10,829 research outputs found

    A Learning Health System for Radiation Oncology

    Get PDF
    The proposed research aims to address the challenges faced by clinical data science researchers in radiation oncology accessing, integrating, and analyzing heterogeneous data from various sources. The research presents a scalable intelligent infrastructure, called the Health Information Gateway and Exchange (HINGE), which captures and structures data from multiple sources into a knowledge base with semantically interlinked entities. This infrastructure enables researchers to mine novel associations and gather relevant knowledge for personalized clinical outcomes. The dissertation discusses the design framework and implementation of HINGE, which abstracts structured data from treatment planning systems, treatment management systems, and electronic health records. It utilizes disease-specific smart templates for capturing clinical information in a discrete manner. HINGE performs data extraction, aggregation, and quality and outcome assessment functions automatically, connecting seamlessly with local IT/medical infrastructure. Furthermore, the research presents a knowledge graph-based approach to map radiotherapy data to an ontology-based data repository using FAIR (Findable, Accessible, Interoperable, Reusable) concepts. This approach ensures that the data is easily discoverable and accessible for clinical decision support systems. The dissertation explores the ETL (Extract, Transform, Load) process, data model frameworks, ontologies, and provides a real-world clinical use case for this data mapping. To improve the efficiency of retrieving information from large clinical datasets, a search engine based on ontology-based keyword searching and synonym-based term matching tool was developed. The hierarchical nature of ontologies is leveraged to retrieve patient records based on parent and children classes. Additionally, patient similarity analysis is conducted using vector embedding models (Word2Vec, Doc2Vec, GloVe, and FastText) to identify similar patients based on text corpus creation methods. Results from the analysis using these models are presented. The implementation of a learning health system for predicting radiation pneumonitis following stereotactic body radiotherapy is also discussed. 3D convolutional neural networks (CNNs) are utilized with radiographic and dosimetric datasets to predict the likelihood of radiation pneumonitis. DenseNet-121 and ResNet-50 models are employed for this study, along with integrated gradient techniques to identify salient regions within the input 3D image dataset. The predictive performance of the 3D CNN models is evaluated based on clinical outcomes. Overall, the proposed Learning Health System provides a comprehensive solution for capturing, integrating, and analyzing heterogeneous data in a knowledge base. It offers researchers the ability to extract valuable insights and associations from diverse sources, ultimately leading to improved clinical outcomes. This work can serve as a model for implementing LHS in other medical specialties, advancing personalized and data-driven medicine

    Forum on immune digital twins: a meeting report

    Full text link
    Medical digital twins are computational models of human biology relevant to a given medical condition, which can be tailored to an individual patient, thereby predicting the course of disease and individualized treatments, an important goal of personalized medicine. The immune system, which has a central role in many diseases, is highly heterogeneous between individuals, and thus poses a major challenge for this technology. If medical digital twins are to faithfully capture the characteristics of a patient's immune system, we need to answer many questions, such as: What do we need to know about the immune system to build mathematical models that reflect features of an individual? What data do we need to collect across the different scales of immune system action? What are the right modeling paradigms to properly capture immune system complexity? In February 2023, an international group of experts convened in Lake Nona, FL for two days to discuss these and other questions related to digital twins of the immune system. The group consisted of clinicians, immunologists, biologists, and mathematical modelers, representative of the interdisciplinary nature of medical digital twin development. A video recording of the entire event is available. This paper presents a synopsis of the discussions, brief descriptions of ongoing digital twin projects at different stages of progress. It also proposes a 5-year action plan for further developing this technology. The main recommendations are to identify and pursue a small number of promising use cases, to develop stimulation-specific assays of immune function in a clinical setting, and to develop a database of existing computational immune models, as well as advanced modeling technology and infrastructure

    Towards Prediction of Radiation Pneumonitis Arising from Lung Cancer Patients Using Machine Learning Approaches

    Get PDF
    Radiation pneumonitis (RP) is a potentially fatal side effect arising in lung cancer patients who receive radiotherapy as part of their treatment. For the modeling of RP outcomes data, several predictive models based on traditional statistical methods and machine learning techniques have been reported. However, no guidance to variation in performance has been provided to date. In this study, we explore several machine learning algorithms for classification of RP data. The performance of these classification algorithms is investigated in conjunction with several feature selection strategies and the impact of the feature selection strategy on performance is further evaluated. The extracted features include patients demographic, clinical and pathological variables, treatment techniques, and dose-volume metrics. In conjunction, we have been developing an in-house Matlab-based open source software tool, called DREES, customized for modeling and exploring dose response in radiation oncology. This software has been upgraded with a popular classification algorithm called support vector machine (SVM), which seems to provide improved performance in our exploration analysis and has strong potential to strengthen the ability of radiotherapy modelers in analyzing radiotherapy outcomes data

    Beyond The Dvh - Spatial And Biological Radiotherapy Treatment Planning

    Get PDF
    Purpose: Both spatial and biological information are necessary in order to perform true optimization of a treatment plan and for predicting clinical outcome. The goal of this work is to develop an enhanced treatment plan evaluation tool which incorporates biological parameters and retains spatial dose information. Methods: A software system named SABER (Spatial And Biological Evaluation for Radiotherapy) is developed which provides biological plan evaluation with a novel combination of features. It incorporates hyperradiosensitivity using the induced-repair model and applies the new concept of Dose Convolution Filter (DCF) to simulate dose wash-out effects due to cell migration, bystander effect, and tissue motion during treatment. Further, the concept of Spatial DVH (sDVH) is introduced to evaluate and potentially optimize the spatial dose distribution in the target volume. Finally, generalized equivalent uniform dose is derived from both physical dose distribution (gEUD) and EQD2 distribution (gEUD2), and the software provides three models for calculation of Tumor Control Probability (TCP), Normal Tissue Complication Probability (NTCP), and Complication-free TCP (P+). TCP, NTCP and P+ are provided as a function of prescribed dose and multi-variable TCP, NTCP and P+ plots are provided to illustrate the dependence upon individual parameters used to calculate these quantities. Results: By retaining both spatial and biological information about the dose distribution, SABER is able to distinguish features of radiotherapy treatment plans not discernible using commercial systems. Plans that have similar DVHs may have different spatial and biological characteristics, and the application of novel tools such as sDVH and DCF within SABER and the choice of radiobiological models may substantially change the predicted plan metrics such as TCP and NTCP, and thus change the relative plan ranking. The voxel-by-voxel TCP model makes it feasible to incorporate spatial variations of clonogen densities, radiosensitivities, and fractionation sensitivities as those data become available. Conclusions: The SABER software incorporates both spatial and biological information into the treatment planning process. This may significantly alter the predicted TCP and NTCP and thus the choice of treatment plan. Thus SABER can help the planner compare and choose more biologically optimal treatment plans and potentially predict treatment outcome more accurately

    Lung cancer multi-omics digital human avatars for integrating precision medicine into clinical practice: the LANTERN study

    Get PDF
    Background: The current management of lung cancer patients has reached a high level of complexity. Indeed, besides the traditional clinical variables (e.g., age, sex, TNM stage), new omics data have recently been introduced in clinical practice, thereby making more complex the decision-making process. With the advent of Artificial intelligence (AI) techniques, various omics datasets may be used to create more accurate predictive models paving the way for a better care in lung cancer patients. Methods: The LANTERN study is a multi-center observational clinical trial involving a multidisciplinary consortium of five institutions from different European countries. The aim of this trial is to develop accurate several predictive models for lung cancer patients, through the creation of Digital Human Avatars (DHA), defined as digital representations of patients using various omics-based variables and integrating well-established clinical factors with genomic data, quantitative imaging data etc. A total of 600 lung cancer patients will be prospectively enrolled by the recruiting centers and multi-omics data will be collected. Data will then be modelled and parameterized in an experimental context of cutting-edge big data analysis. All data variables will be recorded according to a shared common ontology based on variable-specific domains in order to enhance their direct actionability. An exploratory analysis will then initiate the biomarker identification process. The second phase of the project will focus on creating multiple multivariate models trained though advanced machine learning (ML) and AI techniques for the specific areas of interest. Finally, the developed models will be validated in order to test their robustness, transferability and generalizability, leading to the development of the DHA. All the potential clinical and scientific stakeholders will be involved in the DHA development process. The main goals aim of LANTERN project are: i) To develop predictive models for lung cancer diagnosis and histological characterization; (ii) to set up personalized predictive models for individual-specific treatments; iii) to enable feedback data loops for preventive healthcare strategies and quality of life management. Discussion: The LANTERN project will develop a predictive platform based on integration of multi-omics data. This will enhance the generation of important and valuable information assets, in order to identify new biomarkers that can be used for early detection, improved tumor diagnosis and personalization of treatment protocols. Ethics Committee approval number: 5420 − 0002485/23 from Fondazione Policlinico Universitario Agostino Gemelli IRCCS – Università Cattolica del Sacro Cuore Ethics Committee. Trial registration: clinicaltrial.gov - NCT05802771

    Doctor of Philosophy

    Get PDF
    dissertationFamily health history (FHH) is an independent risk factor for predicting an individual's chance of developing selected chronic diseases. Though various FHH tools have been developed, many research questions remain to be addressed. Before FHH can be used as an effective risk assessment tool in public health screenings or population-based research, it is important to understand the quality of collected data and evaluate risk prediction models. No literature has been identified whereby risks are predicted by applying machine learning solely on FHH. This dissertation addressed several questions. First, using mixed methods, we defined 50 requirements for documenting FHH for a population-based study. Second, we examined the accuracy of self- and proxy-reported FHH data in the Health Family Tree database, by comparing the disease and risk factor rates generated from this database with rates recorded in a cancer registry and standard public health surveys. The rates generated from the Health Family Tree were statistically lower than those from public sources (exceptions: stroke rates were the same, exercise rates were higher). Third, we validated the Health Family Tree risk predictive algorithm. The very high risk (≄2) predicted the risk of all concerned diseases for adult population (20 ~ 99 years of age), and the predictability remained when using disease rates from public sources as the reference in the relative risk model. The referent population used to establish the expected rate of disease impacted risk classification: the lower expected disease rates generated by the Health Family Tree, in comparison to the rates from public iv sources, caused more persons to be classified at high risk. Finally, we constructed and evaluated new predictive models using three machine learning classifiers (logistic regression, Bayesian networks, and support vector machine). A limited set of information about first-degree relatives was used to predict future disease. In summary, combining FHH with valid risk algorithms provide a low cost tool for identifying persons at risk for common diseases. These findings may be especially useful when developing strategies to screen populations for common diseases and identifying those at highest risk for public health interventions or population-based research

    Translational Research of Audiovisual Biofeedback: An investigation of respiratory-guidance in lung and liver cancer patient radiation therapy

    Get PDF
    Through the act of breathing, thoracic and abdominal anatomy is in constant motion and is typically irregular. This irregular motion can exacerbate errors in radiation therapy, breathing guidance interventions operate to minimise these errors. However, much of the breathing guidance investigations have not directly quantified the impact of regular breathing on radiation therapy accuracy. The first aim of this thesis was to critically appraise the literature in terms of the use of breathing guidance interventions via systematic review. This review found that 21 of the 27 identified studies yielded significant improvements from the use of breathing guidance. None of the studies were randomised and no studies quantified the impact on 4DCT image quality. The second aim of this thesis was to quantify the impact of audiovisual biofeedback breathing guidance on 4DCT. This study utilised data from an MRI study to program the motion of a digital phantom prior to then simulating 4DCT imaging. Audiovisual biofeedback demonstrated to significantly improved 4DCT image quality over free breathing. The third aim of this thesis was to assess the impact of audiovisual biofeedback on liver cancer patient breathing over a course of stereotactic body radiation therapy (SBRT). The findings of this study demonstrated the effectiveness of audiovisual biofeedback in producing consistent interfraction respiratory motion over a course of SBRT. The fourth aim of this thesis was to design and implement a phase II clinical trial investigating the use and impact of audiovisual biofeedback in lung cancer radiation therapy. The findings of a retrospective analysis were utilised to design and determine the statistics of the most comprehensive breathing guidance study to date: a randomised, stratified, multi-site, phase II clinical trial.. The fifth aim of this thesis was to explore the next stages of audiovisual biofeedback in terms of translating evidence into broader clinical use through commercialisation. This aim was achieved by investigating the the product-market fit of the audiovisual biofeedback technology. The culmination of these findings demonstrates the clinical benefit of the audiovisual biofeedback respiratory guidance system and the possibility to make breathing guidance systems more widely available to patients

    Radiomics for Response Assessment after Stereotactic Radiotherapy for Lung Cancer

    Get PDF
    Stereotactic ablative radiotherapy (SABR) is a guideline-specified treatment option for patients with early stage non-small cell lung cancer. After treatment, patients are followed up regularly with computed tomography (CT) imaging to determine treatment response. However, benign radiographic changes to the lung known as radiation-induced lung injury (RILI) frequently occur. Due to the large doses delivered with SABR, these changes can mimic the appearance of a recurring tumour and confound response assessment. The objective of this work was to evaluate the accuracy of radiomics, for prediction of eventual local recurrence based on CT images acquired within 6 months of treatment. A semi-automatic decision support system was developed to segment and sample regions of common post-SABR changes, extract radiomic features and classify images as local recurrence or benign injury. Physician ability to detect timely local recurrence was also measured on CT imaging, and compared with that of the radiomics tool. Within 6 months post-SABR, physicians assessed the majority of images as no recurrence and had an overall lower accuracy compared to the radiomics system. These results suggest that radiomics can detect early changes associated with local recurrence that are not typically considered by physicians. These appearances detected by radiomics may be early indicators of the promotion and progression to local recurrence. This has the potential to lead to a clinically useful computer-aided decision support tool based on routinely acquired CT imaging, which could lead to earlier salvage opportunities for patients with recurrence and fewer invasive investigations of patients with only benign injury
    • 

    corecore