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Abstract. The mean-field analysis technique is used to perform anal-
ysis of a systems with a large number of components to determine the
emergent deterministic behaviour and how this behaviour modifies when
its parameters are perturbed. The computer science performance mod-
elling and analysis community has found the mean-field method useful for
modelling large-scale computer and communication networks. Applying
mean-field analysis from the computer science perspective requires the
following major steps: (1) describing how the agents populations evolve
by means of a system of differential equations, (2) finding the emergent
deterministic behaviour of the system by solving such differential equa-
tions, and (3) analysing properties of this behaviour either by relying
on simulation or by using logics. Depending on the system under analy-
sis, performing these steps may become challenging. Often, modifications
of the general idea are needed. In this tutorial we consider illustrating
examples to discuss how the mean-field method is used in different ap-
plication areas. Starting from the application of the classical technique,
moving to cases where additional steps have to be used, such as systems
with local communication. Finally we illustrate the application of the
simulation and fluid model checking analysis techniques.

1 Introduction

Mean Field Approximation originated in statistical physics [1] and it allows to
find an estimate of the mean of a hard to compute distribution. This technique is
useful to study the behavior of stochastic processes with a very large state space
(e.g. in the study of systems with a large number of particles), where Monte
Carlo simulations are impractical. In those systems, a first approximation of the
behavior is obtained by replacing the effect of the other particles over a given
particle by a single averaged effect and studying this two-body problem [29,37].
Beyond physics, this approximation technique finds applications in studies of
epidemics models [30], queueing theory [6,1], and network performance [36,15].

The stochastic systems we are interested in this tutorial typically consist of
a relatively small number of particle types replicated many times to form large



populations. Mean-field approximation is used to model and analyze efficiently
the emergent behavior of such large-scale systems. Classical applications of this
technique are generally based on two abstractions. The first one ignores agents
identities and, rather than looking at the individual agent behavior, observes
the system at the level of populations [28]. The second abstraction ignores the
spatial distribution of the agents across the system locations, and the particles
are assumed to be uniformly spread across the system space (in chemistry this
idea is embodied in the notion of well-stirred chemical reaction [22,43]). In this
tutorial we illustrate both a classical application in full details (Section 4) and
a more sophisticated modeling of space that consider the effect agents locations
have on the emergent behavior of the system (Section 5).

The core idea of mean-field approximation is to approximate the mean dy-
namics of a Markov population process through a system of differential equa-
tions [33]. This is a reliable approximation if the considered system shows an
emergent behavior (e.g. by showing convergence to zero of variance) and when
the population size is sufficiently large. Under those conditions the random dy-
namics of the Markov process are very close to the deterministic dynamics de-
fined through the differential equations. A further interesting property is that
the joint probabilities of assuming a certain state configuration become disjoint
and, thus, one can focus on one particular individual rather than on the popu-
lation dynamics, given in terms of the solution of a differential equation. This
gives enormous benefits in terms of cost of the analysis.

A closely related approximation technique is known as moment closure [21].
This technique allows to estimate the moments of a stochastic process by trun-
cating the moment equations. This results in a closed system of equations whose
solution can be attempted. Mean-field approximation can be seen as a form of
moment closure where the second moment (variance), as well as the higher mo-
ments, have been truncated (i.e. set to zero). The first-order approximation is
often very coarse and can lead to misleading results [39]. In practice, however,
it can be used to gain some insights about the average, global behavior of the
system at a relatively low cost. Then, further study of the system is required,
for example considering approximations of higher moments.

When first-order or mean-field approximation is applied, the resulting model
can be described in terms of a deterministic system, as mentioned previously.
This is often referred to, in the literature, as deterministic approximation [4,11].

Another related technique is called linear noise approximation, which is fre-
quently used to find approximate solutions of the Chemical Master Equation by
giving an estimate of the second moment of this equation [43].

Depending on the type of Markov process one considers, as well as on how
the model scales with increasing population, one needs to rely on different mean
field results. In particular, if we consider Discrete Time Markov Chains (DTMC),
we can have either mean field limits in discrete time (where all individuals try
to perform a transition at each step, thus assuming a synchronous semantics)
or in continuous time (where a few individuals try to perform a transition, thus
assuming an asynchronous semantics). If we consider Continuous Time Markov

2



Chains (CTMC) we have only limits in continuous time. The first result on
the deterministic approximation of a sequence of CTMC models can be found in
Kurtz [33]. For the case of DTMC models (which we do not treat in this tutorial)
one can refer to [3,36]. On the basis of the limit one obtains, the approximating
dynamical system will be expressed either in terms of finite-difference equations,
for discrete time, or ordinary differential equations, for continuous time.

Continuous Time Markov Chains are often used to provide a stochastic se-
mantics to process algebras used in performance modelling of computer sys-
tems [26]. However, stochastic process algebra models of realistic size can easily
result in underlying state spaces of intractable size. In that context a technique
called fluid-flow approximation [27] has been used to construct a continuous
state-space representation of the underlying discrete state-space, and ordinary
differential equations are used to describe the dynamics of these systems. This
technique is justified by results on mean-field approximation of Continuous Time
Markov Chains [42,28,25]. Indeed, the notion of fluid approximation has been
used in various contexts such as Petri Nets, and relies on the idea that a discrete
variable can be approximated using a continuous variable [40]. In the context of
mean-field approximation of Continuous Time Markov Chains, the fluidification
is essentially involved when discrete stochastic variables counting the popula-
tions are replaced by continuous variables.

In our tutorial we focus on CTMC models and their continuous-time ap-
proximation using ordinary differential equations. The goal of this paper is to
provide an example-guided tutorial to the application of fluid approximation,
including fluid model checking [8]. The interested reader can find very complete
and detailed tutorials in [10,11], treating both Continuous Time Markov Chains
and Discrete Time Markov Chains. A more technical survey of the topic and
related mathematical results can be found in [18].

2 Preliminaries

In the attempt of providing a self contained introductory tutorial to mean field
approximation of Continuous Time Markov Chains and in order to allow the
reader to follow the details of the examples we present, we briefly recall in this
section the principal mathematical notions used in this tutorial.

Let us consider a countable domain D (we assume D ⊂ Rn). A discrete
random variable is a distribution over the discrete domain D. For a thorough
treatment of the theory of probability the reader can refer to [5]. We follow the
notation of [11].

A CTMC is a (dense) time-indexed family of discrete random variables (i.e.
distributions) over a countable state space. It can be seen as a description of the
evolution in (continuous) time of a discrete random variable.

Definition 1 (Continuous Time Markov Chain). A D-valued homogeneous
Continuous Time Markov Chain (CTMC) X(t) is an R≥0-indexed family
{Xt | t ∈ R≥0} of D-valued Discrete Random Variables such that:
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1. P{X(tk)=dk |X(t0)=d0, . . . ,X(th)=dh} = P{X(tk)=dk |X(th)=dh},
for t0 < . . . < th < tk ∈ R and d0, . . . , dh, dk ∈ D, and (memoryless)

2. P{X(t+ δ)=d1 |X(t)=d1} = P{X(u+ δ)=d2 |X(u) = d2},
for t, u, δ ∈ R and d1, d2 ∈ D. (time homogeneity)

For a CTMC, we can define the initial probability distribution π(0) : D → [0, 1]
and the probabilistic transition matrix P : D2 → [0, 1], which, relying on prop-
erties (1) and (2) above, can be defined as P(d1,d2) = P{Xδ = d2 |X0 = d1},
for any d1,d2 ∈ D and δ > 0 ∈ R. This transition probability depends on δ,
that represents the time spent at d1 before the transition takes place. With each
state d we can associate a continuous random variable Xd representing the time
spend in d before any outgoing transition occurs, called the sojourn time. One
can show that memoryless of Markov chains entails that sojourn time is an ex-
ponentially distributed continuous random variable, with a given rate λd. Let
Λ : D → R>0 be the exit rate function, we can define the infinitesimal generator
matrix Q : D2 → R as Q(d1,d2) = Λ(d1) · P(d1,d2), for d1 6= d2 ∈ D, and
Q(d,d) = −

∑
d′ 6=d Q(d,d′).

As a consequence of these observations, a given CTMC can be equivalently
represented either as the tuple 〈D,P, Λ, π(0)〉 or as the tuple 〈D,Q, π(0)〉 [35]. In
the rest of the paper, depending on the context, we rely on both representations
of CTMCs. A CTMC can be labelled, that is, it can include a state-labelling
function L : D → 2AP assigning to each state a set of atomic properties in AP .

In this paper we consider population models, that are Markov chains mod-
elling the evolution of the number of individuals living within a fixed number of
classes. These models are used in biology and chemistry, as well as in telecommu-
nications and queueing theory [3,16,28,41]. Population models are also adopted
as abstractions of large Markov models, e.g. obtained by parallel composition of
several CTMC models. Such large models are unmanageable for the purpose of
analysis, due to known problems of state space explosion, and are not suitable
for direct application of classic analysis techniques such as simulation and model
checking.

Population models are obtained from the original models through two ab-
straction steps [42]. The first abstraction consists in identifying a number of
classes or macro-states and representing the number of processes in a given class
rather than the state of each process, thereby loosing the identity of the single
process. The second abstraction consists in considering the so-called occupancy
measure, that is the fraction of the population rather than the actual amount
of individuals. This second abstraction can also be thought of as a normaliza-
tion step, that allows us to compare population models with different initial
populations.

Example 1. Consider a system with N agents, where S
(N)
i (t) ∈ {1, . . . , n} de-

notes the state of agent i at time t. The first abstraction discussed above con-

sists in considering the quantity X
(N)
i (t) =

∑N
j=1 1{S(N)

j (t) = i}, which denotes
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the number of processes in state i at time t (1{ϕ} is the function equal to 1
when the property ϕ holds, known as indicator function). The second abstrac-

tion consists in considering the fraction X
(N)

i (t) = 1
NX

(N)
i (t) of the processes

in state i. As a consequence of these abstractions, while the size of the state

S(N)(t) = 〈S(N)
1 (t), . . . ,S

(N)
N (t)〉 of the system depends on the population, the

size of the state 〈X(N)
1 , . . . ,X

(N)
n 〉 of the model is independent of the popula-

tion. On the contrary, while the state space of S
(N)
i (t) ranges on the fixed set

{1, . . . , n}, the state of the abstraction ranges over the set {0, 1
N ,

2
N , . . . , 1}

n,
which in the limit becomes the continuous interval [0, 1]n ⊆ Rn.

In the following we assume this abstraction has already been done and we

discuss directly of quantities X(N) and X
(N)

. Sections 4 and 5, dealing with
concrete systems and their models, provide more details and examples concerning
these two abstraction steps. Let us now formalize these notions and discuss
some global measures of population models that allow us to analyse emergent
behaviours of these models.

Definition 2 (Population Continuous Time Markov Chain Model). A
Population Continuous Time Markov Chain (PCTMC) model X is a tuple
〈X,D, T ,d0〉 such that:

1. X = (X1, . . . , Xn) is a vector of variables, taking values in a countable do-
main Di ⊂ R,

2. D =
∏
iDi is the state space of the model,

3. T = {τ1, . . . , τm} is a set of transitions such that τi = 〈`,v, r〉 and

` is the transition label,
v ∈ Rn is the state-change vector,
r : D → R≥0 is the transition rate function, such that r(d) = 0 if d+v /∈ D;

4. d0 ∈ D is the initial state of the model.

Let us describe this model. Xi(t) indicates the number of individuals resid-
ing in state i ∈ {1, 2, . . . , n} at time t. The system population at time t is
N(t)=

∑n
i=1Xi(t), the initial population is X(0)=d0. The execution of a tran-

sition τ consists in performing an action with label ` which modifies the current
population d into the new population d′, where d′−d = vτ and vτ is the cor-
responding state-change vector. No assumptions on balance in these transitions
is taken since, in general, we allow the modelling of birth/death processes and
the population need not be preserved. The population can also be modified in
terms of fractions of individuals, but the condition on the transition rate function
ensures the reachable states belong to the fixed, countable state space.

A PCTMC model X = 〈X,D, T ,d0〉 has an underlying CTMC process
X(t) = 〈D,P, Λ, π(0), L〉, where P and Λ are obtained by computing the in-
finitesimal generator matrix as described below. The initial probability distribu-
tion π(0) : D → [0, 1] is such that π(0)(d0) = 1 and π(0)(d) = 0 for any d 6= d0.
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The transition rate from d to d′ is the sum of the rates of the outgoing transitions
from d whose state-change vector leads to d′: Q(d,d′) =

∑
{τ∈T |d′=d+vτ} rτ (d),

if d′ 6= d, and Q(d,d) = −
∑

d′ 6=d Q(d,d′) otherwise. We also assume to have

a state-labelling function L : D → 2AP .
When studying systems with a large number of components, we consider a

sequence (X (i))I = X (i0)X (i1) . . . of PCTMC models, indexed over a set I ⊆ N.

The notation X (i) = 〈X(i),D(i), T (i),d
(i)
0 〉 indicates that all the components of

a PCTMC model depend on the parameter i, for i ∈ I. To each model X (i)

we associate a size γi, provided by a function γ : I → R≥0. In most cases the
sequence of PCTMC models is indexed over the entire N and the size is exactly
the population, that is the total number of components/agents in the system.
We indicate this choice by (X (i))N, and fixing the size γi to be the population
N . However, in general the population may depend on time (such as in the
birth/death processes), thus not being a constant of the model.

We now introduce some notions to describe the global behavior of a PCTMC
model X . The exit rate RX : D → R describes the rate of the event that an
outgoing transition happens from a given state.

RX (d) =
∑
τ∈T

rτ (d)

In [3] this notion is called intensity.
The mean increment µX : D → Rn describes the average variation of each

variable in a discrete PCTMC step, and it is defined as the sum of the variations
induced by each transition, multiplied by the probability for that transition to
happen.

µX (d) =
∑
τ∈T

vτ
rτ (d)

R(d)

where we assume R(d) > 0. Finally, we consider the mean dynamics (also called
drift) FX : D → Rn that describes the average local variation of the PCTMC
with respect to the time elapse.

FX (d) = RX (d)µX (d) =
∑
τ∈T

vτrτ (d)

Any model X (i) of a sequence (X (i))I has his own parameters RX (i) , µX (i) ,
FX (i) . In the mean-field approximation theorem we are interested into param-
eters R(X (i))I , µ(X (i))I , F(X (i))I characterizing a sequence of PCTMC models.
Indeed, if such parameters exist and satisfy certain scaling assumptions, we are
able to characterize the limit behaviour of the sequence (X (i))I in terms of those
parameters. In the following section we provide sufficient conditions under which
those parameters can be found and a theorem that allows us to define the dy-
namics of the sequence (X (i))I using those parameters.

Indeed, in order to be able to compare models of different size, we need to

transform each model X (i) = 〈X(i),D(i), T (i),d
(i)
0 〉 of a sequence (X (i))I into
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the corresponding, normalized model X (i)
= 〈X(i)

,D(i)
, T (i)

,d
(i)

0 〉, obtained by
applying a normalization operator · , defined as follows:

1. X
(i)

is the new vector of state variables,

2. D(i)
= {d | d ∈ D(i)}, where d = 1

γi
d, for every d ∈ D,

3. T = {τ | τ ∈ T (i)},
where for a transition τ = 〈`,v(i), r(i)〉 the normalized transition is τ =
〈`,v(i), r(i)〉, with v(i) = 1

γi
v(i) and r(i)(d) = r(i)(γi d), for every d ∈ D.

As an effect of normalization, we have the relation X
(i)

= 1
γi

X(i) between the
state-space of the normalized model and that of the non-normalized one. The

normalized state space X
(i)

is also known in the literature as occupancy measure.

As a consequence of normalization, any model X (i)
of a sequence (X (i))I has his

own parameters RX (i) , µX (i) , FX (i) .

3 Mean-field Approximation

The core idea of the mean-field approximation is that, under certain assumption
on the dynamics of the population and when the size of the PCTMCs grows
(i.e. in the limit), the drift vectors become coherent. In particular, the variance
of the system becomes zero so the approximation over the average behaviour
is faithful. Therefore, the average behaviour can be modelled considering the
unique solution of a system of Ordinary Differential Equations defined by using
the limit mean dynamics (the drift) of the PCTMC family.

The ODE approximation of the sequence of CTMC models is defined on a
continuous domain, while each model in the sequence has its state space on a
countable domain. To re-conciliate these two domains, we consider a closed set

E ⊂ Rn that contains the state space of each model in the sequence:
⋃
I D

(i) ⊆ E.
An important requirement for the mean-field approximation theorem is con-

vergence of initial conditions, which can be understood as the need for the all
the PCTMC models of a sequence to have the same proportion of individuals
among the various populations. The limit of these initial conditions constitute
the initial condition for the ODE that approximates the mean dynamics.

Definition 3 (Convergence of Initial Conditions). A sequence (X (i))I sat-
isfies convergence of initial conditions if there is a point d0 ∈ E such that, when

considering the initial conditions of the normalized models, limi→∞ d
(i)

0 = d0.

3.1 Density Dependence

As a first step, we consider a restricted version of the mean-field approxima-
tion theorem, applicable to the so-called density dependent sequences of models,
defined as follows.
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Definition 4 (Density Dependence). The sequence (X (i))I = X (i0)X (i1) . . .
of PCTMC models is density dependent if and only if:

1. the size grows linearly in i: γi ∈ Θ(i);

2. for any transition, the corresponding state-change vector is independent of
the parameter of the sequence:

for any transition τ there is a vector uτ such that, for any i ∈ I, v
(i)
τ = uτ ;

3. the rate functions depend on the parameter i only in terms of normalization:
for any transition τ there is a function gτ : E → R such that, for any i ∈ I,

r
(i)
τ (d) = γi gτ ( 1

γi
d), for all d ∈ D(i).

Density dependent sequences of PCTMC have rates and mean dynamics that
scale together with the model size so that in the normalized models they are
independent of the size. This allows to find easily the limit of the mean dynam-
ics and to use it to define the field for the ODE that approximates the mean
dynamics. These observations are formalized by the following properties.

A normalized model X (i)
of a density dependent sequence has the following

(global) properties:

1. for any state, the exit rate grows linearly with the model size:

RX (i)(d) =
∑
τ∈T (i)

r(i)τ (d) =
∑
τ∈T (i)

γi gτ (d) (†)

therefore, since gτ does not depend on i and the size is linear in i, in the
normalized domain RX (i) ∈ Θ(i);

2. the mean dynamics does not depend on i:

FX (i)(d) =
∑
τ∈T (i)

v(i)
τ r(i)τ (d) =

∑
τ∈T (i)

uτgτ (d) (‡)

let us denote by F(X (i))I the mean dynamics of the sequence (X (i))I .

In [3], property (1) above corresponds to the notion of vanishing intensity. As
a consequence of those properties, under density dependence, we are able to
calculate a mean dynamics which is common to all the models of the sequence.
The following step is now to evaluate the behaviour of each model of the sequence
w.r.t. the limit mean dynamics. The mean-field approximation theorem that we
are going to introduce states that the variance of the trajectories becomes small
as the size of the model grows and converges to the limit mean dynamics.

Let us now fix some notation for the remaining part of this section. Assume

(X (i)
)I is a sequence of normalized population models, X (i)

be one of these

models, and X
(i)

(t) be the underlying Markov process. Finally, let x(t) the so-

lution of the initial value problem dx(t)
dt = F (x(t)) and x(0) = d0, for a given

(Lifschitz-continuous) field F .
We now state a first version of the mean-field approximation theorem, based

on density dependence and assuming globally Lipshitz-continuous dynamics.
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Furthermore, in Figure 1 we recapitulate how the main notions illustrated in
this section are combined into a systematic approach to applying mean-field
approximation to PCTMCs.

Theorem 1 (Mean-field Approx. of Density Dependent PCTMCs). Let
the sequence (X (i))I = X (i0)X (i1) . . . of PCTMC models be density dependent
and enjoy convergence of initial conditions to the point d0 ∈ E. Let the drift
F(X (i))I be a Lipschitz-continuous vector field and x(t) the solution of the initial

value problem x(0) = d0 and dx(t)
dt = F(X (i))I (x(t)). Then, for any finite time

horizon T <∞

P { lim
i→∞

( sup
0≤t≤T

‖X(i)
(t)− x(t)‖ ) = 0} = 1

The theorem states that the sequence (X (i))I of population models converges
almost surely [5] to the dynamics of the ODE. That is, if we compare the be-

haviour of the underlying Markov process X
(i)

(t) with the solution x(t) of the
dynamical systems defined through the limit mean drift field, we observe that, as
the model size grows, the worst mean square distance converges to zero almost
surely for any finite time horizon. As a consequence, as the model size grows,
the dynamics of the PCTMC becomes deterministic and can be faithfully ap-
proximated by the (possibly nonlinear) dynamics of x(t).

We are now ready to describe a systematic approach to the application of
the mean-field approximation, illustrated in Figure 1. The first step consists in
definig a sequence (X (i))I of population models parameterized in their size as
indicated in Def. 2. One can also rely on higher-level languages such as those
based on process algebras. A notable example is PEPA, that has a stochastic,
lumped semantics based on the idea of counting process types which is close to
that of Def. 2, from which ODEs are derived [42].

The second step consists in choosing appropriate initial conditions, according
to Def. 3. Then, it is necessary to check satisfaction of Def. 4. If all the require-
ments are satisfied, we can derive a limit drift matrix as indicated by (‡) which
must be checked for Lipschitz continuity. The initial conditions together with
the limit drift are then used to define the initial value problem of Theorem 1,
which is ensured to be coherent to the dynamics of (X (i))I for large i.

In Sec. 4 we illustrate an application of this systematic approach on a concrete
example modeling the spread of computer viruses.

3.2 Beyond Density Dependence

For models considered in practice, however, the assumption of density depen-
dence may be too restrictive [18]. Furthermore, also the assumption of (global)
Lipschitz continuity of F(X (i))I can be unrealistic [7]. Therefore, we now con-
sider a more general version of the mean-field approximation theorem, having
less strict requirements and applied to prefixes of trajectories rather than to full
model trajectories.
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1. Define a sequence of (normalized) population models (X (i)
)I ,

in terms of a parameterized model X (i)
defined following Def. 2;

2. Choose initial conditions d0 satisfying Def. 3;

3. Check density dependence of (X (i)
)I according to Def. 4;

4. Apply (‡) to compute the drift matrix FX (i) and construct the system

of Ordinary Differential Equations with initial conditions d0;

5. Check Lipschitz-continuity of FX (i) ;

6. Analyze the solution x(t) of this initial value problem, which approxi-

mates the mean behavior of X (i)
for large values of i as in Theorem 1.

Fig. 1: The general procedure for applying mean-field approximation.

We consider a set S which is open relatively to the set E and contains the
state-space of the family of PCTMC models under consideration4. We formulate
all the scaling assumptions w.r.t. dynamics of the family of PCTMC models that

live within S. In particular, we consider the parametric space S(i) = D(i)∩ S.
The first requirement concerns the behaviour of the system mean dynamics

(drift) when the size grows.

Definition 5 (Convergence of Drift). A sequence (X (i))I of PCTMC models
satisfies convergence of drift if there exists a Lipschitz vector field F : E → Rn
such that the mean dynamics F

(X (i)
)I

of the normalized sequence converge uni-

formly to F :

lim
i→∞

sup
d∈S(i)

‖F
(X (i)

)I
(d)− F (d)‖ = 0

In this definition we require Lipschitz continuity of F and convergence only
within S(i). If convergence of drift is satisfied, we can study, within S(I), the

behaviour of the solution of the initial value problem dx(t)
dt = F (x(t)) with

x(0) = d0, rather than the original model X (i)
. However, we are unable to

evaluate the error we commit in this approximation.
The second requirement concerns the effect on exit rates and jump magnitude

of model size growth. In particular, we require that the variance of the system
dynamics (which is considered to be noise w.r.t. to the deterministic dynamics)
goes to zero.

4 Recall that sets are defined to be open w.r.t. a topology: here we assume the topolog-
ical space Rn. If E is a subset of Rn, then a set S is open relatively to E if S = U ∩E,
for some open set U in Rn. As a simple example, let S be the set (0, 1) ⊂ Q (the
rational numbers). Now, if E = Q then S is open w.r.t. E, but if E = R then S is
not open w.r.t. E (no open subset of R, intersected with E, allows to define S).
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Definition 6 (Convergence to Zero of Noise). A sequence (X (i))I of PCTMC
model satisfies convergence to zero of noise if, once normalized:

(1) the exit rate is bounded, for any size i:

for any i ∈ I, there is Λi ∈ R such that Λi <∞ and supd∈S(i) RX (i)(d) = Λi;

(2) the magnitude of jumps goes to zero, as i increases:

for any i ∈ I, there is Ji ∈ R such that maxτ∈T (i) ‖v(i)
τ ‖ = Ji and Ji ∈ O(i−1);

(3) jump magnitude and exit rate satisfy J2
i Λi ∈ O(i−1).

The notions of convergence of drift and convergence to zero of noise depend
and are limited to the restricted state space S(i). One can prove that density
dependence implies convergence of drift and convergence to zero of noise.

Let us assume that we are given a relatively open subset S of the state
space E, a vector field F Lifschitz in S, and an initial value d0 ∈ S. The following,
more general version of the mean-field approximation theorem holds for prefixes
of the PCTMC behavior that live within S. In particular, it relies on a notion
of exit time from the region S: let the exit time from S of the markov process

X
(i)

(t) be defined as ζ(i)(S) = inf{t ≥ 0 |X(t) 6∈ S} and the exit time from S of
the ode solution x(t) be defined as ζ(S) = inf{t ≥ 0 |x(t) 6∈ S}.

Theorem 2 (Mean-field Approximation of PCTMCs). Let the sequence
(X (i))I = X (i0)X (i1) . . . of PCTMC models and a given vector field F (Lifs-
chitz in S) satisfy convergence of initial conditions, convergence of drift, and
convergence to zero of noise. For any finite time horizon T < ζ(S):

1. limi→∞ P{ζ(i)(S) < T} = 0

2. for all ε ∈ R>0, limi→∞ P{sup0≤t≤T ‖X
(i)

(t)− x(t)‖ > ε} = 0

This theorem states that, for any horizon within the exit time ζ(S), (i) when
the size of the model grows, the probability the PCTMC model exits S before
the exit time of the ode solution is zero, and (ii) the sequence (X (i))I of pop-
ulation models converges in probability [5] to the dynamics of the ode. That is,
the probability of observing a difference bigger than ε between any point of a
trajectory of the Markov process and the solution of the ode goes to zero as the
size grows.

In opposition to Theorem 1, this theorem allows to restrict the approxima-
tion to a prefix of the trajectories, while beyond the exit time ζ(S) one can say
nothing. This relaxed assumption allows to find piece-wise deterministic approx-
imations [7] (called hybrid limits therein) also for PCTMC sequences that do
not satisfy the assumptions of Theorem 1. However, Theorem 2 ensures a weaker
form of convergence than Theorem 1, since almost sure convergence implies con-
vergence in probability [5].

In both theorems nothing is said about asymptotic behaviour. This is a rel-
evant topic, that allows to perform several studies such as steady state analysis
of the population models as well as model checking [8]. In [3] the reader can find
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a discussion on conditions under which one can draw conclusions also on the
behaviour for T equal to ∞.

As a further remark we want to point out that Theorems 1 and 2 allow to
establish that, in the limit, the error of deterministic approximation goes to
zero. However, we are not able to quantify the error committed considering an
intermediate system size. Details on worst-case bounds on this error can be found
in [23]. A detailed proof of Theorem 2 can be found in [17,18].

3.3 Fast Simulation and Fluid Model Checking

An interesting consequence of the mean-field approximation theorem is the so-
called decoupling of joint probability (for details, please refer to [3,36]). Let S(i)(t)

be the (parameterized) state of the system at time t, where S
(i)
k (t)∈{1, . . . , n}

is the state of the k-th object, and Sk(t) be the state of k in the limit model.
Then, for any set of agents 1, . . . , h and states s1, . . . , sh∈{1, . . . , n}, for large i:

P{S(N)
1 (t) = s1, . . . ,S

(N)
h (t) = sh} ≈ P{S1(t) = s1} · . . . · P{Sh(t) = sh}

That is, in the limit the joint probability distribution of the states becomes equal
to the (product of the) independent probabilities of the states of the single agents.
Therefore, we can approximate a single probability using the ODE solution as
follows: P{S1(t) = s1} = xi(t). This holds because the limit is deterministic and
the objects are abstracted w.r.t. their identities. However, since the mean-field
approximation theorems hold for finite time horizon, we have no guarantee on
the validity of decoupling also in the steady state, for T =∞.

The decoupling of probabilities is a relevant property in many applications
such as fast simulation [18,20] and fluid model checking [8]. The central idea of
fast simulation is to abstract the system into its fluid approximation and to study
the evolution of a single agent (or a fixed set of gents) as executed in parallel with
the approximation. The advantage is that, rather than considering/simulating
the entire system, it is sufficient to consider the abstract average behaviour of the
system and observe a single agent interacting with it, by decoupling its evolution
from the evolution of the remaining agents. This is a faithful approximation since,
by Theorems 1 and 2 the dynamics of a single agent depend on the other agents
only through the global system state.

This idea is further exploited in fluid model checking [8], where one studies
properties of a single agent in time, within a large population. In particular, fluid
model checking takes advantage of fluid approximation to obtain a more efficient
stochastic model checking technique [35]. In [8] the authors develop novel CSL
model checking algorithms for ICTMC models and show how to exploit fast
simulation in this setting.

In this tutorial we illustrate an application of this technique in Section 6 by
considering the system that we describe in the following Section 4.
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Fig. 2: Possible states of a computer in the network. The shorthand names
are defined as follows: ni=NotInfected, ii=InitialInfection, cb=ConnectedBot,
iwb=InactiveWorkingBot, awb=ActiveWorkingBot, ipb=InactivePropagationBot, and
apb=ActivePropagationBot.

4 Mean-field Analysis of a Bot-net

In this section we discuss the applicability of the mean-field method to modeling
peer-to-peer botnet, similarly to [31] . In Section 4.1 we discuss the character-
istics of the botnet, which are important for modeling. Section 4.2 describes
the mean-field model of the botnet spread. The performance evaluation results
are presented in Section 4.3, together with an example of wider usability of the
mean-field model.

4.1 Description of the system

Let us describe the steps each computer goes through during the botnet spread.
The computer which is in NotInfected state (S1) enters the InitialInfection (S2)
state with rate k∗1 . Then, it connects to the other bots in the botnet, going to
ConnectedBot state (S3), and it downloads the program containing the malware
with rate k2. If the computer, for some reason, is not able to download the
malware, it returns to the state NotInfected with rate k3.

After downloading the malware, the computer joins the botnet either as In-
activeWorkingBot (S4) or as InactivePropagationBot (S6) with rates k4 and k5,
respectively. If downloading the malware is not possible, for example, because
the connection has failed, the computer moves back to the NotInfected state
with rate k6. Once the bot becomes either an InactiveWorkingBot or an In-
activePropagationBot it never switches between the Working- or Propagation-
classes. In order not to be detected, the bot is inactive most of the time and it
only becomes active for a very short period of time. Transitions from Inactive-
PropagationBot to ActivePropagationBot (S7) and back occur with rates k9 and
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k1 RateOfAttack·ProbInstallInitialInfection

k∗1 Rate depends on k1 and the environment

k2 RateConnectBotToPeers·ProbConnectToPeers

k3 RateConnectBotToPeers·(1-ProbConnectToPeers)

k4 RateSecondaryInjection·ProbSecondaryInjectionSuccess·(1-ProbPropagationBot)

k5 RateSecondaryInjection·ProbSecondaryInjectionSuccess·ProbPropagationBot

k6 RateSecondaryInjection·(1-ProbSecondaryInjectionSuccess)

k7 RateWorkingBotWakens

k8 RateWorkingBotSleeps

k9 RatePropagationBotWakens

k10 RatePropagationBotSleeps

k11 RateInactiveWorkingBotRemoved

k12 RateActiveWorkingBotRemoved

k13 RateInactivePropagationBotRemoved

k14 RateActivePropagationBotRemoved

Table 1: Transition rates for a single computer.

k10, respectively. The transition rates for moving from InactiveWorkingBot to
ActiveWorkingBot (S5) and back are denoted k7 and k8, respectively.

The computer can recover from its infection, e.g., if an anti-malware soft-
ware discovers the virus, or if the computer is physically disconnected from
the network. In these cases, it leaves the InactivePropagationBot or the Active-
PropagationBot state and moves to the NotInfected state with rates k13, k14,
respectively. The same holds for the working bots: the transition rates from
InactiveWorkingBot and ActiveWorkingBot are k11, k12, respectively.

The model we construct considers several computers in a network, each of
them being in one of the above mentioned states S1, .., S7, depicted also in Fig-
ure 2. The rates of transitions between states may depend on several factors, e.g.,
probability of a successful connection between initially infected computer and
another infected computer, while moving from the state InitialInfection to the
ConnectedBot state; or the probability of ConnectedBot to become Porking or
Propagation bot, respectively. Table 1 provides the description of the transition
rates for one computer model, while numerical values are given in Table 2. Rates
k2 . . . k14 are constant for each computer, while rate k∗1 to move from the Not-
Infected state (S1) to the InitialInfection state (S2) is not constant. This rate
depends on k1 and on the number of computers in the ActivePropagationBot
state, which are responsible of spreading the malware.

4.2 Mean-field Model

We study the spread of the botnet in a network of N computers by using the
mean-field approximation method for finding the (average) deterministic dy-
namics of the system. The mean-field model captures the number of objects in
a particular state, rather than considering the state of each single object. The
mean-field state vector X = 〈X1, X2, . . . X7〉 counts how many computers are in
states S1, ..., S7. The occupancy measure is found by normalizing X into X.
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We first construct the rate matrix, which collects the rates with which pos-
sible transitions take place. Transition rates may depend on time as well as on
the state X(t) of the system. The rate matrix R(X(t)) of the model is given as:

R =



0 k∗1(X(t)) 0 0 0 0 0
k3 0 k2 0 0 0 0
k6 0 0 k4 0 k5 0
k11 0 0 0 k7 0 0
k12 0 0 k8 0 0 0
k13 0 0 0 0 0 k9
k14 0 0 0 0 k10 0


(1)

The |X|×|X| infinitesimal generator matrix Q(X(t)) is given as follows: Q(s1, s2)
is equal to the transition rate R(s1, s2) to move from the state s1 to the state
s2 and Q(s, s) is equal to the reciprocal of the sum of all the rates in row s.
In a given example the only rate which depends on a state of the system is
the infection rate k∗1(X(t)), which depends on the number of computers (bots)
actively spreading infection. The total rate of infections produced by all bots
that are in the active propagation state is k1 ·X7(t). These infections are spread
out randomly over all not-yet infected computers, whose number is denoted by
X1(t) 5. Hence, the infection rate k∗1 perceived by each individual computer is
given by the ratio:

k∗1(X(t)) =
k1 ·X7(t)

X1(t)
. (2)

which entails that Q satisfies density dependence, as given in Definition 4.
One we have constructed the infinitesimal generator matrix Q, we can use it

to construct the set of Ordinary Differential Equations whose solution represents
the average dynamics of the system. In particular, the drift matrix F is exactly
the matrix Q. The state vector on the continuous state space is x = 〈x1, . . . , x7〉.
Therefore, the initial value problem we study is defined as follows:

dx(t)

dt
= x(t)Q(x(t)), with initial condition x(0). (3)

The system of equations we obtain is:

ẋ1(t) = k3x2(t) + k6x3(t) + k11x4(t)

+k12x5(t) + k13x6(t) + (k14 − k1)x7(t)

ẋ2(t) = −(k2 + k3)x2(t) + k1x7(t)

ẋ3(t) = k2x2(t)− (k4 + k5 + k6)x3(t)

ẋ4(t) = k4x3(t)− (k7 + k11)x4(t) + k8x5(t)

ẋ5(t) = k7x4(t)− (k8 + k12)x5(t)

ẋ6(t) = k5x3(t)− (k9 + k13)x6(t) + k10x7(t)

ẋ7(t) = k9x6(t)− (k10 + k14)x7(t)

(4)

5 In the considered example the propagation bots are “smart” enough to spread in-
fection via not infected computers only.
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Experiments
Parameter Baseline Exper 1 Exper 2

ProbInstallInitialInfection 0.1 0.06 0.04

ProbConnectToPeers 1 1 1

ProbSecondaryInjectionSuccess 1 1 1

ProbPropagationBot 0.1 0.1 0.1

RateOfAttack 10.0 10.0 10.0

RateConnectBotToPeers 12.0 12.0 12.0

RateSecondaryInjection 14.0 14.0 14.0

RateWorkingBotWakens 0.001 0.001 0.001

RateWorkingBotSleeps 0.1 0.1 0.1

RatePropagationBotWakens 0.001 0.001 0.001

RatePropagationBotSleeps 0.1 0.1 0.1

RateInactiveWorkingBotRemoved 0.0001 0.0001 0.0001

RateActiveWorkingBotRemoved 0.01 0.01 0.01

RateInactivePropagationBotRemoved 0.0001 0.0001 0.0001

RateActivePropagationBotRemoved 0.01 0.01 0.01

Table 2: Setup for the three experiments. Bold indicates differences w.r.t. baseline.

The equations can be solved analytically, however the closed forms are impracti-
cally large. We used Wolfram Mathematica [45] to obtain the analytical solution.

4.3 Results

In this section we discuss the mean-field results in detail and compare them to
the simulation results, the chosen parameters for all these experiments are given
in Table 2. We essentially experimented considering different infection rates,
denoting possible user behaviors, and their impact on the system behavior.

The simulation of the model was done using the Moebius tool [19] as in [44].
Each experiment covered one week of simulated time. Each experiment was repli-
cated 1000 times; the mean values and 95% confidence intervals of the measures
of interest are shown. The initial conditions for each experiment are as follows:
200 computers are located in the place ActivePropagationBots.

We use Mathematica [45] to obtain solutions for the set (4) of differential
equations coupled with the transition rates from Table 2. Given an overall popu-
lation of N = 107, the fraction of computers in the state NotInfected is initialized
as x1(0) = (N − 200)/N , the fraction of computers in the state ActivePropaga-
tionBot is initialized as x7(0) = 200/N , and the fractions of computers in all
other states are initialized as zero.

Figure 3 shows the number of the propagation bots along time. The number
of propagation bots (both active and inactive) has been taken as measure of
interest since they actively infect “healthy” computers. A logarithmic scale has
been chosen for the number of propagation bots, in order to better visualize the
exponential growth. The figure depicts the mean-field results of the Baseline ex-
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Fig. 3: Number of propagation bots over time in the Baseline experiment and exper-
iments 1 ad 2 obtained from mean-field approximation together with the confidence
intervals obtained from the simulation.

Experiment Simulation Mean-field

Baseline 5 d 3 h 25 min 1 sec

Exp. 1 9 h 51 min 1 sec

Exp. 2 5 h 37 min 1 sec

Table 3: Time spent on simulation and mean-field approximation.

periment together with the 95% confidence intervals of the Moebius simulation.
As can be seen, the mean-field results are very accurate in this case, since they
lie mostly within the confidence intervals, even though the confidence intervals
are very narrow.

To investigate how a reduced infection spread would influence the growth of
botnets, Experiments 1 and 2 were done in [44]. The “user factor” (ProbInstal-
Infection) is reduced to 60% and 40%, respectively, as compared to the Baseline
experiment to represent a lower probability of, e.g., opening infected files. The
results are, together with those from the Baseline experiment, presented in Fig-
ure 3. For both experiments, the results obtained with the mean-field model are
very accurate and lie well within the confidence intervals most of the time.

One of the advantages of the mean-field method is that the time, needed for
obtaining the means of the model is much smaller than the time, needed for the
simulation (as shown in Table 3). The timings were obtained on a i7 processor
with 3 GB RAM and 4 hyper-threading cores. The baseline experiment took 5
days 3 hours and 25 minutes, while the mean-field analysis was completed in one
second. The difference between the simulation time for the different experiments
is due to the dependency of the rates on a number of computers in ActiveProp-
agationBots state. In the Baseline experiment the number of these computers is
large, hence, the rate of infection becomes very large and more time is needed to
simulate the resulting large number of events. The time spent on the simulation
of the experiments with a lower number of computers involved is reasonably
smaller; however the mean-field approximation is still much faster in all cases.

17



We do not provide all the experiments from [44] and [31] since they lie out
of the scope of interest of this tutorial. Note, however, that the accuracy of the
results and the speed of calculation hold for all the experiments, provided in the
papers, mentioned above.

The speed of the mean-field results calculation allows us to use the mean
field method to address problems which are not feasible using simulation: (i)
we study the dependence of the botnet spread on two parameters, while the
previous results are only functions of time for a given set of parameter values,
(ii) and we study the behavior of the botnet in the presence of cost constraints.
The purpose of the following is to show the difference between the simulation
and the mean-field capabilities, and, at the same time, to show the advantages
of the fast analysis.

We calculate the number of propagation bots as a function of k13 and k14
(see Figure 4). As one can see, there is no considerable difference in a relative
increase of one or the other parameter. It is known that inactive computers
are much harder to detect (increasing k13 is more difficult), therefore the above
results might be helpful for the antivirus software developers to find the better
strategy for botnet removal.

Next, we introduce a cost concept to analyze the economical side of an infec-
tion. Two types of costs are considered: (i) the cost of a computer being infected,
for example due to the loss of information or productivity, and (ii) the cost of
more frequent checking with antivirus software. On one hand the number of
infected computers, and hence their cost grows if computers are not frequently
checked. On the other hand, if computers are checked too often the botnet is not
growing, but running the antivirus software becomes very expensive. We analyze
this trade-off in more detail in the following. We calculate the cumulative cost
between t0 and t1 as follows:

C(t0, t1, RR,D1, D2) =
∫ t1
t0

(D1 · IC(t, RR) +D2 ·RR ·AC ) dt (5)

where RR is the change in removal rates k11, ..., k14 with respect to the rates in
the baseline experiment, i.e. k11 = RR · k11,baseline (similarly for k12, k13, k14);
D1 is the cost of infection; IC(t, RR) is the number of infected computers for
a given RR, at time t, including active and inactive working and propagation
bots; D2 is the cost of one computer being checked, which probably is much
lower than the cost of infection (D1); AC is the number of the computers in the
network. We calculate the cumulative cost of the system performance for three
days. For RR from the interval [0.001; 5] we calculate the cost as a function of
time for given D1 and D2. Results are depicted in Figure 5 and, one can see,
that the cost grows exponentially with time and almost linearly with decreasing
RR if the computers are not checked frequently (for the RR between 0 and 1).
However, if antimalware software is used too often (RR above 2), the cost grows
linearly with RR.

We see that the mean-field method can be easily used for finding the removal
rates which minimize the cost at a given moment of time. It can help network
managers with careful decision-making, based on the situation at hand. Even
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Fig. 4: Number of propagation bots for
(k13, k14) ∈ [8 ·10−5; 10−3]× [8 ·10−3; 10−1]
at time T = 3days, all other parameters
are the same as for baseline experiment
(see Table 2).

Fig. 5: Cost of the system performance for
D1 = 0.01, D2 = 4 · 10−5.

though not all parameters might be known in reality, such analysis can help to
obtain a better understanding of the characteristics of botnet spread.

In this section the basic mean-field example was described together with the
possible extensive use of the mean-field model. An example of using mean-field
approximation for more sophisticated systems is given in the next sections.

5 Spatial Mean Field Models

Early use of the mean-field analysis technique stems from the fields of physics
(e.g. when studying gas dynamics) and systems biology (e.g. studying how con-
centrations of reactants behave in a solution). In those domains, the spatial dis-
tribution of particles/molecules across the system is not described in the model.
Indeed, they assume that particles/molecules are uniformly spread across the
space, thus ignoring the effect locations have on the overall dynamics. Systems
where this assumption is realistic are often referred to as homogeneous, in physics,
and well-stirred, in chemistry. In practice, this assumption implies that a single
rate can be assigned for each type of particle-to-particle interaction, regardless
of the spatial structure, and the interactions have the same probability to take
place at any location.

In this section we focus on the appropriateness of this abstraction in the
mean-field method, particularly in the context of modelling computer and com-
munication networks. Depending on the nature of a given system, ignoring lo-
cations might be a suitable simplifying step. In our previous example, where we
studied the spread of a virus in a network, the decision was made not to include
the location of the computers. This led to a state vector ξ which only counted
how many agents are in each of the states ni, ii, cb, iwb, awb, ipb and apb and
the transition rate functions did not depend on distribution of computers across
different geographical locations. Nevertheless, there exist systems whose dynam-
ics and emergent behaviour are in fact, significantly dependent on locations. For
such systems, if the model does not take into account such a spatial aspect,
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the system behaviour may not be captured effectively. In such cases, the model
should include an appropriate notion of agent location.

In this section, we consider an example of a large-scale peer-to-peer gossip
network [14] where the emergent behaviour of the system significantly depends
on locations. We describe, for this example, how the mean-field equations are
constructed in a way that they also capture the effect that locations have on the
system behaviour.

A second extension we present in this section concerns the application of the
deterministic approximation theorem to uncountable domains. In Section 4 we il-
lustrated an application of mean-field approximation to a finite-domain CTMCs.
However, Kurts Theorem [33], as well as derived theorems (see Section 3), can
be applied to Markov chains on countable domains [38]. The example considered
in this section falls outside the scope of those results as it is applied on a Markov
stochastic process on a continuous domain. Indeed, individuals (that is, taxis in
this case) hold information concerning their location, that ranges on a finite set,
and on the age of certain information they carry, that ranges on positive, real
numbers. We will not address the technicalities related to this extension, but we
point out this result, which in [14] is proved for the specific model considered
and, in general, can not be obtained in a straightforward way. The uninterested
reader can simply ignore this aspect and focus on the modelling of space.

5.1 The Age of Gossip

We consider the example from [14], which models a peer-to-peer communication
network where two types of agent are present: some can move through different
locations (mobile) and some others are stationary (base stations). The base
stations transmit fresh updates on a piece of data through radio waves and
these updates are received by the mobile agents. The data is time-stamped. The
age of a piece of data on an agent is defined to be the time elapsed since last
emission from a base station. The age of data received by an agent from a base
station is zero. Agents are capable of radio communication between themselves.
If two mobile agents get close enough, the agent who has the most recent version
of data transmits the data to the other agent. The data exchange between two
entities (a mobile agent receiving data from a base station or a mobile agent
communicating with another mobile agent) takes place when the entities get
close enough to establish a radio connection.

The system consists of a finite number of locations through which the agents
can move. Each mobile agent can only be in one location at any time. The base
stations in location c can establish radio communication only with agents who
are in the same location. The data exchange between two mobile agents can take
place either when the communicating agents both belong to the same location
or when they are in two different locations. The latter type of communication
captures, for example, the situation when two nodes from different locations are
at the borders of adjacent locations and exchange data. We are interested into
studying how, in each location, the age distribution of agents evolves over time.
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A Formal Description. Let L = {1, 2, . . . C} denote the set of locations
and assume that there are N mobile agents who are moving across these lo-
cations. Let us define the variable Xi to represent the age of the ith node
and ci to represent the location of node i. Hence, the state vector is ξ =
〈X1, X2, . . . XN , c1, c2 . . . cN 〉, Xi ∈ R≥0, and ci ∈ L. We define the transitions
and the rate function associated with each transition:

1. Mobility. A node can move from a location c to another location c′ (c, c′ ∈ L,
c 6= c′) with rate ρc,c′ . When there are Nc nodes in location c, the total rate
at which nodes from location c move to location c′ is Nc × ρc,c′ .

2. Contact with base. An agent i with age Xi in location c ∈ L can com-
municate with a base station in location c and get fresh information. As the
result of this data exchange, Xi becomes zero. For each location c a param-
eter µc describes the rate at which a node in location c can get information
directly from base stations. If there is no base station in c, then µc = 0.

3. Opportunistic contact within location. An agent i in location c com-
municates with another agent in the same location with rate 2ηc/(N − 1).
For each location c, there exists a parameter ηc, given by the modeller. This
parameter is not dependent on the population of agents in that location.
Even when two locations have the same population level, the rate at which
the agents interact in those locations may not be the same. Indeed, the topo-
logical structure of c might encourage the agents to meet more frequently
than c′ and consequently, one will observe a higher interaction rate in c than
in c′. The total interaction rate in location c is a function of both the popu-
lation in that location (Nc) and ηc. Defining such a constant will particularly
be useful when the modeller possesses real data about the execution of the
system and wants to find parameters fitting the given data. If there are Nc
nodes in location c, the total rate at which two nodes communicate is:(

Nc
2

)
× 2ηc

(N − 1)
=

(Nc)× (Nc − 1)

N − 1
ηc.

This total rate includes the interaction of a node with nodes of any age.
4. Opportunistic contact across locations. A mobile agent in location c can

communicate with a mobile agent from a neighbouring location c′, (c 6= c′).
This transition happens with rate 2βc,c′/(N −1). For each c and c′, (c 6= c′),
βc,c′ describes a constant which affects the rate at which the agents in c
communicate with the agents in c′. The communication takes place only if
there is at least one agent in c and one in c′.

State Space Representation - Choices. The location of each agent is one
of its properties. For agent i, its location is in L = {1, 2, . . . C}. If we con-
sider only this property of the agents, then the state vector would be ξ′(t) =
〈ξ′1(t), ξ′2(t), . . . ξ′C(t)〉 where for each location i, ξ′i represents the population
count at that location. Such population counts change over the course of time
as the agents move between locations.
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Let us assume that we use the state vector ξ′ to model the peer-to-peer
network and study how the system evolves. In the mean-field method, for each
population count one differential equation is constructed. Therefore, given ξ′, the
system of differential equation will have C equations. The state space representa-
tion ξ′ and the corresponding set of differential equations capture the evolution
of agents only with respect to their locations. Using such a state representation,
the other important property of the agents, i.e. their ages, is ignored.

Let us now consider how to model the other property of the agents, their
age. The age of an agent can take values in R≥0. An agent has age zero if it has
just had a communication with one of the base stations. The state of the system
at time t can be characterized by a continuous distribution ξ′′(z, t) with domain
R≥0. ξ′′(j, t) captures how many agents have age (around) j at time t. Using
the state representation ξ′′(j, t), one can construct a set of partial differential
equations, over the dimensions j and t, which captures how the agents evolve
in terms of their age distribution as the time elapses. The shortcoming of this
analysis is that the location of the agents, which has significant effect on how
the age distribution evolves, is completely ignored.

In order to faithfully capture the dynamics of the considered system, a com-
bination of both state representations ξ′ and ξ′′ is needed, to consider both
properties of the agents: their locations and their ages.

Mean Field State Space Representation. Consider a location c. For the
ith agent, who has age Xi, let us define the distribution δXi which is a Dirac
mass at Xi. At a time t, the age distribution of agents in location c across R≥0
is characterized by MN

c (t):

MN
c (t) =

N∑
i=1

1{ci=c}δXNi (t).

which is a continuous distribution denoting the number of agents who have age
(around) z at location c and time t. The vector of continuous distributions

MN (t) = 〈MN
1 (·, t),MN

2 (·, t), . . . ,MN
C (·, t) 〉

is defined in term d of the distributions MN
c (z, t), for each location c ∈ L,

discussed above. This vector captures both location and age of an agent and is
used, in the rest of this section, for mean-field analysis.

5.2 Mean-Field Limit Behaviour

In order to find the deterministic limit behaviour of the system, we first focus
on the dynamics of the population moving across locations.

Mobility of the Agents. Let U(t) = 〈U1(t), U2(t), . . . , UC(t) 〉 be a vector
such that Uc(t) denotes the number of agents in location c at time t. The loca-
tion occupancy measure is defined as:
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Ū
N

(t) =
U(t)

N
= 〈ŪN

0 (t), Ū
N
1 (t), . . . , Ū

N
C (t)〉.

indicating the fraction of agents per location, at time t. Assume that, forN →∞,

the sequence Ū
N
c (0) converges to a unique limit (Definition 3):

lim
N→∞

Ū
N

(0) = lim
N→∞

U(0)

N
=

〈
U1(0)

N
,
U2(0)

N
, . . . ,

UC(0)

N

〉
=
〈
ū0
1, ū

0
2, . . . ū

0
C

〉
= ū0

Following [14], since convergence of initial occupancy measure holds and since
constant mobility rates imply density dependence, we can apply Kurtz Theo-
rem [34] (Theorem 1), and prove that at any time t > 0, for N → ∞, the pro-

cesse Ū
N

(t) converges to a deterministic process ū(t) = 〈ū1(t), ū2(t), . . . ūC(t)〉
where ūc(t)c∈L is the solution of the following initial value problem:

∀c ∈ L, ∂ ūc(t)

∂t
=

∑
c′ 6=c

ρc′,cūc′

−
∑
c′ 6=c

ρc,c′

 ūc (6)

∀c ∈ L, ūc(0) = ū0
c

The first term on the right hand side of Equation (6) indicates the increase of
ūc due to agents coming from adjacent locations. Similarly, the second term
indicates the decrease of ūc due to agents going towards adjacent locations.

According to [14], by the Cauchy-Lipschitz theorem, for any initial condition
ū0 = 〈ū0

c〉c∈L, the above initial value problem admits a unique solution. uc(t | ū0)
denotes the deterministic value of the location occupancy measure at time t given
the initial condition ū0. In [14] the system behavior is studied at stationary
mobility regime. For this purpose one can use the fixed point method:

∀c ∈ L, ∂ ūc(t)

∂t
= 0 ⇒ (7)

∀c ∈ L, ũc

∑
c′ 6=c

ρc′,cuc′

 =

∑
c′ 6=c

ρc,c′

 ũc ,
∑
c∈C

ũc = 1

The solution of the above equation, ũ, shows how the agents are spread across
the locations when the system reaches its equilibrium.

Propagation of Information - Age Distribution. Consider the state vector
M . For an agent population N and a time t, let us define the system’s occupancy
measure as a vector M̄N of continuous distributions:

M̄N (t) =
MN (t)

N
= 〈 M̄1(·, t), M̄2(·, t), . . . , M̄C(·, t) 〉

For location c, M̄N
c (z, t) denotes the density of agents in location c with age z at

time t. For M̄N
c (t), one can define its cumulative distribution function FNc (z, t):

∀c ∈ L, FNc (z, t) = MN
c (t)[0 : t] =

∫ z

0

M̄
N
c (s, t) ds
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For location c, age z and time t, FNc (z, t) tells us what proportion of the total
population, at time t, is in class c with the age less than or equal to z.

We assume that, for N → ∞, similarly to Ū
N

(0) → ū0, the vector of the

occupancy measures M̄
N

(0) converges to a unique limit vector m̄0:

lim
N→∞

M̄
N

(0) = m̄0

This means that for each location, the corresponding occupancy measure M̄
N
c (0)

converges to a unique limit distribution m̄0
c (Definition 3):

∀c ∈ L , lim
N→∞

M̄
N
c (0) = m̄0

c

As a consequence, at any given time t > 0 and for all c ∈ L, when N gets large,

the density M̄
N
c (t) converges to m̄c(t), where m̄c(t) is the solution of the following

partial differential equation. In the following equation, ūc(t) is the solution of
Equation (6), the population of agents in location c at time t.

m̄c(0, t) = µc × ūc(t) (8)

∂m̄c(z, t)

∂t
= −∂m̄c(z, t)

∂z
− µc × m̄c(z, t)

+
∑
c′ 6=c

ρc′,cm̄c′(z, t)−

∑
c′ 6=c

ρc,c′

 m̄c(z, t)

+2ηc [(+1)× (uc(t)− Fc(z, t)) · m̄c(z, t) + (−1)× m̄c(z, t) · Fc(z, t)]
+
∑
c′ 6=c

2βc,c′
[
(+1)× (uc(t)− Fc(z, t)) · m̄c′(z, t) + (−1)× m̄c(z, t) · Fc′(z,t)

]
The formal proof of convergence is presented in [14]. However, here we use a more
intuitive description, also presented in [14], to understand how the equations
above are constructed.

Equation (8) can be formed by considering how much each m̄c(z, t)c∈C changes
in a small period of time ∂t (the left hand side). Consider location c. During ∂t,
agents with age z, which have been accounted for by m̄c(z, t), will become older.
Consequently, such agents need to be removed from m̄c(z, t). On the other hand,
agents who currently have the age z −4z will become older and therefore, the
density m̄c(z − 4z, t) will be added to m̄c(z, t). Hence, the rate of change of
mc(z, t) caused only by aging is:

lim
4z→0

| m̄c(z −4z, t)− m̄c(z, t) |
4z

=
∂m̄c(z, t)

∂z

This is captured by the first term on the right hand side of Equation (8). The
second term reflects the communication of agents, accounted by m̄c(z, t), with
one of the base stations in their same location. Communicating with one of the
base stations reduces the agent’s age to zero and hence, such agents have to
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be removed from m̄c(z, t). If there are m̄c(z, t) agents in location c, given that
the rate of communication with a base station in c is µc, then, in a period of
∂t, µc × m̄c(z, t) × ∂t of the agents will communicate with the base stations
and hence, have to be removed from m̄c(z, t). The rate of the change is then
calculated as µc × m̄c(z, t).

The third expression shows the flow of agents into m̄c(z, t) as a result of
agents with age z moving from neighbouring locations c′ into c, (c 6= c′). For a
given c and c′, such movement decreases m̄c′(z, t) and increases m̄c(z, t).The flow
rate from m̄c′(z, t)c′∈L into location m̄c(z, t) at time t is ρc,c′m̄c′(z, t). Similarly,
the fourth term reflects the movement of some of the agents contained in m̄c(z, t)
out of c into the adjacent locations. The flow rate is calculated similarly.

The fifth term has two parts. The first, 2ηc×(uc(t)−Fc(z, t)).m̄c(z, t), shows
the rate of flow into m̄c(z, t) because of agents with the age higher than z in c
communicating with agents who have age z in the same location. When an agent
of age higher than z communicates with an agent of age z, the age of the older
one reduces to z. The total density of agents in location c at time t is ūc(t) and
the density of agents whose age is less than or equal to z is Fc(z, t). Therefore,
the density of agents with age higher than z in c is (uc(t) − Fc(z, t)). The rate
expression depends on the density of population of agents in c with age higher
than z, the density of agents in c with the age z and additionally, on ηc.

The second part: −2ηc×(m̄c(z, t))×Fc(z, t) shows the drift out of m̄c(z, t) as a
result of agents with the age z in c communicating with the agents of lower age in
the same location. The interpretation of the sixth term is similar, the difference
being that it captures the communications which take place between the agents
who belong to two different locations c and c′ as opposed to a communication
where two parties belong to the same location.

If we simplify the equation above and integrate over z, we obtain the following
equation for Fc(z, t):

∀c ∈ L :
∂ Fc(z, t)

∂t
=

−∂ Fc(z, t)
∂z

+

∑
c′ 6=c

ρc′,c Fc′(z, t)

−
∑
c′ 6=c

ρc,c′

Fc(z, t) (9)

+ (uc(t|d)− Fc(z, t))(2ηcFc(z, t) + µc)

+ (uc(t|d)− Fc(z, t))
∑
c′ 6=c

2βc,c′Fc′(z, t)

∀c ∈ L,∀t ≥ 0 : Fc(0, t) = 0

∀c ∈ L,∀z ≥ 0 : Fc(z, 0) = Fc(z)

Note that this model relies on the assumption that the agents’ movements
do not depend on the information propagation scheme. Therefore, the set of
ODEs (6) which capture the evolution of the location occupancy measure can
be constructed and solved independently.
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5.3 Solution of the Equations

Let us now describe how the solution of Equation (9) is obtained for the case
where there is only one location in the system and assuming that when the
system starts at t = 0, every agent has age zero.

The solution is found by introducing a change of variables. Let us define the
space A = {(x, y) ∈ R×R | x ≥ 0, x+y ≥ 0}. The function G(x, y) : A→ [0, 1] is
defined as G(x, y) = F (x, x+y). Therefore, in order to know F (z, t) it is enough
to calculate G(z, t− z). For a function G defined as follows:

∂G(x, y)

∂x
=
∂F (z, t)

∂z

∣∣∣∣
(x,x+y)

+
∂F (z, t)

∂t

∣∣∣∣
(x,x+y)

.

Rearranging the terms in Equation (9), we obtain:

∂G(x, y)

∂x
= (1−G(x, y))(2η G(x, y) + µ) for G(0, y) = 0 (10)

The assumption that at time t = 0, no gossip exists in the network leads to the
conclusion that at any given time z < t and y = t − z > 0. For an arbitrary
value of y ∈ R+, let us define gy : x 7→ G(x, y). Therefore:

∂gy(x)

∂x
= (1− gy(x))(2ηgy(x) + µ) for gy(0) = 0

By Cauchy-Lipschitz Theorem, this equation has a solution. Once the value of
gy(x) for a given x is found, the corresponding F (z, t) can be easily calculated.

Single Location - Analytical Solution. In this case, the ODE can analyti-
cally be solved and leads to the following solution:

F (z, t) =


1− 2η + µ

2η + µe(µ+2η)z
if z ≤ t

1− 2η + µ

2η + 2ηF (z−t,0)+µ
1−F (z−t,0) e

(µ+2η)t
if z > t

(11)

Consider that above, we illustrated the reasoning behind the first case of the
solution (when z ≤ t). The second case (z > t), corresponds to the situation
where in the initial configuration of the system some agents have age greater
than zero. Therefore, at some time t, it is possible that some of the agents in
the system have ages higher than t. The proportion of the agents who at time
t have age z > t depends on the proportion of the agents who had age at least
(z − t) in the system initial configuration.

Performance Evaluation of Peer-to-Peer Dynamics. In terms of perfor-
mance, a well designed peer-to-peer opportunistic network should guarantee
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Fig. 6: the density at age z for different values of η and µ when z ≤ t.

that with a high probability, the majority of agents remain within relatively
low ranges of age. This performance requirement can be achieved adopting two
different solutions: (1) increasing the frequency of contacts with base stations
(which we identify as infrastructure dominant or (2) favoring interaction between
mobile agents (which we identify as opportunistic contact dominant).

Figure 6 shows the results of the analysis of the model when the system
consists of only one location. Different values for the parameters µ, η capture
different degrees of dominance of the infrastructure or of the opportunistic con-
tacts. We come to the following observations.

– Infrastructure Dominant. When µ ≥ 2η, the occupancy decreases as the
age grows. The maximum density is at age z = 0 with m(0, t) = µ. The
rate at which opportunistic contacts take place is negligible with respect to
the rate at which agents communicate with the base stations and hence, the
latter type of communication determines the shape of the distribution. The
extreme case, when η = 0, is the scenario where the opportunistic contact
does not take place at all. In this case, improving the age distribution without
changing the rate of the opportunistic contacts entails increasing the rate of
communication with base stations.

– Opportunistic Contact Dominant. When µ < 2η, the opportunistic con-
tact rate becomes large enough to influence the age distribution. In such
cases, there emerges a large mass around a typical age, which is maintained
by the communication between the mobile agents. In the extreme case, µ
is small and η is large. The mass around age z = 0 becomes negligible and
depending on the frequency of the agent meetings, the dominant age is cen-
tered at some age z > 0. In order to improve the age distribution in such
a network without changing µ, one needs to improve η which then leads to
higher rates of agent-to-agent communication.
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Multiple Locations. For the general case with multiple locations the solution
method is more complicated [14]. Here we only explain the main ideas involved
in the solution.

Let us assume that a sufficiently long time has elapsed since the initialization
of the system and the distribution of agents across different locations has stabi-

lized. That is, ∀c ∈ L, ∂Fc(z,t)
∂t = 0 and uc(t) has converged to the equilibrium

distribution ũc. Then, from Equation (9), we obtain:

∀c ∈ L, d Fc(z)
dz

= +ũcµc +

ũc2ηc − µc −∑
c′ 6=c

ρc,c′

Fc(z) (12)

+
∑
c′ 6=c

(ρc′,c + ũc2βc,c′)Fc′(z) −
∑
c′ 6=c

2βc,c′Fc(z).Fc′(z) − 2ηc(Fc(z))
2

∀c ∈ L, Fc(0) = 0

In contrast with the case of a single location, this ODE is multi-dimensional and
has no simple analytical solution. However, we can distinguish the cases where
the age is small and those where the age is large, thus finding a satisfactory
linear approximation of (12). We now give more details about this approach.

For any location c, when z → 0, Fc(z) converges to zero. Hence, in Equation
(12), the factors Fc(z)× Fc′(z) and (Fc(z))

2 become negligible compared to the
rest of the expression and can be ignored. This approximation step will lead to
the following system of equations which is shown in the matrix form:

F ′ = FA+B (13)

Ac,c = ũc2ηc − µc −
∑
c′ 6=c

ρc,c′

Ac,c′ = ρc,c′ + ũc′2βc,c′

B = (µ0ũ0, . . . , µC ũC)

For location c and age z (z close to zero), the density of the nodes with that age

is approximately µcũc. The derivative of the density function,
d m̄c(z)

dz
is:

d m̄c(z)

dz
= µcũc(ũc2ηc − µc −

∑
c′ 6=c

ρc,c′) +
∑
c′ 6=c

µc′ ũc′(ρc′,c + ũc2βc′,c)

and if we assume ∀ c, c′ ∈ L : βc,c′=0, then:

d m̄c(z)

dz
= µcũc(ũc2ηc − µc) +

∑
c′ 6=c

(µc′ − µc)ũc′ρc′,c (14)

Equation (14) can be used to determine for a location c, whether c is a infras-
tructure dominant or opportunistic contact dominant. When for all locations c,
µc = µ, i.e. when the base stations are distributed uniformly across different
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locations, a location has a dominant infrastructure (respectively, dominant op-
portunistic contact) if 2ηc < µc (respectively, 2ηc > µc). For the case when the
base stations are installed in non-neighbouring locations, then a location with a
base station has a dominant opportunistic contact if:

2ηcũc > µc +
∑
c′ 6=c

ρc,c′ .

In every other location which does not have any base station, the age distribution
will be dominated by the opportunistic contacts. The most general case happens
when each location has its own specific µc and the base stations are distributed
arbitrarily across the locations. In such a case, the nature of the location can
be decided only after plugging the parameters into Equation (14) and observing
the sign of the derivative at z = 0.

For the case when the modeller is interested in high values of age (z →∞),
a similar technique can be used to simplified the equations [14].

5.4 Validation and Conclusions

The work in [14] proposes a stochastic model for the dissemination of timed
stamped data in a spatial opportunistic peer-to-peer network. It illustrates how
to model spatial aspects and how to adapt mean-field approximation in this
context. Then, it considers real data and using classical stochastic simulations,
it shows that the model is sound and sufficiently detailed. Finally, the authors
illustrate how the mean-field approximation is accurate and much faster than
simulation for this model. We now summarize the model validation steps and
give hints on how realistic values for the parameters ρ, µ, β, and η are found.

CabSpotting [13] is a project of the company who runs the yellow taxi cabs
in San Francisco Bay Area (SFBA). It consist in collecting in a database infor-
mation about the location of each cab in the time period of one minute, recorded
using GPS receivers.

The cabs in SFBA do not readily represent a peer-to-peer communication
network. However, using the movement traces and considering realistic network-
ing assumptions, one can construct a concrete spatial opportunistic peer-to-peer
information dissemination network, similar to the model considered in Section
5.1. Using data from movement traces, one can extract the system parameters
and feed them into the model. Such fully parametrized model can be analysed us-
ing a classical Monte Carlo analysis method, running a sufficiently large number
of stochastic simulations. This allows to verify if the model faithfully captures
the behaviour of the real system. These steps describe the approach taken in [14]
for validation of the model. The outcome shows the model is sufficiently detailed
to capture the real system dynamics. Then, the authors show that mean-field ap-
proximation are very accurate in describing how the age distributions in different
locations evolve [14].

In the following two sections we review how the behaviour of a real op-
portunistic peer-to-peer network is constructed using the data in CabSpotting
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database and how such a behaviour is used to extract the model’s parameters:
µc, ηc, ρc,c′ and βc,c′ .

Contact Traces. Assume the Bay Area is divided into 16 locations and some
base stations are displaced through locations. Base stations transmit fresh data
and have a specific transmission range. Each cab is equipped with a radio to
communicate with base stations or other cabs, when sufficiently close. In [14],
radio devices are assumed to have range of 200m. This is complies with standard
radio technology used in vehicular networks. The taxi cabs scan their surround-
ing once per minute and upon detecting another entity (another cab or one of
the base stations), they try to initiate a data exchange. A meeting or successful
data exchange happens if the communicating agents remain in 200 meter prox-
imity for at least 10 seconds (this duration guarantees data exchange). Under
these specifications, one can generate contact traces which can be considered as
the executions of a real spatial opportunistic peer-to-peer network and observe
how the age distributions evolve in the real system. The cabs play the role of
the mobile agents whose data is time stamped and the base stations are the
sources for fresh information. In [14], contact traces were generated for dates be-
tween May, the 17th and June, the 15th, 2008 and for the time period between
8:00am till midnight, each day. Such traces were then used to calculate the age
distributions at different time points and for different locations. The traces were
also useful for finding parameters of the model and later for model validation.
The validation process shows that for the locations which usually have reason-
ably large population of agents (having at least tens of taxi cabs), there exists
a close correspondence between the age distributions obtained from the mean-
field analysis of the model and the age distributions calculated by considering
the contact traces. In the rest of this section, we look at the issue of how the
model parameters are calculated based on the contact traces.

Extracting Model Parameters. Contact traces were used for calculating the
following quantities:

1. N(t): total number of cabs in time slot t (time unit = one minute).

2. Nc(t)c∈{1,2,3,...16}: number of cabs in location c at time t.

3. Nc,ub(t): number of contacts between a mobile node and a base station in
location c at time t.

4. Nc,uu(t): number of contacts between any two mobile nodes in location c at
time t.

5. Nc,c′,uu(t)c6=c′ : number of contacts between an agent from c and another
agent from c′ at time unit t.

Given the contact traces, one can calculate µc(t) =
Nc,ub(t)
Nc(t)

, which is the rate

at which an agent in location c communicates with one of the base stations in
that location. If at time t, there are Nc(t) agents in location c, then on average,

30



one expects to observe µc(t) × Nc(t) meetings in the following time unit. The
average µc for an hour can be calculated by averaging µc(t)t∈[0:60]:

µc =
1

60

t0+60∑
t=t0

µc(t).

Given the contact traces, for every location c, the parameter ηc is calculated by:

ηc(t) =
Nc,uu(t)

uc(t)× (Nc(t)− 1)

The mean-field analysis assumed that in a location c, the rate at which an agents
visits another agent in the same location is 2×ηc

N−1 . Consequently, the rate at which
one observe visits in location c is:(

Nc
2

)
× 2ηc

(N − 1)
=

(Nc)× (Nc − 1)

N − 1
× ηc.

This means that on average, in one unit of time, we expect to observe Nc×(Nc−1)
(N−1)

visits. On the other hand, the measurement from the simulations show that there
have been observed Nc,uu(t) visits in one time unit. Therefore:

Nc,uu(t) =
(Nc)× (Nc − 1)

N − 1
×ηc ⇒ µc =

Nc,uu(t)
Nc(t)
N−1 × (Nc(t)− 1)

≈ Nc,uu(t)

uc(t)× (Nc(t)− 1)
.

The average ηc for one hour can be calculated by considering η(t) for 60 minutes.

ηc =
1

60

t0+60∑
t=t0

ηc(t)

Similarly, in the mean-field model, the rate at which an agent in location c

visits an agent in location c′ was assumed to be
2×βc,c′
N−1 . Therefore, in one time

unit, on average
2βc,c′

N−1 × Nc × N
′
c meetings occur between agents in location c

and c′. The simulations show Nc,c′,uu(t) meetings having happened in time unit
t. Therefore:

2βc,c′

N − 1
×Nc ×Nc′ = Nc,c′,uu(t)⇒ βc,c′ =

Nc,c′,uu(t)

2×N × uc ×N × uc′ × 1
N−1

⇒

βc,c′ ≈
Nc,c′,uu(t)

2×N(t)× uc(t)× uc′(t)
hourly βc,c′ can be calculated by averaging βc,c′(t) over an hour.

Finally, in the mean-field regime, the rate at which agents move from location
c to c′ is defined to be ρc,c′×Nc(t). In the simulations, one observes Nc,c′,trans(t)
movements. Therefore:

ρc,c′ ×Nc(t) = Nc,c′,trans(t)→ ρc,c′(t) =
Nc,c′,trans(t)

Nc(t)
.

The calculated parameters can then be used to built a fully parametrized
model, which in turn can be used with different analysis method.

31



6 Fluid Model Checking

In Section 2 we discussed the relevance of the decoupling of probabilities for
fast simulation [18,20] and fluid model checking [8]. Let us illustrate how this

idea is used. Let Z
(N)
k (t) = 〈S(N)

1 (t), . . . ,S
(N)
k (t)〉 be the state of k selected

agents in the population, where k is fixed and independent of N . Z
(N)
k (t) is not

an approximation, but it models exactly the dynamics of the agents, and it is

not a CTMC, being the projection of the CTMC 〈S(N)
1 (t), . . . ,S

(N)
N (t)〉 on the

first k coordinates, and may not be Markovian, in general. As a consequence, the
limit of the model of a single agent has rates depending on time, i.e. it is a time-

inhomogeneous CTMC (ICTMC). However, the entire process 〈Z(N)
k (t),X

(N)
(t)〉

is Markovian. This kind of models allows to simulate the exact dynamics of a
few agents in a large system very efficiently.

In [8], following the idea of fast simulation, the behaviour of the agent is
singled-out as illustrated previously and their behavior is studied by consider-

ing their temporal properties. In particular, the evolution of Z
(N)
k (t) is model

checked, while in parallel with X
(N)

(t). We know that S = 〈Z(N)
k (t),X

(N)
(t)〉

is Markovian while Z
(N)
k (t) is an ICTMC and we cannot reuse model checking

algorithms for CTMCs. Therefore, in [8] the authors develop novel CSL model
checking algorithms for ICTMC models and show how to exploit fast simulation
in this setting. The overall system S satisfies Theorems 1 and 2 so the results of
model checking are accurate for large populations.

In this section we discuss an application of the fluid model checking tech-
nique to population models. The kind of analysis we can perform through model
checking is rather different from the performance studies we illustrated in Sec-
tion 4. Indeed, we are able to formally prove temporal properties of the execution
of these systems and have an estimate of the probability of their validity at a
certain time point.

First, we illustrate a stochastic temporal logic (the bounded fragment of the
CSL logic [2]) which we use to express those temporal properties. Then, we illus-
trate the algorithm to prove temporal properties of time-inhomogeneous CTMCs
(ICTMC). The rates of the local ICTMC are approximated using fast simula-
tion. Furthermore, we consider a simplified version of the example in Section 4 to
illustrate the details of this technique and we prove some properties of interest.

6.1 Continuous Stochastic Logic

In the following, by Ml we indicate the model of Z
(N)
k (t). First, we recall the

definition of bounded CSL [2]:

Definition 7. CSL Syntax. Let p ∈ [0, 1] be a real number, ./∈{≤, <,>,≥}
a comparison operator, I ⊆ R≥0 a non-empty bounded time interval and AP a
set of atomic propositions with a ∈ AP . CSL state formulas Φ are defined by:

Φ ::= tt | a | ¬Φ | Φ1 ∧ Φ2 | P./p(φ),
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where φ is a path formula defined as:

φ ::= X IΦ | Φ1 U
I Φ2.

To define the semantics of path formulas we first recall the notion of a path

as in [2]. An infinite path σ is a sequence s0
t0→ s1

t1→ s2
t2→ ... with, for i ∈ N;

si ∈ Sl and ti ∈ R>0 such that the probability that starting in state si we
reach state si+1 at time tσ[i] =

∑i
j=0 tj is greater than zero. A finite path σ is

a sequence s0
t0→ s1

t1→ ...sl−1
tl−1→ sl such that sl is absorbing, and, similarly, a

probability of going from si to si+1 is greater than zero for all i < l.
For a path σ, σ[i] = si denotes for i ∈ N the (i + 1)st state of path σ. The

time spent in state si is denoted by δ(σ; i) = ti. Moreover, with i the smallest

index with t ≤
∑i
j=0 tj , let σ@t = σ[i] be the state occupied at time t. For finite

paths σ with length l+ 1, σ[i] and δ(σ; i) are defined in the way described above

for i < l only and δ(σ; l) = ∞ and δ@t = sl for t >
∑l−1
j=0 tj . Path

Ml

(si, t0) is
the set of all finite and infinite paths of the CTMC that start in state si given

the state x at a certain time of the overall model Ml and PathM
l

(t0) includes
all (finite and infinite) paths of the CTMC, which depends on the overall system
state (global time) if the CTMC is time-inhomogeneous. A probability measure6

Pr(t0) on paths can be defined as in [2].
Since the local model changes with time, the satisfaction relation for a local

state or path depends on time as well, and it is defined as follows:

Definition 8. Semantics of CSL. Satisfaction of state and path CSL formu-
las for ICTMCs is given as follows:

s, t0 |= tt ∀s ∈ Sl,
s, t0 |= a iff a ∈ L(s),
s, t0 |= ¬Φ iff s, t0 2 Φ,
s, t0 |= Φ1 ∧ Φ2 iff s, t0 |= Φ1 and s, t0 |= Φ2,

s, t0 |= P./p(φ) iff ProbM
l

(s, t0, φ) ./ p,
σ, t0 |= X IΦ iff σ[1] ∈ I, and

σ[1], t0 + tσ[1] |= (δ(σ, 0))Φ ∧ δ(σ, 0) ∈ I,
σ, t0 |= Φ1 U

I Φ2 iff ∃t′ ∈ I : (σ@t′ |= Φ2)
∧(∀t′′ ∈ [0, t′)(σ@t′′ |= Φ1)),

I ⊆ R≥0 is a non-empty time interval and ProbM
l

(s, t0, φ) is the probability

measure of all paths σ ∈ PathM
l

(s, t0) that satisfy φ and starting in state s,

that is, ProbM
l

(s, t0, φ) = Pr{σ ∈ PathMl

(s, t0) | σ, t0 |= φ}.

Note that only bounded time intervals are used in path formulas. This is mo-
tivated by the nature of results ensured by the approximation Theorems 1 and 2,
which are valid only for finite-time horizons. The relaxation of this restriction is
possible, but we will not discuss it this tutorial, see [9], and [32] for details.

6 Note that probability measure was denoted, in the preliminaries, by P.
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The CSL operators can be nested according to Definition 7. Model-checking of
the CSL formula is done by building the parse tree and computing the satisfaction
set of the individual operators recursively (in a bottom-up fashion), as described
in [2]. Note that satisfaction set of the CSL formula is defined as follows: Model-
checking CSL formulas for ICTMCs is similar to model-checking these formulas
for CTMCs. All time-independent CSL operators can be checked using standard
methods (see [2]) due to the independence of the results on time. Therefore,
model-checking these operators is not included in the following discussion.

The main challenge is in model-checking time-dependent operators: let us first
recall how these formulas are checked for time-homogeneous models. Given an
arbitrary time-homogeneous CTMC A, the probability formula containing the
interval next operator P./pX [t1,t2]Φ is usually checked by computing the next-
state probability and by comparing it with the threshold p [2]. This is calculated
as the probability that the next jump starts within the time interval [t1; t2] and
ends in a state that satisfies Φ.

The probability formula including interval until formula P./pΦ1U
[t1,t2]Φ2 for

an arbitrary time-homogeneous CTMC A is checked by computing the proba-
bility of taking a path satisfying the until formula and by comparing it to the
threshold p [2]. Let us denote the states satisfying Φ2 as goal states, and the set
of such a states as G = JΦ2K, a set of states satisfying Φ1 as safe states S = JΦ1K,
and, similarly, a set of the unsafe states U = J¬Φ1K for the ease of notation.
For model-checking CSL until formula, we need to consider all possible paths,
starting in a safe state s1 ∈ S at the current time and reaching a goal state
s2 ∈ G during the time interval [t1, t2] by only visiting safe states on the way.
We can split such paths in two parts: the first part models the path from the
starting state s to a state s1 ∈ S and the second part models the path from s1 to
a state s2 ∈ G only via safe states. We therefore need two transformed CTMCs:
A[U] and A[U∪G], where A[U] is used in the first part of the path and A[U∪G]
is used in the second. In the first part of the path, we only proceed along safe
states thus all unsafe states s ∈ U do not need to be considered and can be made
absorbing. As we want to reach a G state via S states in the second part, we can
make all unsafe and goal states absorbing, because we are done as soon as we
reach such a state.

In order to calculate the probability for such a path, we accumulate the
multiplied transition probabilities for all triples (s, s1, s2), where s1 ∈ S and is
reached before time t1 and s2 ∈ G and is reached within time t2 − t1. Note that
this formula is valid only for time-inhomogeneous CTMC, where the time when
system is observed does not matter.

ProbA(s, Φ1U
[t1,t2]Φ2) =

∑
s1|=Φ1

∑
s2|=Φ2

πA[U]
s,s1 (t1) · πA[U∪G]

s1,s2 (t2 − t1). (15)

Hence, CSL until formulas can be solved as a combination of two reachability

problems, as shown in Equation (15), namely π
A[U]
s,s1 (t1) and π

A[U∪G]
s1,s2 (t2−t1) that

can be computed by performing transient analysis on the transformed CTMCs.
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In the following we discuss the model-checking procedures that allow us to
solve the interval path formulas (until and next) for the random local object,
i.e. ICTMC. The procedure for checking these operators for ICTMCs is sim-
ilar to that for CTMCs discussed above. However, the probabilities to take a
certain path have to be calculated differently, because the Markov chain is time-
inhomogeneous.

6.2 Next state probability

Since the local mean-field model is a ICTMC the standard model-checking pro-
cedure is not applicable, therefore in the following we explain how to calculate
the next state probability of the local model. Note that this probability is also
changing with time, therefore not only the next state probability at a given time
t0 is of interest, but also the dependency of such probability measure on time
the formula is checked. Another important difference bethween checking CSL
formulas for CTMC and ICTMC is in the fact that the set of goal states can
change with time. The later is mostly useful for checking nested formulas, where
the timed behavior of the sub-formulas leads to changes in the satisfaction re-
lation. In the following we address these differences and explain how a bounded
CSL Next fomula can be checked for the local mean-field model.

We first describe how to calculate the next state probability for a given time

t0 ProbM
l

(s,X [t1, t2]Φ, t0), i.e., the probability to jump from the state s to the
state, satisfying Φ, or goal state, withing time interval [t1, t2]. This probability
can be find as follows:

ProbM
l

(s,X [t1,t2]Φ2, t0) =

∫ t0+t2

t0+t1

qs,G(t) · e−Λ(s,t0,t)dt, (16)

where qs,G(t) =
∑
s′∈GQs,s′(t) is the rate of jumping from the current state

s to the goal state s′ at time t; and Λ(s, t0, t) =
∫ t
t0
−Qs,s(τ)dτ is the cumulative

exit rate of state s between t0 and t. The proof is straight forward and can be
found in [12].

The next state probability can now be computed numerically in two ways:
using Equation (16) or by transformation the above formula to the differential
equation and solving this equation. The differential equations, which are more
convenient and simplify the calculations, can be obtained as in [9]:{

Ṗ (t) = qs,G(t) · e−L(t),

L̇(t) = −qs,s(t),
(17)

where P (t0 + t1) = 0 and L(t0 + t1) = Λ(t0, t0 + t1). The above ODEs have to
be integrated from time t0 + t1 to time t0 + t2.

As we discussed above, for checking CSL formulas the dependency of the

next state probability on time P s(t) = ProbM
l

(s,X [t1,t2]Φ2, t0, t) is needed to
be accessed. To find this dependency one has to either calculate integral (16) for
all possible t0, or use the differential equations (17) to define another system of
the differential equations with t0 as a independent variable:
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Ṗ s(t) = qs,G(t+ t2) · e−L2(t)− qs,G(t+ t1) · e−L1(t)− qs,s(t)P s(t),
L̇1(t) = −qs,s(t) + qs,s(t+ t1),

L̇2(t) = −qs,s(t) + qs,s(t+ t2),

(18)

where L1(t) = Λ(t, t+t1) and L2(t) = Λ(t, t+t2). Initial conditions are computed
by solving Equation (17).

The set of goal states can be time-dependent G(t), which has to be taken
into account while calculating the next state probability. It is done by solving
the above equation piecewise. All the time points T1, T2, ...Tk when the goal set
is changing are found first, where T0 = t0 + t1 and Tk+1 = t0 + t2. Equation (18)
is solved for each time interval [Ti;Ti+1].

Note that for checking next formula one has to compare next state probability
with the given threshold p ∈ [0, 1], hence, equation P s(t) = p has to have a
finite number of solutions. In general, this doesn’t always hold, therefore, the
restrictions on the rate functions of the mean-field model have to be introduced
in order to insure the finite number of such solutions. In particular, the rate
functions must be a piecewise real analytical functions, as described and proved
in [12].

6.3 Until formulas. Reachability probability

The core idea of CSL model-checking of until formulas as explained in the previ-
ous section remains unchanged for time-inhomogeneous CTMCs. However, due
to time-inhomogeneity it is not enough to only consider the time duration, but
the exact time at which the system is observed must be taken into account.
Hence, we add time t′ to the notation of a time-inhomogeneous reachability

problem πM
l

s,s1(t′, T ) to denote that we start in state s at time t′.

A probability for an arbitrary until formula Φ1U
[t1,t2]Φ2 to hold is then again

calculated by computing two reachability problems on the transformed local
models Ml[U] and Ml[U ∧G], respectively:

ProbM
l

(s, Φ1U
[t1,t2]Φ2, t

′) =
∑

s1,t′|=Φ1

∑
s2,t1|=Φ2

πM
l[U]

s,s1 (t′, t1−t′)·πM
l[U∧G]

s1,s2 (t1, t2−t1).

(19)
Note that Equation (19) is valid for t1 > t′, t2 > t′. If t1 = t′ the first reachability
problem can be omitted.

The standard transient analysis on the modified ICTMS is used in order to
calculate the reachability probability Π ′(t′, t′+T ). In order to find the transient
probability the forward Kolmogorov equation is solved with an identical matrix
as initial condition:

dΠ ′(t′, t′ + T )

d(T )
= Π ′(t′, t′ + T ) ·Q′(t′ + T ), (20)

where Q′(t′ + T ) is the rate matrix of the modified ICTMC.
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In order to check CSL formula for ICTMC the dependency of transient prob-
ability on the starting time has to be found. The later is done by combining the
forward and backward Kolmogorov equations:

dΠ ′(t, t+ T )

dt
= −Q′(t)Π ′(t, t+ T ) +Π ′(t, t+ T )Q′(t+ T ). (21)

Finally, the time-dependent probability matrix Π ′(t, t+ T ) can be obtained by
solving Equation (21) with initial condition Π ′(t′, t′ + T ). This can be done
either analytically or numerically, e.g. with the tool Wolfram Mathematica [45]
as used in the current paper. Note that using Kolmogorov equations for solving
reachability problems on the local models Ml is efficient due to the fact that
the state space is usually quite small (see [9]).

The goal and unsafe sets in ICTMC can vary with time, which has to be
taken into account while calculating reachability probability. This is done by
solving Equation (21) piecewise, i.e., for each time interval, where the above
mentioned sets remain unchanged. At first we find the so-called discontinuity
points, i.e., the time points T0 = t′ ≤ T1 ≤ T2 ≤ · · · ≤ Tk ≤ Tk+1 = T + t′,
where at least one of the sets changes. Then we do the integration separately on
each time interval [Ti, Ti+1] for i = 0, ..., k.

To ensure that only safe states are visited before a goal state is reached,
we need to modify the CTMC Ml for each time interval as follows. First we
introduce a new goal state s∗, which remains the same for all time intervals.
Then, all unsafe and goal states are made absorbing and all transitions leading
to goal states are readdressed to the new state s∗. Given this modified CTMC

Ml
, the transient probability matrix Π ′(Ti, Ti+1) is found for each time interval

using the forward Kolmogorov equation, according to Equation (20).

Upon “jumps” between time intervals [Ti−1, Ti] and [Ti, Ti+1] it is possible
that a state that was safe in the previous time interval becomes unsafe in the
next. In this case the probability mass in this state is lost, since this path does
not satisfy the reachability problem anymore. In the case that a state remains
safe or a safe state is turned into a goal state the probability mass has to be
carried over to the next time interval. This is described by the matrix ζ(Ti) of
size (|Sl|+ 1)× (|Sl|+ 1) constructed in the following way: for each state s ∈ Sl
which are safe before and after Ti it follows ζ(Ti)s,s = 1. For each state s ∈ Sl
which was safe before Ti and become goal after Ti we have ζ(Ti)s,s∗ = 1. For
the new goal state s∗ the entry always equals one (ζ(Ti)s∗,s∗ = 1), and all other
elements of ζ(Ti) are 0.

The probability to reach a goal state before time T has passed when starting
in a safe state at time t′ is given then by the matrix Υ (t′, t′ + T ):

Υ (t′, t′ + T ) =Π ′(t′, T1) · ζ(T1) ·Π ′(T1, T2)·
ζ(T1) . . . ζ(Tk) ·Π ′(Tk, t′ + T ).

(22)

37



The probability to reach the goal state s∗ is unconditioned on the starting
state by adding 1 for all goal states:

π
[U∨,G]
s,s∗ (t′, t′ + T ) =Υs,s∗(t

′, t′ + T )+

1{s ∈ Sat(G, t′)}.
(23)

Similarly to the dependency on time of the reachability probability while the
goal and unsafe sets are fixed (see Equation (21)), the time-dependent reachabil-
ity probability for varying goal and unsafe sets can be found by again combining
forward and backward Kolmogorov equations using chain rule.

The method for checking state and path CSL formulas was presented above
in this section. As a next step we provide the example, where these methods are
applied.

6.4 Examples

In this section some examples of checking CSL formulas are described. We use
the model, similar to the botnet model, described in Section 4. In this model
the number of possible states one computer goes through is reduced in order to
simplify the reasoning and make the example more understandable.

The computer virus model, which is used as a running example in this section
includes three possible modes of an individual computer, which can be not-
infected, infected and active or infected and inactive. An infected computer is
active when it is spreading the virus and inactive when it is not. This results in
the finite local state space Sl = {s1, s2, s3} with |Sl| = K = 3 states. They are
labelled as infected, not infected, active and inactive, as indicated in Figure 7.
Transitions are similar to the botnet example, esplained in Section 4.

The system of ODEs (3), that describes the mean-field model of the computer
virus is as follows: ẋ1(t) = −k1x3(t) + k2x2(t) + k5x3(t),

ẋ2(t) = (k1 + k4)x3(t)− (k2 + k3)x2(t),
ẋ3(t) = k3x2(t)− (k4 + k5)x3(t).

(24)

The coefficients that are used in the following example are given in Setting 1 in
Table 4.

Let us consider the following formula

Φ = P<0.3(not infected U [0,1] infected)

and a predefined initial occupancy vector x = (0.8, 0.15, 0.05) at time t′ = 0.

The only time-dependent rate of the local model is k∗1(t) = k1 · x3(t)
x1(t)

, where

m1(t) and x3(t) are the solution of the ODEs (24) with x as initial condition.
Therefore the transition rate matrix Q(t) equals

Q(t) =

−k1 · x3(t)
x1(t)

k1 · x3(t)
x1(t)

0

k2 −k2 − k3 k3
k5 k4 −k5 − k4

 .
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To find ProbM
l

(s,not infected U [0,1] infected, t′) the reachability problem

π
Ml[¬not infected∨infected]
s,s1 (0, 1) = π

Ml[infected]
s,s1 (0, 1) has to be solved according to

the algorithm described earlier in this section. The local model Ml is modified
and all infected states are made absorbing. The Kolmogorov equation is used to
calculate the transient probability matrix of the modified model, which consists
of the reachability probabilities:

Π ′(0, 1) =

0.91 0.09 0
0 1 0
0 0 1

 .

The probability of the until formula

φ = not infected U [0,1] infected

to hold for each starting state is as follows:

ProbM
l

(s1, φ, t
′) = π

Ml[infected]
s1,s2 (0, 1)+π

Ml[infected]
s1,s3 (0, 1) = 0.09; ProbM

l

(s2, φ, t
′)) =

0; ProbM
l

(s3, φ, t
′)) = 0. As one can see the formula P<0.3(not infected U [0,1] infected)

holds for all states s1, s2, and s3.
As was discussed earlier, the satisfaction on the CSL formula may change with

time. Let us consider the same formula P<0.3(not infected U [0,1] infected) and
initial occupancy vector x = (0.8, 0.15, 0.05). In the following we calculate the
time-dependent probability on the predefined time interval [0, 20]. The calcula-

tion of the time-dependent probabilities ProbM
l

(s,not infected U [0,1] infected, t′, t)
is done as described earlier in this section. The model Ml is modified so the in-
fected states are made absorbing. The transient probability Π(0, 1) is calculated
as described above. Forward and backward Kolmogorov equations are used in or-
der to construct the ODEs, describing the time-dependent transient probability
of the modified model (see Equation (21)). These ODEs are solved using Π(0, 1)
as initial condition. The solution of the ODEs defines the required reachability

probabilities. The probabilities ProbM
l

(s,not infected U [0,1] infected, t′, t) are
calculated by combining reachability probabilities (in this case equals to the
reachability probabilities, which were calculated above). The time-dependent

probability ProbM
l

(s1,not infected U [0,1] infected, t′, t) is depicted in Figure 8.
Starting at states s2 and s3 this probability equals zero at all times, since these
states do not satisfy not infected. In order to find the satisfaction set of this for-

mula the following equation ProbM
l

(s1,not infected U [0,1] infected, t′, t) = 0.3 is
solved and t = 13.42 is found. The satisfaction set depends on time and includes
all three states s1, s2, and s3 for t ∈ [0, 13.42); and only two states s2 and s3 for
t ∈ [13.42; 20].

In the following we discuss a more involved example, which includes nested
until formula. The parameters of the model used in this example are given in the
column Setting 2 in Table 4, the initial conditions at t = 0 is x = (0.85; 0.1; 0.05).
We check the following satisfaction relation:

P>0.9(infected U [0,15](P>0.8 tt U
[0,0.5] infected)).
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Parameter Setting 1 Setting 2

Attack k1 0.9 5

Inactive computer recovery k2 0.1 0.02

Inactive computers getting active k3 0.01 0.01

Active computer returns to inactive k4 0.3 0.5

Active computer recovery k5 0.3 0.5

Table 4: Parameter settings.
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Fig. 7: Example of the CTMC describing
computer virus spread.
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Fig. 8: The green solid line shows

ProbM
l

(s1, not infected U [0,1] infected, t′, t).
The time-dependent probability

ProbM
l

(s1, tt U [0,0.5] infected, t′, t) is
presented by the blue dotted line.

The formula is split into sub-formulas and the time-dependent satisfaction set
of the sub-formula Φ1 = (P>0.8tt U

[0,0.5] infected) is calculated first. Similarly to

the previous example, the probability ProbM
l

(s, tt U [0,0.5] infected, t′, t) is calcu-
lated for all states s ∈ So. In Figure 8 this probability at state s1 is depicted; the
probabilities at states s2 and s3 equal to one, since these states are already in-
fected. We see that the time-dependent satisfaction set is Sat(Φ1, t

′, t) = {s2, s3}
for all t ∈ [0, 10.443] and Sat(Φ1, t

′, t) = {s1, s2, s3} for all t ∈ (10.443, 15].

The next task is calculating the probability ProbM
l

(s, infected U [0,15]Φ1, t
′, t).

The reachability probability for the time-varying satisfaction set of Φ1 is cal-
culated following the algorithm mentioned above in this section. We first cal-
culate all discontinuity points T0 = 0, T1 = 10.443 and T2 = 15. An extra
state s∗ is added and an indicator matrix ζ(T1) is constructed: ζ(T1)s∗,s∗ = 1,
ζ(T1)s1,s2 = 0 for all s1, s2 6= s∗. The transient probabilities on time intervals
[0, 10.443) and (10.443, 15] are calculated using forward Kolmogorov equation:

Π ′(0, 10.443) =


0.53 0 0 0.47

0 1 0 0
0 0 1 0
0 0 0 1

 ,
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Π ′(10.443, 15− 10.443) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Equation (22) is used to calculate Υ (0, 15):

Υ (0, 15) =


0 0 0 0.47
0 0 0 0
0 0 0 0
0 0 0 1

 .

Equation (23) is used in order to calculate the reachability probability for each

state s ∈ So: πM
l[¬infected∨Φ1]

s1,s∗ (0, 15) = 0.47; π
Ml[¬infected∨Φ1]
s2,s∗ (0, 15) = 1;

π
Ml[¬infected∨Φ1]
s3,s∗ (0, 15) = 1. The probability ProbM

l

(s, infected U [0,15]Φ1, t
′) is

calculated according to Equation (19), and equals to 0, 1, and 1 for states s1, s2,
and s3 respectively. Therefore only states s2 and s3 satisfying the formula

P>0.9(infected U [0,15](P>0.8 tt U
[0,0.5] infected)).

In this section we illustrated how the properties of a singe random object
in a large communication network (system of interacting objects). Next to the
fluid model checking the reader might be interested in the techniques for cal-
culation fluid passage time, as discussed in [24] and an MF-CSL logic, which
allows checking properties of the overall mean-field model via properties of the
individual object [32].

7 Conclusions

In this paper we illustrate several aspects of applying mean-field approximations
for efficient analysis of large scale stochastic models of computer systems. Our
focus is into providing a self-contained and accessible presentation for beginners.

First, in Sections 2 and 3, we illustrate the basic theory behind mean-field
approximation and we describe a systematic approach to applying this tech-
nique. Then, in Section 4, we illustrate in full details a non trivial example
modeling the dynamics of a bot-net within a computer network. This example
shows how to apply the classical results of Section 3 for studying the dynamics
of the bot-net for a large number of computers. We discuss the results obtained
through several experimental sessions and we have shown the practical efficiency
of mean-field approximation. In that section we also illustrate a further applica-
tion area for mean-field approximation, that is performance and cost evaluation
for optimization.

In Section 5 we show a more advanced application of mean-field techniques,
where local aspects and inhomogeneity of the systems are taken into account.
There, the modeling of spatial aspects is crucial for obtaining a detailed model.
We show a possible approach to modeling space, by considering locations and

41



parameters depending on locations. A further aspect we consider in that section
concerns the mean-field approximation of stochastic processes over uncountable
domains. This is a rather advanced topic and falls outside the applicability of
Theorems 1 and 2. Therefore it requires one to develop ad-hoc results and tech-
niques, following the general idea of mean-field approximation. Despite this com-
plexity, the adoption of uncountable domains can be relevant whenever one is
interested into approximating measures that are inherently continuous, such as
the aging of certain information, in the considered example.

Finally, in Section 6, we consider a very recent application of mean-field ap-
proximation: namely, the use of fast simulation techniques for model checking
the behavior of a few stochastic agents within a large scale system. To illustrate
the use of this new technique, we consider a concrete example which is a simpli-
fied variant of the example considered in Section 4 and we prove some interesting
properties, avoiding to fall into the state-space explosion typical of large Markov
models.

We believe this paper is a reasonable attempt to give a wide, yet concrete,
overview of the main motivations and potentialities of the use of mean-field ap-
proximation for modeling and analysis of large scale systems. Mean-field approx-
imation cannot be considered as a ready solution to the state-space explosion
problem. Indeed, it is an approximation technique that must be applied care-
fully [39] and it provides a satisfactory first approximation of a system dynamics
which requires, then, to be studied in further details to obtain a more precise
analysis, as discussed in Section 1. However, there are already many frameworks
that allow for systematic application of mean-field techniques [11,27,42], ensur-
ing a wide reach for the use of these techniques.
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