of its agents.

To compute this approximation, we first normalise X (N) by dividing the state

vector X(N)(t) and the initial state x
(N)
0 by the population size N , i.e. we define

X̂(N)(t) = X(N)(t)/N and x̂
(N)
0 = x

(N)
0 /N . Then, for all transition τi ∈ T (N),

we let f̂
(N)
i (X̂) be the rate function, where we substitute the counting variables

of X(N)(t) with the new normalised counting variables of X̂(t). Moreover, we

assume that for each f̂
(N)
i (X̂), there exist a Lipschitz function fi(X̂) such that

f̂
(N)
i (X̂)/N

N→+∞−−−−−→ fi(X̂) uniformly. Finally, in terms of fi(X̂), we define the

drift F(X̂) given by F(X̂) =
∑
τi

vifi(X̂), whose components represent the
instantaneous net flux of agents in each state of the model. Then, given a time
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horizon T < +∞, the Fluid Approximation Φ(t) of X (N) is the unique4 solution
of the system of Ordinary Differential Equations (ODEs) given by

dΦ

dt
(t) = F(Φ(t)), for 0 ≤ t ≤ T,

with Φ(0) = x0. The accuracy of the approximation improves the larger is the
ensemble of agents that we consider, i.e. the larger is N , and is exact in the limit
of an infinite population. Indeed, the following theorem holds true [18].

Theorem 1 (Fluid Approximation). For any T < +∞ and ε > 0,

Prob

{
sup

0≤t≤T
||X̂(N)(t)−Φ(t)||> ε

}
N→+∞−−−−−→ 0.

Fast Simulation. In this paper, we are interested in the behaviour of a (ran-
dom) single agent inside a population. As we have just seen, the dynamics of
a large population can be accurately described by a deterministic limit, the
Fluid Approximation. But when we focus on one single agent in a collective sys-
tem, we need to keep in mind that its behaviour in time will always remain a
stochastic process, even in large populations. Nevertheless, the Fast Simulation
Theorem [5, 16, 20] guarantees that in the limit of an infinite population size,
the stochastic process of the single agent senses only the mean behaviour of the
rest of the agents (i.e. there is no need to keep track of all the states of all the
other entities in the population). This means that, when the population size is
large enough, to analyse the dynamics the single agent, we can define the Fluid
Approximation of the population model, and then use its state (i.e. the mean
state of the rest of the agents) to compute the rates of a Time-Inhomogeneous
CTMC (ICTMC) [8] that describes the behaviour of the single agent.

Formally, let Y (N)(t) be the stochastic process that describes the state of the

single agent in the population model X (N) = (A, T (N),x
(N)
0 ) with state vector

X(N)(t). By definition, Y (N)(t) is not independent of X(N)(t). Now consider

the normalised model X̂ (N) described by X̂(N)(t), and let Φ(t) be the Fluid

Approximation of X (N). Define the generator matrix Q(N)(x) = (q
(N)
ij (x)) of

Y (N)(t) as a function of the normalised counting variables, i.e. ∀ q(N)
ij (x),

Prob
{
Y (N)(t+ dt) = j | Y (N)(t) = i, X̂(N)(t) = x

}
= q

(N)
ij (x)dt.

Notice that Q(N)(x) can be computed from the rates in X (N). Indeed, for i 6= j,

q
(N)
ij (x) =

∑
τ∈T

[
|{|i→ j ∈ Sτ |}|

Xi

f̂
(N)
τ (X̂)

N

]
,

where |{|i → j ∈ Sτ |}| is the multiplicity of i → j in the transition set Sτ of τ ,
i.e. the number of agents that take such transition according to τ . Furthermore,

4 Existence and uniqueness of Φ(t) are guaranteed by the Lipschitzianity of the fi(X̂).
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as customary, let q
(N)
ii (x) = −

∑
j 6=i q

(N)
ij (x). Then, since f̂

(N)
i (X̂)/N

N→+∞−−−−−→
fi(X̂), we have that Q(N)(x)→ Q(x), where Q(x) is computed in terms of the

Lipschitz limits fi(X̂). Now, define the stochastic processes:

1. Z(N)(t), that describes the state of the process Y (N)(t) for the single agent
in class A , when Y (N)(t) is marginalised from X(N)(t);

2. Z(t), that is the ICTMC, defined on the same state space of Z(N)(t), with
time-dependent generator matrix Q(Φ(t)), i.e. the generator matrix Q(t),
where the Lipschitz limits fi(t) are computed over the components of Φ(t).

Then, the following theorem can be proved [16].

Theorem 2 (Fast Simulation). For any time horizon T < +∞ and ε > 0,

Prob

{
sup

0≤t≤T
||Z(N)(t)− Z(t)||> ε

}
N→+∞−−−−−→ 0.

Example. For the running example, if we consider a population of 1000 agents, i.e

N = 1000, and an initial state x
(N)
0 = (900, 100), then the Fluid Approximation

Φ(t) of the population model is the unique solution of the following ODEs:{
dΦS
dt (t) = −kiΦI(t)ΦS(t) + krΦI(t);
dΦI
dt (t) = +kiΦI(t)ΦS(t)− krΦI(t);

with

{
ΦS(0) = 0.9;

ΦI(0) = 0.1.
(1)

The generator Q(Φ(t)) of the ICTMC Z(t) for the single agent, instead, is:

qS,S(t) = −qS,I(t); qS,I(t) = kiΦI(t); qI,S(t) = kr; qI,I(t) = −qI,S(t). (2)

2.1 Timed Properties

We are interested in properties specifying how a single agent behaves in time.
In order to monitor such requirements, we assign to it a unique personal clock,
which starts at time 0 and can be reset whenever the agent undergoes specific
transitions. In this way, the properties that we consider can be specified by a
single-clock Deterministic Timed Automata (DTA) [1, 13], which keeps track of
the behaviour of the single agent with respect to its personal clock. Moreover,
since we want to exploit the Fast Simulation Theorem, we restrict ourselves to
time bounded properties and, hence, we assign to the DTA a finite time horizon
T < +∞, within which the requirement must be true.

Definition 3 (Timed Properties). A timed property for a single agent in
agent class A is specified as a single-clock DTA of the form D = D(T ) =
(T,L , c, CC, Q, q0, F,→), where T < +∞ is the finite time horizon; L is the
label set of A ; c is the personal clock; CC is the set of clock constraints, which
are conjunctions of atoms of the form c < λ, c ≤ λ, c ≥ λ or c > λ for λ ∈ Q; Q
is the (finite) set of states; q0 ∈ Q is the initial state; F ⊆ Q is the set of final
(or accepting) states; and → ⊆ Q×L ×CC × {∅, {c}}×Q is the edge relation.
Moreover, D has to satisfy:
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– (determinism) for each initial state q ∈ Q, label α ∈ L , clock constraint
c./ ∈ CC, and clock valuation η(c) ∈ R≥0, there exists exactly one edge

q
α,c./,r−−−−→ q′ such that η(c) |=CC c./5;

– (absorption) the final states are all absorbing.

A timed property D is assessed over the time-bounded paths (of total duration
T ) of the agent class A sampled from the stochastic processes Z(N)(t) and Z(t)
defined for the Fast Simulation in Sec. 2. The labels of the transitions of A
act as inputs for the DTA D, and the latter is defined in such a way that it
accepts a time-bounded path σ if and only if the behaviour of the single agent
encoded in σ satisfies the property represented by D. Formally, a time-bounded

path σ = s0
α0,t0−−−→ s1

α1,t1−−−→ . . .
αn,tn−−−−→ sn+1 of A sampled from Z(N)(t) (resp.

Z(t)), with
∑n
j=0 tj ≤ T , is accepted by D if and only if there exists a path

q0
α0−→ q(1) α1−→ q(2) α2−→ . . .

αn−−→ q(n+1) of D such that q(n+1) ∈ F . In the path
of D, q(i+1) ∈ Q denotes the (unique) state that can be reached form q(i) ∈ Q
taking the action q(i) αi,c./,r−−−−−→ q(i+1) whose clock constraint c./ is satisfied by
the clock valuation η(c) updated according to time ti. In the following, we will
denote by ΣA ,D,T the set of time-bounded paths of A accepted by D.

Example. We consider the following property for the running example: within
time T , the agent gets infected at least once during the ∆ = 5 time units that
follow a recovery. To verify such requirement, we use the DTA D = D(T ) rep-
resented in Fig. 1. If we record the actions of the single agent on D, i.e. we
synchronise A and D, when the agent recovers (rec), D passes from state q0 to
q1, resetting the personal clock c. After that, if the agent gets infected (inf)
within 5 time units, the property is satisfied, and D passes from state q1 to q2,
which is accepting. If instead the agent is infected (inf) after 5 units of time,
D moves back to state q0, and we start monitoring the behaviour of the agent
again. In red we highlight the transition that resets the personal clock c in D.

3 Fluid Model Checking of Timed Properties

Consider a single agent of class A = (S,E) in a population model X (N) =

(A , T (N),x
(N)
0 ), and a timed property D = D(T ) = (T,L , ΓS , CC, Q, q0, F,→).

Let ΣA ,D,T be the set of time-bounded paths of A accepted by D. Moreover, let
Z(N)(t) and Z(t) be the two stochastic processes defined for the Fast Simulation
in Sec. 2. The following result holds true.

Proposition 1. The set ΣA ,D,T is measurable for the probability measures
ProbZ(N) and ProbZ defined over the paths of Z(N)(t) and Z(t), respectively. ut

Let P (N)(T ) = ProbZ(N){ΣA ,D,T } and P (T ) = ProbZ{ΣA ,D,T }. In this paper,
we are interested in the satisfaction probability P (N)(T ), i.e. the probability

5 The notation η(c) |=CC c./ stands for the fact that the value of the valuation η(c) of
c satisfies the clock constraint c./.
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that the single agent satisfies property D within time T in X (N). Then, the main
result that we exploit in our Fluid Model Checking procedure is that, when the
population is large enough (i.e N is large enough), P (N)(T ) can be accurately
approximated by P (T ), which is computed over the ICTMC Z(t), whose rates
are defined in terms of the Fluid Approximation Φ(t) of X (N). The correctness
of the approximation relies on the Fast Simulation Theorem and is guaranteed
by the following result.

Theorem 3. For any T < +∞, limN→∞ P (N)(T ) = P (T ). ut

Moreover, to compute P (T ), we consider a suitable product construction AD =
A ⊗ D, whose state is described by a Time-Inhomogeneous Markov Renewal
Process (IMRP) [15] that we denote by ZAD(t). In the rest of this section, we
define AD and ZAD(t), and we show how to compute the satisfaction probability
P (T ) in terms of the transient probability P (T ) of ZAD(t).

The Product AD. We now introduce the product AD between A and D, whose
state is described by a Time-Inhomogeneous Markov Renewal Process (IMRP)
ZAD(t) that has rates computed over the Fluid Approximation Φ(t) of X (N).

A Markov Renewal Process (MRP) [15] is a jump-process, where the sojourn
times in the states can have a general probability distribution. In particular, in
the MRP ZAD(t), we will allow both exponentially and deterministically-timed
transitions, and in the following, we will refer to them as the Markovian and
deterministic transitions, respectively. Since the transition rates of ZAD(t) will
be time-dependent, ZAD(t) will be a Time-Inhomogeneous MRP.

To define the product AD = (A , SD, {M, E}, s0,D, FD), let δ1 < . . . < δk be
the (ordered) constants that appear in the clock constraints of D, and extend
the sequence with δ0 = 0 and δk+1 = T . The state space SD of AD is given by
{1, . . . , k + 1} × S × Q. The first element of SD identifies a time region of the
clock c, and we refer to SDi = {(i, s, q) | s ∈ S, q ∈ Q} as the i-th Time Region
of SD. The rest of AD will be defined in such a way that the agent is in SDi if
and only if c satisfies δi−1 ≤ η(c) ≤ δi, where η is the valuation of c.

The set M of Markovian transitions of AD is the smallest relation such that

∀ i ∈ 1, . . . , k + 1,
s
α−→ s′ ∈ E ∧ q

α,c./,∅−−−−−→ q′ ∈→ ∧ [δi−1, δi] |= c./

(i, s, q)
α−→ (i, s′, q′) ∈M

, (3)

∀ i ∈ 1, . . . , k + 1,
s
α−→ s′ ∈ E ∧ q

α,c./,{c}−−−−−−→ q′ ∈→ ∧ [δi−1, δi] |= c./

(i, s, q)
α−→ (1, s′, q′) ∈M

. (4)

Intuitively, rule (3) synchronises the local transitions s
α−→ s′ ∈ E of the

agent class A = (S,E) with the transition q
α,c./,∅−−−−−→ q′ ∈→ that has the same

label in D, obtaining a local transition (i, s, q)
α−→ (i, s′, q′) ∈ M in AD for each

time region i whose time interval [δi−1, δi] ⊆ [0, T ] satisfies the clock constraint
c./, meaning that ∀t ∈ [δi−1, δi], t |= c./. Rule (4), instead, defines the reset

transitions (i, s, q)
α−→ (1, s′, q′) ∈M that reset the personal clock c either within
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the 1st Time Region (when i = 1), or by bringing the agent back to the 1st Time
Region. In the following, we denote by R ⊂M the set of the reset transitions.

To describe the deterministic transitions of AD, instead, we define a set E of
clock events. Each clock event has the form e = (Ae, ∆, pe), where Ae ⊂ SDi is
the active set, ∆ is the duration, and pe : Ae × SD −→ [0, 1] is the probability
distribution. If the agent enters Ae, that is the sets of states in which e can be
active, a countdown starts from ∆. When this elapses, ei is deactivated and the
agent is immediately moved to a new state sampled from pe((i, s, q), ·) : SD −→
[0, 1], where (i, s, q) ∈ Ae is the state in which the agent is when the countdown
hits zero. Moreover, ei is deactivated also when the agent takes a reset transition.
In AD, we define:

– one clock event ei ∈ E for each time region SDi, i = 2, . . . , k;
– ` + 1 clock events e0

1, e
1
1, . . . , e

`
1 ∈ E for the 1st Time Region, where ` is the

number of reset events (1, s, q)
α−→ (1, s′, q′) ∈ R defined by (4) with i = 1.

For i > 1, Ai = SDi, ∆i = δi − δi−1, and the probability distribution is

pi((i, s, q), (i
′, s′, q′)) =

{
1 if i′ = i+ 1, s′ = s, q′ = q,

0 otherwise.
(5)

As it is defined, each clock event ei with i > 1 connects each state (i, s, q) ∈ Ai
with (i + 1, s, q) ∈ SDi+1, hence, when the duration ∆i of ei elapses, the clock
event moves the agent from its state to the equivalent one in the next time
region. When i = 1, instead, the duration and the probability distribution of
each clock event ej1, j = 1, . . . , `, are defined in the same way as before (i.e.

∆j
1 = δ1 − δ0 = δ1, and pj1 is given by (5)), but the activation sets are now

subsets of SD1 . Indeed, since each reset transition (1, s, q)
αj−→ (1, s′, q′) ∈ R

initiates the clock, for each of them, we need to define a clock event ej1, whose

activation set Aji is the set of states in SD1
that can be reached by the agent

after it has taken the reset transition (1, s, q)
αj−→ (1, s′, q′). Furthermore, we

have to define an extra clock event e0
1, with A0

1 = SD1
, ∆0

1 = δ1, and p0
1 given

by (5), that is the only clock event initiated at time t = 0 (and not by the
agent entering A0

1). Indeed, we require for the initial state s0,D of AD to be
one of the states of the form (1, s, q0), where s ∈ S and q0 is the initial state
of D (hence, s0,D belongs to A0

1). Finally, since the probability distributions

pj1, ∀j, are all defined as in (5), also the clock events of the 1st Time Region
move the agent from a state to the equivalent one in the next time region (the
2nd), when the countdown from ∆j

1 = δ1 elapses. In the following, we denote
by (i, s, q) 99Ke (i + 1, s, q) the deterministic transition from (i, s, q) ∈ SDi to
(i + 1, s, q) ∈ SDi+1 encoded by e ∈ E , and by νe,s,q = 1(i+1,s,q) − 1(i,s,q) its
update vector. The last component of AD that we define is the set of final states
FD, which is given by FD = {(i, s, q) ∈ SD | q ∈ F}.

Example. Fig. 2 represents the product AD between the agent class A and the
property D of the running example (Fig. 1). The state (1, I, q1) that cannot be
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1st Time Region
0 ≤ c ≤ 5

2nd Time Region
c ≥ 5

(1, S, q0)

(1, I, q0)

(2, S, q0)

(2, I, q0)

(1, S, q1) (1, S, q2)

(1, I, q2)

(2, S, q1)

(2, I, q1)

(2, S, q2)

(2, I, q2)

inf
rec

inf

inf

rec

inf rec

inf rec

inf rec

Fig. 2. The agent class AD associated with the DTA D of the running example.

reached by the single agent is omitted. The black transitions are the Markovian
transitions without reset; the red transitions are the Markovian transitions that
reset the clock; finally, we define 2 clock events, e0

1 and e1
1, with duration ∆ = 5

for the 1st Time Region, and the dashed green (resp. blue) transitions are the
deterministic transitions encoded by e0

1 (resp. e1
1). In blue, we also highlight the

states that belong to the activation set Ae11 (while Ae01 is the whole 1st Time
Region). Intuitively, the agent can be found in one of the states belonging to the
1st Time Region whenever its personal clock c is between 0 and 5, i.e. less that 5
time units have passed since t = 0 or since a recovery rec. In a similar way, the
agent is in the 2nd Time Region when the valuation of c is above 5. Moreover,
when the the duration of the clock events elapses (i.e. the countdown from 5 hits
0), the agent is moved from the 1st Time Region to the 2nd Time Region by the
deterministic green and blue transitions, that indeed have duration ∆ = 5 and
are initiated at t = 0 or by the reset actions rec, respectively. At the end, the
agent is in one of the final states ((1, S, q2), (1, I, q2), (2, S, q2) or (2, I, q2)) at
time T , if it meets property D within time T , i.e. within T , the agent has been
infected during the 5 time units that follow a recovery. Hence, to verify D, we
will compute the probability of being in one of the final states of AD at time T .

The IMRP ZAD(t) and the Satisfaction Probability P (T ). Now we show
how to formally define the IMRP ZAD(t) that describes the state of the product
AD in the mean field regime. In particular, we derive the Delay Differential
Equations (DDE) [15] for the transient probability P (t) of ZAD(t), in terms of
which we compute the satisfaction probability P (T ).

Let Φ(t) be the Fluid Approximation of the population model X (N). To define
the transient probability P (t) of ZAD(t), we exploit the fact that, in the case
of an IMRP, we have: dP

dt (t) = M(Φ(t))P (t) +D(Φ(t),P (t)) (cf. [15]). In this
equation, M(Φ(t)) is the generator matrix for the Markovian transitions, and
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D(Φ(t),P (t)) accounts for the deterministic events. The elements of M(Φ(t))
are computed following the same procedure that was described in Sec. 2, where
the multiplicity of each transition (i, s, q)

α−→ (i, s′, q′) ∈M in AD is always equal
to 1 (one single agent) and the Lipschitz limit fα(Φ(t)) of α is that of the rate

of the transition s
α−→ s′ in X (N) from which α was derived (by rules (3) or (4)).

To define the components of D(Φ(t),P (t)), instead, consider any clock event
e = (Ai, ∆i, pi) ∈ E , except e0

1, whose contribute will be computed later on6.
Choose one of the deterministic transitions (i, s, q) 99Kei (i+ 1, s, q) encoded by
ei. The agent takes this transition at time t when: (1) it entered Ai ⊆ SDi at
time t − ∆i (initiating its personal clock), and (2) it is in state (i, s, q) ∈ Ai
at time t (when the duration of ei elapses). Hence, to compute the term that
corresponds to this transition in D(Φ(t),P (t)), we need to: (1) record the flux of
probability that entered Ai at time t−∆i, and (2) multiply it by the probability
that the agent reaches (i, s, q) ∈ Ai at time t, conditional on the state at which
it entered Ai at t−∆i.

To compute the probability of step (2), we need to keep track of the dynamics
of the agent while the clock event ei is active. For this purpose, let Āi be the
activation set Ai of ei extended to contain an extra state sout = (i, sout, qout),
and let M̄ be the set M of Markovian transitions in AD modified in order
to make the reset transitions that start in Ai finish into sout (i.e. for every

(i, s, q)
α−→ (i′, s′, q′) ∈ R ⊂M, we define (i, s, q)

α−→ sout ∈ M̄), and to have sout
absorbing7. Let Gi(Φ(t)) ∈ Matr(|Āi|×|Āi|) be the time-dependent matrix s.t.

(Gi(Φ(t)))(i,s,q),(i,s′,q′) =
∑

(i,s,q)
α−→(i,s′,q′)∈M̄

[
1

Φs(t)
fα(Φ(t))

]
, (6)

where again the Lipschitz limit fα(t) of each α ∈ M̄ is that of the transition s
α−→

s′ in X (N) from which its copy α ∈ M was derived (by (3) and (4)). Moreover,
let the diagonal elements of Gi(Φ(t)) to be defined so that the rows sum up
to zero. Then, we introduce the probability matrix Y i(t), which is computed in
terms of the generator Gi(Φ(t)) according to the following ODEs (see also [8]):{

dY i

dt (t) = Y i(t)Gi(Φ(t))−G(Φ(t−∆i))Y i(t), ∆i ≤ t ≤ T,
dY i

dt (t) = Y i(t)Gi(Φ(t)), 0 ≤ t ≤ ∆i,
(7)

with Y i(0) = I. By definition, (Y i(t))(i,s′,q′),(i,s,q) is the Fluid Approximation of
the probability of step (2), i.e. the probability that the agent, which has entered
Ai in state (i, s′, q′) at time t−∆i, moves (Markovianly) within Ai for ∆i units
of time, and reaches (i, s, q) ∈ Ai at time t (exactly when ei elapses).

In terms of the probability matrix Y i(t), we can now define the component
of D(Φ(t),P (t)) that corresponds to the deterministic transition (i, s, q) 99Kei
6 If e is one of events of the 1st Time Region, i.e. e = ej1, for some j = 1, . . . , `, in this

section, we drop the index j to ease the notation, i.e. we write ej1 = e1 = (A1,∆1, p1).
7 The absorbing state sout is needed for the probability Y i(t) of step (2) to be well

defined. Indeed, the agent can deactivate ei by taking a reset transition.
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(i + 1, s, q) of the clock event ei ∈ E . This component is the element in posi-
tion ((i, s, q), (i+ 1, s, q)) in D(Φ(t),P (t)), we call it Dei,s,q(Φ(t),P (t)), and is
given by

Dei,s,q(Φ(t),P (t)) =
∑

(i,s̄,q̄)∈Ai

1{i>1}Dei−1,s̄,q̄(Φ(t−∆i),P (t−∆i)) + 1{i=1} ×

×
∑

(i′,s′,q′)
α−→(1,s̄,q̄)∈R

1

Φs′(t)
fα(Φ(t−∆1))(P (t−∆1))(i′,s′,q′)

(Y i(t))(i,s̄,q̄),(i,s,q),

(8)

where (P (t − ∆1))(i′,s′,q′) is the component in position (i′, s′, q′) ∈ SDi′ in the
vector of the transient probability P (t − ∆1) of ZAD at time t − ∆1. In (8),
for each state (i, s̄, q̄) in the activation set Ai, the quantity inside the squared
brackets is the probability flux that entered (i, s̄, q̄) at time t−∆i. In particular,
when i > 1, Dei−1,s̄,q̄(Φ(t − ∆i),P (t − ∆i)) accounts for the termination of
clock event ei−1 (i.e. the deterministic transition (i − 1, s̄, q̄) 99Kei (i, s̄, q̄) fired
at time t − ∆i). When we consider the 1st Time Region, i.e. i = 1, instead,
each term in the sum over the reset transitions is the flux of probability entering
(1, s̄, q̄) at time t −∆1 due to a clock reset. Finally, (Y i(t))(i,s̄,q̄),(i,s,q) is again
the probability of reaching (i, s, q) ∈ Ai from (i, s̄, q̄) ∈ Ai in ∆i units of time.

All the other off-diagonal elements of D(Φ(t),P (t)) can be computed in a
similar way, while the diagonal ones are defined so that the rows sum up to zero.
Moreover, since at the end D(Φ(t),P (t)) depends on the state of the system
at times t − ∆1, . . . , t − ∆k (through the probabilities Y i(t), i = 1, . . . , k), we
write D(Φ(t)) = D(Φ,P , ∆1, . . . ,∆k, t). Then, we define the transient probabil-
ity P (t) of the IMRP ZAD(t) as the solution of the following system of DDEs:

P (t) =

∫ t

0

M(s)P (t)ds+

∫ t

0

D(Φ,P , ∆1, . . . ,∆k, s)ds+ 1t≥∆1

∑
(s,q)∈S×Q

ye01νe01,s,q.

(9)

In (9), the third term is a deterministic jump in the value of P (t) at time t = ∆1,
and represents the contribute of the clock event e0

1. In such term, the vectors
νe01,s,q are the update vectors of the deterministic transitions encoded by e1

0

(hence, the sum is computed over all such transitions), and the probability ye01
is the value at time t = ∆1 of the component in position (s0,D, (1, s, q)) (where
s0,D is the initial state of AD) in the matrix Y e01

(t) defined by:

dY e01

dt
(t) = Y e01

(t)G1(Φ(t)), 0 ≤ t ≤ ∆1,

with G1(Φ(t)) defined as in (6), and Y e01
(0) = I. Hence, ye01=(Y e01

(∆1))s0,D,(1,s,q)
is the probability that, starting form s0,D, the agents reaches (1, s, q) ∈ SD1

at
time t = ∆1 (exactly when the deterministic event (1, s, q) 99Ke01 (2, s, q) fires).

Given the product AD, the IMRP ZAD(t), and its transient probability P (t),
the following result holds true.
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Proposition 2. There is a 1:1 correspondence between ΣA ,D,T and the set
AccPath(AD, T ) of accepted paths of duration T of AD. Hence,

P (T ) = ProbZ{ΣA ,D,T } = ProbZAD
{AccPath(AD, T )} = PFD(T ),

where ProbZAD
is the probability measure defined by ZAD , and PFD(T ) is the sum

of the components of P (T ) corresponding to the final states FD of AD. ut

In other words, according to Proposition 2, when the population of X (N) is large
enough, PFD(T ) is an accurate approximation of the probability that a (random)
single agent in X (N) satisfies property D within time T .

Example. For the product AD in Fig. 2, the non-zero off-diagonal entries of
the generator matrix Ge11

(Φ(t)) of the clock event e1
1 are: G(S,q1)(I,q2)(t) =

kiΦI(t); G(S,q2)(I,q2)(t) = kiΦI(t); andG(I,q2)(S,q2)(t) = kr. In terms ofGe11
(Φ(t)),

we can define Y e11
(t), as in (7), that is then used in the DDEs (9) for the prob-

ability P (t). In this latter set of 9 DDEs (one for each state of AD), we have:

P (1,S,q1)(t) =

∫ t

0

krP (1,S,q1)(s)ds −
∫ t

0

kiΦI(s)P (1,S,q1)(s)ds +

−
∫ t

0

krY (1,S,q1),(1,S,q1)(s− 5, s)P (1,S,q1)(s)ds.

Remark. The presence of only one clock in D enables us to define AD in such a way
that ZAD(t) is an IMRP. This cannot be done when we consider multiple clocks
in D. Indeed, in the latter case, the definition of the stochastic process which
describes the state of the product AD is much more complicated, since, when a
reset event occurs, we still need to keep track of the valuations of all the other
clocks in the model (hence, the dynamics between the time regions of AD is not
as simple as in the case of one single clock). In the future, we plan to investigate
possible extensions of our model checking procedure to timed properties with
multiple clocks, also taking into account the results of [19] and [4].

3.1 The Mean Behaviour of the Population Model

It is possible to modify our FMC procedure in order to compute the mean num-
ber of agents that satisfy D. This can be done by assigning a personal clock
to each agent, and monitoring all of them using as agent class the product AD
defined in Sec. 3. In terms of AD, we can build the population model XD, with
AD as the only agent class, and the sum PFD(T ) of the components correspond-
ing to the final states of AD in the Fluid Approximation Φ(t) of XD computed
at t = T is indeed the mean number of agents satisfying property D within
time T . The construction of XD is not difficult: it follows the procedure of [10],
where a little extra care has to be taken just in the definition of the global
transitions of XD. Indeed, if we build for instance the population model XD
of the running example, we need to consider that the infected individual that
passes the virus to an agent in state (1, S, q0) can be now in one of five states:
(1, I, q0), (1, I, q2), (2, I, q0), (2, I, q1) or (2, I, q2). For this reason, we have to
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Fluid Model Checking
N MeanRelErr MaxRelErr RelErr(T) TimeDES TimeFMC Speedup

250 0.0927 6.4512 0.1043 11.0273 0.4731 23.3086

500 0.0204 1.7191 0.0048 44.0631 0.3980 110.7113

1000 0.0118 0.7846 0.0003 170.9154 0.3998 427.5022

Fluid Approximation of the mean behaviour
N MeanRelErr MaxRelErr RelErr(T) TimeDES TimeFluid Speedup

250 0.1127 0.2316 0.0921 105.5647 0.4432 339.7217

500 0.0289 0.3177 0.0289 415.0635 0.4237 979.6165

1000 0.0117 0.2216 0.0117 1547.0340 0.4213 3672.0484

Table 1. Mean Relative Error (MeanRelErr), Maximum Relative Error (MaxRelErr),
and Relative Error at final time (RelErr(T)) of the FMC (top) and the Fluid Approx-
imation of the mean behaviour (bottom) for different values of N . The table enlists
also the execution times (in seconds) of the DES (TimeDES) and the approximations
(TimeFMC and TimeFluid), and the speedups (TimeDES divided by the other times).

define five Markovian global transition in XD, each of which moves an agent
from (1, S, q0) to (1, I, q0) at a rate that is influenced by the number of indi-
viduals that are in the infected states of AD, recorded in the counting variables
X(1,I,q0)(t), X(1,I,q2)(t), X(2,I,q0)(t), X(2,I,q1)(t) or X(2,I,q2)(t). The same reason-
ing has to be followed for the definition of the infections of the agents in states
(1, S, q1), (1, S, q2), (2, S, q0), (2, S, q1) and (2, S, q2). At the end, as for the single
agent, due to the deterministic events, the Fluid Approximation Φ(t) of XD is
the solution of a system of DDEs similar to (9). The definition of such approx-
imating equations for a population model with exponential and deterministic
transitions is not new [22], but, even if the results are promising (see Sec. 4), to
our knowledge, nobody has yet proven the convergence of the estimation in the
limit N → +∞. We save the investigation of this result for future work.

4 Experimental Results

To validate the procedures of Sec. 3, we performed a set of experiments on
the running example, where we fixed: ki = 1.2, kr = 1, ∆ = 5, and an initial
state of the population model with a susceptible-infected ratio of 9:1. As in
Fig. 2, we let the single agent start in the susceptible state, and we considered
three different values of the population size: N = 250, 500, 1000. For each N , we
compared our procedures with a statistical estimate from 10000 runs, obtained
by a dedicated Java implementation of a Discrete Event Simulator (DES). The
errors and the execution times obtained by our FMC procedure (top) and the
Fluid Approximation of the mean behaviour (bottom) are reported in Tab. 1.
Regarding the errors, we would like to remark that the Relative Errors (RE) of
both the FMC and the Fluid Approximation reach their maximum in the very
first instants of time, when the true satisfaction probability (i.e. the denominator
of the REs) is indeed really small, but then they decay really fast as the values
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Fig. 3. The satisfaction probability P (T ) = PFD(T ) obtained by the Fluid Model
Checking (left) and the Fluid Approximation of the mean behaviour (right) in the case
N = 1000. The results are compared with those obtained by the DES.

of PFD(t) increase (this can be easily deduced from the values of the mean REs
and the REs at final time). As expected, the accuracy of the approximations
increases with the population size, and is already reasonably good for N = 500.
Moreover, the resolution of the DDEs is computationally independent of N , and
also much faster (approximatively 3 orders of magnitude in the case of the Fluid
for N = 1000) than the simulation based method. Fig. 3 shows the results of the
FMC and the Fluid Approximation in the case N=1000.

5 Conclusions

We defined a fast and efficient FMC procedure that accurately estimates the
probability that a single agent inside a large collective system satisfies a time-
bounded property specified by a single-clock DTA. The method requires the
integration of a system of DDEs for the transient probability of an IMRP, and the
exactness of the estimation is guaranteed in the limit of an infinite population.

Future Work. During the experimental analysis, we realised that, on certain mod-
els and properties, the DDEs (7) can be stiff, and their numerical integration in
MATLAB is unstable (see also [8]). In the future, we want to address this issue
by considering alternative integration methods [21], investigating also numerical
techniques for MRP with time-dependent rates [26]. Furthermore, we plan to
prove the convergence of the Fluid Approximation of Sec. 3.1, and to investigate
higher-order estimates as in [10, 11]. Finally, we want to extend the FMC pro-
cedure of this paper to validate requirements specified in the logic CSLTA [17]
and DTA properties endowed with multiple clocks (possibly considering the ap-
proximation techniques defined in [19] and [4]).
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