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Abstract

Nature-inspired paradigms have been proposed to design and forecast behaviour of
open distributed systems, such as sensor networks and the internet of things. In these
paradigms system behaviour emerges from (complex) interactions among a large num-
ber of agents. Modelling these interactions in terms of classical point-to-point com-
munication is often not practical. This is due to the large scale and the open nature of
the systems, which means that partners for point-to-point communication may not be
available at any given time. Nevertheless the need for efficient formal verification of
qualitative and quantitative properties of these systems is of utmost importance, espe-
cially given their proposed pervasive and transparent nature.

CARMA is a recently proposed formal modelling language for open distributed sys-
tems, which is equipped with a broadcast communication in order to meet the commu-
nication challenges of such systems. The inclusion of quantitative information about
the timing and probability of actions gives rise to models suitable for analysing ques-
tions such as the probability that information will achieve total coverage within a sys-
tem, or the expected market share that might be gained by competing service providers
relying on viral advertising. The ability to express models is not the only challenge,
because the scale of the systems we are interested in often defies discrete state-based
analysis techniques such as stochastic simulation. This is the problem that we address
in this paper as we consider how to provide an efficient fluid approximation, supporting
efficient and accurate quantitative analysis of large scale systems, for a language that
incorporates broadcast communication.

Keywords: Natural inspired paradigms, Broadcast Communication, Stochastic
Process Algebra, Fluid Approximation, Population Models, Open Distributed
Systems.

1. Introduction

As the digital world becomes ever more connected, systems are increasingly de-
veloped to comprise of large numbers of interacting agents. Often in these systems
the behaviours of the individual agents are relatively simple but the complex capabil-
ities of the system are derived from the interactions and the sheer number of agents
involved. Examples include wireless sensor networks such as those used to monitor
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and respond to fires within buildings [28] and Internet of Things applications such as
smart energy networks where appliances are remotely switched on and off in order to
maintain supply-demand balance within the network as a whole [35].

Nature-inspired paradigms [23] have been proposed to design and forecast be-
haviour of open distributed systems. Following these paradigms, system behaviour
emerges from (complex) interactions among participating agents that, in turn, are in-
fluenced by the state of the overall system. An example is swarm intelligence [21] that
is heavily applied to optimisation problems in many fields.

In such systems the communication patterns between the agents are crucial for
achieving the desired functionality. Pairwise point-to-point communication proves to
be inadequate in these systems for two key reasons. Firstly, the open nature of the sys-
tems means that agents may be unresponsive because they are disconnected or switched
off, meaning that the participants in an interaction cannot be known ahead of time. This
motivates the need for a non-blocking communication pattern, which allows an agent
to proceed even when it cannot find a communication partner. Secondly, the large size
of the system in terms of number of agents will mean that pairwise communication will
simply be too slow when information needs to be disseminated to all participants. This
motivates the need for a broadcast or one-to-many communication pattern.

In order to properly describe the behaviour of these systems, it is useful to have
a formal specification language that can also be used to reason about the possible be-
haviours. Specifically, in this paper, we focus on the family of stochastic process al-
gebras such as PEPA [26], EMPA [5] and the Stochastic Pi-Calculus [31], assuming
that an exponential distribution is associated with each action, giving it a randomly
distributed duration, and leading to an underlying semantics in terms of a Continuous
Time Markov Chain (CTMC). CTMCs support quantitative analysis of models to pre-
dict how systems will behave over time, and answer questions about timeliness of re-
sponses, expected throughput and resource usage. Thus they provide a valuable means
of assessing the dynamic behaviour of systems before they are deployed, checking that
both user and system operator non-functional requirements will be met. However, the
CTMCs capturing the type of large open distributed systems that we consider in this
paper are often so large that standard CTMC analysis techniques, based on the discrete
state representation, become highly inefficient or even intractable.

In recent years techniques have been developed to map stochastic process algebra
models to efficient fluid approximations. The underlying mathematics assumes that as
the system size grows the impact of individual actions diminishes. The existing fluid
approximation results have been developed for languages in which communication is
synchronous and unicast. The challenge in the context of open distributed systems
is to combine this approach to CTMC analysis with models that facilitate broadcast
communication. The difficulty lies in the fact that a broadcast communication has the
potential to change the state of all agents in the system at once, violating the usual
assumption that the impact of any action is diminished as the number of agents grows.

The starting point of this paper is thus a stochastic process algebra supporting
broadcast communication, specifically CARMA [12]. CARMA is an expressive lan-
guage, supporting both point-to-point and a broadcast-based communication, using at-
tributes to identify the subset of potential receivers. In a CARMA model a collective
of agents operate in the context of an explicit environment, which shapes the way in
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which agents interact. Currently CARMA practitioners rely on a tool to develop their
models and analyse their performance via stochastic simulation [27]. However, such
simulations can be computationally intensive and become a bottleneck for the analysis
of large models, particularly when large populations of agents are involved. Therefore
there is a strong motivation for developing a fluid approximation of CARMA models
as a viable alternative. However, as explained above, whilst fluid semantics, leading
to fluid approximations, have been defined for process algebras like PEPA with syn-
chronous communication [25] over a decade ago, the definition of a fluid semantics
for a language supporting broadcast communication is much more challenging. The
convergence results which justify the mean field approximation rely on each action in-
ducing a bounded amount of change in the population. Broadcast by its nature has the
potential to induce change in every receiving agent in the system. Thus the notions of
broadcast and fluid approximation appear to be at odds.

In order to tackle this problem, the definition of broadcast in CARMA must be
carefully constructed, in order to provide a balance between a useful representation
that supports the expression of realistic models, but which nevertheless admits a sound
fluid approximation supporting efficient quantitative analysis.

Paper contribution. The main contribution of this paper is the identification of proper
restrictions on CARMA that guarantee that we can define a sound fluid approximation.
To start with, we strip CARMA of features which are not relevant to this paper. In par-
ticular, we limit ourselves to a fragment of CARMA containing unicast and broadcast
communication primitives, but without attributes. Intuitively, this corresponds to the
assumption that attributes have been incorporated into the agent states, possibly ex-
ploding their number. We then provide this fragment of CARMA, that we named NBA
(Network of Broadcasting Agents), with a population based semantics, in which the
focus is switched from the individual agents, to the proportion of a population that is
behaving in the same way. Based on this population semantics, we formally derive the
fluid equations, and study under which conditions the convergence results hold. This
enables us to identify appropriate scaling laws for the broadcast, which essentially
require that the number of agents receiving a message remains constant on average,
independently of the population size. This restriction has a natural interpretation, as
each communication channel has physical constraints limiting its actual capacity. We
support this construction with a convergence theorem, proving the correctness of our
approach.

The mean field approximation is demonstrated on examples representing collective
adaptive system applications, such as a collaborative agent scenario (which is used as
a running example) and information sharing through gossip protocols.

Related Work. In open distributed systems, such as swarms of robots, the broadcast
communication paradigm is more appropriate than unicast [15]. Thus when we de-
velop formal methods to allow us to reason about the behaviour of such systems, our
formalisms must also incorporate broadcast communication as a primitive. Similarly
the open nature of the systems, with a changing population of agents, favours non-
blocking communication. There have been a variety of formalisms proposed for cap-
turing the behaviour of populations of agents [20, 33, 16] but most of these are focused
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on synchronous communication. In contrast, the early work by Prasad developed the
Calculus of Broadcasting Systems (CBS) [30], a qualitative calculus where individ-
ual agents interact via broadcast. Actions in the calculus were given a priority, used
to choose which action would fire first. The broadcast primitives within CARMA are
inspired by CBS but incorporate timing information in order to support quantitative
verification of systems. More recent broadcast-based calculi rely on attribute based
communication to identify a subset of agents to engage with messages. These include
SCEL [20] and ABC [1], which have a qualitative semantics, and PALOMA [22] and
CARMA [12] from the family of stochastic process calculi. In these two calculi, com-
munication happens via broadcast (and synchronous message passing) and agents can
receive a message with a certain probability. In PALOMA there is a mechanism to obtain
differential equations for the first and second order moments of the underlying Markov
process, but there is no consistent fluid semantics supporting a proof of convergence be-
tween the obtained ordinary differential equations and the underlying Markov process.
Similarly, in the work of Bruneo et al. [14], which works more directly at the level of
the underlying Markov process, a set of ordinary differential equations representing the
population density of different agent classes within a model is systematically derived
but not related to the original discrete state model.

Fluid approximation [18] is a powerful technique to analyse stochastic population
models of interacting agents, well established in fields like performance modelling
and systems biology [10]. It has been lifted to stochastic process algebra models
[16, 25, 13], and extended in different directions, to deal with more complex scenarios,
like different population scales, leading to hybrid limits [6, 4], uncertainty in model pa-
rameters [7], spatio-temporal models [34]. It has also been used to speed up verification
of formal properties of population models [9, 11] and to compute rewards [8].

Paper structure. In Section 2 we introduce NBA, a simple quantitative calculus for
broadcasting processes. Section 3, instead, introduces Markov population processes,
which will be used to express the population semantics of NBA. There we also intro-
duce a version of the fluid approximation theorem suitable for our purposes. In Section
4 we show how to obtain a population semantics for NBA, while Section 5 is devoted
to the discussion of a case study of a Gossip Shuffle Protocol. Final remarks are drawn
in Section 6.

2. Modelling quantitative aspects of broadcasting systems

In this section we present NBA, Network of Broadcasting Agents, a fragment of
CARMA without attributes, but still supporting unicast and broadcast communication,
that can be used to model quantitative aspects of systems of broadcasting processes.
The syntax of this calculus as presented here is inspired by CBS, the Calculus of Broad-
casting Systems introduced in [30].

Example 1. To present NBA we consider a simple scenario. We have a group of agents
that can be either red or blue. We want to guarantee that the two groups are balanced in
size — without any centralised control. Each agent can choose/change its colour only
by observing the interactions with the other participants in the systems. To guarantee
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the equilibrium between the two kind of agents the following interaction schema is
used. All agents publish their colour. A transitional phase is started when an agent
meets someone of the same colour. In this situation an agent asks another agent with
the same colour to change. The transitional phase can be cancelled when an agent with
a different colour is found. As typical of this kind of system, the procedure never ends.

�

A system modelled with NBA consists of a multiset of interacting agents, each of
which is identified by a name in AG. This is a set of agent identifiers whose elements
are denoted by A, A1, A′, . . . , B, B1, B′, . . . .

Example 2. To model the scenario of Example 1 we consider four agents R, B, RT,
BT, where R and B identifies red and blue agents, respectively, while RT and BT
identifies the same coloured agents in a transitional phase.

�

We let SYS be the set of systems S generated by the following syntax:

S ::= 0
∣∣ A ∈ AG

∣∣ S1 ‖ S2 (1)

Each system S can be also thought of as a multisets of agents. Under this perspective,
each term S can be interpreted as a function mapping each agent identifier A to an
integer k (denoted by S[A]) indicating the number of occurrences of A in the system.

Basic systems can be either 0 or A. The former denotes the empty system, i.e. the
one where no agent is running. The latter represents the system where a single instance
of agent A exists. Systems are composed via operator ‖: S1 ‖ S2 denotes the system
where all the agents in S1 and in S2 coexist. In the rest of this paper we will use k ·S to
denote the system consisting of k copies of S:

k ·S = S ‖ · · · ‖ S︸ ︷︷ ︸
n times

We can observe that k · S corresponds to the function associating k · S[A] to each A.
Moreover, given a system S ∈ SYS and an agent A ∈ AG, we let S−A denotes the
system obtained from S by removing one instance of A. We will also use A[k] to denote
k ·A.

Example 3. Let us consider the system of Example 3. A general configuration of our
system has the form:

R[k1] ‖ B[k2] ‖ RT[k3] ‖ BT[k4]

where k1,k2,k3,k4 ∈ N indicate the number of agents in the different states we have
in the system. These values can be parametrised with respect to an integer value N
indicating the scale of our system. If we assume that at the beginning we have 97 ·N
agents in state R, and N instances of agents RT, B and BT, the initial configuration can
be expressed as:
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System
4
= R[97 ·N] ‖ B[N] ‖ RT[N] ‖ BT[N]

�

In NBA each agent is associated with a behaviour. The latter is described via a
process term P in the set PROC. We let ADEF denote the set of agents definition ∆, that
is functions in AG→ PROC. We also let PROC be the set of process terms denoted by
P, P1, P′, . . . , Q, Q1, Q′ . . . defined by the following syntax:

P ::= nil
∣∣ α.A

∣∣ P1 ⊕p P2

α ::= a?
∣∣ a!

∣∣ a??
∣∣ a?!

(2)

where p is a real value in [0,1], α is an action in the set ACT while a is a channel in
CH.

The syntax of elements in PROC is similar to many probabilistic process algebras
already defined in literature. The term nil denotes the inactive agent, while α.A repre-
sents the process that first executes action α and then becomes A. Actions α are used
to perform interactions with other agents.

In our calculus two kind of interactions can occur: unicast interaction and broad-
cast interaction. The first kind of synchronisation represents a one-to-one interaction:
one agent sends a message, by executing a unicast output (a!), that is received by an
agent executing the complementary unicast input (a?). Broadcast interactions are used
to model one-to-many communications: one agent sends a message via a broadcast
output (a?!) that can be received by the agents that are executing the complementary
broadcast input (a??). Notice that while in the unicast synchronisation both input and
output are blocking, in the broadcast synchronisation an output can be performed even
if there are no agents ready to receive the message.

Different behaviours can be combined by using the probabilistic choice operator
P1 ⊕p P2. Intuitively, this indicates that an action is executed by P1 with probability
p and by P2 with probability 1− p. We assume p = 0.5 when it is omitted, namely
P1 ⊕ P2 stands for P1 ⊕0.5 P2; and similarly for choices with more elements. We will
also use α.(A1⊕p1 · · ·⊕pn−1 An) to denote (α.A1)⊕p1 · · ·⊕pn−1 (α.An).

Example 4. We are now ready to define the behaviour of agents introduced in Exam-
ple 2. We can observe that NBA communication primitives can be used to model the
interactions informally described in Example 1. Indeed, broadcast is used to publish
agent colour (red?! and blue?!), while unicast triggers the switch from one colour to
the other (beBlue! and beRed!). Agents are defined as follows:

R
4
= red?!.R ⊕ red??.(RT⊕pt R) ⊕ beBlue?.B

B
4
= blue?!.R ⊕ blue??.(BT⊕pt B) ⊕ beRed?.R

RT
4
= red?!.RT ⊕ beBlue!.R ⊕ beBlue?.B ⊕ blue??.(R⊕pc RT)

BT
4
= blue?!.BT ⊕ beRed!.B ⊕ beRed?.R ⊕ red??.(B⊕pc BT)
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Agent R uses broadcast output to advertise its colour (red?!.R). Another instance
of R that receives this message enters in a transitional phase with probability pt while
ignores the message with probability 1− pt (red??.(RT⊕pt R)). Finally, R can receive
a beBlue message to change its colour and become B (beBlue?.B). Agent RT identifies
a red agent that is in a transitional phase. Like an agent R, RT can advertise its colour
to other agents (red?!.RT). Moreover, it executes action beBlue! to trigger the change.
The transitional phase is completed when the action beBlue? is executed and RT be-
comes B. Finally, the transitional phase can be cancelled when RT executes action
blue??. In this case RT evolves with probability pc to R and with probability 1− pc it
remains in the same state.

Agents B and BT are similar, but for the fact that red and blue are inverted.
�

The behaviour P associated with an agent A describes the possible interactions an
agent can perform. However, P does not provide any explicit information about the
quantitative aspects of these interactions. In NBA, like in many other stochastic pro-
cess algebras, we assume that the execution of an action/interaction takes time. This
duration is governed by a random variable that is exponentially distributed. Hence, to
compute the duration of a synchronisation we have to associate a rate with each action
an agent can perform. Moreover, we have also to provide the appropriate mechanisms
to compute the probability distribution used to select the receiver of a unicast or broad-
cast output. Note that all this quantitative information may depend on the number of
agents that are currently activated in the system.

To model all these aspects, we use an environment ε ∈ Env. This is a function that,
given a system S, yields a tuple 〈r,p,w〉 of functions that are used to compute rates of
output actions and the probability that a given agent receives a message:

• r : AG×ACT→ R≥0 computes the execution rate of action α executed by an
agent A;

• p : AG×ACT→ [0,1] expresses the probability that an agent A receives a broad-
cast message;

• w : AG×ACT→ R≥0 yields the weight that will be used to compute the proba-
bility that an agent A can receive a unicast message.

Let ε be an environment, and S ∈ SYS, we will use rε
S, pε

S and rε
S whenever ε(S) =

〈rε
S,p

ε
S,w

ε
S〉. Moreover, for any agent A ∈ AG we let ES

ε [A] denote exit rate, that is the
total rate of the actions A can perform: ES

ε [A] = ∑α∈ACT rε
S(A,α).

Example 5. To perform quantitative analysis of the model of Example 4 we have to
define an environment εca. As we have defined above, this function associates each
system S with the tuple of functions 〈rεca

S ,pεca
S ,wεca

S 〉.
Function rεca

S associates a rate with each (output) action that an agent can perform.
These actions are associated to the events that can occur in a system. In our case we
have: color advertisement (actions red?! and blue?!), and the execution of an action
triggering the colour change (actions beBlue! and beRed!). Rates of the above actions
are computed by function rεca

S that is defined as follows:
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• rεca
S (R, red?!) = rεca

S (RT, red?!) = rεca
S (B,blue?!) = rεca

S (BT,blue?!) = λa;

• rεca
S (RT,beBlue!) = rεca

S (BT,beRed!) = λc.

Above λa is the advertising rate, while λc indicates the rate at which an agent can
change its colour.

Function pεca
S identifies the probability that an agent receives a broadcast message.

Here we assume that each advertisement can be received on average by kr ∈ N>0
agents. This value does not depend on the number of participants in the system, while
it is related to its communication capabilities, i.e. the capacity of a message to reach
other agents. Function pεca

S is the following:

pεca
S (R, red??) = pεca

S (BT, red??) = min
{

1,
kr

S[R]+S[BT]

}
pεca

S (B,blue??) = pεca
S (RT,blue??) = min

{
1,

kr

S[B]+S[RT]

}

Finally, function wεca
S , that is used to compute the probability that a given agent

receives a unicast input, associates to all the agents and all the inputs the same value
1.0. This means that all the agents have the same probability to receive a unicast
message.

�

A NBA specification Σ consists of a triple

〈S,ε,∆〉

where ∆ ∈ ADEF is an agents definition while ε ∈ Env is an environment.
Given a system S ∈ SYS we can consider its scale k · S where all the agents in S

are replicated k times. Given a NBA specification Σ = 〈S,ε,∆〉, we say that ε is scale
invariant if the capability of an agent A (in terms of probability of receiving a message
and rates of actions) are not effected by the scale of a system.

Definition 1. An environment ε is scale invariant if and only if for any system S:

• for any k ∈ N>0, rε
k·S = rε

S

• for any A ∈ AG and α ∈ ACT there exits vS,A,α ∈ R≥0 such that:

lim
k→∞

pε
k·S(A,α) · (k ·S)[A] = vS,A,α

• for any k ∈ N>0, wε
k·S = wε

S.

A specification Σ = 〈S,ε,∆〉 is scale invariant when ε is scale invariant.
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We will see later that the use of scale invariant environments guarantees that the av-
erage number of agents involved in a broadcast interaction does not depend on/increase
with the size of the population. Indeed, given a system S, pε

S(A,α) · S[A] is the aver-
age number of instances of A that are involved in action α . If ε is scale invariant this
value does not depend on the scale of the system. This is because the limit of the se-
quence {pε

k·S(A,α) · (k ·S)[A]}k∈N≥0 converges to a value vS,A,α . It is easy to see that
environment εca discussed in Example 5 is scale invariant.

The condition of scale invariance imposes a constraint on the model, requiring that
the number of agents that can be reached by a broadcast is independent of the scale of
the system. This is reasonable in most of the scenarios in which broadcast is used (e.g.
voting or gossip protocols), typically because communication channels have a max-
imum capacity due to physical constraints on the medium in which communication
happens. Hence models which violate this condition are typically describing idealised
situations, in which the physical nature of communication is abstracted. An example
could be a scenario of national emergency in which the government sends a text mes-
sage to all the citizens. In this case the average size of the population reached will
depend on the size of the country, hence violating scale invariance. These situations
can be dealt with in the framework of hybrid systems; we will comment more about
this in the conclusions.

2.1. Semantics

In this section we present stochastic operational semantics of NBA systems. Clas-
sically, the behaviour of (stochastic) process algebras is represented via transition re-
lations. These relations, defined following a Plotkin-style, are used to infer possible
computations of a process. Note that, due to nondeterminism, starting from the same
process, different evolutions can be inferred. However, in NBA, as in other similar cal-
culi, there is no nondeterminism as the selection of the possible next state is governed
by a probability distribution.

To simplify definition of NBA semantics we will use here an approach based on
FUTS style [19]. Using this approach, the behaviour of a term is described using a
function that, given a term and a transition label, yields a function associating each
component or system with a non-negative number. The meaning of this value depends
on the context. It can be the rate of the exponential distribution characterising the
time needed for the execution of the action or the probability of receiving a given
broadcast/unicast message. In all cases the zero value is associated with unreachable
terms.

The operational semantics of NBA systems is defined in terms of three functions
that are used to compute the possible next states of processes and systems:

1. the function P that describes the behaviour of a process P;

2. the function R that shows how a system reacts when a message is received;

3. the function S that describes possible synchronisations occurring in a system.
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P(nil,α) = /0 (NIL) P(β .A,α) =

{
χA if α = β

/0 otherwise (ACT)

P(P1,α) = A1 P(P1,α) = A2

P(P1 ⊕p P2,α) = p·A1+(1−p)·A2
p·⊕A1+(1−p)·⊕A2

(CHOICE)

Table 1: Process semantics

Process semantics. The semantics of processes in PROC is defined via the function
P : PROC×ACT→Dist(AG) that, given a process term P, yields a function associating
each action α with a (sub-)probability distribution over agent identifiers. Intuitively,
if P(P,α)(A) = p it means that when P executes action α , agent A is reached with
probability p.

Function P is formally defined in Table 1. There we use /0 to denote the (sub)-
probability distribution associating 0 to each agent identifier; χA denotes the dirac-
distribution associating 1 to A and 0 to all the other identifiers. Moreover, the following
notation is used:

Notation 1. Let X1,X2 : X → R, for some set X , and v ∈ R, we have:

• v ·Xi denotes the function associating to each x ∈ X the value v ·Xi(x);

• ⊕Xi denotes ∑x∈X Xi(x);

• X1 +X2 denotes the function associating to each x ∈ X the value X1(x) +
X2(x).

• Xi
v is evaluated to 0 if v = 0 and to 1

v ·Xi otherwise.

Rules in Table 1 state that process nil is not able to execute any action and that when
β .A executes β it reaches the agent A with probability 1. The behaviour of P1 ⊕p P2
needs more attention. This is obtained by the combination of behaviours of P1 and P2
weighted according to p and (1− p) respectively. The renormalisation is needed to
correctly compute the probabilities when P1 or P2 are not able to execute action α .

Example 6. Function P allows us to associate each agent A with a probabilistic be-
haviour that describes how an agent evolves when an action α is executed. The be-
haviour of agents of Example 4, as induced by P, is depicted in Figure 1. In that figure
solid edges describe action executions, while dashed edges describe probability dis-
tributions. The latter are omitted when, with probability 1.0, a single agent can be
reached.

For instance, we can observe that when agent R executes action red?? it evolves
with probability pt to RT and with probability 1− pt to R. Let us consider the definition
of R in Example 4:

R
4
= red?!.R ⊕ red??.(RT⊕pt R) ⊕ beBlue?.B

By using rules (ACT) and (CHOICE) we can prove that:
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R BRT BT

red??

1− pt

pt

beBlue?
red?!

red?!

beBlue!

beBlue?

blue?? pc

1− pc

blue??

1− pt

pt

beRed?

blue?!

blue?!

beRed!

beRed?

red??pc

1− pc

Figure 1: Probabilistic behaviour of agents in Example 4.

• P( red?!.R , red?? ) = /0;

• P( red??.(RT⊕pt R) , red?? ) = [RT 7→ pt ,R 7→ 1− pt ];

• P( beBlue?.B , red?? ) = /0.

where [RT 7→ pt ,R 7→ 1− pt ] denotes the probability distribution associating pt to RT
and 1− pt to R.

Hence, by applying rule (CHOICE) we have that:

P(red?!.R⊕ red??.(RT⊕pt R)⊕beBlue?.B, red??)
= /0+[RT 7→ pt ,R 7→ 1− pt ]+ /0
= [RT 7→ pt ,R 7→ 1− pt ]

�

Lemma 1. For any P ∈ PROC and α ∈ ACT the following hold:

1. the set {A | P(P,α)(A)> 0} is finite;

2. ⊕P(P,α) ∈ {0,1}.

PROOF. The proof proceeds by induction on the syntax of P ∈ PROC.

Base of Induction. We have to consider two cases: P = nil and P = β .B.

(P = nil) Let us consider P(nil,α), for α ∈ ACT. By rule (NIL) of Table 1 we have
that P(nil,α) = /0, where /0 denotes the 0-constant function. This means that:

1. {A | P(nil,α)(A)> 0} is the empty set (that is finite);

2. ⊕P(P,α) = 0.

11



(P = β .B) According to the semantics of Table 1, rule (ACT) must be applied to com-
pute P(β .B,α). We have to consider two cases α = β and α 6= β . In the latter
case P(β .B,α) = /0 and the proof proceeds like in the case of nil.
When α = β we have that P(β .B,α) = χB and therefore:

1. {A | P(P,α)(A)> 0}= {B} is finite; and

2. ⊕P(P,α) = 1.

Inductive hypothesis. Let P1,P2 ∈ Proc be such that for any α ∈ ACT:

1. the set {A | P(Pi,α)(A)> 0} is finite;

2. ⊕P(Pi,α) ∈ {0,1}.

Inductive step. Let P = P1 ⊕p P2. According to rule (CHOICE) of Table 1 we have
that

P(P1 ⊕p P2,α) =
p ·A1 +(1− p) ·A1

p ·⊕A1 +(1− p) ·⊕A2

where P(P1,α) = A1 and P(P2,α) = A2. We can first observe that:

{A | P(P1 ⊕p P2,α)(A)> 0}= {A | P(P1,α)(A)> 0}∪{A | P(P2,α)(A)> 0}

which, by inductive hypothesis, is finite. Moreover:

⊕P(P1 ⊕p P2,α) = ∑
A∈AG

p ·A1(A)+(1− p) ·A2(A)
p ·⊕A1 +(1− p) ·⊕A2

=
p · (∑A∈AG A1(A))+(1− p) · (∑A∈AG A2(A))

p ·⊕A1 +(1− p) ·⊕A2

=
p ·⊕A1 +(1− p) ·⊕A2

p ·⊕A1 +(1− p) ·⊕A2

For this reason, ⊕P(P,α) is 0 when both ⊕A1 and ⊕A2 are 0 ( x
y denotes 0 when-

ever y = 0), and it is 1 when at least one of⊕A1 and⊕A2 is 1. By inductive hypothesis
⊕Ai ∈ {0,1}. Hence, P(P1 ⊕p P2,α) ∈ {0,1}.

�

Receiving message. The second step to define the NBA operational semantics con-
sists of the definition of function R that shows how a system reacts when a message
is received. This function is parametrised with respect to agent definition ∆ and en-
vironment ε . Function R∆

〈r,p,w〉 is formally defined in Table 2 where χS denotes the
dirac-distribution associating 1 to S and 0 to all the other systems and the notations of
Notation 1 are used.

Rule (U-NIL) is similar to rule (NIL) of Table 1 and states that an empty system
cannot receive any unicast message while rule (B-NIL) states that 0 always receives

12



R∆

〈r,p,w〉(0,a?) = /0
(U-NIL)

R∆

〈r,p,w〉(0,a
??) = χ0

(B-NIL)

P(∆(A),a?) = A

R∆

〈r,p,w〉(A,a?) = w(A,a?) ·A
(U-AGENT)

P(∆(A),a??) = A

R∆

〈r,p,w〉(A,a
??) = p(A,a??) ·A +(1−p(A,a??) ·⊕A ) ·χA

(B-AGENT)

R∆

〈r,p,w〉(S1,a?) = S1 R∆

〈r,p,w〉(S2,a?) = S2

R∆

〈r,p,w〉(S1 ‖ S2,a?) = S1 ‖ S2 +S1 ‖S2
(U-PAR)

R∆

〈r,p,w〉(S1,a??) = S1 R∆

〈r,p,w〉(S2,a??) = S2

R∆

〈r,p,w〉(S1 ‖ S2,a??) = S1 ‖S2
(B-PAR)

Table 2: System input semantics

a broadcast message and remains the same. Rules (U-AGENT) and (B-AGENT) show
how a single agent can react when it receives a message via unicast or broadcast com-
munication, respectively. In the first case, the behaviour of A is obtained from the
process ∆(A), i.e. the definition of A, multiplied by the weight of action a? for A, that
is w(A,a?). The latter will be used to compute the probability that this specific agent
will actually receive the message. When a broadcast input is considered, we have that
the agent will receive the message with probability p(A,a??). In that case the possible
outcomes are exactly the ones of ∆(A), say A . The same agent can ignore the input
with probability 1−p(A,a??). Note that, to be sure that the result of R∆

〈r,p,w〉(A,a
??)

sums to 1, the final outcome of the rule is p(A,a??) ·A +(1− p(A,a??) · ⊕A ) · χA.
This is because when A cannot execute action a??, ⊕A = 0 and the above formula is
equal to χA.

Rule (U-PAR) states that in S1 ‖ S2 a unicast message can be received either by S1
or by S2, while in rule (B-PAR) we have that a message can be received by both S1 and
S2. In these rules the following notations are used:

• S ‖ S (resp. S ‖S ) denotes the function associating S (S′) to each system of
the form S′ ‖ S (resp. S ‖ S′) and 0 to all the others;

• S1 ‖S2 denotes the function that associates to each system of the form S1 ‖ S2
the value S1(S1) ·S2(S2) and 0 to all the other terms.

The following lemma guarantees three good properties of function R: possible
configurations reachable when a message is received are finite; when α is a broadcast
input, Rε(S)(S,α) is a probability distribution; this distribution consists of the appro-
priate composition of binomial distributions.
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Lemma 2. For each S1,S2 ∈ SYS, agents definition ∆ ∈ ADEF, environment ε ∈ Env,
α ∈ ACT and a ∈ CH, the following hold:

1. {S | R∆

ε(S2)
(S1,α)(S)> 0} is finite;

2. ⊕R∆

ε(S2)
(S1,a??) = 1;

3. for all k ∈ N and A ∈ AG such that A = P, ⊕P(P,a??) = 1, and p = pε
S1
(A,a??)

R∆

ε(S1)
(A[k],a??) =

k

∑
i=0

(
k
i

)
·
[
A[k− i] 7→ (1− p)k−i

]
‖ pi ·P(P,a??)i

where for any function S : SYS→ R, S i (with i ∈ N) denotes [0 7→ 1] when
i = 0 and S ‖S i−1 when i > 0.

4. for all k ∈ N and A ∈ AG such that A = P and w = wε
S1
(A,a?)

R∆

ε(S1)
(A[k+1],a?) = A[k] ‖ ((k+1) ·w ·P(P,a?))

PROOF. Item (1): We prove that for each S1,S2 ∈ SYS, agents definition ∆ ∈ ADEF,
environment ε ∈ Env and α ∈ ACT, {S | R∆

ε(S2)
(S1,α)(S) > 0} is finite. The proof

proceeds by induction on the structure of S1.

Base of Induction. We have to consider two base cases: S1 = 0 and S1 = A.

(S1 = 0) In this case we have that either rule (U-NIL) or rule (B-NIL) is applied to
compute R∆

ε(S2)
(0,α). In both the cases {S | R∆

ε(S2)
(0,α)(S) > 0} is finite since

it is either the empty set or the set {0}, respectively.

(S = A) In this case the statement follows directly from Lemma 1. Indeed, either rule
(U-AGENT) or rule (B-AGENT) can be applied. In the first case R∆

ε(S2)
(A,a?) =

wε
S2
(A,a?) ·A , where P(∆(A),a?) = A . Moreover, by Lemma 1 we have that

{B | A (B) > 0} is finite. The same holds for {B | wε
S2
(B,a?) ·A (B) > 0}

that is equal to {S | R∆

ε(S2)
(A,a?) > 0}. Similar considerations apply when rule

(B-AGENT) is used.

Inductive Hypothesis. For any S1
1,S

2
1,S2 ∈ SYS, agents definition ∆ ∈ ADEF, environ-

ment ε ∈ Env and α ∈ ACT, {S | R∆

ε(S2)
(Si

1,α)(S)> 0} is finite.

Inductive Step. We have to show that {S1
1 ‖ S2

1 | R∆

ε(S2)
(Si

1,α)(S) > 0}. This follows
directly from the inductive hypothesis and by rules in Table 2 by observing that for any
S1 and S2, such that {S|Si(S)> 0} is finite, and for any S′ ∈ SYS holds that:

• {S | (S1 ‖S2)(S)> 0} is finite;

• both {S | (S1 ‖ S′)(S)> 0} and {S | (S′ ‖S1)(S)> 0} are finite.

Item (2): We have to prove that for each S1,S2 ∈ SYS, agents definition ∆ ∈ ADEF,
environment ε ∈ Env, and a ∈ CH, ⊕R∆

ε(S2)
(S1,a??) = 1.

The proof proceeds by induction on S1.
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Base of Induction. We have to consider two base cases: S1 = 0 and S1 = A.

(S1 = 0) By applying rule (B-NIL) of Table 2 we have that:

⊕R∆

ε(S2)
(0,a??) =⊕χ0 = 1

(S1 = A) In this case we can apply rule (B-AGENT) of Table 2 to get:

⊕R∆

ε(S2)
(A,a??) =⊕(p(A,a??) ·A +(1−p(A,a??) ·⊕A ) ·χA)

where A = P(∆(A),a??). We have that:

⊕(p(A,a??) ·A +(1−p(A,a??) ·⊕A ) ·χA)

= ⊕(p(A,a??) ·A )+⊕((1−p(A,a??) ·⊕A ) ·χA)

= p(A,a??) ·⊕(A )+(1−p(A,a??) ·⊕A ) ·⊕χA

We also have that ⊕χA = 1 and, by Lemma 1, ⊕(A ) is either 0 or 1. In the first
case it follows that:

p(A,a??) ·⊕(A )+(1−p(A,a??) ·⊕A ) ·⊕χA =⊕χA = 1

while when ⊕A = 1 we have that:

p(A,a??) ·⊕(A )+(1−p(A,a??) ·⊕A ) ·⊕χA =

p(A,a??)+(1−p(A,a??)) = 1

Inductive Hypothesis. For any S1
1,S

2
1,S2 ∈ SYS, agents definition ∆ ∈ ADEF, environ-

ment ε ∈ Env and a ∈ CH, ⊕R∆

ε(S2)
(Si

1,a
??) = 1.

Inductive Step. We have to show that ⊕R∆

ε(S2)
(S1

1 ‖ S2
1,a

??) = 1. This follows directly
from the inductive hypothesis and by rule (B-PAR) in Table 2 by observing that for
any S1 and S2, such that ⊕Si = 1, ⊕(S1 ‖ S2) = 1. The latter can be proved by
observing that:

⊕(S1 ‖S2) = ∑
S∈SYS

(S1 ‖S2)(S)

= ∑
S′∈SYS

∑
S′′∈SYS

S1(S′) ·S2(S′′)

= ∑
S′∈SYS

S1(S′) · ∑
S′′∈SYS

S2(S′′)

= ∑
S′∈SYS

S1(S′) ·⊕S2

=

(
∑

S′∈SYS

S1(S′)

)
·⊕S2

= (⊕S1) · (⊕S2) = 1
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Item (3): We can now prove that for each S ∈ SYS, agents definition ∆ ∈ ADEF,
environment ε ∈ Env, a ∈ CH, k ∈N and A ∈ AG such that A = P, ⊕P(P,a??) = 1, and
p = pε

S(A,a
??):

R∆

ε(S)(A[k],a
??) =

k

∑
i=0

(
k
i

)
·
[
A[k− i] 7→ pk−i

]
‖ pi ·P(P,a??)i

The proof proceeds by induction on k.

Base of Induction (k = 0). When k = 0, k ·A = 0 and the statement follows directly
from the fact that R∆

ε(S)(0,a
??) = χ0 and from the fact that P(P,a??)0 = χ0.

Inductive Hypothesis (k ≤ n). Let us assume that for any k ≤ n

R∆

ε(S)(A[k],a
??) =

k

∑
i=0

(
k
i

)
·
[
A[k− i] 7→ pk−i

]
‖ pi ·P(P,a??)i

Inductive Step (k = n+1). Let us consider A[n+1]. By rule (B-PAR) we have that:

R∆

ε(S)(A[n+1],a??) = R∆

ε(S)(A ‖ A[n],a??) = R∆

ε(S)(A,a
??) ‖ R∆

ε(S)(A[n],a
??)

By rule (B-AGENT), and from the fact that ⊕P(P,a??) = 1, we have that:

R∆

ε(S)(A,a
??) = p ·P(P,a??)+(1− p) ·χA

By inductive hypothesis we have that:

R∆

ε(S)(A[n],a
??) =

n

∑
i=0

(
n
i

)
·
[
A[n− i] 7→ (1− p)n−i] ‖ pi ·P(P,a??)i

Hence:
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R∆

ε(S)(A,a
??) ‖ R∆

ε(S)(A[n],a
??)

= (p ·P(P,a??)+(1− p) ·χA) ‖
n

∑
i=0

(
n
i

)
·
[
A[n− i] 7→ (1− p)n−i] ‖ pi ·P(P,a??)i

= (p ·P(P,a??)) ‖
n

∑
i=0

(
n
i

)
·
[
A[n− i] 7→ (1− p)n−i] ‖ pi ·P(P,a??)i

+((1− p) ·χA) ‖
n

∑
i=0

(
n
i

)
·
[
A[n− i] 7→ (1− p)n−i] ‖ pi ·P(P,a??)i

=
n

∑
i=0

(
n
i

)
·
[
A[n− i] 7→ (1− p)n−i] ‖ pi+1 ·P(P,a??)i+1

+
n

∑
i=0

(
n
i

)
·
[
A[n+1− i] 7→ (1− p)n+1−i] ‖ pi ·P(P,a??)i

=

(
n
n

)[
A[0] 7→ (1− p)0] ‖ pn+1 ·P(P,a??)n+1

+
n−1

∑
i=0

(
n
i

)
·
[
A[n− i] 7→ (1− p)n−i] ‖ pi+1 ·P(P,a??)i+1

+
n

∑
i=1

(
n
i

)
·
[
A[n+1− i] 7→ (1− p)n+1−i] ‖ pi ·P(P,a??)i

+

(
n
0

)
·
[
A[n+1] 7→ (1− p)n+1] ‖ p0 ·P(P,a??)0

=

(
n+1
n+1

)[
A[0] 7→ (1− p)0] ‖ pn+1 ·P(P,a??)n+1

+
n

∑
i=1

(
n

i−1

)
·
[
A[n+1− i] 7→ (1− p)n+1−i] ‖ pi ·P(P,a??)i

+
n

∑
i=1

(
n
i

)
·
[
A[n+1− i] 7→ (1− p)n+1−i] ‖ pi ·P(P,a??)i

+

(
n+1

0

)
·
[
A[n+1] 7→ (1− p)n+1] ‖ p0 ·P(P,a??)0

=

(
n+1
n+1

)[
A[0] 7→ (1− p)0] ‖ pn+1 ·P(P,a??)n+1

+
n

∑
i=1

((
n

i−1

)
+

(
n
i

))
·
[
A[n+1− i] 7→ (1− p)n+1−i] ‖ pi ·P(P,a??)i

+

(
n+1

0

)
·
[
A[n+1] 7→ (1− p)n+1] ‖ p0 ·P(P,a??)0
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=

(
n+1
n+1

)[
A[0] 7→ (1− p)0] ‖ pn+1 ·P(P,a??)n+1

+
n

∑
i=1

(
n+1

i

)
·
[
A[n+1− i] 7→ (1− p)n+1−i] ‖ pi ·P(P,a??)i

+

(
n+1

0

)
·
[
A[n+1] 7→ (1− p)n+1] ‖ p0 ·P(P,a??)0

=
n+1

∑
i=0

(
n+1

i

)
·
[
A[n+1− i] 7→ (1− p)n+1−i] ‖ pi ·P(P,a??)i

Item (4): We have to prove that, for each S1,S2 ∈ SYS, agents definition ∆ ∈ ADEF,
environment ε ∈ Env, a ∈ CH, and for all k ∈ N and A ∈ AG such that A = P and
w = wε

S(A,a?)

R∆

ε(S)(A[k+1],a?) = A[k] ‖ ((k+1) ·w ·P(P,a?))

As for the previous case, the proof proceeds by induction on k.

Base of Induction (k = 0). Directly from rule (U-AGENT) of Table 2, we have that

R∆

ε(S)(A[1],a?) = w ·P(P,a?)) = 0 ‖ w ·P(P,a?)) = A[0] ‖ w ·P(P,a?)

Inductive Hypothesis (k ≤ n). Let us assume that for any k ≤ n

R∆

ε(S)(A[k+1],a?) = A[k] ‖ (k+1) ·w ·P(P,a?)

Inductive Step (k = n+1). We have that:

R∆

ε(S)(A[(n+1)+1],a?) = R∆

ε(S)(A ‖ A[(n+1)],a?)

By applying (U-PAR) of Table 2

= R∆

ε(S)(A,a?) ‖ A[(n+1)]+A ‖ R∆

ε(S)(A[(n+1)],a?)

By applying (U-AGENT) of Table 2
and by Inductive Hypothesis

= (w ·P(P,a?))) ‖ A[(n+1)]
+A ‖ A[n] ‖ ((n+1) ·w ·P(P,a?))

= (w ·P(P,a?))) ‖ A[(n+1)]
+A[n+1] ‖ ((n+1) ·w ·P(P,a?))

= A[n+1] ‖ (w ·P(P,a?)+(n+1) ·w ·P(P,a?))
= A[n+1] ‖ (n+2) ·w ·P(P,a?)

�
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Given a system S, and an environment ε , the number of instances of an agent A
involved in an input a?? depends on the probability pε

S(A,a
??). Indeed, when S(A) =

n > 0 we have that on the average p(A,a??) ·n instances of A will receive a broadcast
input on channel a. Note that, if ε is scale invariant (see Definition 1), the average
number of agents that receive a broadcast message does not change if we scale/increase
the size of the system.

Example 7. Let ∆ca be the agents definition of Example 4, εca be the environment of
Example 5, which associates each input action with the same weight 1.0, and S be the
system defined below:

S = R[k1] ‖ B[k2] ‖ RT[k3] ‖ BT[k4]

We can use function R∆ca
εca(S)

to compute how this system can react when a beRed? is
performed. We can observe (see Figure 1) that:

• P(∆ca(R),beRed?) = P(RT,beRed?) = /0

• P(∆ca(B),beRed?) = [R 7→ 1.0]

• P(∆ca(BT),beRed?) = [R 7→ 1.0]

Moreover, whenever k2 > 0 and k4 > 0, directly from rule (U-AGENT) in Table 2 and
Lemma 2 (4), we have that:

• R∆ca
εca(S)

(R[k1],beRed?) = /0

• R∆ca
εca(S)

(B[k2],beRed?) = B[k2−1] ‖ k2 · [R 7→ 1.0] = B[k2−1] ‖ [R 7→ k2] =

[B[k2−1] ‖ R 7→ k2]

• R∆ca
εca(S)

(RT[k3],beRed?) = /0

• R∆ca
εca(S)

(BT[k4],beRed?) = BT[k4−1] ‖ k4 · [R 7→ 1] == BT[k4−1] ‖ [R 7→ k4]

[R ‖ BT[k4−1] 7→ k4]

Finally, by multiple applications of rule (U-PAR) we have that:

Rεca(S)(S,beRed?) = [

(R[k1 +1] ‖ B[k2−1] ‖ RT[k3] ‖ BT[k4]) 7→ k2,

(R[k1 +1] ‖ B[k2] ‖ RT[k3] ‖ BT[k4−1]) 7→ k4

]

This describes the fact that action beRed? can be executed either by an agent B or by
an agent BT. In both cases the receiving agent becomes an R. Moreover, values k2 and
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k4 identify the weights of these possible transitions and will be used to compute the
probability that the action is performed by an instance of B or by an agent BT.

Recall a unicast message can be received only by one agent. This is selected via
a probability that depends on the weights associated to possible receivers. In contrast,
broadcast messages can be received by multiple agents at the same time. The exact
number of receivers is controlled by the environment ∆ that, via p∆, gives the probabil-
ity that an agent A receives a broadcast message α??. As already observed in Lemma 2,
we have that the probability that n instances of agent A are involved in a broadcast in-
teraction is governed by a binomial distribution.

In Example 5 we have assumed that k agents can receive a broadcast message on
average. If we consider action red?? in configuration S above, each agent R will receive
the message with probability pR = kr

k1+k4
, while each instance of BT will receive the

same message with probability pBT = kr
k1+k4

. Note that R and BT are the only agents
that can execute action red?? (see Figure 1):

• P(∆ca(R, red??)) = [R 7→ (1− pt),RT 7→ pt ] = PR

• P(∆ca(BT, red??)) = [BT 7→ (1− pc),B 7→ pc] = PBT

• P(∆ca(B, red??)) = P(∆ca(RT, red??) = /0

From Lemma 2 (3) we have that:

• R∆

εca(S)
(R[k1], red??)) = ∑

k1
n=0

(k1
n

)(
[R[k1−n] 7→ (1− pR)k1−n] ‖ pn

R ·Pn
R

)
• R∆

εca(S)
(B[k2], red??)) = [B[k2] 7→ 1]

• R∆

εca(S)
(RT[k3], red??) = [RT[k3] 7→ 1]

• R∆

εca(S)
(BT[k4], red??))=∑

k4
n=0

(kk
n

)(
[BT[k4−n] 7→ (1− pBT)

k1−n] ‖ pn
BT ·Pn

BT

)
From the above by multiple applications of rule (B-PAR) we have that:

Rεca(S)(S, red??) = R∆

εca(S)
(R[k1], red??)) ‖ R∆

εca(S)
(B[k2], red??))

‖ R∆

εca(S)
(RT[k3], red??) ‖ R∆

εca(S)
(BT[k4], red??))

=
(

∑
k1
n=0

(k1
n

)(
[R[k1−n] 7→ (1− pR)

k1−n] ‖ pn
R ·Pn

R

))
‖ [B[k2] 7→ 1] ‖ [RT[k3] 7→ 1]

‖
(

∑
k4
n=0

(kk
n

)(
[BT[k4−n] 7→ (1− pBT)

k1−n] ‖ pn
BT ·Pn

BT

))
Note that rules of Table 2 allow us to compute Rεca(S)(S,beRed?) following a structured
approach in the spirit of structural operational semantics. �
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Synchronisation rule. The last step to define the operational semantics of NBA is to
introduce the function S that computes all the interactions occurring over a given ac-
tion. Given a system S, and an action a, function S∆

ε (S,a
?) (resp. S∆

ε (S,a)) will return
a function S associating each system S′ with a non negative real value. The latter in-
dicates the transition rate from S to S′ when a broadcast (resp. unicast) synchronisation
on action a? (a) is performed. Similarly to R, function S is parametrised with respect
to agent definitions ∆ and the environment ε .

Function S∆
ε is formally defined by the following two equations:

S∆
ε (S,a) = ∑A∈S

(
S[A] · r(A,a) ·P(∆(A),a!) ‖

R∆

ε(S)(S−A,a?)

⊕
(
R∆

ε(S)(S−A,a?)
)
)

(U-SYN)

S∆
ε (S,a

?) = ∑A∈S

(
S[A] · r(A,a) ·P(∆(A),a?!) ‖ R∆

ε(S)(S−A,a??)
)

(B-SYN)

The following Lemma guarantees that, in a single step, a system S can reach a finite
number of configurations.

Lemma 3. For any specification 〈S,ε,∆〉 and for any a ∈ CH, the following holds:

• {S′ | S∆
ε (S,a)(S

′)> 0} is finite;

• {S′ | S∆
ε (S,a

?)(S′)> 0} is finite.

PROOF. The proof follows directly from Lemma 1, Lemma 2 and from the definition
of rules (U-SYN) and (B-SYN).

Example 8. Let us consider again the system S of Example 7. Function S can be used
to compute possible outcomes triggered by a unicast or broadcast synchronisation.

For instance, the result of a synchronisation over beRed! can be obtained by using
rule (U-SYN) and composing

k4 ·λc ·P(∆ca(BT),beRed!) = [B 7→ k4 ·λc]

that identifies a computation associated with an output, with R∆

ε(S)(S−BT,beRed?),
that describes how the remaining part of the system (Recall S−BT is the system ob-
tained from S by removing one instance of BT) receives the message (see Example 7).
The latter is also renormalised according to the total weight of inputs to compute the
probability that resolves the race among the possible receivers, that is w= k2+(k4−1).
The result of this composition is reported below:

[ (R[k1 +1] ‖ B[k2] ‖ RT[k3] ‖ BT[k4−1]) 7→ k2

k2 +(k4−1)
· k4 ·λc,

(R[k1 +1] ‖ B[k2 +1] ‖ RT[k3] ‖ BT[k4−2]) 7→ k4

k2 +(k4−1)
· k4 ·λc ]

�
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Figure 2: Simulation results (single run) of the system of Example 3 showing the fractions of agents in states
R, B, RT and BT (left side) and the fractions of red (R or RT) and blue (B or BT) agents in the system
(right side). Simulation parameters: N = 10, λa = λc = 1.0, pt = pc = 0.5, k = 10)

Given a specification Σ = 〈S,ε,∆〉, we can define the associated CTMC; this is ob-
tained as (SYS,Qε

∆
) where the infinitesimal generator matrix Qε

∆
is defined as follows:

Qε
∆[S1,S2] = ∑

a

(
S∆

ε (S1,a,S2)+S∆
ε (S1,a?,S2)

)
Example 9. Functions P, R and S can be used as the base for implementing a stochas-
tic simulator for NBA. In Figure 2 we report the results of the simulation of the system
considered in Example 3 with N = 10. Simulations have been performed with the
framework Sibilla 2, simulation code is available at the link http://bit.ly/2R2qt1E. On
the left the fractions of agents in state R, B, RT and BT are reported. On the right, we
focus on the fractions of red (R or RT) and blue (B or BT) agents in the system. We
can observe that, even if we start from an unbalanced configuration (90% of agents are
red), a more balanced state is quickly reached.

Notations and Definitions. Let Σ = 〈S,ε,∆〉 be a specification, then the following no-
tations will be used:

• for any A,A′ ∈AG, we will write A
α,p7→∆ A′ if and only if ∆(A)=P and P(P,α)(A′)=

p. We will write A α7→∆ A′ if and only if there exists p > 0 such that A
α,p7→∆ A′.

Moreover, we will write A α7→∆ to denote that there exists A′ such that A α7→∆ A′.

• for any A ∈ AG, actions(∆,A) = {α | A α7→∆};

• for any A ∈ AG, agents(∆,A) is the smallest XAG ⊂ AG such that:

– A ∈ XAG;

2https://github.com/quasylab/sibilla
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– for any A1 ∈ XAG, if A1
α7→∆ A2, for some α , then A2 ∈ XAG.

• for any S,
agents(∆,S) =

⋃
A∈S

agents(∆,A)

• for any S,
actions(∆,S) =

⋃
A∈agents(∆,S)

actions(∆,A)

• We say that 〈S,ε,∆〉 is well formed if and only if agents(∆,S) is finite.

3. Population models

As the intention for NBA is to model large numbers of interacting components, we
seek to give models a semantics in terms of population continuous time Markov chains
(PCTMC) rather than capturing every agent individually. In a PCTMC the states keep
track of how the population is distributed over the possible states.

Definition 2. A Population Continuous Time Markov Chain (PCTMC) model is a tu-
ple M = (X,D ,T ,d0) where:

• X = (X1, . . . ,Xn) is a vector of variables;

• each Xi takes values in a finite or countable domain Di ⊂ R;

• D = ΠiDi;

• d0 ∈D is the initial state of the model;

• T = {τ1, . . . ,τm} is the set of transitions τi = (`,π,r) where:

– ` is the label of the transition;

– π : D → DistF(D) is a function associating each population state with a
probability (finite) distribution with finite support over vectors v denoting
the update induced by the rule;

– r : D → R≥0 is a rate function. We require that if r(d) 6= 0 then for all v
such that π(d)(v)> 0, d+v ∈D .

For a transition τ = 〈`,π,r〉 we will use `τ to denote the label of τ . Similar notation
will be used also for the other components of τ . Note that the outcome of an action in a
state is not deterministic but governed by the probability distribution π(d), thus we can
also define µτ(d) and wτ(d), respectively the average and the variance of the change
in population due to a firing of a τ transition. Formally, these are defined as follows
(with v[i] we denote the i-th component of vector v):

µτ(d) = ∑
v∈D

v ·πτ(d)(v) (3)

wτ(d)[i] = ∑
v∈D

v[i]2πτ(d)(v)−µτ(d)[i]2 (4)
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In the following derivations it may be convenient to make models depend on an
index N, which represents the population size. This value will be also used to index a
sequence of population models MN , where each component of MN may depend on N
(denoted by DN , T N ,. . . ).

Given a PCTMC MN we can easily define the associated CTMC: this is obtained
as (DN ,QMN) where the infinitesimal generator matrix QMN is defined as follows:

QMN [d,d′] = ∑
τ∈MN

rN
τ (d) · ∑

v|d+v=d′
πτ(d)(v)

In order to compare models of growing sizes of populations, it is convenient to
switch to a normalised representation, where instead of population counts in each fea-
sible local state, we record the proportion of the population that occupy each state
(sometimes termed occupancy measures).

Let δN = 1
N ; then given a model MN = (X,D ,T ,d0), we can define a normalising

operator ·̂ as follows:

• for all d ∈DN , d̂ = δN ·d;

• D̂N = {d̂ | d ∈DN};

• for all τ ∈ (`,πN ,rN), τ̂ = (`, π̂N , r̂n), where:

– for any d̂ ∈ D̂ , π̂N(d̂) is a probability distribution in Rn defined by:

π̂
N(d̂) = π

N(
1

δN
· d̂)

– for any d̂ ∈ D̂ , r̂N(d̂) = rN( 1
δN
· d̂);

• ˆT N = { ˆτN |τN ∈T N}.

We also define the mean increment µ̂τ(d̂) and the variance of the increment ŵτ(d̂)
for the normalised model, as follows:

µ̂τ(d̂) = ∑
v∈D

(δNv) · π̂τ(d̂)(v)

ŵτ(d̂)[i] = ∑
v∈D

(δNv[i])2 · π̂τ(d̂)(v)− µ̂τ(d̂)[i]2.

Simple algebra allows us to derive the following:

Lemma 4. Let MN = (X,D ,T ,d0) be a PCTMC and M̂N = (X,D̂ ,T̂ , d̂0) its nor-
malised version, then for any τ ∈T :

µ̂τ(d̂) = δN ·µτ

(
1

δN
· d̂
)

ŵτ(d̂) = δ
2
N ·wτ

(
1

δN
· d̂
)
.
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Definition 3. A sequence of normalised PCTMC model (M̂N)N>N0 admits a fluid ap-
proximation if and only if:

• the system size grows linearly with N;

• there exists a subset E ⊆ Rn such that D̂N ⊆ E for all N;

• for each τ ∈ T N there exists a locally Lipschitz continuous and bounded func-
tion3 mτ : E→ R such that uniformly for d̂ ∈ E, limN→∞ µN

τ (
1

δN
d̂) = mτ(d̂)

• for each τ ∈T N , supN wN
τ

(
1

δN
· d̂
)

is locally bounded in E;

• there is a locally Lipschitz continuous and bounded function g : E → R≥0 such
that:

lim
N→∞

δN r̂N(d̂) = g(d̂)

uniformly for d̂ ∈ E.

In the previous definition, it is worth pointing out that the third condition tells us that
the average number of updated agents due to a transition is essentially independent of
N, hence after normalisation, µ̂τ(d̂) converges to zero.

We let

FN(d̂) = ∑
τ∈T N

µ̂
N
τ (d̂)r̂

N(d̂)

F(d̂) = lim
N→∞

FN(d̂) = ∑
τ∈T N

mτ(d̂) ·gτ(d̂)

The drift F defines the vector field of the deterministic limit whose trajectories x̂(t)
are solutions of the initial value problem

dx̂(t)
dt

= F(x̂(t)) with x̂(0) = d̂0 = lim
N→∞

d̂N
0 ∈ E

Theorem 5. Deterministic Approximation for PCTMCs via Fluid Approximation.
Let {XN}N≥N0 be the sequence of Markov processes associated with the sequence of
PCTMC models {MN}N≥N0 admitting a fluid approximation, x̂(t) as above, and assume
all conditions above are satisfied. Then, for any finite time horizon T < ∞, it holds that:

P{ lim
N→∞

sup
0≤t≤T

‖ XN(t)− x̂(t) ‖= 0}= 1,

i.e. sup0≤t≤T ‖ XN(t)− x̂(t) ‖ converges to zero almost surely.

3A locally Lipschitz continuous function f is Lipschitz in any compact set K: ∀K ⊂ Rn compact, there
exists a constant LK > 0 such that for all x,y ∈ K, ‖ f (x)− f (y)‖ ≤ LK‖x− y‖. A locally bounded func-
tion f is bounded in any compact set K: ∀K ⊂ Rn compact, there exists a constant MK > 0 such that
supx∈K ‖ f (x)‖ ≤MK .
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PROOF. The theorem follows by recasting the population models presented above into
the framework of Darling’s proof of the fluid approximation theorem of [17]. In this
paper, conditions are stated in terms of the global rate (i.e. the sum of the rates of each
transition) and the global second non-centred moment of the update, though they can
be equivalently rewritten in terms of variance. Furthermore, as we have a finite number
of transitions τ ∈T , we can relativize these conditions for each transition.

Consider any compact set K ⊆ E, and let KN = D̂N ∩K. In this formulation, what
is required is that

1. limN→∞ FN(d̂) = F(d̂), uniformly in d̂;

2. for each compact set K ⊆ E, there exists a constant M1
K such that for each τ ∈T :

sup
d̂∈KN

‖r̂N
τ (d̂)‖ ≤M1

K ·N;

3. for each compact set K ⊆ E, there exists a constant M2
K such that for each τ ∈T :

sup
d̂∈KN

‖ŵN
τ (d̂)‖ ≤ δ

2
N ·M2

K ;

Now, Condition 1 above follows from the convergence of the mean update and of the
rate functions. Condition 2 follows from the convergence of the rate functions, com-
puting M1

K as the upper bound in K of the continuous function gτ . Condition 3 follows
from Lemma 4, and using the boundedness of non-normalised second non-centred mo-
ment, as for Definition 3.

4. NBA Population Semantics

In this section we present a semantics of NBA specifications as population mod-
els. Give a specification Σ = 〈S,ε,∆〉 we show how we can build a population MΣ =
(XΣ,DΣ,TΣ,dΣ) that has exactly the same stochastic behaviour as Σ.

Let agents(∆,S) = {A1, . . . ,Ak}. The vector of variables XΣ of MΣ consists of the
set of variables XAi taking values in the domain N, while DΣ = Nk. In what follows
we will use the index Xi to refer to the variable XAi , i.e. we associate an index i to each
agent identifier in Σ. At the same time we will use iA, or sometimes just the agent
name A, to refer to the index of agent A. For any system S, we can consider the vector
dS ∈Nk associating with each variable Xi the value S[Ai]. Similarly, for any d ∈Nk we
can consider the system Sd such that S[Ai] = d[i]. The initial state dΣ of the model MΣ

is equal to dS.
The set of transitions TΣ in MΣ consists of two groups of rules modelling unicast

and broadcast interactions. The elements of the first group will be denoted by τ〈Ai,a,A j〉

and models the unicast interaction between an agent Ai that is sending a (unicast) signal
on a that is received by A j.

Example 10. Let us consider the running example used in Section 2. We can associate
each configuration S of our model with a vector Xca of four variables, each taking
values in N. The structure of Xca is the following:
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Xca = (XR,XB,XRT,XBT).

The vector d associated with the system of Example 3 is:

(97 ·N,N,N,N)

�

Given Σ = 〈S,ε,∆〉, for any Ai,A j ∈ agents(∆,S), we let

τ
〈i,a, j〉 = (a(i, j),π

a
i, j,r

a
i, j) (5)

where:

π
a
i, j(d) = [−1Ai 7→ 1]⊗ [1Bi 7→ P(Ai,a!,Bi)]Bi:Ai

a!7→∆Bi
(6)

⊗ [−1A j 7→ 1]⊗ [1B j 7→ P(A j,a?,B j)]B j :A j
a?7→∆B j

ra
i, j(d) = d[i] · rε

Sd
(Ai,a!) ·

(d−1i)[ j] ·wε
Sd
(A j,a?)

∑
l:Al

a?7→∆

(d−1i)[l] ·wε
Sd
(Al ,a?)

(7)

Above, we use 1Ai to denote the vector d ∈ Nk having d[i] = 1 and 0 on all the other
indices. Moreover, for each π1,π2 ∈ DistF(Rn), π1⊗π2 denotes the probability distri-
bution π in DistF(Rn) such that:

π(v) = ∑
v1∈dom(π1)

π1(v1) · ∑
v2∈dom(π2):v1+v2=v

π2(v2)

A rule τ〈i,a, j〉 states that in the update associated with a unicast output performed
by agent Ai that is received by A j, an instance of Ai is removed with probability 1
([−1Ai 7→ 1]) while one of the agents Bi reachable from Ai after a a! action is activated
with probability P(Ai,a!)(Bi) (denoted by [1Bi 7→ Pε(Ai,a!,Bi)]Bi:Ai

a!7→∆Bi
). At the same

time, one instance of A j is removed with probability 1 while one of the agents B j
reachable from A j after a a? action is activated with probability P(A j,a?)(B j) ([1B j 7→
Pε(A j,a?,B j)]B j :A j

a?7→∆B j
). This update is executed with a rate that is the rate of a in

agent Ai (r(Ai,a)) multiplied by the number of instances of Ai (that is d[i]) and by the
probability that one instance of A j receives the signal ( (d−1i)[ j]·w(A j ,a?)

∑l(d−1i)[l]·w(Al ,a?) ).

Example 11. Let us consider rule τBT,beRed,B describing the interaction of an agent in
state BT with one in B via a unicast synchronisation on action beRed. We have that:

π
beRed
BT,B (d) = [−1BT 7→ 1]⊗ [1B 7→ 1]⊗ [−1B 7→ 1]⊗ [1R 7→ 1]

= [−1BT+1B−1B+1R 7→ 1]

= [1R−1BT 7→ 1]
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Hence, when rule τBT,beRed,B is applied only one update can occur with probability
1: 1R−1BT.

The rate rbeRedBT,B (d) of the rule is the following:

rbeRedBT,B (d) = d[BT] · rεca
Sd
(BT,beRed!) ·

(d−1BT)[B] ·wεac
Sd
(B,beRed?)

∑
A:AbeRed?7→ ∆ac

(d−1BT)[A] ·wεac
Sd
(A,beRed?)

= d[BT] · rεca
Sd
(BT,beRed!) · (d−1BT)[B]

∑
A:AbeRed?7→ ∆ac

(d−1BT)[A]

= d[BT] · rεca
Sd
(BT,beRed!) · (d−1BT)[B]

(d−1BT)[B]+ (d−1BT)[BT]

= d[BT] ·λc ·
d[B]

d[B]+d[BT]−1

�

The group of broadcast rules contains elements τ〈Ai,a?〉 regulating possible be-
haviours induced by the execution of a broadcast output on action a by an agent A.

Let Σ = 〈S,ε,∆〉, for any Ai ∈ agents(∆,S), we let τ〈i,a
?〉 = (a?i ,π

a?
i ,ra?

i ). Function
π a?

i , that describes the update induced by the action, is defined as follows:

π a?
i (d) = [−1Ai 7→ 1]⊗ [1Bi 7→ P(Ai,a?!,Bi)]Bi:Ai

a!7→∆Bi

⊗
⊗

A j :A j
a??7→∆

ua?
j ((d−1Ai)( j),pε

Sd
(A j,a??))

(8)

where:

ua?
j (n, p) =

n

∑
k=0

(
n
k

)
· pk · (1− p)n−k[−1A j 7→ 1]k⊗ [1B j 7→ P(A j,a??,B j)]

k

B j :A j
a??7→∆B j

while the rate function ra?
i is:

ra?
i (d) = d[i] · rε

Sd
(Ai,a?!) (9)

The update function π a?
i states that when the rule is applied one instance of Ai is

replaced by one of the agents Bi such that Ai
a?!7→ Bi. The resulting update is governed by

the probability distribution P(Ai,a?!). Any agent A j that can perform the complemen-

tary broadcast input, i.e. A j
a??7→∆, is potentially involved in the synchronisation. The

number of instances involved in the update depends on the probability pε
Sd
(A j,a??).

The function ua?
j (n, p) is used to compute the probability distribution of possible up-

dates induced on n copies of agent A j that can receive the signal with probability p.
This is in fact a multinomial distribution: each of the n copies receives the message
with probability p and evolves to a new agent selected according to the probability dis-
tribution P(A j,a??). Given a probability distribution π , we let πk be the χ0 distribution
when k = 0, and π⊗πk−1 when k > 0. The rate of the update ra?

i (d) is just the rate of
a?! in Ai multiplied by the number of instances of d[i] of Ai.
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Example 12. In our running example (see Example 4), agent R uses action red?! to
advertise its colour. These interactions are rendered via rule τR,red? =(red?,π red?

R ,rred
?

R )
where:

π
red?

R (d) = [−1R 7→ 1]⊗ [1R 7→ 1]

⊗ ured?

R (d[R]−1,pεac
Sd
(R, red??))

⊗ ured?

BT (d[BT],pεac
Sd
(BT, red??))

= [−1R 7→ 1]⊗ [1R 7→ 1]

⊗ ured?

R

(
d[R]−1,

κ

d[R]+d[BT]

)
⊗ ured?

BT

(
d[BT],

κ

d[R]+d[BT]

)

and
rred

?

R (d) = d[R] · rεac
Sd
(R, red?!) = d[R] ·λa

The update induced by rule τR,red? consists of the combination of the multinomials
distributions computed by functions ured?

R and ured?

BT :

ured?

R (n, p) = ∑
n
k=0
(n

k

)
(1− p)n−k · pk

·∑k1+k2=k
( k

k1 k2

)
[k2 · (1RT−1R) 7→ (1− pt)

k1 · pk2
t ]

ured?

BT (n, p) = ∑
n
k=0
(n

k

)
(1− p)n−k · pk

·∑k1+k2=k
( k

k1 k2

)
[k2 · (1B−1BT) 7→ (1− pc)

k1 · pk2
c ]

�

Definition 4. Let Σ = 〈S,ε,∆〉 be a NBA specification, then the associated population
model of Σ is MΣ = (XΣ,DΣ,TΣ,dΣ) such that:

• XΣ = {Ai, . . . ,Ak}= AG[Σ];

• DΣ = Nk;

• TΣ = {τ〈i,a, j〉 | Ai
a!7→∆ and A j

a?7→∆}∪{τ〈i,a
?〉 | Ai

a?!7→∆};

• dΣ = dS.

The following theorem guarantees that the CTMC associated with a specification
Σ and the one associated with the population model MΣ identify the same stochastic
process.

Theorem 6. Let Σ = 〈S,ε,∆〉 and MΣ = (XΣ,DΣ,TΣ,dS). The CTMCs (SYS,QΣ) and
(Nk,QMΣ

) represent the same stochastic process.
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PROOF. The proof is based on the fact that for any S1,S2 ∈ SYS and for any d1,d2 ∈Nk,
the following hold:

1. QΣ[S1,S2] = QMΣ
[dS1 ,dS2 ];

2. QMΣ
[d1,d2] = QΣ[Sd1 ,Sd2 ].

We first introduce the auxiliary functions F ε,a
Ai,A j

and F ε,a?
Ai

defined below:

F ε,a
Ai,A j

(S) = (S[Ai] · rε
S (Ai,a!) ·P(Ai,a!) ‖

R∆

ε(S)((S−Ai) ↓ A j,a?)

∑AR∆

ε(S)(S−Ai) ↓ A,a?)
‖ (S−Ai)\A j

F ε,a?
Ai

= (S[Ai] · rε
S (Ai,a!) ·P(Ai,a?!) ‖A R∆

ε(S)((S−Ai) ↓ A,a??)

where S ↓ A indicates the system containing only the agents A, while S\A is the one
obtained from S by removing all the instances of A.

It is easy to see that:

1. S∆
ε (S,a) = ∑Ai ∑A j F

ε,a
Ai,A j

(S);

2. S∆
ε (S,a

?) = ∑Ai F
ε,a?
Ai

(S);

3. F ε,a
Ai,A j

(S1,S2) = v if and only if v = ra
i, j(dS1) ·π a

i, j(dS2 −dS1);

4. F ε,a?
Ai

(S1,S2) = v if and only if v = ra?
i (dS1) ·π a?

i (dS2 −dS1);

Directly from the four items above and from the definition of QΣ and QMΣ
we have

that for any S1,S2 ∈ SYS and for any d1,d2 ∈ Nk, the following two equalities hold:

1. QΣ[S1,S2] = QMΣ
[dS1 ,dS2 ];

2. QMΣ
[d1,d2] = QΣ[Sd1 ,Sd2 ].

�

Thanks to Theorem 6 we are guaranteed that any NBA specification Σ can be trans-
lated into an equivalent population model MΣ. This facilitates the use of the technique
presented in Section 3 that enables scalable analysis of NBA models. However, we
have to guarantee that all the conditions of Definition 3 are satisfied.

Lemma 7. Let Σ = 〈S,ε,∆〉 and MΣ = (XΣ,DΣ,TΣ,dS). The following hold:

• for any τ〈i,a, j〉 ∈TΣ

µ
τ〈i,a, j〉(d) = −1Ai +∑

Bi

P(Ai,a!,Bi) ·1Bi −1A j +∑
B j

P(A j,a?,B j) ·1B j
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• for any τ〈i,a
?〉 ∈TΣ

µ
τ〈i,a?〉(d) = −1Ai +∑

Bi

P(Ai,a?!,Bi) ·1Bi

+ ∑
A j :A j

a??7→∆

pε
Sd
(A j,a?) · (d−1Ai)( j) ·

(
−1A j +∑

B j

P(A j,a??,B j) ·1B j

)

PROOF. First of all we can observe that for any π1,π2 ∈ Dist(D) we have that:

∑
v∈D

v · (π1⊗π2)(v) = ∑
v1∈D

v1 ·π1(v1)+ ∑
v2∈D

v2 ·π2(v2) (10)

Indeed:

∑v∈D v · (π1⊗π2)(v) = ∑v∈D v ·
(
∑v1∈D π1(v1) ·∑v2∈D |v=v1+v2 π2(v2)

)
= ∑v∈D ∑v1∈D ∑v2∈D |v=v1+v2 v · (π1(v1) ·π2(v2))
= ∑v1∈D ∑v2∈D (v1 +v2) · (π1(v1) ·π2(v2))
= ∑v1∈D ∑v2∈D (v1 · (π1(v1) ·π2(v))+v2 · (π1(v1) ·π2(v2)))
= ∑v1∈D ∑v2∈D v1 ·π1(v1) ·π2(v2)

+∑v1∈D ∑v2∈D v2π1(v1) ·π2(v2))
= ∑v1∈D v1 ·π1(v1) ·∑v2∈D π2(v2)

+∑v2∈D v2 ·π2(v) ·∑v1∈D π1(v1)
= ∑v1∈D v1 ·π1(v1)+∑v2∈D v2 ·π2(v2)

We have that τ〈i,a, j〉 = (a(i, j),π a
i, j,r

a
i, j), where:

π a
i, j(d) = [−1Ai 7→ 1]⊗ [1Bi 7→ P(Ai,a!,Bi)]Bi:Ai

a!7→∆Bi
⊗ [−1A j 7→ 1]⊗ [1B j 7→ P(A j,a?,B j)]B j :A j

a?7→∆B j

Directly from Equation 10 we have that:

µ
τ〈i,a, j〉(d) = ∑v∈D π a

i, j(d)(v) = ∑v∈D [−1Ai 7→ 1](v)
+ ∑v∈D [1Bi 7→ P(Ai,a!,Bi)]Bi:Ai

a!7→∆Bi
(v)

+ ∑v∈D [−1A j 7→ 1](v)
+ ∑v∈D [1B j 7→ P(A j,a?,B j)]B j :A j

a?7→∆B j
(v)

Finally, by observing that

• ∑v∈D [−1Ai 7→ 1](v) =−1Ai

• ∑v∈D [1Bi 7→ P(Ai,a!,Bi)]Bi:Ai
a!7→∆Bi

(v) = ∑Bi P(Ai,a!,Bi) ·1Bi

We can conclude that:

µ
τ〈i,a, j〉(d) = −1Ai +∑Bi P(Ai,a!,Bi) ·1Bi −1A j +∑B j P(A j,a?,B j) ·1B j
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The proof of the second item in the statement follows analogously by simple alge-
bra and by observing that τ〈i,a

?〉 = (a?i ,π
a?
i ,ra?

i ), where:

π a?
i (d) = [−1Ai 7→ 1]⊗ [1Bi 7→ P(Ai,a?!,Bi)]Bi:Ai

a!7→∆Bi

⊗
⊗

A j :A j
a??7→∆

ua?
j ((d−1Ai)( j),pε

Sd
(A j,a??))

and

ua?
j (n, p) =

n

∑
k=0

(
n
k

)
· pk · (1− p)n−k[−1A j 7→ 1]k⊗ [1B j 7→ P(A j,a??,B j)]

k

B j :A j
a??7→∆B j

Indeed, ua?
j (n, p) is in fact a multinomial distribution and its mean is:

p ·n ·

(
−1A j +∑

B j

P(A j,a??,B j) ·1B j

)
�

Finally, the following theorem guarantees that if Σ is a scale invariant specifica-
tion, the population model MΣ satisfies the conditions of Definition 3. Hence, we can
approximate the stochastic behaviour of Σ via a system of ODE.

Theorem 8. Let Σ = 〈S,ε,∆〉 be scale invariant. The population model MΣ = (XΣ, DΣ,
TΣ,dS) satisfies all the conditions of Definition 3.

PROOF. We consider a sequence of NBA specifications {Σk}k∈N>0 , where Σk = 〈k ·
S,ε,∆〉, and the corresponding sequence of population models (MΣk)k∈N>0 . We can
observe that the normalised PCTMC model (M̂N)N>|S| admits a fluid approximation.
Indeed:

• the system size grows linearly with N = k · |S|;

• there exists a subset E ⊆ Rn such that D̂N ⊆ E for all N, this set is { x
N | x ∈ N};

• for each τ ∈T N there exists a locally Lipschitz continuous and bounded function
mτ : E → R such that uniformly for b̂ ∈ E, limN→∞ µN

τ (
1

δN
d̂) = mτ(d̂). Since

ε is scale invariant, this function mτ can be obtained from functions µτ a
i, j

and
µτ a

i, j
of Lemma 7 by replacing pε

Sd
(A j,a?) · (d−1Ai) with the average number of

agents involved in the broadcast. We can observe that this value is constant and
does not change when N increases.

• for each τ ∈ T N , supN wN
τ

(
1

δN
· d̂
)

is locally bounded in E. In the case of rules

of the form τ a
i, j, which model unicast interactions, wN

τ does not change while N
increases (and goes to 0 in the normalised model). When we consider the rules
modelling broadcast interactions, i.e. ones of the form τ?i , we have that wN

τ is
bounded by the the average number of agents (that is a constant) involved in a
broadcast interaction.
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• there is a locally Lipschitz continuous and bounded function g : E → R≥0 such
that:

lim
N→∞

δN r̂N(d̂) = g(d̂)

uniformly for d̂ ∈ E. This function g is obtained directly rε
Sd

. Since ε is scale
invariant, this function does not change with N.

�

Example 13. Any NBA specification that is scale invariant can be translated into a
system of Ordinary Differential Equations (ODE) that approximates its stochastic be-
haviour. This is the case of the NBA model of Example 3.

The results are reported in Figure 4 where the results of the fluid approximation
(obtained by solving the ODE system with SciPy) are compared with the ones obtained
via simulation4. We can observe that, when N increases, the distance between the two
decreases.

�

5. Case Study: Gossip shuffle protocol

In this section we will consider two variants of the gossip shuffle protocol (GSP) [24,
2, 3]. In GSP we have a set of agents (or nodes) that share some data items. Due to
storage limitations, each agent is able to maintain only a finite list of data items in a
local cache. To guarantee that each data item will be eventually available at every node,
nodes exchange items by performing shuffle: local data are sent to another peer that,
symmetrically, sends back its local cache. Following an approach similar to that used
in [29], we show how NBA can be used to model the dissemination of a generic data
item d in a network of agents. According to [24], in GSP each node can be either active
or passive. When an agent is active it selects a passive participant in the system and
sends it a copy of the local cache. The contacted passive node replies with the data
items stored in its local cache. The participants replace the sent element with the ones
received in the interaction. After that, the active agent becomes passive. Passive nodes
will become active after a randomly selected amount of time.

To model the dissemination of a generic data item d in the system we can consider
six different agents: AI, AU, AS, PI, PU and PS. Agent AI models an active node
that is informed, i.e. that has the data item d in the local cache. Agents AU and AS
identify active nodes that are uninformed. However, AU represents a node that has
never received d, while AS is a node that stored d in the past. Similarly, PI is a passive
agent that is informed while PU and PS identify passive and uninformed agents, where
PS stored d in the past.

Each configuration of GSP can be represented as:

AI[k1] ‖ AU[k2] ‖ AS[k3] ‖ PI[k4] ‖ PU[k5] ‖ PS[k6]

4SciPy script and simulation code are available at http://bit.ly/2R2qt1E.
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Interaction between active and passive agents can be modelled via a unicast syn-
chronisation. Active and informed agents AI execute output actions of the form shuffleii

(modelling interactions with informed passive agents) and shuffleiu (modelling inter-
actions with uninformed passive agents). For instance, a synchronisation on action
shuffleii occurs when AI interacts with agent PI, while a synchronisation occurs on
shuffleiu when AI interacts either with an agent PU or with an agent PS. Similarly, an
AU (resp. AS) executes actions of the form shuffleui! and shuffleuu! to model the in-
teractions with informed and uninformed agents, respectively. Passive agents execute
a broadcast output beact?! to become active. The behaviour of agents AI, AU, PI and
PU is the following:

AI
4
= shuffleii!.PI ⊕ shuffleiu!.PS

AU
4
= shuffleui!.PI ⊕ shuffleuu!.PU

AS
4
= shuffleui!.PI ⊕ shuffleuu!.PS

PI
4
= shuffleii?.PI ⊕ shuffleui?.PS ⊕ beact?!.AI

PU
4
= shuffleiu?.PI ⊕ shuffleuu?.PU ⊕ beact?!.AU

PS
4
= shuffleiu?.PI ⊕ shuffleuu?.PS ⊕ beact?!.AS

Note that all enabled actions execute with equal probability. Each active agent becomes
passive after an interaction with a passive one. An agent that is informed becomes
uninformed when it sends the datum d and the same is not received. Finally, an agent
that is uninformed becomes informed when it receives d.

We have now to define an environment εGSP. Function rεGSP
S (that is defined in Ta-

ble 3) associates a rate with each (output) action that an agent can perform. These
values are chosen according to the duration of the shuffle activity and the time an agent
remains passive. We assume that both these values are exponentially distributed ran-
dom variables with rate λs and λa, respectively. Function rS guarantees that the exit
rate of agents AI, AU, and AS is λs, while that of PI, PU and PS is λa.

For instance, agent AI executes action shuffleii! with rate that is λs · S[PI]
S[PI]+S[PU]+S[PS] .

This corresponds to the rate λs multiplied by the probability that in the shuffle one
of the PI agents is selected. Similarly, agent AU executes action shuffleui! with rate
λs · S[PI]

S[PI]+S[PU]+S[PS] while action shuffleuu! is executed with rate λs · S[PU]+S[PS]
S[PI]+S[PU]+S[PS] . In

the first case the rate results from the multiplication of λs with the probability that one
of the PI agents is selected ( S[PI]

S[PI]+S[PU]+S[PS] ). The rate of shuffleuu! is just obtained
by the multiplication of λs by the probability that an uninformed agent is selected
( S[PU]+S[PS]

S[PI]+S[PU]+S(PS ). All the other cases follow a similar pattern.

The other two functions pεGSP
S and wεGSP

S are much simpler and are defined as fol-
lows:

pS(A,α) = 0.0 wS(A,α) = 1.0

This means that any agent receives broadcast messages with probability 0, that is
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rεGSP
S (AI,shuffleii!) = λs · S[PI]

S[PI]+S[PU]+S[PS]

rεGSP
S (AI,shuffleiu!) = λs · S[PU]+S[PS]

S[PI]+S[PU]+S[PS]

rεGSP
S (AU,shuffleui!) = λs · S[PI]

S[PI]+S[PU]+S[PS]

rεGSP
S (AU,shuffleuu!) = λs · S[PU]+S[PS]

S[PI]+S[PU]+S[PS]

rεGSP
S (AS,shuffleui!) = λs · S[PI]

S[PI]+S[PU]+S[PS]

rεGSP
S (AS,shuffleuu!) = λs · S[PU]+S[PS]

S[PI]+S[PU]+S[PS]

rεGSP
S (PI,beact?!) = λa

rεGSP
S (PU,beact?!) = λa

rεGSP
S (PS,beact?!) = λa

Table 3: Actions rates of agents AI, AU, PI and PU.

broadcast messages are always ignored by agents. In contrast, unicast messages can be
received by any agent with the same probability.

We can use the NBA model introduced above to estimate the time needed by an
agent to receive the data item d. Hence, we can contrast the fraction of agents that are
not informed, i.e. that have never seen the data item d, with the fraction of agents that
are or have been informed, i.e. that have locally stored d. The first group of agents
consists of the agents in state AU or PU. The second group consists of all the other
agents.

In Figure 5 the results of simulation and fluid approximation are reported for a
population size N = 102 and N = 103 starting from a configuration where 80% of the
agents are in state PU while the remaining 20% are in state PI. We can observe that the
two kinds of analysis almost coincide and that, with the given parameter values, after
around 10 time units, 90% of the population has been informed about the data item d.

Even if the results of simulation and fluid approximation almost coincide, the com-
putational time needed to obtain these results is quite different. Indeed, while we need
around 0.007s to compute the solution of the ODE on a standard laptop, a longer time
is needed to carry out simulations. In the following table the time needed to complete
a single run of simulation for different values of the population size N is reported:

N Simulation Time
102 0.059s
103 0.167s
104 1.1729s
105 10.829s
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Figure 5: Fluid approximation and simulation (single run) results for GSP (N = 102 and N = 103) with
λs = 10.0 and λa = 1.0.

5.1. Broadcasting variant

Above, interactions between agents in GSP were rendered in terms of unicast in-
teraction. However, in modern system architecture this is not always possible. This
is because messages are spread in the network and collected by participants that are
potentially unknown. In this context one-to-one interactions are often difficult, or even
impossible.

For this reason we consider here a variant of the GSP protocol where active agents
do not interact with a specific participant but they just broadcast their data items. The
agents that are passive can receive these values and use them to update their local cache.

We can consider six different agents: AI?, AU?, AS?, PI?, PU? and PS?. These
identify active and passive nodes that are either informed or uninformed, as previously.
The behaviour of these agents is defined as follow:
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AI?
4
= spread?i !.PI?

AU? 4
= spread?u!.PU?

AS? 4
= spread?u!.PS?

PI?
4
= spread?i ?.PI? ⊕ spread?u?.PS? ⊕ beact?!.AI?

PU? 4
= spread?i ?.PI? ⊕ spread?u?.PU? ⊕ beact?!.AU?

PS? 4
= spread?i ?.PI? ⊕ spread?u?.PS? ⊕ beact?!.AS?

An agent AI? executes action spread?i ! and then it becomes passive. This action
indicates that the data item d is spread on the network. Similarly, agents AU? and AS?

execute action spread?u! to model the fact that data idem different from d are commu-
nicated. Passive agents PI?, PU? and PS? can collect these messages to lose or acquire
the data item d. Moreover, they can execute action beact?! to become active.

To complete the specification, we have to define also a function ε?GSP providing the

quantitative aspects of a system S. Functions rε?GSP
S , pε?GSP

S and wε?GSP
S are defined below:

rε?GSP
S (AI?,spread?i !) = λs

rε?GSP
S (AU?,spread?u!) = λs

rε?GSP
S (AS?,spread?u!) = λs

rε?GSP
S (PI?,beact?!) = λa

rε?GSP
S (PU?,beact?!) = λa

rε?GSP
S (PS?,beact?!) = λa

pε?GSP
S (PI?,spread?u?) =

{
k · 1

S[PI?]+S[PI?]+S[PS?] (S[PI?]> 0)
0 otherwise

pε?GSP
S (PU?,spread?i ?) =

{
k · 1

S[PI?]+S[PU?]+S[PS?] (S[PU?]> 0)
0 otherwise

pε?GSP
S (PU?,spread?i ?) =

{
k · 1

S[PI?]+S[PU?]+S[PS?] (S[PS?]> 0)
0 otherwise

We can observe that agents AI?, AU? and AS? spread their values with rate λs. Passive
agents PI?, PU? and PS? can receive these messages with probability k · 1

S[PI?]+S[PU]?+S[PS?].
In these expressions k is used to represent the average number of agents that can re-
ceive a broadcast message, while 1

S[PI?]+S[PU?]+S[PS?] represents the probability that an
instance of PI? (resp. PU?, and PS?) is one of the receivers.

We can use simulation and fluid approximation to estimate the time needed by an
agent to receive at least a copy of the data item d. Similarly to what we have done for
the unicast version of GSP, we compare the fraction of agents in states AU? or PU?,
that are the uninformed agents, with the fraction of agents in states AI?, PI?, AS? and
PS?, that are the informed agents. Also in this case we consider an initial configuration
where 80% of agents is in state PU while the remaining 20% is PI.
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Figure 6: Fluid approximation and simulation results (single run) of broadcast based GSP (N = 102 and
N = 103) with λs = 10.0, λa = 1.0 and k = 10.

In Figure 6 the results of simulation and fluid approximation are reported for pop-
ulation size N = 102 and N = 103. We can observe that when broadcast is used, less
time is needed than in the unicast mode to spread the data item d. Indeed, after around
2.5 time units 90% of the population has been informed about it. Moreover, the initial
fraction of agents that are either AI or PI does not change.

The results obtained from the simulation are almost the same as those obtained
from the fluid approximation. However, the advantages from a computational point
of view are evident. Indeed, only 0.003s are needed to compute the solution of the
ODE on a standard laptop. While, as reported in the table below, some minutes can be
needed to perform a single run of simulation when the population size N increases:

N Simulation Time
102 0.018s
103 0.206s
104 15.038s
105 1481.980s

The advantages of fluid approximation are in this case even more evident. Indeed,
to perform a detailed modelling study based on simulation, a large number of runs
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(102/103) must be performed. Days of computations are needed to complete the simu-
lation procedure for large values of N.

6. Concluding Remarks

We have introduced NBA, Network of Broadcasting Agents, a process calculus
modelling quantitative aspects of broadcast communication, with the key features of
CARMA. This has allowed investigation of the issue of efficient scalable analysis
of models incorporating asynchronous, many-to-one communication without the full
complexities of CARMA. Thus NBA can be viewed a proof-of-concept language which
allowed us to explore the issue of fluid approximation of broadcast systems in a fo-
cussed way. In this paper we first gave NBA an operational semantics in the style
of FuTS, and then provided it with a population semantics, where we count how many
agents of each kind are in the system, assuming them indistinguishable. This semantics
is used to construct the fluid equations and prove convergence of the NBA stochastic
model to this fluid limit under an appropriate scaling of rates and receiving probabili-
ties. The whole calculus is shown at work on two examples, including a Gossip Shuffle
Protocol. Thus we have established the feasibility of a fluid approximation for mod-
els in a language supporting asynchronous, many-to-one communication. It is worth
noting that defining the NBA semantics in terms of population processes opens several
alternatives to fluid approximation for efficient analysis, such as moment closures and
linear noise approximation [32]. These methods can typically capture stochastic ef-
fects that are neglected by the fluid approximation, but at the price of a larger number
of differential equations to be solved.

NBA is a simple calculus, but already powerful enough to describe the behaviour
of a large class of systems. One way forward, to incorporate these results into a richer
language such as CARMA, is to regard NBA as a target language to map more complex
and expressive calculi, expanding the attribute-based communication into an appro-
priate set of communication channels. To fully capture CARMA behaviour, however,
we also need to consider dynamically changing environments. This brings extra chal-
lenges, as the dynamic of the environment has to be coupled to that of the population
model, resulting in a hybrid system rather than a set of differential equations. Hybrid
systems can also be obtained as limits of NBA models where broadcast actions can
reach a constant fraction of the population, as in the scenario of a national emergency,
in which the government sends a text message to all the citizens, sketched after the
introduction of the condition of scale invariance. However, in this case the commu-
nication is performed by a single agent, and happens with a rate independent of the
population size (i.e. the frequency of national emergencies does not scale linearly with
population size). In these scenarios, i.e. dynamic environments, where broadcast com-
munications happen rarely or are performed by a small pool of agents not increasing
with the population size N, we can rely on the hybrid limit framework of [6], suitably
extending the population semantics presented in this paper.
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