9 research outputs found

    Faster Existential FO Model Checking on Posets

    Full text link
    We prove that the model checking problem for the existential fragment of first-order (FO) logic on partially ordered sets is fixed-parameter tractable (FPT) with respect to the formula and the width of a poset (the maximum size of an antichain). While there is a long line of research into FO model checking on graphs, the study of this problem on posets has been initiated just recently by Bova, Ganian and Szeider (CSL-LICS 2014), who proved that the existential fragment of FO has an FPT algorithm for a poset of fixed width. We improve upon their result in two ways: (1) the runtime of our algorithm is O(f(|{\phi}|,w).n^2) on n-element posets of width w, compared to O(g(|{\phi}|). n^{h(w)}) of Bova et al., and (2) our proofs are simpler and easier to follow. We complement this result by showing that, under a certain complexity-theoretical assumption, the existential FO model checking problem does not have a polynomial kernel.Comment: Paper as accepted to the LMCS journal. An extended abstract of an earlier version of this paper has appeared at ISAAC'14. Main changes to the previous version are improvements in the Multicoloured Clique part (Section 4

    Successor-Invariant First-Order Logic on Graphs with Excluded Topological Subgraphs

    Get PDF
    We show that the model-checking problem for successor-invariant first-order logic is fixed-parameter tractable on graphs with excluded topological subgraphs when parameterised by both the size of the input formula and the size of the exluded topological subgraph. Furthermore, we show that model-checking for order-invariant first-order logic is tractable on coloured posets of bounded width, parameterised by both the size of the input formula and the width of the poset. Our result for successor-invariant FO extends previous results for this logic on planar graphs (Engelmann et al., LICS 2012) and graphs with excluded minors (Eickmeyer et al., LICS 2013), further narrowing the gap between what is known for FO and what is known for successor-invariant FO. The proof uses Grohe and Marx's structure theorem for graphs with excluded topological subgraphs. For order-invariant FO we show that Gajarsk\'y et al.'s recent result for FO carries over to order-invariant FO

    Quantified Conjunctive Queries on Partially Ordered Sets

    Full text link
    We study the computational problem of checking whether a quantified conjunctive query (a first-order sentence built using only conjunction as Boolean connective) is true in a finite poset (a reflexive, antisymmetric, and transitive directed graph). We prove that the problem is already NP-hard on a certain fixed poset, and investigate structural properties of posets yielding fixed-parameter tractability when the problem is parameterized by the query. Our main algorithmic result is that model checking quantified conjunctive queries on posets of bounded width is fixed-parameter tractable (the width of a poset is the maximum size of a subset of pairwise incomparable elements). We complement our algorithmic result by complexity results with respect to classes of finite posets in a hierarchy of natural poset invariants, establishing its tightness in this sense.Comment: Accepted at IPEC 201

    Model-Checking on Ordered Structures

    Full text link
    We study the model-checking problem for first- and monadic second-order logic on finite relational structures. The problem of verifying whether a formula of these logics is true on a given structure is considered intractable in general, but it does become tractable on interesting classes of structures, such as on classes whose Gaifman graphs have bounded treewidth. In this paper we continue this line of research and study model-checking for first- and monadic second-order logic in the presence of an ordering on the input structure. We do so in two settings: the general ordered case, where the input structures are equipped with a fixed order or successor relation, and the order invariant case, where the formulas may resort to an ordering, but their truth must be independent of the particular choice of order. In the first setting we show very strong intractability results for most interesting classes of structures. In contrast, in the order invariant case we obtain tractability results for order-invariant monadic second-order formulas on the same classes of graphs as in the unordered case. For first-order logic, we obtain tractability of successor-invariant formulas on classes whose Gaifman graphs have bounded expansion. Furthermore, we show that model-checking for order-invariant first-order formulas is tractable on coloured posets of bounded width.Comment: arXiv admin note: substantial text overlap with arXiv:1701.0851

    Model Checking Existential Logic on Partially Ordered Sets

    No full text
    corecore