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Abstract 

Through the act of breathing, internal thoracic and abdominal anatomy is in constant motion: this 

motion can result in thoracic-abdominal tumours moving up to 5 cm as the patient breathes. During 

radiation therapy imaging and treatment delivery there are two fundamental types of errors: the errors 

occurring during treatment preparation (systematic) and the errors occurring during treatment delivery 

(random) both these types of errors are exacerbated by irregular respiratory-motion. Breathing 

guidance interventions operate to minimise the deleterious impacts of irregular respiration in cancer 

radiation therapy. Breathing guidance refers to a biofeedback system which measures patient 

respiration in real-time and simultaneously provides feedback to the patient on how to adjust their 

breathing to achieve the desired objective of regular respiration. Such breathing guidance interventions 

have been demonstrated to improve breathing motion regularity of both external surrogates in addition 

to internal anatomy as well as the tumour itself. However, much of the breathing guidance intervention 

investigations have not directly quantified the impact of regular breathing on radiation treatment 

accuracy, nor has there been a systematic review of the literature to thoroughly identify the gaps to 

indicate what the future direction breathing guidance investigations should take. 

The overall aim of this thesis was to investigate the clinical feasibility of the audiovisual biofeedback 

breathing guidance intervention through translational research and potential commercial market 

acceptance.  

The first aim of this thesis was to critically appraise the literature in terms of the use of breathing 

guidance interventions in the fields of radiation oncology and radiology via systematic review. Radiology 

was also included in this systematic review because certain radiology imaging modalities such as MRI 

and PET/CT are being utilised in emerging hybrid radiation treatment technologies such as the MRI-linac 

in addition to the use of PET/CT in radiation treatment planning. A systematic review of the literature 

was conducted and found that of the 27 identified studies, 21 yielded statistically significant 

improvements from the use of breathing guidance. None of the studies were randomised, and no 

studies quantified the impact of breathing guidance interventions on 4DCT image quality, the primary 

imaging modality utilised to plan radiation therapy for highly mobile tumours. The largely positive 

results found in this systematic review indicate that further clinical studies are warranted and should be 

focused on (1) utilising training and multiple sessions to maximize patient compliance with the breathing 
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guidance system, and (2) further determining the clinical impact of breathing guidance interventions by 

investigating outcomes pertaining to treatment margins, toxicity, and patient outcomes.  

The second aim of this thesis was to quantify the impact of audiovisual biofeedback breathing guidance 

on 4DCT. This study utilised free breathing and audiovisual biofeedback lung cancer patient data from an 

MRI study to program the motion of a digital phantom prior to simulating 4DCT imaging. Audiovisual 

biofeedback demonstrated to significantly improved 4DCT image quality over free breathing. The results 

demonstrate that audiovisual biofeedback can be a beneficial intervention to improve 4DCT for cancer 

radiation therapy. 

The third aim of this thesis was to assess the impact of audiovisual biofeedback on patient breathing 

over a course of radiation therapy. This was performed by monitoring the breathing motion of an 

external motion surrogate and implanted radio-opaque markers of liver cancer patients over the course 

of stereotactic body radiation therapy (SBRT). This study was the first investigation to utilise a screening 

procedure in addition to being the first to utilise breathing guidance over the course of SBRT. The 

findings of this study demonstrated the effectiveness of the screening procedure in facilitating regular 

respiration over the course of SBRT in addition to audiovisual biofeedback being a valuable tool in 

producing consistent interfraction respiratory motion between CT sim and treatment delivery. 

The fourth aim of this thesis was to utilise the findings yielded by the above aims to design and 

implement a novel and comprehensive clinical trial investigating the use and impact of audiovisual 

biofeedback in radiation therapy. This fourth aim was achieved by performing a retrospective analysis of 

the previous audiovisual biofeedback 24 lung cancer patient study. The findings of this retrospective 

analysis were utilised to design and determine the statistics of the most comprehensive breathing 

guidance study to date: a randomised, stratified, multi-site, phase II clinical trial investigating audiovisual 

biofeedback over the course of lung cancer radiation therapy.  

The fifth aim of this thesis was to explore the next stages of the audiovisual biofeedback technology in 

terms of translating evidence into broader clinical use through the commercialisation process. This aim 

was achieved by investigating the radiation oncology market, current medical products available in 

respiratory monitoring and biofeedback in this market, assessing the intellectual property position of 

the audiovisual biofeedback in addition to determining the product-market fit of the audiovisual 

biofeedback technology.  
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Presentation of Thesis 

This thesis is presented as a combination of one systematic review and one published paper as their own 

chapters, with a published case report and study protocol forming subsections within chapters.  

Chapter 1 provides a background to cancer radiation therapy and the deleterious impact of irregular 

patient breathing on cancer radiation therapy procedures before introducing audiovisual biofeedback 

breathing guidance as an intervention to minimise these deleterious impacts. Some background on 

audiovisual biofeedback is also provided in addition to recent developments towards the audiovisual 

biofeedback system utilised in the investigations presented in this thesis.  

Chapter 2: ‘Breathing guidance in radiation oncology and radiology: A systematic review of patient and 

healthy volunteer studies.’ Published in Medical Physics 42(9): 5490-5509 (2015). 

Chapter 3: ‘The impact of breathing guidance and prospective gating during thoracic 4DCT imaging: an 

XCAT study utilizing lung cancer patient motion.’ Published in Physics in Medicine and Biology 61(17) 

6248-6501.   

Chapter 4: ‘Audiovisual biofeedback breathing guidance over a course of liver SBRT: A motion analysis of 

external and internal surrogates.’ A Case Report of the first patient recruited into this study, published in 

the Journal of Medical Imaging and Radiation Oncology 59(5) 654-656 (2015), is included in Appendix III. 

Chapter 5: ‘Designing and initialising a multi-institutional randomisation phase II audiovisual 

biofeedback clinical trial’ is presented in two parts: (1) retrospective analysis of previous lung cancer 

patient study, and (2) the design and initiation of the randomised clinical trial. The clinical trial’s study 

protocol was published in BMC cancer, 15(1) 526-533 (2015) and is included as a sub-section of Chapter 

5. 

Chapter 6: ‘Translating evidence into clinical practice through commercialisation’ details the 

investigation into the commercialisation pathway of the audiovisual biofeedback technology, how these 

insights advanced the design and functionalities of audiovisual biofeedback, and validation testing of 

these new additions.  

Chapter 7 provides the summary and conclusions of the work undertaken in this thesis in addition to 

future research directions  
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CHAPTER 1 

Introduction 

1.1. Cancer Radiation Therapy  

External beam radiation therapy involves directing a beam of ionizing radiation at a tumour to cause 

double-strand breaks in the cancer cells’ DNA, causing cancer cell apoptosis.1, 2  Worldwide, there are 

12.4 million new cancer cases each year,3 of these, approximately 6.8 million (55%4 of 12.4 million) are 

recommended to be treated using radiation therapy. These patients are typically treated using linear 

accelerators (linacs) which target the tumour with high-energy x-rays, shown in Figure 1-1(a) and Figure 

1-1(b). An emerging form of high-precision external beam radiation therapy is proton therapy, shown in 

Figure 1-1(c). The use of linacs in radiation therapy is by far the most common form of radiation therapy 

with a total of 11,245 linacs worldwide,5 whereas there are only 43 proton therapy facilities worldwide.6 

  

Figure 1-1. (a) A Varian Clinac iX linac at the Abben Cancer Center.7 (b) Illustration of the production of a high-

energy x-ray beam in a linac.8 (c) Proton therapy treatment room at the ProCure Proton Therapy Center - Oklahoma 

City.9 

1.1.1. Cancer Radiation Therapy Workflow 

The typical workflow for cancer radiation therapy is shown in Figure 1-2. It begins with the computed 

tomography (CT) simulation in order to determine the location, size, shape, and motion of the tumour, 

in addition to identifying organs at risk of receiving potential radiation damage. The obtained CT 

simulation images are used to determine the appropriate radiation dose to be delivered to the tumour, 

while keeping the dose delivered to the surrounding organs at risk as low as reasonably possible. After 

the patient’s treatment has been planned, the patient is setup on the treatment couch as similarly as 
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possible to their position on the CT sim couch to have their radiation treatment delivered to the tumour 

site. Standard fractionation typically involves 30 fractions of radiation treatment,10 meaning that the 

patient comes in for radiation treatment on 30 separate days.  

 

Figure 1-2. The three main steps in the radiation therapy workflow. (a) Example of a CT simulation image of a lung 

cancer patient, adapted from Chen, et al. (2012).11 (b) Example of a CT simulation image with treatment plan, 

indicating different regions of different prescribed radiation dose about the tumour, adapted from Admiraal, et al. 

(2008).12 (c) 3D rendering of radiation treatment delivery, from Genesys Hurley Cancer Institute.13  

1.1.2. Lung and Liver Cancer Patients in Radiation Therapy 

Lung cancer is the leading cause of cancer-related deaths, with 1.6 million new cases each year 

accounting for 18% of all (cancer-related and non-cancer-related) deaths in 2008.14  There are 748 

thousand new liver cancer cases each year, and is the second most frequent cause of cancer death in 

males and sixth highest cause of cancers death in females.14 Radiotherapy is frequently used to treat 

lung and liver cancers, with a recommended radiotherapy utilization rate of 77% for lung cancers,15 and 

over 54% of USA radiotherapy centres treating their liver cancer patients with stereotactic body 

radiation therapy (SBRT).16 However, a complicating factor inherent to lung and liver tumours is that 

they are subject to respiratory-induced motion,17 largely due their proximity to the thoracic diaphragm. 

A strong correlation has been demonstrated between the thoracic diaphragm with both lung tumour18, 

19 and liver tumour motion,20 as shown in Figure 1-3. 
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Figure 1-3.(a) Example of lung tumour and thoracic diaphragm motion, from Cerviño, et al. (2009).18 (b) Example of 

three-dimensions of liver tumour motion and thoracic diaphragm motion, from Yang, et al. (2014).20   

Lung and liver cancer patients were selected as the focus of this thesis for the investigations performed 

in this thesis due to the systematic review (detailed in chapter 2) which found that the most commonly 

researched patient cohort for breathing guidance interventions was lung cancer patients, followed by 

liver cancer patients. Therefore, for the translational research conducted in this thesis lung and liver 

cancer patients were considered to be the more ethical patient cohort to be tested with the 

intervention during treatment delivery, rather than a kidney or pancreas patient cohort, where 

acceptance and effectiveness of such an intervention is less certain at this time. 

1.2. Respiratory Motion in Radiation Therapy 

Through the act of breathing, internal thoracic and abdominal anatomy is in constant motion, with the 

largest magnitude of motion in the superior-inferior direction;21 22 this can result in thoracic-abdominal 

tumours moving up to 5 cm as the patient breathes.17 In order to ensure that the tumour is being 

irradiated at all times, treatment margins, shown in Figure 1-2(b), are expanded to encompass the entire 

range of motion of the tumour,23 illustrated in Figure 1-4.  

4



 

Figure 1-4. Gross tumour volume (GTV) 

moving up and down as the patient breathes; 

its total range of motion indicated by the 

internal gross tumour volume (IGTV). 

Expanded around this is the internal target 

volume (ITV), which encompasses the IGTV 

with an additional internal margin accounting 

for variations in size, shape, and position of 

the IGTV. The planning target volume (PTV) 

takes into account both uncertainties 

accounted for by the ITV in addition to setup 

uncertainties.24 

The larger the uncertainties in patient setup, and GTV position, shape, and size, the more the margins 

are expanded, which ensures that the tumour is being targeted throughout its entire range of motion; 

however, it also increases the dose to the healthy surrounding tissue.25 Given the observed variety of 

different tumour sizes and shapes, the resultant radiation beam needs to be shaped in such a way as to 

match the shape of the PTV. This is primarily achieved through the use of multi-leaf collimators (MLC),26-

28 and are shown in Figure 1-5. 
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Figure 1-5. Phantom as a surrogate for 

a tumour with MLCs shown conforming 

to the shape of the tumour. Each 

individual MLC can move back and 

forth (as indicated by yellow arrows), 

such that all the MLCs can create and 

conform to a wide range of tumour 

shapes and sizes. Adapted from 

Cosgrove, et al. (1999).28  

The material of each MLC is of a high atomic number, typically a tungsten28 (atomic number: 74) alloy, 

allowing it to block part of the incident radiation beam, shaping it such that it conforms to the desired 

PTV. Each individual MLC can move independently of the others, allowing the MLCs to be able to create 

a wide variety of shapes and sizes.  

1.2.1. Respiratory Motion Management in Radiation Therapy 

In order to manage a constantly moving tumour, a number of techniques and technologies are available 

to reduce the deleterious impact respiratory motion can have on cancer radiation therapy. Such motion 

management strategies are recommended when tumour motion exceeds 5 mm.29  

1.2.1.1. Four Dimensional Computed Tomography (4DCT) 

4DCT is a type of medical imaging used for CT simulation to obtain not only three-dimensional 

information on tumour position and shape, but temporal information to also determine the tumour’s 

range of motion during respiration.30-33 During 4DCT imaging axial CT images are acquired at a number of 

couch positions as the patient is moved through the CT bore. At each couch position, axial CT images are 

acquired over the course of one respiratory cycle as monitored by a respiratory sensor (see chapter 

1.2.1.5.) before moving on to the next couch position; each CT image is tagged with a respiratory 

position.32 At the end of image acquisitions each couch position has an associated collection of CT 

images encompassing a cycle of respiration; these images are retrospectively sorted based on their 

6



associated respiratory position.32 This creates a 3D CT that includes information over an entire 

respiratory cycle, generating the 4DCT. This method of 4DCT reconstruction is referred to as cine mode 

and represents the conventional reconstruction 4DCT method for many scanners.34, 35  

1.2.1.2. Breath Holds 

One technique to minimise the impact of respiratory motion is for the patient to hold their breath. By 

suspending respiration, respiratory-induced motion is minimised,36-38 negating much of the deleterious 

effects respiratory motion can have on cancer radiation therapy.39, 40  The type of breath hold most often 

performed in cancer radiation therapy is the deep inspiration breath hold,41-43 which for thoracic 

cancers, particularly breast cancer, has the additional benefit of further increasing the geometric 

distance between the heart and radiation beam thereby reducing cardiac and pulmonary dose.44-46 An 

example of a deep inspiration breath hold is shown in Figure 1-6.  

 

Figure 1-6. Cancer patient 

respiratory signal performing 

deep inspiration breath holds 

(DIBH) demonstrating the 

respiratory stability of breath 

holds compared to free 

breathing. From Nehmeh, et al. 

(2007).47 

Breath holds during radiation therapy treatment delivery typically have a duration of 20-30 seconds,48, 49 

however, many treatments require a beam-on time in the order or minutes,50, 51 not seconds. Further to 

this, many patients may not be able to sustain or tolerate multiple breath holds, especially lung cancer 

patients who have compromised lung function. Treatment times utilizing breath holds are also typically 

longer compared to free breathing; Mah, et al. (2000) noted that the average free breathing treatment 

time was 16 minutes, compared to 32 minutes for DIBH.52 It should be noted that treatment time here 

refers to patient setup in addition to the treatment delivery itself.  

1.2.1.3. Respiratory Gating 

Respiratory gating refers to triggering on the radiation beam only during specific phase- or 

displacement-based windows of the respiratory cycle,53, 54 windows in which respiratory motion is 
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minimal, typically at exhale which has demonstrated to be more reproducible than inhale.55 Respiratory 

gating requires measurement of the tumour position or the use of a surrogate whose respiratory signal 

is synchronised with the target motion.56 If the measurement or surrogate signal is integrated with the 

linear accelerator delivery, the beam on/off can be controlled, automating a gating procedure. Figure 1-

7 illustrates the rationale behind the respiratory gating procedure.  

 

Figure 1-7. A lung tumour moving in and out of the gating window (or interval) as the patient breathes. In this 

example, the gating window is set at exhale (50% of the respiratory cycle). Adapted from Kim, et al. (2008).57 

By only treating the tumour within a specific region, respiratory gating in radiation therapy reduces the 

margins shown in Figure 1-4 since it no longer needs to encompass the tumour’s entire range of 

motion.58-60 However, by interrupting the radiation beam each time the respiratory signal moves outside 

the gating window, treatment time of respiratory gating can exceed that compared to no gating. In 

addition to being utilised during free breathing, respiratory gating is also often used in breath hold 

treatments, with the gating window set at the desired breath hold amplitude level.61, 62     

1.2.1.4. Tumour Tracking 

Tumour tracking is an emerging technology to monitor and adapt to tumour motion in real-time during 

treatment delivery.63, 64 Tracking of the tumour typically involves either real-time imaging of the region 

of interest,65, 66 or implanted transponders about the tumour itself.63, 67 By following the motion of the 

tumour itself it is not necessary to expand the margins to encompass its entire range of motion, thereby 

reducing the size of the margins illustrated in Figure 1-4.67, 68 The impact of tracking, and not tracking, on 

delivered radiation dose to a prostate is shown in Figure 1-8. 
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Figure 1-8. Example of dose distributions from a prostate patient demonstrating higher agreement with the 

planned dose from the use of tracking compared to without tracking. From Colvill, et al. (2015).67 

Should the tumour move in such a way that was not accounted for in the treatment planning stage, it 

can lead to a deviation in radiation dose delivered from what was planned, as shown in Figure 1-8.    

Motion prediction is utilised in tumour tracking to overcome the inherent latency of the treatment and 

imaging system.69-71 Here, ‘latency’ refers to the time taken to register tumour position, speed of the 

MLCs, and the reaction time of the delivery system in addition to software limitations.72, 73 During this 

time the tumour may have moved to a different position. As such, there is a requirement for predicting 

tumour motion over timescales of the system latency which can range from 50 to several hundred 

milliseconds.70, 71  

1.2.1.5. Respiratory Sensors 

To perform much of the procedures detailed in chapter 1.2.1.1., chapter 1.2.1.2., chapter 1.2.1.3., and 

chapter 1.2.1.4., respiratory sensors are utilised to track and monitor patient respiration. An overview of 

the available sensors is given in the following subsections.  

1.2.1.5.1. Varian RPM 

The Varian real-time position management (RPM) system (Figure 1-9) is comprised of an infra-red (IR) 

camera and an external marker block with IR reflective dots. The marker block is positioned on the 

patient’s abdomen, mid-way between the umbilicus and xiphoid process, and its motion is tracked by 

the IR camera at a rate of 30 Hz in three dimensions, however, only the anterior-posterior motion is 

typically utilised for the respiratory signal. 

9



 

Figure 1-9. (a) Varian RPM system setup in a CT scanner also showing (i) the infra-red camera, and (ii) the marker 

block with two infra-red reflective markers. Adapted from Giraud & Houle (2013).64 (b) Screenshot of the Varian 

RPM software showing the more recent 6-dot reflective marker. 

The Varian RPM system provides a physiologically accurate respiratory signal used for gating 

procedures, such as during imaging31, 74, 75 and radiation treatment delivery.39, 58, 76  

1.2.1.5.2. Elekta ABC 

The Elekta Active Breathing Coordinator (ABC) (Figure 1-10), rather than monitoring respiratory motion, 

monitors patient lung volume via spirometry.77 The patient’s nose is clamped closed and they breathe 

through a tube measuring the volume of airflow. 

 

Figure 1-10. (a) Elekta ABC system setup in a treatment room.78 (b) Screenshot of the Elekta ABC software. 

The Elekta ABC can also restrict patient airflow at a particular level, such as mid ventilation or deep 

inspiration, by closing a valve, suspending the patient’s respiration. This can result in reproducible and 
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accurate gated breath holds,79, 80 however minor patient discomfort in using the Elekta ABC has been 

reported.81-83 

Elekta is the second major company which, together with Varian, make up 80% of the radiation oncology 

market.84  As such, the vast majority of respiratory sensors utilised in radiation therapy are either the 

Varian RPM or the Elekta ABC.  

1.2.1.5.3. AlignRT VisionRT 

The VisionRT AlignRT (Figure 1-11) is a markerless surface imaging motion sensor, utilizing stereo vision 

to produce 3D surface images of the patient.85  

 

Figure 1-11. VisionRT AlignRT camera and examples of surface images.86 

AlignRT is not only used for real-time respiratory motion monitoring,87 but also patient positioning, 

ensuring that patient position is reproducible between fractions by comparing the 3D patient surface 

between fractions.88  

1.2.1.5.4. Calypso 

The Calypso system (Figure 1-12) is a method of tumour tracking that is comprised of implanted 

transponder beacons which generate an electromagnetic signal that is detected in real-time by a panel 

array.89, 90 The Calypso system has been described as being “GPS for the body”.91  
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Figure 1-12. (a) Calypso panel array in place in the treatment room.92 (b) Implanted transponder beacons 

generating an electromagnetic signal detected by the panel array.93   

Recently, the Calypso system has been developed to position the transponder beacons on the patient as 

an external marker for procedures where implanted markers are not necessary (e.g. breast cancer 

radiation therapy).94, 95  

1.2.1.6. Abdominal Compression 

Another technique to minimise the impact of respiratory motion is to physically limit the magnitude of 

abdominal and thoracic diaphragm motion via abdominal compression (Figure 1-13). By applying 

pressure to the patient’s abdomen, it physically restricts diaphragmatic motion,96 thereby restricting the 

motion of tumours proximal to the diaphragm.97 

  

Figure 1-13. A patient with a plate compressing their abdomen.98 
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1.3. Irregular Respiratory Motion in Radiation Therapy  

Typical patient breathing is often irregular in nature, e.g. inconsistent amplitude, period, and baseline 

drifts.73, 74 The techniques detailed in chapter 2.1., account for respiratory motion, however, the 

additional errors introduced by irregular respiratory motion are still present. An example of an irregular 

patient respiratory pattern is shown in Figure 1-14.  

 

Figure 1-14. Example of an 

irregular patient respiratory 

pattern. Demonstrating 

inconsistent amplitude, period, 

and baseline drifts (respiratory 

signal from data analysed in 

chapter 5).  

During radiation therapy imaging and treatment delivery there are two main sources of error: the errors 

that arise during treatment preparation and the errors that arise during treatment delivery.99-102 These 

errors have a number of components including patient positioning, anatomic variations, incorrect 

determination of the isocentre, and setup variations. For margin calculations, these errors can be 

broken up into systematic and random errors, with systematic errors representing errors arising during 

preparation and random errors arising during treatment delivery; both these types of errors are 

exacerbated by irregular respiratory-motion.34, 94, 103 Inconsistent respiratory motion also leads to 

variations in the ITV size over the course of patient treatment, leading to variations from what was 

planned for treatment.104 Figure 1-15 shows examples of ITV size variations over time.  
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Figure 1-15. Variations of the volume of 

ITV over a fraction of treatment for 8 lung 

cancer patients. From St James, et al. 

(2012).104 

 

Subsequent sections chapter 1.3.1., chapter 1.3.2., and chapter 1.3.3. detail the deleterious impact 

irregular respiratory motion has on the motion management methods introduced in chapter 1.2.1.  

1.3.1. Four Dimensional Computer Tomography (4DCT) 

4DCT image artefacts have been reported in up to 90% of 4DCT images,34 compromising the accuracy of 

tumour delineation.105 These artefacts have been linked to factors such as respiratory motion velocity 

and irregularity.106-109  

 

Figure 1-16. (a) example of 

4DCT image artefacts, from 

Yamamoto, et al., (2008).34 

(b) Example of delineation 

errors of a lung tumour due 

to 4DCT image artefacts, 

from Persson, et al., 

(2010).105 

These artefacts arise when the respiratory signal varies considerably between couch positions, resulting 

in anatomic mismatches amongst the same tagged respiratory position (as described in chapter 1.1.1.), 

Figure 1-17 illustrates the variations of a respiratory signal over a number of different couch positions 

that would result in 4DCT image artefacts as shown in Figure 1-16. 
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Figure 1-17. Example of an irregular 

respiratory trace (red signal) of a 

liver cancer patient. Beam on image 

acquisition times across the different 

couch positions indicated with the 

blue trace. From Szegedi, et al. 

(2012).110  

1.3.2. Respiratory Gating 

The rationale behind respiratory gating is that the tumour will occupy the same region in 3D space 

within the gating window for each breath. However, if patient breathing amplitude is inconsistent and 

there are baseline drifts, as shown in Figure 1-18, respiratory displacement and tumour position are 

inconsistent within these gating windows, leading to the radiation beam being triggered at 

inappropriate times. This increases the risk of underdose to the tumour and overdose to the 

surrounding healthy tissue.   
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Figure 1-18. Examples of phase-based and displacement-based gating for a respiratory signal exhibiting a baseline 

drift. From George, et al., (2006).111 

1.3.3. Tumour Tracking 

Tumour tracking refers to monitoring the tumour itself (typically surrogates proximal to the tumour) 

during radiation treatment delivery. Tracking tumour motion during treatment delivery can further 

reduce the geometric uncertainties of tumour position that otherwise contribute to the expansion of 

treatment margins.112, 113 Calypso, described in chapter 1.2.1.5.4., is one such example of tumour 

tracking, monitoring the beacons implanted proximal to the tumour during radiation treatment delivery. 
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However, there is inherent system latency in tumour tracking procedures. The tumour position is 

determined through either implanted beacons or real-time imaging, and this information is then 

interpreted and relayed to the linac which adjusts its MLCs in response to this information. The time 

required to perform these steps can accumulate to up to several hundred milliseconds,72 during which 

time the tumour may have moved, potentially leading to incorrect targeting of the tumour. As such, 

prediction algorithms are utilised to overcome this system latency,102, 114, 115 however, the accuracy of 

these prediction algorithms are compromised when respiratory motion is irregular.73, 116-118 Figure 1-19 

demonstrates the reduction of prediction accuracy with in the presence of respiratory irregularities.  

 

Figure 1-19. Patient 

(blue) and predicted 

(purple) respiratory 

signals for (a) regular 

respiration, and (b) 

irregular respiration. 

Note when respiration 

is irregular, the error in 

prediction (yellow line) 

increases. Adapted 

from Murphy and 

Dieterich (2006).73 
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1.4. Breathing Guidance in Radiation Therapy 

Breathing guidance refers to a biofeedback system which measures patient respiration in real-time and 

simultaneously provides feedback to the patient on how to adjust their breathing to achieve the desired 

objective of either facilitating regular respiration or stable breath holds. Breathing guidance systems 

operate to minimise the deleterious impacts of irregular respiration outlined in chapter 1.3.1., chapter 

1.3.2., and chapter 1.3.3..  

1.4.1. Breathing Guidance Interventions 

Table 1-1 details the range breathing guidance interventions utilised to facilitate regular breathing 

available in the published literature. Such breathing guidance interventions have demonstrated to 

improve breathing motion regularity of both external surrogates such as the Varian RPM,111, 119, 120 in 

addition to internal anatomy121 as well as the lung tumour itself.122 However, much of the breathing 

guidance intervention investigations have not directly quantified the impact of regular breathing on 

radiation treatment accuracy. Despite imaging being performed in many of the studies presented in 

Table 1-1, the impact of breathing guidance on image quality has yet to be quantified. Further to this, 

there has not yet been a systematic review of the literature to thoroughly identify the gaps in the 

literature to indicate what the future direction of breathing guidance investigations should take. 

The rows shaded blue in Table 1-1 indicate the development of studies investigating the audiovisual 

biofeedback breathing guidance intervention. The audiovisual biofeedback system is the most 

investigated breathing guidance intervention of all the interventions presented in Table 1-1. 

 

Table 1-1. Published studies investigating breathing guidance interventions to facilitate regular 

breathing. Table details study authors and year, participants recruited into the study, the nature 

of visual and/or audio prompts used to guide patient breathing, whether imaging or treatment 

was performed and an image of the intervention’s display (if used).  

Study author (Year) Participants 
Visual 

prompt 
Audio 

prompt 
Imaging / 
Treatment 

Vedam123 & Kini76  
(2003) 

5 lung cancer 
patients 

Breathing 
signal & 

limits 

Verbal 
commands 

Fluoroscopy 
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Neicu (2006)124 
5 healthy volunteers 

& 33 lung cancer 
patients 

Breathing 
signal & 

limits 

Verbal 
commands 

4D-CT & 
treatment 
simulation 

George 
(2006)111, 125 

24 lung cancer 
patients 

Breathing 
limits 

Ascending & 
descending 

tones 
None 

Chen126 
(2007) 

Phantom 
& 

8 healthy volunteers 

Cyclic moving 
pattern 

None 
IMRT delivered 

to phantom 

Lim120 
(2007) 

10 healthy 
volunteers 

Breathing 
signal & 

waveguide 

Verbal 
commands 

or tones 
None 

Haasbeek127 
(2008) 

22 lung  
cancer patients 

None 
Verbal 

commands 
 

4D-CT 

Persson128 
(2008) 

13 healthy 
volunteers 

None 
Verbal 

commands 
None 

Venkat119 
(2008) 

10 healthy 
volunteers 

Waveguide or 
bar-model 

Ascending & 
descending 

tones 

Venkat:  
None 

Linthout129 
(2009) 

25 lung & 
liver cancer patients 

Breathing 
signal & 

limits 

Verbal 
commands 

Treatment 
delivery 

Masselli130 
(2009) 

10 healthy 
volunteers & 

5 lung 
cancer patients 

Breathing 
limits 

None None 

Nakamura131 
(2009) 

6 lung 
cancer patients 

None 
Verbal 

commands 
Fluoroscopy 

Cerviño132 
(2009) 

15 healthy 
volunteers & 

5 breast  
cancer patients 

Breathing 
signal & 
limits. 

None None 

Park133 
(2011)  

10 healthy 
volunteers 

Breathing 
signal & 

waveguide 

Verbal 
commands 

Simulated IMRT 
plan 
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1.4.2. Audiovisual Biofeedback  

Audiovisual biofeedback is an interactive is an interactive and personalised respiratory guide which 

utilises audio and visual prompts to facilitate regular patient respiratory motion, thereby reducing 

respiratory irregularities, which is advantageous towards improved medical image quality and radiation 

treatment delivery. An example of an audiovisual biofeedback system is shown in Figure 1-20. As the 

patient breathes a marker block positioned mid-way between the xyphoid process and umbilicus move 

in the anterior-posterior (AP) direction. This marker block is monitored at a rate of 30 Hz by the Varian 

Real-time Position Management (RPM) system.138 The AP motion information of the marker block, as 

tracked by the Varian RPM, is shown to the patient as a red ball moving vertically up and down on a 

display; anterior and posterior marker block motion on the patient’s abdomen corresponds to up and 

down motion of the red ball on the patient display, respectively.  

Kim,121 Pollock,134 & 
Steel135 

(2012-2014) 

15 healthy 
volunteers 

Waveguide & 
breathing 

limits 

Music which 
varies in 

speed 
MRI 

Damkjær136 
(2013) 

24 breast 
cancer patients 

Breathing 
limits 

Verbal 
commands 

CT 

Lu137 
(2014) 

13 lung & 
Liver cancer  

patients 

Breathing 
limits 

Ascending & 
descending 

tones 
4D-CT 

Lee122 
(2015) 

9 lung  
cancer patients 

Breathing 
limits 

Music which 
fades to 
silence 

MRI 
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Figure 1-20. Feedback loop of audiovisual biofeedback, from the tracking of respiratory motion to the guiding 

interface shown to the patient.  

Also visible on the patient display is the inhale-exhale region indicated by two labelled black lines; there 

is also a blue wave moving from right-to-left across the patient display. It is the goal of the patient to 

adjust their breathing such that (1) the red ball traces the motion of the blue wave, and (2) keep the red 

ball within the inhale-exhale limits. The audio component was music which speeds up when the red ball 

deviates more than 15% from the blue guiding wave.  

 

Figure 1-21. Deleting outlier respiratory cycles to 

produce the resultant guiding wave. Blue cycles 

indicate each individual respiratory cycle, the red 

cycle indicates which of the respiratory cycles has 

been selected for possible deletion, and the green 

cycle indicates the resultant guiding wave.  
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This shape of this guiding wave is calculated from each patient’s own breathing pattern. As described by 

Venkat, et al.,119 a sample of respiratory cycles are acquired and a Fourier series fit is utilised to produce 

the resultant guiding wave. Should there be any outlier respiratory cycles amongst the collected ten, it is 

possible to delete them such that the resultant guiding wave is as indicative of the patient’s natural 

breathing as possible. This process is shown in Figure 1-21. There are also options to alter the guiding 

wave’s amplitude and period, if necessary.  

Once this guiding wave has been saved, it is loaded for the patient’s subsequent imaging and treatment 

sessions. This is to ensure that the patient is ideally reproducing the same respiratory motion for each 

fraction of treatment 

1.4.2.1. Development of audiovisual biofeedback 

While the use of audiovisual biofeedback has demonstrated positive results in previous cancer patient 

studies,76, 111, 123 the development of the software and guiding interface from one generation to the next 

was largely conducted on healthy volunteers and motion phantoms.119, 121, 139 When the updated version 

of the audiovisual biofeedback software was tested with cancer patients once again the results were 

less positive than those of previous findings,140 indicating that patient acceptance of the updated guiding 

interface had declined.  

The previous patient study utilizing the older version of audiovisual biofeedback software was 

conducted in 2004 at Virginia Commonwealth University (VCU);111, 125, 141 their setup is shown below in 

Figure 1-22. 

 

Figure 1-22. 

Audiovisual 

biofeedback system 

used in the VCU study. 

The next audiovisual biofeedback study to recruit cancer patients was conducted in 2012 at Stanford 

University;142, 143 their setup is shown below in Figure 1-23. 
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Figure 1-23. 

Audiovisual 

biofeedback system 

used in the Stanford 

study. 

Table 1-2 summarises the differences between the two versions of audiovisual biofeedback used in 

these two studies, as well as differences in study design and conduct. 
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Table 1-2. Comparison of the nature and conduct of the two patient studies. 

 VCU, 2004 Stanford, 2012 

Guiding 

interface 

 
 

Visual 

component 

 Breathing surrogate (green bar) moving 

vertically between breathing limits.  

 Patient adjusts breathing to keep green 

bar within the breathing limits (blue 

area). 

 Breathing surrogate (red ball) moving 

vertically between breathing limits and 

moving guiding wave (blue wave).  

 Patient adjusts their breathing to keep 

the red ball within the breathing limits 

and trace the motion of the moving 

guiding wave 

Audio 

component 

 Ascending and descending tones for 

inhalation and exhalation, respectively 

 Music speeds up should the red ball 

deviate more than 15% from the guiding 

wave 

Study 

characteristics 

 

 Number of patients: 24 

 Average breathing session length: 4 

minutes 

 Number of breathing sessions: 5 

 Visual modality: Monitor screen  

 Imaging performed: none 

 Number of patients: 10 

 Average breathing session length: 19 

minutes 

 Number of breathing sessions: 1 

 Visual modality: display goggles  

 Imaging performed: 4D PET/CT 

Study 

results 

 Significantly positive.  

 Breathing regularity significantly 

improved due to breathing guidance. 

 Non-significant.  

 No overall improvement in breathing 

regularity.  

The main factors distinguishing these two studies were:  

(1) the audiovisual biofeedback system utilised in the Stanford study involved more audio and 

visual prompts than the one utilised in the VCU study 

(2) the length of time the patients were using audiovisual biofeedback (4 minutes in VCU study 

compared to 19 minutes in the Stanford study). This is due to the additional time required to 

perform 4D PET/CT imaging in the Stanford study 
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(3) the number of patients in each of the studies 

Points (1) and (2) directly relate to the patient using audiovisual biofeedback, and following a more 

complex audiovisual biofeedback for longer period of time may have led to higher patient fatigue and a 

decrease in patient compliance,144 as evidenced by the less regular breathing yielded in the Stanford 

study. A decrease in patient compliance means that in the Stanford study the audio prompt of the music 

speeding up would have been triggered more often making the audiovisual biofeedback session a more 

unpleasant experience.  

The use of the guiding wave in volunteer studies has produced significant improvements in breathing 

regularity,119, 121 in addition to image quality,139 and motion prediction accuracy.134 So rather than 

remove the guiding wave aspect of audiovisual biofeedback, an investigation into the nature of 

information delivered to the patient was undertaken. Audiovisual biofeedback utilises audio and visual 

information delivered to the patient which are designed to prompt them when their breathing has 

become irregular, in addition to also prompting them when their breathing has become regular again. 

Audiovisual biofeedback uses the audio prompts to inform the patient about the nature of their 

breathing; the music speeds up, and sounds unpleasant, to inform them that they have deviated from 

the guiding wave by over 15%. The music returns to a normal speed once the red ball is within 15% of 

the guiding wave again. To phrase this in terms of learning and behaviour, when a response (deviating 

from the guiding wave) is followed by an adverse stimulus (sped up, unpleasant music), this is a form of 

punishment, positive punishment, specifically.145 This is designed to be followed by a second set of 

response and stimulus; when a response (adjust breathing to follow guiding wave again) is followed by 

the removal of an adverse stimulus (unpleasant music), this is negative reinforcement.145, 146  

A number of studies have detailed the superior efficiency of learning by using positive reinforcement 

over punishment and negative reinforcement.146-149 Such considerations of superior learning methods 

were taken into account in redesigning the audio and visual components of a version of audiovisual 

biofeedback more easily tolerated by patients.  

The differences between the Stanford version and the updated University of Sydney version are outlined 

below in Table 1-3.  

Table 1-3. Comparison of the version of AV biofeedback used in the Stanford study and the latest University of 

Sydney version. 
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 Stanford, 2012 University of Sydney, 2013 

Guiding 

interface 

 

 

Visual 

component 

 Inhale-exhale limits 

 Guiding wave 

 Breathing motion surrogate: red ball 

 White background 

 Inhale-exhale region (blue area) 

 Guiding wave 

 Breathing motion surrogate: grey block, 

similar in appearance to RPM block  

 Blue background 

Audio 

component 

 Midi-files.  

 Speeds up when red ball deviates from 

guiding wave  

 Mp3-files.  

 Music fades to silence when grey block 

moves outside blue area 

Response 
 Deviating from the guiding wave 

 Returning to the guiding wave 

 Deviating from the blue area 

 Returning to the blue area 

Stimulus 
 Sped-up music introduced 

 Sped-up music removed 

 Music removed 

 Music re-introduced 

In the updated University of Sydney version, a response (deviating from the blue region) being followed 

by the removal of a positive stimulus (music) is referred to as response cost; then another response 

(returning to the blue region) is followed by the appearance of a positive stimulus (music), this is a form 

of positive reinforcement.145 The focus of the response and stimulus relationship was also shifted from 

following the guiding wave in the Stanford version to staying within the blue area in the University of 

Sydney version. This is because controlling breathing amplitude is considered more clinically beneficial 

compared to controlling breathing period.21, 107, 150, 151 The breathing surrogate used in the visual 

component was changed from a red ball to the image of an RPM marker block (the real marker block 

can be seen on the subject’s abdomen in Figure 1-23). This was done to better inform the patient of the 

source of breathing motion being displayed to them. The colour scheme was also altered to appear 

mainly blue due to the reinforcing and positive emotions studies have found it to be associated with.152, 

153 The colour scheme was also altered in order to reducing eye-strain compared to the white 

background present in the Stanford version to assist making prolonged breathing sessions more 

tolerable. The current generation of audiovisual biofeedback utilised in the studies presented in this 

thesis is shown in Figure 1-24. 
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Figure 1-24. Updated audiovisual biofeedback system utilizing the most recent version of the guiding interface.  

For the updated version of audiovisual biofeedback, visible on the patient display is the inhale-exhale 

region indicated by the blue area in addition to the white guiding wave moving from right-to-left across 

the patient display. It is the goal of the patient to adjust their breathing such that (1) keep the grey block 

within the blue area, and (2) trace the motion of the guiding wave. The audio component is classical 

music which fades to silence should the grey block move outside the blue area.   
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1.5. Summary of literature review and unmet areas of research  

Radiation therapy is a valuable and cost-effective method of cancer treatment. However, when the 

tumour target is highly mobile, as is the case with abdominal and thoracic cancers largely due to 

breathing motion, additional motion management measures are utilised to counter the additional 

margins and potential treatment inaccuracies introduced by these moving tumour targets. Further to 

this, irregular breathing motion has a deleterious impact on cancer radiation therapy, exacerbating 

systematic and random errors in addition to reducing the effectiveness of motion management 

strategies and technologies. To further complicate the situation, in the case of abdominal tumours, pre-

treatment and 4DCT imaging is incapable of discriminating the tumour from the soft tissue. 

One method to minimise breathing motion irregularities are breathing guidance interventions. These 

interventions refer to a biofeedback system which measures patient respiration in real-time and 

simultaneously provides feedback to the patient on how to adjust their breathing to achieve the desired 

objective of stable and regular respiration. The most thoroughly researched breathing guidance 

intervention to date, audiovisual biofeedback, has demonstrated to improve breathing regularity of 

motion surrogates, internal anatomy, and the lung tumour itself, but has yet to be utilised during patient 

radiation treatment nor has its impact of medical image quality been quantified. The gap in the 

literature lies in patient radiation therapy and imaging studies, however, a systematic review has yet to 

be performed to more conclusively indicate this direction of investigation.  

1.5.1. Aims of this project 

The aims of this thesis are:  

1. To critically appraise the literature in terms of the use of breathing guidance interventions in the 

fields of radiation oncology and radiology via systematic review  

2. To quantify the impact of audiovisual biofeedback breathing guidance on 4DCT, the primary 

imaging modality utilised to plan radiation therapy for highly mobile tumours  

3. To assess the impact of audiovisual biofeedback on patient breathing over a course of radiation 

therapy  

4. To utilise the findings of the above aims to design and implement a novel and comprehensive 

clinical trial investigating the use and impact of audiovisual biofeedback in radiation therapy  
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5. To explore the next stages of audiovisual biofeedback in terms of translating evidence into 

broader clinical use through the commercialisation process 

1.5.2. Presentation of thesis  

This thesis is presented as a combination of one systematic review and one published paper as their own 

chapters, with a published case report and study protocol forming subsections within chapters. The 

chapter presentation of this thesis will largely follow the aims detailed above in chapter 1.5.1., with each 

results chapter addressing one of the aims, following them sequentially. Chapter 1 (this chapter) 

provides a background to cancer radiation therapy, and the deleterious impact of irregular patient 

breathing on cancer radiation therapy procedures before introducing audiovisual biofeedback breathing 

guidance as an intervention to minimise these deleterious impacts. Some background on audiovisual 

biofeedback is also provided in addition to recent developments towards the audiovisual biofeedback 

system utilised in the investigations presented in this thesis.  

Chapter 2 reports on the systematic review into the use of breathing guidance interventions in the fields 

of radiation oncology and radiology. Radiology was also included in this systematic review because 

certain radiology imaging modalities such as MRI and PET/CT are being utilised in emerging hybrid 

radiation treatment technologies such as the MRI-linac154 in addition to the use of PET/CT in radiation 

treatment planning.155 This systematic review was published in Medical Physics. Chapter 2 addresses 

aim 1, detailed in chapter 1.5.1.. 

Chapter 3 reports, quantitatively, on the impact of audiovisual biofeedback on 4DCT image quality. This 

study utilised lung cancer patient data from an MRI study to program the motion of a digital phantom 

prior to simulating 4DCT imaging. The 4DCTs were analysed utilising a range of image quality metrics in 

addition to noting the treatment time and imaging dose. This chapter also tests and compares the 

impact of prospective respiratory gating on 4DCT image quality. These results were published as a paper 

in Physics in Medicine and Biology. Chapter 3 addresses aim 2, detailed in chapter 1.5.1.. 

Chapter 4 reports on the impact of audiovisual biofeedback on breathing motion of an external motion 

surrogate and implanted radio-opaque markers of liver cancer patients over the course of stereotactic 

body radiation therapy (SBRT). Breathing motion was analysed in terms of the consistency of breathing 

displacement and period, the correlation between internal and external breathing signals, and the 

agreements of breathing motion between 4DCT and each treatment fraction. This study also utilised a 
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screening procedure; after patients were recruited into the study, a screening procedure was performed 

to determine which breathing condition would be utilised over their course of SBRT, free breathing or 

audiovisual biofeedback. This was the first investigation to utilise a screening procedure in addition to 

being the first to utilise breathing guidance over the course of SBRT. A case report, reporting on the first 

patient recruited into this study, was published The Journal of Medical Imaging and Radiation Oncology 

and is included as a subsection of Chapter 3’s results. Chapter 4 addresses aim 3, detailed in chapter 

1.5.1.. 

Chapter 5 reports on a retrospective analysis of the previous audiovisual biofeedback lung cancer 

patient study, the findings of which were utilised to design and determine the statistics of the most 

comprehensive breathing guidance study to date: a randomised, stratified, multi-site, phase II clinical 

trial investigating audiovisual biofeedback over the course of lung cancer radiation therapy. Chapter 5 is 

presented in two parts: (1) retrospective analysis of previous lung cancer patient study, and (2) the 

design and initiation of the randomised clinical trial. The clinical trial’s study protocol was published in 

BMC Cancer and is included in as a subsection of Chapter 5’s Methods section reporting on the design of 

the clinical trial. Chapter 5 addresses aim 4, detailed in chapter 1.5.1.. 

Chapter 6 builds upon the findings of the translational research presented in Chapters 3, 4, and 5 by 

reporting on the commercial pathway of the audiovisual biofeedback technology. Chapter 6 reports on 

the radiation oncology market, existing technologies, the value proposition that audiovisual biofeedback 

can contribute to this market, and the milestones to achieve to move this technology forward. Chapter 6 

also details how these commercial insights impact the design and function of the audiovisual 

biofeedback technology and the validation testing that has been conducted around this. Chapter 6 

addresses aim 5, detailed in chapter 1.5.1.. 

Chapter 7 summarises and provides conclusions of the research reported on in Chapters 2 – 6 in 

addition to providing details on future work.     
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CHAPTER 2 
 

Breathing guidance in radiation oncology and radiology: A 
systematic review of patient and healthy volunteer studies 

 

This chapter contains the review paper titled “Breathing guidance in radiation oncology and 
radiology: A systematic review of patient and healthy volunteer studies” which has been published 

in Medical Physics (2015; 42(9) 5490-5509) 

  

40



Breathing guidance in radiation oncology and radiology: A systematic
review of patient and healthy volunteer studies

Sean Pollocka)

Radiation Physics Laboratory, University of Sydney, Sydney 2050, Australia

Robyn Keall
Central School of Medicine, University of Sydney, Sydney 2050, Australia and Hammond Care, Palliative Care
and Supportive Care Service, Greenwich 2065, Australia

Paul Keall
Radiation Physics Laboratory, University of Sydney, Sydney 2050, Australia

(Received 24 February 2015; revised 21 June 2015; accepted for publication 28 July 2015;
published 24 August 2015)

Purpose: The advent of image-guided radiation therapy has led to dramatic improvements in the
accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious
impact tumor motion can have on both image quality and radiation treatment delivery. One approach
to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and
treatment. These systems aim to facilitate regular respiratory motion which in turn improves image
quality and radiation treatment accuracy. A review of such research has yet to be performed; it was
therefore their aim to perform a systematic review of breathing guidance interventions within the
fields of radiation oncology and radiology.
Methods: From August 1–14, 2014, the following online databases were searched: Medline, Embase,
PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of
eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance
with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included
articles, and repeat authors of included articles, were hand-searched.
Results: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant
articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing
guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity,
image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or
patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements
from the use of breathing guidance were observed.
Conclusions: There is a trend toward the number of breathing guidance studies increasing with
time, indicating a growing clinical interest. The results found here indicate that further clinical
studies are warranted that quantify the clinical impact of breathing guidance, along with the
health technology assessment to determine the advantages and disadvantages of breathing guidance.
C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1118/1.4928488]

Key words: motion management, breathing guidance, systematic review, radiation oncology,
radiology

1. INTRODUCTION

The advent of image-guided radiation therapy (IGRT) has
led to dramatic improvements in the accuracy of treatment
delivery in radiotherapy, with the reduction of both random
and systematic uncertainties.1–6 While IGRT has improved the
accuracy of radiotherapy by utilizing information about tumor
motion and positioning throughout a patient’s treatment, it
has also shed light on the deleterious impact tumor motion
can have on both image quality and radiation treatment deliv-
ery.2,4,7–10 Anatomic motion due to breathing in the thoracic
and abdominal regions is of great concern due to their prox-
imity to the thoracic diaphragm, where respiratory-induced
motion can be up to 5 cm.11 In addition, heightened patient
anxiety levels during imaging and treatment,12,13 can result in

increasingly irregular breathing, leading to erratic breathing
motion of both internal anatomy and the tumor itself.8,14,15

The widespread utilization of IGRT has led to the investiga-
tion of an increasing number of methods to address breathing
motion and therefore tumor and organ movement and the resul-
tant uncertainties they cause. A number of image reconstruc-
tion methods and tracking systems have been developed to
ameliorate these uncertainties.16–19 However, such techniques
can be expensive and do not directly manage the problem of
irregular breathing motion. Addressing irregular tumor motion
directly at the source by managing the patients’ breathing
has been of increasing interest in recent times, with several
breathing guidance techniques being developed from simple
buzzer signals to interactive guiding interfaces to facilitate
regular and predictable tumor motion.
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F. 1. Left: Examples of 4D-CT image artifacts due to irregular breathing [Reprinted with permission from Yamamoto et al., “Retrospective analysis of artifacts
in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients,” Int. J. Radiat. Oncol., Biol., Phys. 72(4), 1250–1258 (2008). Copyright
2008 by Elsevier]. Right: Example of irregular respiratory-induced tumor motion during treatment setup and delivery [Adapted with permission from Worm
et al., “Variations in magnitude and directionality of respiratory target motion throughout full treatment courses of stereotactic body radiotherapy for tumors in
the liver,” Acta Oncol. 52, 1437–1444 (2013). Copyright 2013 by Informa Healthcare].

1.A. Irregular breathing in radiation oncology
and radiology

The deleterious impact of irregular motion during image
acquisition has been well documented for across a range of
medical imaging modalities.8,14,20–28 During radiation treat-
ment, there are two fundamental types of errors: the errors
occurring during treatment preparation (systematic) and the er-
rors occurring during treatment delivery (random);5,29–31 both
these types of errors are exacerbated by irregular breathing
motion.9,10,27

Systematic errors typically arise from errors in the images
used to plan the patient’s treatment; Fig. 1 demonstrates the
irregular tumor motion and errors present in images due to such
irregular breathing motion.

Random errors typically arise from variations in target posi-
tion throughout the patient’s treatment. Irregular breathing
leads to larger variations in target position not only during
treatment but also between treatments,9,10 as shown in Fig. 2.

To account for irregular breathing motions’ exacerbation
of systematic and random errors, the treatment volume is
expanded;32 increasing radiation dose to the healthy surround-
ing tissue thus increasing the risk of post-treatment radia-
tion complications such as radiation pneumonitis.33–39 Such
complications occur in over 60% of lung cancer patients after

treatment, with 47% developing at least grade 2 pneumonitis
requiring clinical intervention.34 Such clinical interventions
involve the prescription of anti-inflammatory pharmaceuticals
thereby increasing healthcare costs for that patient’s course
of treatment.36,40 To combat the increase of these systematic
and random errors, a number of strategies directly engaging
with the patient have been investigated to minimize the
irregularity of patient breathing motion. These breathing
guidance strategies have the advantage of being noninvasive,
requiring minimal modifications to existing facilities and
protocols.

Given the relatively recent widespread interest in such
breathing guidance strategies, a review of such research has yet
to be performed. It was therefore our aim to perform the first
systematic review of breathing guidance intervention strat-
egies within the fields of radiation oncology and radiology.

2. METHODS

This systematic review follows the preferred reporting
items for systematic reviews and meta-analyses (PRISMA)-
statement reporting standard.41 Table I presents our research
questions in the patients, intervention, comparison, outcome,
study design (PICOS) approach; given the relatively recent

F. 2. Example of interfraction breathing variations [Adapted with permission from Shah et al., “Real-time tumor tracking in the lung using an electromagnetic
tracking system,” Int. J. Radiat. Oncol., Biol., Phys. 86, 477–483 (2013). Copyright 2013 by Elsevier].
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T I. PICOS approach to the systematic review following the PRISMA statement.

P—patients/participants • Cancer patients with tumors affected by breathing motion (e.g., thoracic and
abdominal tumors) receiving radiotherapy and/or medical imaging
• Healthy volunteers participating as surrogates for the above patient population

I—intervention Breathing guidance—technologies which monitor patient breathing and provide
feedback to the patient informing them on how to adjust their own breathing in real
time on their own accord

C—comparison No breathing guidance of the same breathing type (i.e., nonguided breath-holds for
breath-hold studies and free breathing for breathing guidance studies)

O—outcome Regularity of breathing signal and anatomic/tumor motion, medical image quality,
radiation treatment margins and coverage, medical imaging, and radiation treatment
times

S—study design Quantitative and controlled prospective or retrospective trials

interest in such breathing guidance strategies, healthy volun-
teer studies were also considered in addition to patient
studies.

Once eligible articles were identified, they were filtered
in accordance to the selection criteria. The objective of the
selection criteria was to acquire scientific articles describ-
ing in sufficient detail a breathing guide intervention’s utili-
zation toward some aspect of abdominal or thoracic radi-
ology and radiotherapy application. Articles were extracted
by two authors using an electronic (Microsoft  2010)
pro forma specifying the identified articles. Where there was
disagreement between the reviewers, discussion was under-
taken among all authors until consensus was reached.

2.A. Selection criteria

Articles were included if they satisfied the following inclu-
sion criteria:

(1) Quantitatively evaluate the intervention of breathing
guidance relevant to the practice of either medical
imaging or thoracic/abdominal radiotherapy (prospec-
tive or retrospective).

(2) Participants were human over the age of 18 (retrospec-
tive data were from adult human study).

(3) Reported in the English language.
(4) Published in a peer-reviewed journal between the years

1994–2014.
(5) Had a control group for the same breathing type:

• For guided breathing studies, control group per-
formed unguided free breathing.
• For guided breath-hold studies, control group per-

formed unguided breath-holds.

Articles which excluded, even if satisfying the above inclu-
sion criteria, if they

(1) did not have a control group comparing intervention
to no intervention for the same breathing type (free
breathing or breath-hold),

(2) lacked a statement of statistical significance,
(3) did not describe, or reference to an article, in sufficient

detail of the breathing guidance intervention,

(4) was not a scientific paper (e.g., conference abstract,
conference proceeding, book, patent).

2.B. Search strategy

From August 1–14, 2014, the following online databases
were searched: Medline, Embase, PubMed, and Web of Sci-
ence. The search for articles initially included the fields of
radiation oncology and radiology using the terms: (radiation
therapy OR radiotherapy OR imaging). These search results
were then refined toward breathing guidance by using the
terms: (respiration OR breathing) AND (audio OR visual)
AND (guidance OR training OR feedback OR biofeedback).

The findings from the above mentioned databases in addi-
tion to articles identified through hand searching of their refer-
ence lists and cross-referencing for previously unidentified
articles which met the inclusion criteria. These articles were
exported to a citation manager, Endnote X5 where duplicate
articles were also removed. The process tree for attaining the
search strategies results in shown in Fig. 3. After duplication
and filtering through the selection criteria, five articles iden-
tified by this hand searching method made it into the final 27
articles.

Information extracted from each included article included
(1) purpose of intervention (breath-holds, regular breathing);
(2) study participants [healthy volunteers and/or patients, num-
ber recruited, disease type (if patients)]; (3) nature of audio
prompt (verbal, tones, music); (4) nature of visual prompt
(breathing limits, guiding-wave, etc.); (5) imaging performed
(if any); (6) treatment performed (if any); (7) main findings
of intervention strategy compared to control group; (8) visual
display of intervention (if any).

2.C. Analysis of articles

Due to the diverse applications and results used to deter-
mine the efficacy of breathing guidance strategies, a meta-
analysis was not performed; however, the main findings from
each of these articles were organized in terms of statistical
significance: achieving positive significant results, nonsignif-
icant results, or negative results.

Quality assessment scoring of the identified and included
articles was also performed in accordance with the Standard
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F. 3. Search strategy results. Screening and eligibility based on inclusion and exclusion criteria.

Quality Assessment Criteria for Evaluating Primary Research
Papers From a Variety of Fields.42 Quality assessment score is
given based on 14 questions about the article, the reviewers
award yes (2 points), partial (1 point), and no (0 points) or
not applicable (N/A—question not counted in score). Over-
all, a score out of 28 (or less if N/A is chosen) is found
and then converted to a percentage. Articles were scored by
two authors, and when discrepancies arose in the scores allo-
cated, a discussion was then undertaken until a consensus was
reached.

3. RESULTS

Twenty-seven articles were included as a part of this sys-
tematic review as shown in Fig. 3. After duplication and filter-
ing through the selection criteria, four articles identified by
this hand searching method made it into the final 27 articles.
Tables II–V detail the development of such strategies over
the past 20 yr, in addition to the quality assessment score of
each article. The average quality assessment score was 79%
(range: 54%–95%). Figure 4 also illustrates the timeline of
these studies.

Table VI is an assembly of these 27 articles’ findings and
whether their results were significantly positive, negative, or
nonsignificant. It should be noted that the number of outcomes
exceeds the number of identified articles because most articles
investigated more than one outcome.

4. DISCUSSION

Findings from the 27 identified articles yielded a diverse
range of breathing guidance intervention strategies being uti-
lized on a range of different cancer types. Breathing guid-
ance strategies ranged from buzzer signals to customized,
interactive guides. Of the 27 included articles in this system-
atic review, 21 yielded at least one statistically significant
positive outcome from the use of breathing guidance, with a
further 2 articles reporting nonsignificant improvements (or
not reporting the significance of improvements) from the use
of breathing guidance and 4 articles reporting at least one
statistically significant negative result. Of the four studies that
yielded negative results, three investigated audio-only guid-
ance, which resulted in larger breathing motion amplitudes,
an undesirable trait in most radiation oncology and radiology
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T II. Details of radiology breathing guidance studies.

Study author
(Year)

Purpose of
intervention Participants Visual prompt

Audio
prompt

Imaging/
treatment

Breathing
motion sensor

Quality assessment
score (%) Display

Wang (1995)
(Ref. 43)

Breath-holds 11 healthy
volunteers

None Buzzer
tone

MRI Bellows belt 54 No display used

Locklin
(2007)
(Ref. 44)

Breath-holds 16 cancer
patients

Breathing signal None CT Bellows belt 75

Okada (2009)
(Ref. 45)

Regular breathing
and breath-holds

13 healthy
volunteers

Breathing signal None MRI MRI navigator
echo

88

Jhooti (2011)
(Ref. 46)

Regular breathing 10 healthy
volunteers

Video game-type
interface

None MRI MRI navigator
echo

79

procedures.22,62,70–75 Of the findings assembled in Table VI, 63
were positive statistically significant, 82 were nonsignificant
(or significance not reported), and 7 were negative statistically
significant. It should be noted that of the 82 nonsignificant (or
significance not reported) results, 35 noted improvements from
the use of breathing guidance, 12 of which were reported to be
nonsignificant, and 23 did not report the significance.

Of the 27 identified articles, 12 were healthy volunteer
studies and 12 were patient studies, with 3 studies recruiting
both healthy volunteers and patients; the most investigated
cancer type was lung cancer (12 studies), followed by breast
(2 studies) and liver cancer (2 studies). Of the breathing guid-
ance intervention strategies, most were designed to facili-
tate regular breathing (21 articles); 4 articles detailed breath-
hold guidance, 1 study investigated both regular breathing and
breath-hold guidance, and 1 study investigated quasibreath-
hold breathing guidance where each exhale was extended to
3, 5, or 7 s. Medical imaging was performed in 15 studies, and
radiation treatment was performed (or simulated) in 4 studies.
Given these numbers, and as evident from Table VI, there are
areas of breathing guidance which require more investigation.
For example, research into the impact of breathing guidance
on radiation treatment margins and target coverage is limited
and largely inconclusive, with all results thus far being nonsig-
nificant. Further investigation into this area would be valuable
as such findings would also give insight into the impact of
breathing guidance strategies on patient outcomes. Further
to this, of the 27 identified articles, none were randomized
studies, indicating that future study designs should incorporate
randomization.

Twenty of the 27 identified articles did not explicitly control
for confounding; however, the authors of this review paper
did not consider this to bias their results. Of the 27 articles,
none declared any conflicts of interest; however, two articles
acknowledged at least partial funding from either Phillips
(Lu et al.)69 or VisionRT (Cerviño et al.),63 and two articles
acknowledged research agreements with either Varian Medical

Systems (Persson et al.)57 or Phillips Medical Systems [Lock-
lin et al. (2007)]. However, these articles received positive
quality assessment scores, as such the authors of this review
paper did not consider the results presented in these articles to
be biased.

4.A. Breathing guidance for breath-holds

Breath-holds are a well-documented and frequently uti-
lized strategy for minimizing anatomic motion during imaging
and treatment.43,63,68,76–84 To further improve the efficacy and
reproducibility of breath-holds, measures have been taken to
provide guidance to the patient to maintain breath-hold stabil-
ity.43,44,68,85 Wang utilized a buzzer signal to prompt patients
to perform their breath-hold; such simple additions in this
MR imaging study resulted in improved consistency of breath-
holds resulting in achieving their goal of improving image
quality.43 Locklin investigated a more-comprehensive guid-
ance system by showing the patient their own breathing signal
as well as the intended breath-hold level.44 These studies also
resulted in improved image quality and intrafraction motion
management.

Breathing guidance has also been developed for deep-
inspiration breath-holds (DIBH).63,68 DIBH is often performed
by the patient in left breast cancer radiotherapy to minimize the
radiation damage to the lung and heart.79,80,82,83,86 Given the
increased difficulty in achieving deep-inspiration and main-
taining it for the adequate duration of imaging and treatment,
DIBH an attractive technique to implement with a breathing-
guidance strategy. The use of breathing guidance for DIBH
improved the consistency of breath-holds as demonstrated by
Cerviño, leading to an increased sparing of organs at risk in
breast radiation therapy, as demonstrated by Damkjær.63,68

4.B. Breathing guidance for regular breathing

While breath-holds have positively impacted imaging and
radiotherapy, they can be taxing on the patient who often
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T III. Metrics and results of radiology breathing guidance studies.

Study author (Year) Metric(s) used Result(s)

Wang (1995) (Ref. 43) Standard deviation of superior–inferior (SI)
position of cardiac structures

•Without breathing guidance: Standard deviation of right coronary
artery SI position was 2.0 mma

• Breathing guidance: Standard deviation of right coronary artery SI
position was 0.9 mma

Slice misregistration •Without breathing guidance: The total number of slices was 35
• Breathing guidance: The total number of slices was 19, much less

than no breathing guidanceb

• Total number of breath-holds needed reduced by almost a factor of
2b

Improving image quality •With breathing guidance, there were less missing cardiac struc-
turesb

• Image quality improved in six (of eight) subjects whose image
quality was evaluated by a radiologist and a physicista

Locklin (2007) (Ref. 44) Standard error of the mean (SEM) of
breath-hold position readings

•With breathing guidance:
◦ SEM reduced for inspiratory breath-holds (p = 0.0693)c

◦ SEM reduced for expiratory breath-holds (p = 0.0083)d

◦ SEM reduced for midbreath breath-holds (p = 0.053)c

Okada (2009) (Ref. 45)
Five point grading system of image quality

by assessors
•Worse scores were observed for breathing guidance compared to

free breathing (p < 0.05)d

◦ Of the 15 coronary artery segments that were scored, 5 were
scored significantly worse for breathing guidance
◦ Of the 15 coronary artery segments that were scored, none were

scored significantly better for breathing guidance
Scan time • Free breathing: Mean scan time was 10.0±2.2 min

• Breathing guidance: Mean scan time was 10.0±2.5 min, no signif-
icant difference compared to free breathingc

Jhooti (2011) (Ref. 46) Respiratory efficiency (the minimum time
required to acquire a full dataset within a

5 mm range of respiratory motion)

• Free breathing: Respiratory efficiency was 45%
• Breathing guidance: Respiratory efficiency was 56%, significantly

improved over free breathing (p = 0.006)d

Scan time • Free breathing: Scan time was 7 min 44 s
• Breathing guidance: Scan time was 5 min 43 s, significantly shorter

than free breathing (p = 0.026)d

Image quality • No different in image qualityc

aNo p-value, no statement of significance.
bNo p-value, but significance stated.
cP ≥ 0.05 (nonsignificant).
dP < 0.05 (significant).

has compromised respiratory function and are typically not
feasible beyond 20 s. As such, techniques to dynamically
control breathing during imaging and treatment have been
developed to, rather than immobilize the tumor, minimize the
irregular motion of the tumor, which would otherwise compro-
mise the accuracy of radiation targeting7,8,14,22,87 and image
quality.8,14,21,22,24–27

Prompts used to guide patient toward regular breathing
have undergone considerable development and refinement
over the years as detailed in Tables II–V. Audio-only guid-
ance typically appeared in the form of verbal instructions
or tones,50–52,56,57,62 and while the regularity of breathing
was improved, it also increased the amplitude of breathing
motion.48,56,57,62 Increased tumor motion, even if it is regular,
is undesirable in a patient’s treatment planning and deliv-
ery.22,62,70–75 Visual guidance has garnered positive results not
only over free breathing44,63 but also over audio-only guid-

ance.47,48,50,62,68,81 However, utilizing both audio and visual
guiding prompts together has yielded the most significant
improvements over free breathing.47,48,50–52,58,60,64–66,69 Both
audio and visual guiding prompts have led to significant
improvements over audio-only and visual-only guidance as
well.50,60 On top of this, as noted by Venkat, utilising audio
and visual prompts together poses no increase in the patient’s
cognitive load, i.e., it does not require additional concentration
for the patient to incorporate two different sensory forms of
guidance at once.58

The guiding prompts of breathing guidance have developed
from a buzzer sounding to provide a queue for breath-holds,
to a patient display presenting breathing-surrogates superim-
posed with a guiding interface. Additional constraints have
been added to the visual prompts to further manage respiration,
such as the displaying of inhale and exhale limits,47,48,50,60

a waveguide with fixed period and amplitude for the
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T IV. Details of radiation oncology breathing guidance studies.

Study author (Year)
Purpose of

intervention Participants Visual prompt Audio prompt
Imaging/
treatment

Breathing motion
sensor

Quality
assessment
score (%) Display

Vedam and Kini
(2003) (Refs. 47
and 48)

Regular breathing Five lung cancer
patients

Breathing signal
and limits

Verbal commands Fluoroscopy
Real-time position

management system
(RPM)

Vedam: 73

Kini: 55

Neicu (2006)
(Ref. 49)

Regular breathing 5 healthy volunteers
and 33 lung cancer

patients

Breathing signal
and limits

Verbal commands 4D-CT and
treatment simulation

RPM 68

George (2006)
(Refs. 50 and 51)
and An (2013)
(Ref. 52)a

Regular breathing 24 lung cancer
patients

Breathing limits
Ascending and

descending tones
None RPM George (a): 91

George (b): 95
An: 55

Chen (2007)
(Ref. 53)

Regular breathing Phantom and eight
healthy volunteers

Cyclic moving
pattern

None IMRT delivered to
phantom

RPM 59

Lim (2007)
(Ref. 54)

Regular breathing Ten healthy
volunteers

Breathing signal
and waveguide

Verbal commands or
tones

None Respiratory
monitoring mask with

thermocouple

77

Vedam (2007)
(Ref. 55)

Regular breathing 90 lung cancer
patients

Breathing signal
and limits

Verbal commands CT RPM 82

Haasbeek (2008)
(Ref. 56)

Regular breathing 22 lung cancer
patients

None Verbal commands 4D-CT RPM 77 No display used

Persson (2008)
(Ref. 57)

Regular breathing 13 healthy volunteers None Verbal commands None RPM 91 No display used

Venkat (2008) and
Yang (2012)
(Refs. 58 and 59)a

Regular breathing Ten healthy
volunteers

Waveguide or
bar-model

Ascending and
descending tones

Venkat: None RPM Venkat: 77
Yang: PET Phantom

programmed with
RPM motion

Yang: 86

Linthout (2009)
(Ref. 60)

Regular breathing 25 lung and liver
cancer patients

Breathing signal
and limits

Verbal commands Treatment delivery ExacTrac 82
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T IV. (Continued).

Study author (Year)
Purpose of

intervention Participants Visual prompt Audio prompt
Imaging/
treatment

Breathing motion
sensor

Quality
assessment
score (%) Display

Masselli (2009)
(Ref. 61)

Regular breathing Ten healthy
volunteers and five
lung cancer patients

Breathing limits None None Pneumatic strain
gauge

73

Nakamura (2009)
(Ref. 62)

Regular breathing Six lung cancer
patients

None Verbal commands Fluoroscopy RPM 91 No display used

Cerviño (2009)
(Ref. 63)

Deep inspiration
breath-holds

15 healthy volunteers
and 5 breast cancer

patients

Breathing signal
and limits.

None None GateCT-RT 91

Park (2011)
(Ref. 64)

Quasibreath-hold Ten healthy
volunteers

Breathing signal
and waveguide

Verbal commands Simulated IMRT
plan

Infrared-based stereo
camera

82

Kim, Pollock, and
Steel (2012–2014)
(Refs. 65–67)

Regular breathing 15 healthy volunteers
Waveguide and
breathing limits

Music which varies
in speed

MRI
RPM (abdominal
motion) and MRI

(thoracic diaphragm
motion)

Kim: 95
Pollock: 86

Steel: 82

Damkjær (2013)
(Ref. 68)

Deep inspiration
breath-holds

24 breast cancer
patients

Breathing limits Verbal commands CT RPM 91

Lu (2014) (Ref. 69) Regular breathing 13 lung and liver
cancer patients

Breathing limits Ascending and
descending tones

4D-CT RPM and active
breathing coordinator

83

aRetrospective analysis.
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T V. Metrics and results of radiation oncology breathing guidance studies.

Study author
(Year) Metric(s) used Result(s)

Vedam and Kini
(2003) (Refs. 47
and 48)

Standard deviation of thoracic diaphragm
motion

• Free breathing: Standard deviation of 0.36 cm
• Audio guidance: Standard deviation of 0.71 cm, higher than free breathinga

• Visual guidance: Standard deviation of 0.47 cm, comparable to free breathinga

Measure of ability to predict diaphragm
motion (standard deviation of relative
position between actual and predicted

motion traces)

• Free breathing: Standard deviation of 0.09 cm
• Audio guidance: Standard deviation of 0.09 cm
• Visual guidance: Standard deviation of 0.11 cm
• Breathing guidance comparable to free breathinga

Vedam: Relationship between respiratory
signal and diaphragm motion

• Strong linear relationship between respiratory signal and diaphragm motion (p < 0.001) over all sessions, regardless of the type of breathing guidance
or whether it was used at all (p = 0.19)

Kini: Average and standard deviation in
breathing period

• Audio breathing guidance: Reproducible breathing frequency compared to free breathinga

• Visual breathing guidance: Further improved reproducibility in breathing frequency compared to free breathinga

Kini: Average and standard deviation in
breathing range of motion

• Audio guidance: Higher variations and magnitude in breathing range of motion compared to free breathinga

• Visual guidance: Lower variations in breathing range of motion compared to audio guidanceb

Neicu (2006)
(Ref. 49)

User acceptance of breathing guidance • All five healthy volunteers were able to follow audio-visual breathing guidance
• Of the 33 lung cancer patients:
◦ 10 could follow audio-visual breathing guidance
◦ 13 could follow only audio breathing guidance
◦ 4 were not able to follow breathing guidance
◦ 6 had naturally regular breathing, so breathing guidance was deemed unnecessary

SMART duty cycle • Lung cancer patients:
◦ Free breathing: Only 3 patients had duty cycles higher than 60%
◦ Audio-visual breathing guidance: Most patients had duty cycles around 80% or larger, and all patients had duty cycles higher than 60%a

◦ Audio breathing guidance: 5 patients had duty cycles higher than 80%, and higher than 60% for 7 patientsa

Duty cycles for simulated amplitude
gating

• Healthy volunteers:
◦ Simulated amplitude gating:
� Free breathing: Average duty cycle was 32%
� Audio-visual breathing guidance: Average duty cycle was 36%, an improvement over free breathinga

� Audio breathing guidance: With the exception of patients 6, 8, and 11, breathing guidance reduced intrasession variations in period from about
23% to 11%a

◦ Simulated hybrid amplitude/phase gating:
� Free breathing: Average duty cycle was 21%
� Breathing guidance: Average duty cycle was 32%, an improvement over free breathinga

• Lung cancer patients:
◦ Simulated amplitude gating and hybrid amplitude/phase gating:
� Audio-visual breathing guidance: Four patients demonstrated good improvements over free breathing, one patient demonstrated worse results with

breathing guidance, and the rest of the patient demonstrated similar results to free breathinga

� Audio breathing guidance: Six patients demonstrated slight improvements over free breathing, one patient demonstrated worse results, and the
rest of the patient demonstrated similar result to free breathinga
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T V. (Continued).

Study author
(Year) Metric(s) used Result(s)

Intrasession breathing amplitude
variations

• Healthy volunteers:
◦ Breathing guidance reduced intrasession standard deviations in amplitude by a factor of 3a

◦ Baseline drift almost entirely removed from the use of breathing guidancea

• Lung cancer patients:
◦ Audio-visual breathing guidance:
� Breathing guidance did not have much difference to free breathing for intrasession variations in amplitudea

� Breathing guidance typically increases breathing amplitudea

Intrasession breathing period variations • Healthy volunteers:
◦ Breathing guidance reduced intrasession standard deviations in period by a factor of 2a

• Lung cancer patients:
◦ Audio-visual breathing guidance:
� Breathing guidance reduced intrasession variations in period by about 12%a

� Breathing guidance typically increases breathing perioda

◦ Audio breathing guidance:
�With the exception of patients 6, 8, and 11, breathing guidance reduced intrasession variations in period from about 23% to 11%a

� Breathing guidance typically increases breathing perioda

Intrasession breathing end-of-inhale and
end-of-exhale variations

• Healthy volunteers:
◦ Breathing guidance reduced standard deviations of the end-of-inhale and end-of-exhale positions, normalized to the average amplitude, by a factor

of 2–3a

• Lung cancer patients:
◦ Audio-visual breathing guidance:
�With the exception of patient 6, breathing guidance reduced standard deviations of end-of-exhale positions by a factor of 2.5a

� Breathing guidance produced mixed results for the standard deviations of end-of-inhale positionsa

Intersession breathing variations • Healthy volunteers:
◦ Intersession standard deviations of amplitude and period for breathing guidance were about 3 times smaller than free breathinga

George (2006)
and An (2013)
(Refs. 50–52)c

George (a): Residual breathing motion
(standard deviation of displacement)

within a duty cycle at inhale and exhale
for phase-based gating

• Gating at inhale with 40% duty cycle:
◦ Free breathing: Mean residual motion was 0.47 cm
◦ Audio breathing guidance: Mean residual motion was 0.47 cm, no significant difference to free breathinga

◦ Audio-visual breathing guidance: Mean residual motion was 0.36 cm, significantly improved over free breathing and audio guidanceb

• Gating at exhale with 40% duty cycle:
◦ Free breathing: Mean residual motion was 0.32 cm
◦ Audio breathing guidance: Mean residual motion was 0.31 cm, no significant difference to free breathinga

◦ Audio-visual breathing guidance: Mean residual motion was 0.27 cm, significantly improved over free breathing and audio guidanceb

• Duty cycles of 30% and 50% were also tested and demonstrated similar results
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T V. (Continued).

Study author
(Year) Metric(s) used Result(s)

George (a): Residual breathing motion
(standard deviation of displacement)

within a duty cycle at inhale and exhale
for displacement-based gating

• Gating at inhale with 40% duty cycle:
◦ Free breathing: Mean residual motion was 0.42 cm
◦ Audio breathing guidance: Mean residual motion was 0.44 cm, no significant difference to free breathinga

◦ Audio-visual breathing guidance: Mean residual motion was 0.31 cm, significantly improved over free breathing and audio guidanceb

• Gating at exhale with 40% duty cycle:
◦ Free breathing: Mean residual motion was 0.27 cm
◦ Audio breathing guidance: Mean residual motion was 0.27 cm, no significant difference to free breathinga

◦ Audio-visual breathing guidance: Mean residual motion was 0.21 cm, significantly improved over free breathing and audio guidanceb

• Duty cycles of 30% and 50% were also tested and demonstrated similar results

George (b): Relationship between
patient, tumor, and treatment variables

with breathing residual motion

• Inhale based gating:
◦ Correlation between residual motion and visual training displacement (p < 0.05)d

◦ Correlation between residual motion and breathing guidance types (p < 0.05)d

• A number of other correlations were investigated; however, they were independent from breathing guidance (e.g., Karnofsky performance status and
dose-per-fraction) and therefore were not included in these results

An: Breathing reproducibility of internal
motion (variation of range of motion in

the first session compared to the
subsequent four sessions)

• Free breathing: Breathing reproducibility of range of motion decreased by 28.5%±27.9%
• Audio-visual breathing guidance: Breathing reproducibility of range of motion improved by 21.4%±20.7%, significantly more reproducible than

free breathing (p < 0.05)d

An: CTV coverage • Free breathing: CTV coverage decreased by 7.0%
• Audio-visual guidance: CTV coverage improved by 20.2%, an improvement over free breathinga

Chen (2007)
(Ref. 53)

Mean percent error in breathing • Free breathing: Mean percent error was 21%
• Breathing guidance: Mean percent error was 1.8%, considerably less than free breathinga

Intrapatient breathing standard deviation • Intrapatient standard deviations decreased with breathing guidanceb

Lim (2007)
(Ref. 54)

Standard deviation of breathing
amplitudes

• Free breathing: Standard deviation of amplitudes was 0.0029 (arbitrary units)
• Breathing guidance: Standard deviation of amplitudes was 0.00139 (arbitrary unites), significantly improved over free breathing (p = 0.029)d

Standard deviation of breathing periods • Breathing guidance reduced standard deviation of periods from 0.359 to 0.202 s (p = 0.002)d

Vedam (2007)
(Ref. 55)

Difference between simulated and
delivery gate threshold determined by

using the mean displacement from within
the phase interval

• Gating phase interval of 40%–60%:
◦ Free breathing: Mean difference was 0.14
◦ Breathing guidance: Mean difference was 0.08, significantly improved compared to free breathingd

• Gating phase interval of 30%–70%:
◦ Free breathing: Mean difference was 0.08
◦ Breathing guidance: Mean difference was 0.04, significantly improved compared to free breathingd

• The above improvements due to breathing guidance had p-values between 0.01 and 0.02
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T V. (Continued).

Study author
(Year) Metric(s) used Result(s)

Difference between simulated and
delivery gate threshold determined by

using the maximum of average
displacements from within the selected

phase

• Gating phase interval of 40%–60%:
◦ Free breathing: Mean difference was 0.18
◦ Breathing guidance: Mean difference was 0.11, significantly improved compared to free breathingd

• Gating phase interval of 30%–70%:
◦ Free breathing: Mean difference was 0.17
◦ Breathing guidance: Mean difference was 0.11, significantly improved compared to free breathingd

• The above improvements due to breathing guidance had p-values between 0.01 and 0.02

Haasbeek
(2008) (Ref. 56)

Lung volume • End-inspiration lung volume:
◦ Audio breathing guidance increased lung volume by 415 ml (10.2%) compared to free breathing (p = 0.001)d

• End-expiration lung volume:
◦ Audio breathing guidance increased lung volume by 131 ml (2.9%) compared to free breathing (p = 0.08)e

• Between inspiration and expiration lung volume:
◦ Audio breathing guidance increased lung volume by 671 ml (19.2%) compared to free breathing (p < 0.001)d

Displacement of internal target volume
(ITV)

• Free breathing: Mean displacement of 3D ITV center of mass was 9.2±8.3 (range: 0–27 mm)
• Breathing guidance: Mean displacement of 3D ITV center of mass was 13.0±12.9 (range: 0–46 mm), significantly larger compared to free breathing

(p = 0.008)d

Persson (2008)
(Ref. 57)

Breathing amplitude • Compared to free breathing, more volunteers had larger breathing amplitudes (p values between <0.0001 and 0.0237):d

◦ 7 of 12 volunteers (and 6 of 12) had significantly larger amplitude for type 1 (and type 2) audio guidance
◦ 2 of 12 (and 2 of 12) volunteers had significantly lower amplitude for type 1 (and type 2) audio guidance

Standard deviation of breathing
amplitude intrafractionally

• No significant difference in the standard deviation of the breathing amplitude distribution between guidance and free breathinge

Venkat (2008)
and Yang (2012)
(Refs. 58 and
59)c

Venkat: Root mean square (RMS)
variations in breathing motion

displacement

• Free breathing: Mean RMS variation in displacement was 0.16 cm
• Bar-model breathing guidance: Mean RMS variation in displacement was 0.10 cm, 40% more regular than free breathing (p = 0.005)d

•Wave-model breathing guidance: Mean RMS variation in displacement was 0.08 cm, 55% more regular than free breathing, and significantly more
regular than bar-model breathing guidance (p = 0.006)d

Venkat: RMS variations in breathing
motion period

• Free breathing: Mean RMS variation in period was 0.77 s
• Bar-model breathing guidance: Mean RMS variation in period was 0.33 s, 50% more regular than free breathing (p = 0.002)d

•Wave-model breathing guidance: Mean RMS variation in period was 0.2 s, 75% more regular than free breathing and significantly more regular than
bar-model breathing guidance (p = 0.005)d

Yang: Motion blurring (quantified by
target size)

• Free breathing: Average increase in target diameter was 1.3±2.2 mm
• Breathing guidance: Average increase in target diameter was 0.6±1.6 mm, a significant improvement in target size compared to free breathing

(p < 0.001)d

Yang: Dice coefficient • Free breathing: Average Dice coefficient was 0.88±0.10
• Breathing guidance: Average Dice coefficient was 0.90±0.07, a significant improvement compared to free breathing (p < 0.001)d
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T V. (Continued).

Study author
(Year) Metric(s) used Result(s)

Yang: Recovery coefficient • For all targets, breathing guidance had consistently higher recovery coefficients than free breathinga

• Target size had a greater impact on recovery coefficient values than breathing motiona

• For the largest target:
◦ Free breathing: Recovery coefficient was 0.97±0.04
◦ Breathing guidance: Recovery coefficient was 1.00±0.04
• For the smallest target:
◦ Free breathing: Recovery coefficient was 0.36±0.05
◦ Breathing guidance: Recovery coefficient was 0.39±0.03

Linthout (2009)
(Ref. 60)

Delivery time of gated treatment • Free breathing: 1.7±0.6 min/100 MU
• Visual breathing guidance: 1.4±0.4 min/100 MU, a nonsignificant reduction in delivery time compared to free breathing (p = 0.249)e

• Audio-visual breathing guidance: 0.9±0.2 min/100 MU, a significant reduction in delivery time compared to free breathing (p = 0.004)d and a
significant reduction in treatment time compared to visual breathing guidance (p = 0.008)d

Masselli (2009)
(Ref. 61)

Baseline shift • Removal of baseline drifta

Average amplitude • Healthy volunteers:
◦ Free breathing: Average amplitude was 10±2 mm
◦ Breathing guidance: Average amplitude was 6±1 mm, lower compared to free breathingb

• Lung cancer patients:
◦ Free breathing: Average amplitude was 8±2 mm
◦ Breathing guidance: Average amplitude was 5±1 mm, lower compared to free breathingb

Variability of breathing amplitude • No significant difference in standard deviation of amplitudee

Average breathing frequency • Healthy volunteers:
◦ Free breathing: Breathing frequency was 17 breaths/min
◦ Breathing guidance: Breathing frequency was 37 breaths/min, more than free breathingb

• Lung cancer patients:
◦ Free breathing: Breathing frequency was 15 breaths/min
◦ Breathing guidance: Breathing frequency was 45 breaths/min, more than free breathingb

Nakamura
(2009) (Ref. 62)

Mean SI tumor displacement • Free breathing: Mean SI tumor displacement was 10.4 mm
• Breathing guidance: Mean SI tumor displacement was 23.0 mm, a significant increase compared to free breathing (p < 0.01)d

Mismatches between SI lung tumor
position and abdominal position

• Free breathing: The average position mismatch was 1.70 mm
• Breathing guidance: The average position mismatch was 2.09 mm
◦ Compared to free breathing, SI lung tumor position mismatches became larger in 75% of sessions with breathing guidance (p = 0.01)d

Correlation between abdominal
displacement and lung tumor motion

• Free breathing: Correlation coefficients ranged from 0.89 to 0.97
• Breathing guidance: Correlation coefficients ranged from 0.93 to 0.99, significantly improved compared to free breathing (p < 0.01)d

Cerviño (2009)
(Ref. 63)

Reproducibility of breath-holds:
Maximum difference between difference

breath-hold levels

•Without guidance: Average reproducibility was 2.1 mm
• Breathing guidance: Average reproducibility was 0.5 mm, significantly improved compared to free breathing (p < 0.001)d
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T V. (Continued).

Study author
(Year) Metric(s) used Result(s)

Stability of breath-holds: Maximum of
the amplitude change between initial and

end time points of a breath hold

•Without guidance: Average stability was 1.5 mm
• Breathing guidance: Average stability was 0.7 mm, significantly improved compared to free breathing (p < 0.01)d

Park (2011)
(Ref. 64)

Simulated treatment time • Free breathing: Average treatment time was 530.4±9.0 s
• Quasibreath-hold with 3 s exhale (QBH3) guidance: Average treatment time was 466.8±26.5 s, significantly lower than free breathing (p < 0.001)d

• QBH5 guidance: Average treatment time was 452.3±29.9 s, significantly lower than free breathing (p < 0.001)d

• QBH7 guidance: Average treatment time was 430.8±8.3 s, significantly lower than free breathing (p < 0.001)d

Mean absolute error (MAE) between the
guiding wave and measured breathing

signal

• Free breathing: Average MAE was 0.9±0.7 s
• QBH3 guidance: Average MAE was 0.8±0.6 s, lower than free breathing (p = 0.497)e

• QBH5 guidance: Average MAE was 0.7±0.6 s, significantly lower than free breathing (p = 0.013)d

• QBH7 guidance: Average MAE was 0.6±0.7 s, significantly lower than free breathing (p = 0.021)d

Mean absolute deviation (MAD) of the
measured breathing signal

• Free breathing: Average MAD was 0.7±0.7 s
• QBH3 guidance: Average MAD was 0.5±0.5 s, motion variations lower than free breathing (p = 0.144)e

• QBH5 guidance: Average MAD was 0.5±0.4 s, motion variations significantly lower than free breathing (p = 0.006)d

• QBH7 guidance: Average MAD was 0.5±0.6 s, motion variations significantly lower than free breathing (p = 0.029)d

Kim, Pollock,
and Steel
(2012–2014)
(Refs. 65–67)

Kim: Root mean square error (RMSE) of
breathing motion displacement

• Abdominal breathing motion:
◦ Free breathing: Average RMSE in displacement was 1.3 mm
◦ Breathing guidance: Average RMSE in displacement was 0.7 mm, 46% more regular than free breathing (p < 0.0001)d

• Thoracic diaphragm breathing motion:
◦ Free breathing: Average RMSE in displacement was 2.6 mm
◦ Breathing guidance: Average RMSE in displacement was 1.6 mm, 38% more regular than free breathing (p < 0.0001)d

Kim: RMSE of breathing period • Abdominal breathing motion:
◦ Free breathing: Average RMSE in period was 1.6 s
◦ Breathing guidance: Average RMSE in period was 0.3 s, 81% more regular than free breathing (p < 0.0001)d

• Thoracic diaphragm breathing motion:
◦ Free breathing: Average RMSE in period was 1.7 s
◦ Breathing guidance: Average RMSE in period was 0.3 s, 82% more regular than free breathing (p < 0.0001)d

Kim: Spectral power dispersion metric
(SPDM) of thoracic diaphragm breathing

motion

• Free breathing: Average SPDM was 2.1
• Breathing guidance: SPDM was 0.7, 67% more regular than free breathing (p = 0.005)d

Kim: Baseline drift of breathing motion • Abdominal breathing motion:
◦ Free breathing: Average baseline drift was 0.21 mm/min
◦ Breathing guidance: Average baseline drift was 0.05 mm/min, 75% more regular than free breathing (p < 0.0001)d

• Thoracic diaphragm breathing motion:
◦ Free breathing: Average baseline drift was 1.6 mm/min
◦ Breathing guidance: Average baseline drift was 0.9 mm/min, 44% more regular than free breathing (p = 0.012)d
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Study author
(Year) Metric(s) used Result(s)

Kim: Breathing regularity difference
from breathing session 1 to breathing

session 2

• Abdominal breathing motion:
◦ RMSEAV/RMSEFB in displacement:
� Breathing session 1: 0.700
� Breathing session 2: 0.509, a larger discrepancy between free breathing and breathing guidance regularity (p = 0.053)e

◦ RMSEAV/RMSEFB in period:
� Breathing session 1: 0.386
� Breathing session 2: 0.237, a larger discrepancy between free breathing and breathing guidance regularity (p = 0.093)e

◦ Baseline driftAV/baseline driftFB:
� Breathing session 1: 0.904
� Breathing session 2: 1.684, a larger discrepancy between free breathing and breathing guidance regularity (p = 0.230)e

• Thoracic diaphragm breathing motion:
◦ RMSEAV/RMSEFB in displacement:
� Breathing session 1: 0.875
� Breathing session 2: 0.639, a larger discrepancy between free breathing and breathing guidance regularity (p = 0.170)e

◦ RMSEAV/RMSEFB in period:
� Breathing session 1: 0.426
� Breathing session 2: 0.269, a larger discrepancy between free breathing and breathing guidance regularity (p = 0.212)e

◦ Baseline driftAV/baseline driftFB:
� Breathing session 1: 1.426
� Breathing session 2: 0.926, a larger discrepancy between free breathing and breathing guidance regularity (p = 0.212)e

Pollock: RMSE between breathing signal
and predicted breathing position

• Abdominal breathing motion:
◦ Free breathing: Average RMSE was 1.4±1.0 mm
◦ Breathing guidance: Average RMSE was 1.0±0.8 mm, 26% more accurate than free breathing (p < 0.001)d

• Thoracic diaphragm breathing motion:
◦ Free breathing: Average RMSE was 2.8±2.1 mm
◦ Breathing guidance: Average RMSE was 2.0±1.4 mm, 29% more accurate than free breathing (p < 0.001)d

Steel: Correlation between abdominal
and thoracic diaphragm breathing motion

• Free breathing: Average correlation was 0.96±0.02
• Breathing guidance: Average correlation was 0.96±0.03, no significant difference to free breathing (p = 0.88)e

Steel: Correlation between RMSE in
displacement and abdomen–diaphragm

correlation

• Free breathing: Minimal correlation between RMSE values and motion correlation values (R = 0.079)
• Breathing guidance: Minimal correlation between RMSE values and motion correlation values (R =−0.33)

Steel: Correlation between SPDM and
abdomen–diaphragm correlation

• Free breathing: Weak correlation between SPDM values and motion correlation values (R =−0.0633)
• Breathing guidance: Weak correlation between SPDM values and motion correlation values (R =−0.0471)

Damkjær (2013)
(Ref. 68)

Mean inspiration level • Unguided: Mean inspiration level was 16.6±1.66 mm
• Guided breath-holds: Mean inspiration level was 20.5±0.38 mm, a significant increase compared to unguided (p < 0.002)d

Mean dose to CTV (Dmean,CTV) • Unguided: Mean Dmean,CTV was 50.1 Gy
• Guided breath-holds: Mean Dmean,CTV was 50.0 Gy, a nonsignificant difference compared to unguided (p > 0.05)e

Relative volume receiving more than
95% of the prescribed dose (V95%,CTV)

• Unguided: Mean V95%,CTV was 93.9%
• Guided breath-holds: Mean V95%,CTV was 92.6%, a nonsignificant difference compared to unguided (p > 0.05)e

If internal mammary nodes (IMN) were
included in the target volume, relative

volume receiving 90% of the prescribed
dose (V90%,IMN)

• IMN included in target area for 19 of 24 patients
• Unguided: Mean V90%,IMN was 70.6%
• Guided breath-holds: Mean V90%,IMN was 76.1%, a nonsignificant difference compared to unguided (p > 0.05)e
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Study author
(Year) Metric(s) used Result(s)

Volume receiving more than 107% of the
prescribed dose (V107%,body)

• Unguided: Mean V107%,body was 7.3 cm3

• Guided breath-holds: Mean V107%,body was 7.3 cm3, a nonsignificant difference compared unguided (p > 0.05)e

Absolute volume of the left lung
(Vleftlung)

• Unguided: Mean Vleftlung was 1982 cm3

• Guided breath-holds: Mean Vleftlung was 2286 cm3, 11% larger than unguided (p < 0.0004)d

Relative volume of the lung receiving 20
Gy or more (V20Gy, leftlung)

• Unguided: Mean V20Gy, leftlung was 29.6%
• Guided breath-holds: Mean V20Gy, leftlung was 27.1%, a 9% decrease in lung dose compared to unguided (p < 0.002)d

Maximum dose to the left anterior
descending coronary artery (LAD)

(Dmax,LAD)

• Unguided: Mean Dmax,LAD was 16.1 Gy
• Guided breath-holds: Mean Dmax,LAD was 16.1 Gy, a nonsignificant difference compared to unguided (p > 0.05)e

Mean dose to the heart (Dmean,heart) • Unguided: Mean Dmean,heart was 2.41 Gy
• Guided breath-holds: Mean Dmean,heart was 2.49 Gy, a nonsignificant difference compared to unguided (p > 0.05)e

Volume of heart receiving more than 25
Gy (V25Gy,heart)

• Unguided: Mean V25Gy,heart was 0.8%
• Guided breath-holds: Mean V25Gy,heart was 0.7%, a nonsignificant difference compared to unguided (p > 0.05)e

Lu (2014)
(Ref. 69)

Volume ratio between two methods of
ITVs generation: ITV10 and ITVMIP

• Free breathing: ITV10/ITVMIP was 1.19
• Breathing guidance with RPM: ITV10/ITVMIP was 1.21
• Breathing guidance with ABC: ITV10/ITVMIP was 1.19
• No significant impact of breathing guidance (p > 0.05)e

Centroid difference between ITV10 and
ITVMIP

• Free breathing: Centroid difference between ITV10 and ITVMIP was 1.9 mm
• Breathing guidance with RPM: Centroid difference between ITV10 and ITVMIP was 1.7 mm
• Breathing guidance with ABC: Centroid difference between ITV10 and ITVMIP was 2.3 mm
• No significant impact of breathing guidance (p > 0.05)e

Overlap between ITV10 and ITVMIP

quantified by Dice coefficient
• Free breathing: Dice coefficient was 0.87
• Breathing guidance with RPM: Dice coefficient was 0.88
• Breathing guidance with ABC: Dice coefficient was 0.86
• No significant impact of breathing guidance (p > 0.05)e

RMS difference between surfaces of
ITV10 and ITVMIP

• Free breathing: RMS distance was 2.7 mm
• Breathing guidance with RPM: RMS distance was 2.6 mm
• Breathing guidance with ABC: RMS distance was 3.0 mm
• No significant impact of breathing guidance (p > 0.05)e

Correlation coefficient between the best
cosine fit and the original breathing

signal

• Free breathing: Correlation coefficient was 0.66
• Breathing guidance with RPM: Correlation coefficient was 0.72, a nonsignificant difference compared to free breathinge

• Breathing guidance with ABC: Correlation coefficient was 0.77, significantly more regular than free breathing (p < 0.05)d

Power dominant frequency (PDF) of
breathing signal

• Free breathing: The PDF was 0.04
• Breathing guidance with RPM: The PDF was 0.08, significantly more regular than free breathing (p < 0.05)d

• Breathing guidance with ABC: The PDF was 0.08, significantly more regular than free breathing (p < 0.05)d

aNo p-value, no statement of significance.
bNo p-value, but significance stated.
cRetrospective analysis.
dP < 0.05 (significant).
eP ≥ 0.05 (nonsignificant).
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F. 4. Timeline of the number of breathing guidance studies (top) and the study publications (bottom) from 1995 to 2014, detailed in Tables II–V.

patient to match their own breathing to,54 and combinations
thereof.58,64,65

In addition to the nature of guiding prompts utilized, study
design has also factored into influencing patient acceptance
and compliance with the breathing guidance intervention.
Studies in which patients used breathing guidance multi-
ple times demonstrated improved breathing consistency with
time.50,58,65 Hence, to achieve optimal compliance with breath-
ing guidance, patient training and repeated sessions are of
importance to bolster their familiarity with the system; such
elements have been absent in previous patient studies which
yielded nonsignificant results.69,88,89

While this systematic review yielded 27 articles, it should
be noted that some articles that were in contention required
considerable discussion between the authors to conclude on
their exclusion from the final selection. The main factor influ-
encing the decision to exclude these articles was the control
group criterion; while several studies investigated a breathing
guidance intervention strategy, the control group was not of
the same breathing type (see inclusion criterion 5).81,84–86,89–92

While the search undertaken and review of articles by the
authors was performed as objectively as possible, it should
be noted that two of the authors of this systematic review,
Sean Pollock and Paul Keall, are either first- or co-authors of
3 and 9 of the 27 included articles, respectively, investigating

the breathing guidance intervention: audiovisual biofeedback.
Their familiarity with breathing guidance strategies led to the
identification that a gap in the literature existed in that a review
of such research had yet to be performed; however, uninten-
tional bias may have permeated this review toward audiovisual
biofeedback. To minimize this bias, co-author Robyn Keall was
invited to review and screen the identified 319 (see Fig. 3);
where there was disagreement between reviewers, a discussion
was undertaken among all authors until consensus was reached.

While 21 of the 27 included articles reported at least one
statistically significant positive finding from the use of breath-
ing guidance interventions, bias should also be noted that pap-
ers reporting on positive results are more likely to be published
than papers with negative results.93,94 This notes the systemic
bias in scientific reporting and the possibility that negative
results on breathing guidance may not have been published.

The largely positive results found in this systematic review
indicate that further clinical studies are warranted and should
be focused on (1) utilizing training and multiple sessions to
maximize patient compliance with the breathing guidance sys-
tem, and (2) further determining the clinical impact of breath-
ing guidance interventions by investigating outcomes pertain-
ing to treatment margins, toxicity, and patient outcomes. Such
factors are being explored in ongoing and upcoming studies,
with some preliminary results presented thus far.95–97

T VI. Number of study outcomes investigated and their statistical significance (references in brackets).

Positive results Nonsignificant resultsa Negative results

Breathing regularity and tumor motion 27/60 (Refs. 48, 52–54, 58, 61, 64,
65, and 69)

28/60 (Refs. 48, 49, 53, 56, 57, 61,
64, 65, and 69)

5/60 (Refs. 56, 57, and 62)

Breath-hold stability and reproducibility 3/6 (Refs. 44, 63, and 68) 3/6 (Refs. 43 and 44)
Gating efficiency 17/42 (Refs. 46, 50, and 55) 25/42 (Refs. 47, 49, and 50)
Image quality 3/7 (Refs. 43 and 59) 3/7 (Refs. 43, 46, and 59) 1/7 (Ref. 45)
Reduced margins 8/8 (Ref. 69)
Reduced dose to healthy tissue 2/6 (Ref. 68) 4/6 (Ref. 68)
Improved target coverage 4/4 (Refs. 52 and 68)
Reduced treatment/imaging time 6/8 (Refs. 43, 46, 60, and 64) 2/8 (Refs. 45 and 60)
Otherb 5/11 (Refs. 51, 62, and 66) 5/11 (Refs. 47 and 67) 1/11 (Ref. 62)
Total 63 82 7

aOr significance of results not stated.
bMotion correlation, motion prediction, and correlation with disease type.
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5. CONCLUSION

A systematic review of breathing guidance intervention
strategies in radiotherapy and radiology has been performed
and 27 studies were identified. In 21 studies, statistically
significant improvements from the use of breathing guid-
ance were observed. No studies observed worse breathing
consistency with guidance; however, audio-only guidance,
while facilitating regular breathing, also increased respira-
tory amplitude which is undesirable in most circumstances.
Studies that have repeated breathing guidance across mul-
tiple sessions have observed an improvement in participant
compliance from one session to the next, emphasizing the
importance of patient practice and training. Such insights are
valuable in designing breathing guidance studies in terms
of both guiding prompts used and patient familiarity with
the intervention to maximize the effectiveness of the inter-
vention. The largely positive results found here indicate that
further clinical studies are warranted to further assess and
quantify the clinical impact of breathing guidance, along with
the health technology assessment to determine the advan-
tages and disadvantages of the use of breathing guidance
strategies.
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The impact of breathing guidance and prospective gating during 
thoracic 4DCT imaging: an XCAT study utilizing lung cancer patient 
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Abstract
Two interventions to overcome the deleterious impact irregular breathing has 
on thoracic-abdominal 4D computed tomography (4DCT) are (1) facilitating 
regular breathing using audiovisual biofeedback (AVB), and (2) prospective 
respiratory gating of the 4DCT scan based on the real-time respiratory motion. 
The purpose of this study was to compare the impact of AVB and gating on 
4DCT imaging using the 4D eXtended cardiac torso (XCAT) phantom driven 
by patient breathing patterns.

We obtained simultaneous measurements of chest and abdominal walls, 
thoracic diaphragm, and tumor motion from 6 lung cancer patients under two 
breathing conditions: (1) AVB, and (2) free breathing. The XCAT phantom 
was used to simulate 4DCT acquisitions in cine and respiratory gated 
modes. 4DCT image quality was quantified by artefact detection (NCCdiff), 
mean square error (MSE), and Dice similarity coefficient of lung and tumor 
volumes (DSClung, DSCtumor). 4DCT acquisition times and imaging dose were 
recorded.

In cine mode, AVB improved NCCdiff, MSE, DSClung, and DSCtumor 
by 20% ( p  =  0.008), 23% ( p  <  0.001), 0.5% ( p  <  0.001), and 4.0% 
( p  <  0.003), respectively. In respiratory gated mode, AVB improved NCCdiff, 
MSE, and DSClung by 29% ( p  <  0.001), 34% ( p  <  0.001), 0.4% ( p  <  0.001), 
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respectively. AVB increased the cine acquisitions by 15 s and reduced 
respiratory gated acquisitions by 31 s. AVB increased imaging dose in cine 
mode by 10%.

This was the first study to quantify the impact of breathing guidance and 
respiratory gating on 4DCT imaging. With the exception of DSCtumor in 
respiratory gated mode, AVB significantly improved 4DCT image analysis 
metrics in both cine and respiratory gated modes over free breathing. The 
results demonstrate that AVB and respiratory-gating can be beneficial 
interventions to improve 4DCT for cancer radiation therapy, with the biggest 
gains achieved when these interventions are used simultaneously.

Keywords: 4DCT, thoracic imaging, breathing guidance, respiratory gating

(Some figures may appear in colour only in the online journal)

1. Introduction

4D computed tomography (4DCT) is an imaging modality frequently utilized to incorporate 
breathing motion in the treatment planning stage of radiotherapy (Ford et al 2003, Vedam et al 
2003, Keall 2004, Pan et al 2004). However, image artefacts have been reported in up to 90% 
of 4DCT images (Yamamoto et al 2008), compromising the accuracy of tumor delineation 
(Persson et al 2010). These artifacts have been linked to irregular breathing (Mutaf et al 2007, 
Clements et al 2013, Zhang et al 2013). An additional problem is inconsistent inter-fraction 
breathing motion, where the tumor motion observed during 4DCT treatment planning is not 
consistent with the motion observed during treatment delivery (Ge et al 2012), resulting in an 
increase in the irradiated healthy tissue (Schmidt et al 2013). The radiation treatment volume 
itself is often expanded to account for these additional errors (Roman et al 2012), increasing 
the radiation dose to the healthy surrounding tissue, thus further increasing the risk of post-
treatment radiation toxicities (Rancati et al 2003, Matsuo et al 2012, Wang et al 2013, Scotti 
et al 2014).

To reduce the errors associated with irregular breathing motion, the patient breathing guid-
ance system, audiovisual biofeedback (AVB) has been utilized to facilitate regular and con-
sistent respiratory-motion (George et al 2006, Venkat et al 2008, Masselli et al 2009, Kim 
et al 2012, Pollock et al 2015a, 2015b) to improve image quality (Yang et al 2012, Cossmann 
2012), imaging and treatment time (Jhooti et al 2011, Park et al 2011, Cossmann 2012), and 
treatment accuracy (Chen et al 2007). However, the assessment of patient breathing guidance 
on 4DCT image quality has yet to be quantified. A study by Cossmann (2012) noted that the 
more consistent breathing motion as provided by breathing guidance improved the quality of 
4DCT images (Cossmann 2012), but this improvement was not quantified. Another study by 
Lu et al (2014) investigated the impact of breathing guidance on the match between ITVMIP 
(internal target volume generated by contouring in the maximum intensity projection scan) 
and ITV10 (ITV generated by combining the gross tumor volumes contoured over the 10 
phases of a 4DCT) (Lu et al 2014); however, no analysis of image quality was performed.

A second method to reduce irregular breathing motion artefacts is prospective gating, which 
limits the 4DCT ‘beam-on’ time to regular breathing, defined in terms of real-time displace-
ment, velocity and/or phase criteria. A number of experimental and simulation studies have 
suggested a potential improvement to 4DCT image quality using real-time prospective gating, 
at some cost to acquisition time (Keall et al 2007, Langner and Keall 2010, Bernatowicz et al 
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2015). Bernatowicz et al (2015) simulated prospective gated 4DCT acquisition for 8 patients, 
using the realistic 4D eXtended cardiac-torso (XCAT) deformable digital human phantom 
(Segars et al 2010, Bond et al 2012) synchronized to measured tumor motion patterns (Mishra 
et al 2012). They found prospective respiratory gated 4DCT reduced the mean square error 
(MSE) difference between reconstructed and ground truth thoracic 4DCT images as much as 
46% on average, but with an average acquisition time 84% longer than cine mode. Computer-
controlled prospective gated 4DCT has yet to be implemented clinically, in part because the 
anticipated increase in acquisition time may be considered a disadvantage in busy hospital 
environments. Meanwhile the XCAT has been utilized in a number of simulation studies to 
quantify the impact of breathing motion on image quality (Cai et al 2011, Rong et al 2012, 
Bernatowicz et al 2015) and on treatment delivery (Ecclestone et al 2013, Koybasi et al 2014).

The goal of this study is to perform the first comparisons of AVB and prospective gating 
technologies in view of their impacts on 4DCT image analysis metrics and acquisition time. 
This is also the first study to investigate the impact of breathing guidance on 4DCT image 
analysis metrics directly. As in the Bernatowicz study, this work employs the 4D XCAT but 
with an added emphasis on realistic patient motion. This is achieved by incorporating not only 
tumor motion, but also simultaneous measurements of chest wall, abdominal wall, and tho-
racic diaphragm motion. This data is derived from a study by Lee et al (2016) who performed 
magnetic resonance imaging (MRI) on lung cancer patients whilst they breathed both with and 
without the aid of AVB (Lee et al 2016). The Lee et al (2016) study extracted lung tumor and 
thoracic diaphragm motion information from the 2D MR images as well as monitoring exter-
nal breathing motion from the real-time position management (RPM) system and the Siemens 
physiological measurement unit (PMU) chest belt.

By programming the 4D XCAT with separate internal and external breathing motion 
patterns, we aim to perform realistic comparisons of 4DCT imaging across two breathing 
conditions (AVB and free breathing) and two acquisition modes (cine mode and prospective 
respiratory gating). We hypothesize that the more regular breathing motion as provided by 
AVB will result in improved 4DCT image analysis metrics over free breathing, and that the 
largest improvement in image analysis metrics will come from the use of both AVB and res-
piratory gating interventions. Other metrics, such as acquisition time, could be more depend-
ent on couch-stay time than motion regularity, particularly in cine mode.

2. Method and materials

To simulate 4DCT imaging as realistically as possible, the XCAT digital phantom was pro-
grammed with both the internal and external motion information in addition to lung tumor size 
and position information obtained in the Lee et al (2016) MRI study (Lee et al 2016).

2.1. Breathing motion data

Breathing guidance utilized by the 10 lung cancer patients in the Lee et al (2016) study was 
the AVB system, as developed by Venkat et al (2008). Lee et al (2016) analyzed the lung 
tumor motion regularity of these 10 lung cancer patients and found that AVB significantly 
improved the regularity of lung tumor motion period and displacement by 73% and 34%, 
respectively (Lee et al 2016).

10 non-small cell lung cancer (NSCLC) patients underwent two MR imaging sessions, 
the second session occurring 3–6 weeks after the first. Each session involved imaging the 
patient under two breathing conditions: (1) with AVB, and (2) free breathing. Sagittal MR 
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images yielded 2D lung tumor motion (superior–inferior (SI) and anterior–posterior (AP)). 
Tumor motion was extracted from the centroid of the segmented tumor, tumor segmentation 
was performed by a region-growing algorithm (Lee et al 2016). External breathing motion of 
chest motion and abdominal motion was also monitored during MR imaging. Chest motion 
was monitored by the Siemens PMU belt, and abdominal motion was monitored by the Varian 
RPM system. Figure 1 illustrates the motion utilized to program the motion of the XCAT 
phantom.

XCAT programmable motion inputs include chest AP motion, thoracic diaphragm SI 
motion, tumor AP, SI and left–right (LR) motion. Other XCAT inputs include tumor posi-
tion within the lung and tumor volume. External motion utilized was the chest displacement 
information from PMU belt. PMU belt motion was used to program the XCAT chest motion, 
while diaphragm SI motion, and tumor SI and AP motion was used to program the XCAT 
internal motion. XCAT tumor LR motion was disabled as it could not be obtained from the 
sagittal MR images. RPM phase information was used for 4DCT binning. It should be noted 
that chest motion from the PMU belt was originally normalized and without units. To obtain 
absolute chest displacement, the PMU motion data was rescaled to have one quarter of the AP 
motion range of the corresponding RPM signal. This is in accordance with findings presented 
by Kaneko and Horie (2012).

The inclusion criteria for this study was that free breathing tumor motion be greater than 
0.5 cm as stated in the management of respiratory motion in radiation oncology report of 
AAPM Task Group 76 (Keall 2006). This inclusion criteria made 6 patients across 10 MRI 
sessions eligible for simulation in this study.

Figure 1. (a) External and (b) internal respiratory motion utilized to program the 
motion of the XCAT phantom. Sagittal MR image shown with segmented lung tumor.
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Table 1 details the patient characteristics included in this study, the mean age of patients 
was 66 years (range: 54–79) with 3 male and 3 female.

2.2. Simulation of 4DCT acquisition using XCAT

Our method for simulating 4DCT acquisitions proceeds similar to the retrospective method 
used by Bernatowicz et al (2015). Briefly, for each simulation the first 60 s of RPM displace-
ment/phase data are analyzed to determine the average breathing period TAvg, as well as the 
mean (DMean) and std. dev. (DSD) of displacement in each of 10 phase bins. The subsequent 
RPM data is then analyzed to derive a schedule of couch shifts and kilovoltage (kV) image 
acquisitions, used to extract axial slices from the 4D XCAT programmed with the measured 
patient motion. Figure 2 details the workflow of this study.

In these simulations, the cine mode uses a constant kV imaging frequency corresponding 
to a gantry rotation time of 0.3 s, and a constant couch-shift frequency corresponding to a cine 
duration of TAvg +1 s for each of 30 couch positions. The CT slice acquisition time was deter-
mined by multiplying a typical 0.5 s gantry rotation time by a factor of approximately 220/360 
(accounting for the angular span required for a single complete reconstruction) resulting in a 
0.3 s acquisition time for each CT slice. Cine mode represents the conventional reconstruc-
tion 4DCT method for many scanners (Yamamoto et al 2008, Langner and Keall 2010). The 
respiratory gated mode is similar to the cine mode, except that kV acquisition is triggered 
only when the real-time respiratory motion falls within a phase-specific displacement gat-
ing window DMean  ±  DSD. The respiratory gated mode disallows duplicate kV acquisitions 
at the same couch position/phase bin and allows early couch shifts once all 10 phase bins are 
acquired. The gated mode allows a maximum couch stay of 2500 s at any one couch position, 
but this limit was never exceeded in any of the simulations. For each kV imaging timepoint, 
we generate an instantaneous 3D XCAT volume, and extract 4 axial slices (spaced 2.5 mm 
apart) corresponding to the given couch position. The simulation method does not include a 
forward/backprojection step (i.e. the simulated CT slices are not reconstructed from a simu-
lated sinogram, rather they are extracted directly from the XCAT volume). This is appropriate 
as our focus is on motion-induced anatomic discontinuities, rather than image blur.

Table 1. Patient tumor motion information, peak-to-peak amplitude is given in brackets.

Patient
Session 
number

Tumor 
volume  
(cm3)

Tumor motion range from 
MRI (max–min)

Tumor motion range from 
MRI (max–min)

Free breathing  
(peak-to-peak amplitude) 
(cm)

AVB  
(peak-to-peak amplitude) 
(cm)

1 1 21 0.8 (0.7) 0.7 (0.5)
2 15 0.7 (0.5) 0.9 (0.4)

2 1 19 0.6 (0.2) 0.7 (0.3)
2 7 0.8 (0.3) 0.6 (0.4)

3 1 29 0.6 (0.2) 0.5 (0.2)
4 1 19 1.9 (1.0) 2.1 (1.6)

2 20 2.2 (1.4) 2.9 (2.0)
5 1 73 0.7 (0.2) 0.6 (0.3)

2 58 0.9 (0.2) 0.3 (0.2)
6 2 46 0.5 (0.2) 0.4 (0.2)
Average (range) 55 (7–73) 1.0 (0.5) (0.5–2.2 (0.2–1.4)) 1.0 (0.6) (0.3–2.9 (0.2–2.0))
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For the case of perfect 4D sampling (i.e. no duplicate or missing phase/couch combina-
tions), each simulation will nominally produce 1200 axial slices that are binned into 10 res-
piratory phase bins. We also generate a set of ‘Ground truth’ 4D phase images, which give 
the average of all instantaneous XCAT volumes generated for each phase bin. These motion-
blurred images represent the ‘average’ anatomic geometry during beam-on time. We note that 
while our simulation of the respiratory gated acquisition was performed retrospectively, the 
kV triggering is nevertheless based on measured, real-time RPM phase/displacement data as 
would be the case for a clinical implementation of this gating method.

2.3. Image analysis metrics

Image quality was quantified by (1) an automated method of assessing the presence of image 
artefacts (Cui et  al 2012), (2) MSE intensity difference between the simulated 4DCT and 
ground images (Bernatowicz et al 2015), and (3) the dice similarity coefficient (DSC) between 
simulated 4DCT and ground truth images (Bernatowicz et al 2015).

Respiratory related 4DCT image artefacts were assessed utilizing a method developed by 
Cui et al (2012). Specifically, for each 4DCT phase image we calculate the normalized cross 
correlation (NCC) of pixel values between each pair of adjacent axial slices:
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In equation (1), i specifies the phase bin, z specifies the axial slice and x, y refer to the pixel 
location in the transverse plane. An NCC value closer to 1 indicates better agreement in pixel 
values between adjacent slices, conversely a value closer to 0 indicates poor agreement. Unlike 
the DSC metric, the NCC values are calculated in the absence of any tumor intensification. 
We then obtain an artefact rating, NCCdifff which accounts for the sum of differences in NCC 
values at couch transition points across each reconstructed 4DCT phase image:

Figure 2. Workflow of study from driving XCAT motion to simulating and analyzing 
4DCTs. Purple boxes indicate workflow and metrics utilizing the ground truth images. 
Blue boxes indicate workflow and metrics that did not utilize the ground truth.
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Where nbound represents the slice index for the transition between the nth and n 1 th( )+  couch 
position. Here, a value of NCCdiff closer to 0 indicates smaller differences in the NCC values 
between adjacent axial slice pairs across the image, and hence fewer anatomic discontinuities.

We note that NCCdiff should not be interpreted as an absolute artefact ‘count’ as it may 
also capture information about non-artefactual anatomic discontinuities. For example, a slice 
pair straddling the diaphragm edge will likely exhibit a poorer NCC value than for slice pairs 
where both slices are just above or just below the edge. Since all 4DCT reconstructions have 
the same geometry at exhale (aside from the tumor), and thus similar contributions to NCCdiff 
from non-artefact discontinuities, we interpret NCCdiff as an artefact ‘rating’ or ‘quality factor’.

DSC between simulated and ground truth images was assessed in terms of lung volume 
(DSClung) and lung tumor volume (DSCtumor). To more easily evaluate the tumor volume, the 
tumor volume was intensified by a factor of 10, as per the method described by Bernatowicz 
et al (2015). The intensity values of tumor voxels was multiplied by a factor of 10 to aid in 
segmentation; this modification of the tumor intensities was performed only for the DSCtumor 
analysis so does not affect the NCC or MSE values.

These image analysis metrics were compared across the two breathing conditions (AVB 
and free breathing) for the two 4DCT acquisition modes (cine and respiratory gated) using the 
Student’s t-test. 4DCT imaging dose and acquisition times were also recorded across the two 
breathing conditions and two reconstruction methods. It should be noted that the image dose 
estimate is based on the number of acquired slices; results presented here will be in number of 
slices as a surrogate for imaging dose.

2.4. Correlation between image analysis metrics and respiratory motion

The correlation between the image analysis metrics and lung tumor motion regularity in addi-
tion to acquisition time and lung tumor motion regularity was assessed using the Pearson’s 
correlation coefficient (R), and a p-value for testing the hypothesis of no correlation. Pearson’s 
correlation coefficient has been utilized as the correlation test in previous internal–external 
respiratory motion studies (Ionascu et al 2007, Steel et al 2014). Respiratory motion regular-
ity was quantified by the root mean square error (RMSE) in displacement (Venkat et al 2008) 
of the respiratory signal of chest motion during beam-on time only. A lower value of RMSE 
is indicative of more regular motion. We investigated the potential dependence of imaging 
time on displacement RMSE for both cine and respiratory gated acquisition modes. For the 
respiratory-gated mode it seems intuitive that highly irregular breathing could affect the scan 
time. For cine mode the connection between displacement RMSE and scan time is more sub-
tle; since in our study the cine mode uses a ‘patient specific’ cine duration set at one breath-
ing period (TAvg)  +  1 s, it follows that irregularities in the breathing period (or alternately, 
displacement) could affect the cine mode scan times as well.

3. Results

3.1. Reconstructed 4DCT Images of XCAT Phantom

Figure 3 illustrates the original MRI and 4DCTs for Patient 4, whose resultant NCCdiff value 
in cine mode was the median.
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The ground truth images in figure 3 also demonstrate some blurring, particularly around 
the thoracic diaphragm. This blurring arises because the ground truth was constructed from a 
range of anatomic positions during beam-on time.

3.2. 4DCT Image Analysis Metrics

NCCdiff, MSE, DSClung, and DSCtumor values were generated for each 4DCT respiratory bin, 
as such, 10 metric values were generate for each simulated 4DCT. The results for these met-
rics are shown in figure 4; average values and their statistical significance are shown in table 2.

Merging the data from the AVB and free breathing conditions, cine mode yielded mean 
NCCdiff, MSE, DSClung, and DSCtumor values of 0.099, 9.4  ×  10−7, 0.980, and 0.889 respec-
tively. Respiratory gating improved the NCCdiff, MSE, DSClung, and DSCtumor values by 36% 
( p  <  0.001), 42% ( p  <  0.001), 0.7% ( p  <  0.001), and 2.3% ( p  =  0.01), over cine mode 
respectively. With the exception of DSCtumor, the largest improvements were obtained when 
utilizing both AVB and respiratory gating together, which improved NCCdiff, MSE, DSClung, 
and DSCtumor values by 52% ( p  <  0.001), 59% ( p  <  0.001), 1.2% ( p  <  0.001), and 3.5% 
( p  =  0.01), respectively, compared to cine mode 4DCT under free breathing. For the DSC 
values, this translates to an additional 38 cm3 of correctly imaged lung volume and an addi-
tional 0.9 cm3 of correctly imaged tumor volume. While we cannot guarantee that the volumes 
encompassed by these respective contours are imaged correctly, from a treatment planning 
perspective the impact of modified contours on the dose-volume calculations may still be sig-
nificant. A surprising result here is that the use of AVB and respiratory gating yielded inferior 
(though non-significant) DSCtumor values compared to AVB with cine mode in addition to free 
breathing with respiratory gating.

3.3. Image dose and acquisition time

Figure 5 shows the mean  ±  standard deviation 4DCT acquisition times and imaging dose 
across cine mode and respiratory gated mode for AVB and free breathing patients. Number of 
slices acquired is given as a surrogate for imaging dose.

Figure 3. Left to right: Original MR image (tumor outlined in blue), simulated inhale 
phase images for cine ground truth 4DCT, cine mode 4DCT and respiratory gated 
(Resp. Gated) ground truth 4DCT, and Resp. Gated 4DCT in the sagittal (top) and 
coronal (bottom) planes for Patient 4. *Coronal MR images acquired at different times 
to sagittal MR images, only data from sagittal MR images was used to program XCAT 
motion. Coronal MR image is shown here to demonstrate anatomic comparison to 
reconstructed 4DCT coronal images.
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Merging the data from the AVB and free breathing conditions, cine mode yielded a 
(mean  ±  STD) acquisition time of 227  ±  23 s, 31% faster than respiratory gated mode which 
had an acquisition time of 328  ±  89 s. Interestingly, the impact of AVB on acquisition times 
was opposite between the two acquisition modes. In cine mode, AVB increased the average 
imaging time by 15 s compared to free breathing ( p  =  0.02); whereas in respiratory gated 
mode, AVB reduced the average imaging time by 31 s compared to free breathing ( p  =  0.41). 
In cine mode, AVB increased the estimated average imaging dose by 10% compared to free 
breathing ( p  =  0.05); whereas the respiratory gated mode always acquired 1200 slices by con-
struction as this represents the ideal 4D sampling for this simulation (10 phase bins with 120 
slices each). It should be noted that the number of slices in respiratory gated mode was 1200 
by construction, as 1200 slices represents the ideal dose for this simulation.

3.4. Correlation between image analysis metrics and respiratory motion

Table 3 compares values of the displacement RMSE during beam-on time for different breath-
ing conditions and acquisition modes.

Figure 4. Image analysis metrics, from left to right: NCCdiff, MSE, DSClung, and 
DSCtumor for both cine and respiratory gated (Resp. Gated) reconstruction modes. AVB 
shown as blue boxes, solid lines. Free breathing shown as red boxes, dashed lines. The 
data plotted are each of the 10 respiratory phase bins for each patient. The horizontal 
edges of each box represent the 25th, 50th and 75th percentile values. Whiskers 
represent other points extending out to 1.5 times the interquartile range. Any points 
beyond the whiskers (‘+’) are considered outliers.
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For each combination of breathing condition and acquisition mode, the RMSE values are 
different owing to the different acquisition timing.

Figure 6 shows the variation of the image analysis metrics (NCCdiff, MSE, DSClung, and 
DSCtumor) and acquisition time as a function of the RMSE values, separated according to 
breathing condition and acquisition mode. For any given acquisition mode, AVB produced a 
smaller range of RMSE values compared to free breathing. For each panel of figure 6, table 4 
shows the Pearson’s correlation coefficient irrespective of breathing condition.

4. Discussion

This was the first study to quantify the impact of AVB breathing guidance on 4DCT image 
analysis metrics. As shown in tables 2 and 3, with the exception of DSCtumor in respiratory 
gated mode, AVB significantly improved 4DCT image analysis metrics across both acquisition 

Table 2. Average AVB and free breathing image analysis metrics values for cine and 
respiratory gated 4DCT reconstruction methods.

NCCdiff

Free breathing AVB
Improvement due 
to AVB

Cine 0.111 0.089 20% ( p  =  0.008)
Respiratory gated 0.075 0.053 29% ( p  <  0.001)
Improvement due to  
resp. gated

32% ( p  <  0.001) 40% ( p  =  0.001)

MSE

Free breathing AVB Improvement due  
to AVB

Cine 10.6  ×  10−7 8.2  ×  10−7 23% ( p  <  0.001)
Respiratory gated 6.5  ×  10−7 4.3  ×  10−7 34% ( p  <  0.001)
Improvement due to 
resp. gated

39% ( p  <  0.001) 47% ( p  <  0.001)

DSClung

Free breathing AVB Improvement due  
to AVB

Cine 0.978 0.982 0.5% ( p  <  0.001)
Respiratory gated 0.986 0.989 0.4% ( p  <  0.001)
Improvement due to  
resp. gated

0.8% ( p  <  0.001) 0.7% ( p  <  0.001)

DSCtumor

Free breathing AVB Improvement due  
to AVB

Cine 0.871 0.907 4.0% ( p  =  0.003)
Respiratory gated 0.917 0.901 −1.6% ( p  =  0.20)
Improvement due to 
resp. gated

5.2% ( p  <  0.001) −0.6% ( p  =  0.63)

Note. Values presented here represent the average of all respiratory phase bins across all patients.
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modes. The impact to DSC values, while mostly significant, were small (<1%); whereas the 
magnitude of the impact of AVB to NCCdiff and MSE was considerably larger. Compared to 
conventional free breathing 4DCT in cine mode, the addition of both AVB and respiratory 
gated mode improved DSClung, NCCdiff, and MSE by 1.2% ( p  <  0.001), 52% ( p  <  0.001), 
and 59% ( p  <  0.001), respectively. As illustrated by figure 4, respiratory gated mode yielded 
better 4DCT image analysis metrics over cine mode, which is consistent with the findings of 
previous investigations (Langner and Keall 2010, Bernatowicz et al 2015). Bernatowicz et al 
(2015) reported slight, but significant, improvements in lung errors of 0.4% due to respira-
tory gated mode compared to cine mode (Bernatowicz et al 2015); comparable to the 0.7% 
improvement of respiratory gated mode over cine mode demonstrated here.

As shown in table 4, motion regularity (RMSE) during beam-on time significantly corre-
lated with DSClung, NCCdiff, and MSE in cine and respiratory gated acquisition modes, in addi-
tion to significantly correlating with acquisition time in respiratory gated mode. It is important 
to note that other factors beyond RMSE in displacement will impact image analysis metrics 
and acquisition time. For instance, the average period increased from 4.3 s under free breath-
ing to 4.8 s using AVB. Thus the use of AVB lead to increased cine duration time (TAvg  +  1 s) 
explaining why AVB produced longer cine acquisition times and increased imaging dose com-
pared to free breathing in figure 5. It should be noted that will not be the case for clinical 4DCT 

Figure 5. 4DCT acquisition times (left) and imaging dose (right) with number of slices 
as a surrogate for dose, for AVB (blue) and free breathing (red) patients for both cine 
mode and respiratory gated mode.

Table 3. Mean  ±  STD RMSE in displacement during beam-on time for AVB and free 
breathing for the two acquisition modes.

RMSE in displacement (cm)

Free breathing AVB
Improvement 
due to AVB

Cine 0.91  ±  0.99 0.61  ±  0.28 33% ( p  =  0.30)
Respiratory gated 0.52  ±  0.58 0.30  ±  0.14 42% ( p  =  0.23)
Improvement due to 
Resp. Gated

43% ( p  =  0.02) 51% ( p  <  0.001)
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protocols using a fixed cine-duration time (as opposed to the patient specific cine duration of 
TAvg  +  1 s). In respiratory gated mode, AVB reduced acquisition times as a result of improved 
motion regularity, which has been shown to improve gating efficiency in previous studies 
(George et al 2006, Linthout et al 2009, Lee et al 2014). Also, each simulation will nominally 

Figure 6. From top to bottom: NCCdif, MSE, DSClung, DSCtumor, and acquisition time 
verses RMSE in displacement for bean-on time for AVB (blue) and free breathing (red) 
patients for both cine mode (left) and respiratory gated mode (right).
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produce 1200 axial slices that are binned into 10 respiratory phase bins and respiratory gating 
is optimized to produce exactly 1200 axial slices, which is why the mean  ±  standard devia-
tion number of slices for respiratory gating are 1200  ±  0 for both AVB and free breathing, as 
shown in figure 5.

Furthermore, while DSCtumor was the only image analysis metric not to significantly cor-
relate with motion regularity, it was found that DSCtumor did significantly correlate with the 
tumor motion range values (given in table 1) for both cine mode (r  =  −0.79, p  <  0.001) and 
respiratory gated mode (r  =  −0.86, p  <  0.001). Given that the average peak-to-peak ampl-
itude of free breathing was 0.5 cm and 0.6 cm for AVB, this may explain why an improvement 
was not observed for AVB in respiratory gated mode. Further to this, 4DCT gating and binning 
is based on the signal of an external surrogate and not the motion of the tumor itself.

This study builds upon previous investigations which assessed the impact of breathing 
guidance interventions on medical image quality. Yang et al (2012) found that AVB reduced 
motion blurring and improved Dice coefficient of the tumor in PET images of a thoracic 
phantom (Yang et al 2012). Jhooti et al (2011) and Lee et al (2014) observed a reduction in 
MRI scan time from the use of breathing guidance with only the Lee et al (2014) study not-
ing an improvement in image quality. Importantly, table 4 indicates that respiratory motion 
regularity (RMSE in displacement) during beam-on time may be a useful metric for predicting 
quantitative aspects of 4DCT image analysis metrics. It would be interesting to test how well 
RMSE correlates with other clinically relevant measures of 4DCT image quality (e.g. absolute 
artefact counts).

A limitation of this study, as evident from figure 3, is that the anatomy of the XCAT dig-
ital phantom did not exactly match that of the original MR images. Differences in tumor 
shape, organ shapes, and organ volumes between the XCAT and MRI scans may be observed. 
Despite these differences, the XCAT represents a population averaged anatomy, based on vis-
ible human data from the National Library of Medicine (Segars et al 2010, National Library of 
Medicine), so these results should be relevant to a large percentage of the adult (male) popula-
tion receiving 4DCT scans. An additional limitation is that our 4DCT simulations assumed 
x-ray collimation of 4  ×  2.5 mm at the detectors, whereas newer scanners might have 8×, 
16  ×  , or more which would decrease the number of couch transition regions where breathing-
induced image discontinuities might occur. In other words, our simulations may overestimate 
the impact of AVB or respiratory gating for wide field of view 4DCT scanners. This study 

Table 4. Pearson’s correlation coefficient values (r) and their p-values for the 
correlations between respiratory motion regularity (RMSE) and image analysis metrics 
irrespective of breathing condition.

Correlation between RMSE and r value p-value

Cine NCCdiff 0.89 <0.001
MSE 0.91 <0.001
DSClung −0.92 <0.001
DSCtumor −0.23 0.32
Acquisition time −0.29 0.21

Respiratory gated NCCdiff 0.91 <0.001
MSE 0.68 <0.001
DSClung −0.91 <0.001
DSCtumor −0.30 0.19
Acquisition time 0.46 0.04
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attempted to adapt the XCAT simulations to the MRI acquisition as much as possible by uti-
lizing the several elements of the MRI patient data: tumor motion, diaphragm motion, chest 
motion, abdominal motion, tumor volume, and tumor position. Despite this, diseased lung can 
exhibit localised variations in the motion field that are not so easily modelled using XCAT. 
For tumors in the vicinity of emphysematous or fibrotic regions, the measured motion may 
appear different compared to the XCAT motion which assumes smoothly varying motion 
over the lung. Further to this, the MRI data utilized in this study had an acquisition time of 
approximately 158 s, shorter than the time needed to complete a 4DCT simulation. As such, 
the motion traces were repeated until the 4DCT image acquisition was complete; the discon-
tinuity between these repeated motion segments is not ideal.

Additionally, a limitation of our RMSE calculation is that we generated a ‘mean’ cycle 
based on only 10 phase bins, as opposed to a much larger number (e.g. 360) in other studies 
(Venkat et al 2008, Pollock et al 2015c). This seemed appropriate due to the instantaneous 
nature of the simulated beam-on events which leads to a sparse amount of displacement data 
during beam on time, resulting in a larger magnitude of RMSE results compared to previous 
investigations.

The results presented here support our hypothesis that AVB resulted in improved 4DCT 
image analysis metrics over free breathing. The respiratory gated mode resulted in improved 
4DCT image analysis metrics over cine mode, however, acquisition time was faster in cine 
mode compared to the respiratory gated mode. This study indicates that respiratory gated 
mode can benefit from AVB not only in terms of improved image analysis metrics, but also in 
reduced acquisition times compared to free breathing. AVB and respiratory gated mode rep-
resent two emerging techniques to improve the quality of 4DCT images, producing the best 
image analysis metrics when used simultaneously.

5. Conclusion

This was the first study to compare the impacts of AVB breathing guidance, and prospective 
respiratory gated acquisition on 4DCT image analysis metrics compared to free breathing cine 
mode 4DCT. Compared to free breathing, AVB was demonstrated to significantly improve the 
image analysis metrics of both cine and respiratory gated modes of 4DCT acquisition, and 
can reduce the amount of time needed to acquire a respiratory gated 4DCT scan. Meanwhile, 
respiratory-gating consistently yielded better image analysis metrics over cine mode irrespec-
tive of the breathing condition. The results presented here demonstrate both AVB and the 
respiratory gated acquisition mode as potential tools to implement in CT simulation for can-
cer radiation therapy. Statistically significant improvements in image analysis metrics can 
be realized for a small increase in time when AVB and respiratory gated mode are utilized 
simultaneously.
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CHAPTER 4 

Audiovisual biofeedback breathing guidance over a course of liver 

SBRT: A motion analysis of external and internal surrogates 

4.1. Introduction 

Stereotactic body radiotherapy (SBRT) is a high-precision, high-dose irradiation of a lesion in a small 

number of fractions.1 SBRT has been incorporated into the treatment of liver cancer due to its 

demonstrated effectiveness in clinical studies as well as improving survival rate2, 3 with over 54% of 

liver cancer patients being treated with SBRT in America.4 Liver tumours are considered highly 

mobile due to their proximity to the thoracic diaphragm. When this breathing motion is irregular, it 

exacerbates systematic and random errors,5-7 compromising the quality of radiation therapy;6, 8-11 

which is a particular concern for such hypofractionated treatments as SBRT.  

To counter this exacerbation of systematic and random errors due to irregular breathing 

motion a number of breathing guidance strategies have been investigated to engage with the 

patient to facilitate stable and regular breathing.12-15 Such breathing guidance strategies have also 

been investigated with liver cancer patients with demonstrated benefits.16, 17 A study by Linthout et 

al. (2009) investigated the use of breathing guidance during lung and liver cancer SBRT and found 

that audio-visual breathing guidance significantly reduced gated treatment times by 17%.16 The 

audiovisual biofeedback system, developed by Venkat et al.,14 has demonstrated to significantly 

improve breathing regularity for both external motion surrogates and internal anatomic motion.13, 14 

A volunteer study by Kim, et al. found that audiovisual biofeedback significantly improved the 

regularity of thoracic diaphragm breathing motion.13 An MRI lung cancer patient study by Lee, et al. 

found that audiovisual biofeedback significantly improves the regularity of lung tumour motion.18 

However, based on a recently performed systematic review on breathing guidance interventions, 

provided in chapter 2., only 2 of the 27 identified articles recruited liver cancer patients.15 Despite 

being highly mobile tumours being treated increasingly with hypofractionated treatments, a gap in 

the literature exists in terms of investigating the use of breathing guidance with liver cancer patients 

during radiation treatment.  

This study was the first to implement a screening procedure prior to CT simulation to ensure 

that the most regular breathing condition (free breathing or audiovisual biofeedback) was utilised 

throughout the patient’s treatment. The primary objective of this clinical trial was to evaluate the 

improvement in the reproducibility of respiratory-related motion for liver cancer patients with the 
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audiovisual biofeedback system. The reproducibility of respiratory motion was evaluated both 

intrafractionally and interfractionally for both external and internal surrogates. Secondary objectives 

include assessing the proportion of patient for whom audiovisual biofeedback improved respiratory 

motion regularity, evaluation of the correlation between internal fiducial marker and external 

marker motion, and an evaluation of the patient and operator experience with the audiovisual 

biofeedback system though a survey will be performed. A direct comparison between free breathing 

and audiovisual biofeedback was performed during the screening procedure when each patient 

underwent both breathing conditions. An unpaired comparison between free breathing and 

audiovisual biofeedback patients was then performed for subsequent CT sim and treatment sessions 

when each patient exclusively utilised either free breathing or audiovisual biofeedback breathing 

conditions.  

Presented here are the findings of subsequent liver cancer patients recruited into the study.  

4.2. Method 

The ethics, governance, legal, and regulatory processes were completed prior to the initiation of the 

clinical trial. The clinical trial was registered with the Australian New Zealand Clinical Trials Registry 

(ANZCTR), trial ID: ACTRN12613000110785. The protocol accepted by ethics is provided in Appendix 

II.  

4.2.1. Patient information 

The eligibility criteria for patients to be recruited in this study are as follows:  

 Liver cancer patients, either primary hepatocellular carcinoma or liver metastases, eligible 

for stereotactic radiotherapy 

 Older than 18 years old 

 No gender or ethnic restrictions  

 Radio-opaque markers implanted (fiducials and/or surgical clips previously implanted in the 

liver) 

 Able to give written informed consent and willingness to participate and comply with the 

study  

 No pregnant/lactating women  

Table 4-1 details the information of patients recruited into this study.  
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Table 4-1. Patient and treatment information. 

Age Sex Prescribed dose Number of 

fractions 

Tumour surrogate 

65 M 36 Gy 6 Surgical clips 

75 M 36 Gy 6 Fiducial markers 

59 M 36 Gy 6 Surgical clips 

53 M 48 Gy 6 Surgical clips 

58 M 48 Gy 6 Fiducial markers 

4.2.2. Audiovisual Biofeedback 

The audiovisual biofeedback system, developed by Venkat et al,14 and described in chapter 1.4.2. 

utilises audio and visual prompts to guide the patient to facilitate regular breathing. The real-time 

breathing signal is from the Real-time Position Management system (RPM, Varian Medical Systems, 

Palo Alto, USA). The setup of audiovisual biofeedback in the linac and CT sim rooms is shown below 

in Figure 4-1. The  audiovisual biofeedback equipment setup was the same in both rooms, with the 

system being mounted to the patient table.  
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The use of audiovisual biofeedback required the addition of a patient display in each of the rooms 

with the controlling software being operated by a radiation therapist in the control room. The 

patient display was held over the patient’s head at a comfortable distance by a goose-neck clamp 

which was mounted to the patient couch by a c-clamp. Gantry clearance from the patient display & 

clamp was checked each day in the linac room. Real-time breathing signal was acquired from the 

RPM system; the RPM infra-red camera was mounted on the ceiling of each room.  

4.2.3. Study Protocol & Workflow 

After the patient consented to participating in the study they underwent a screening procedure to 

determine which breathing condition will be utilised in their imaging and treatment, either (1) free 

breathing, or (2) audiovisual biofeedback. After the screening procedure, either free breathing or 

 

 

Figure 4-1. Study setup in Linac (top) and CT sim (bottom) rooms 
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audiovisual biofeedback would be utilised in their 4D-CT imaging and subsequent course of SBRT. 

Study workflow is shown in Figure 4-2.  

The study progressed much the same as per current liver SBRT standard of care with the addition of 

an audiovisual biofeedback screening procedure prior to the CT sim and then the implementation of 

audiovisual biofeedback during treatment planning and treatment delivery should that be the 

resultant decision yielded from the screening procedure.  

4.2.3.1. Screening Procedure 

A screening procedure was performed to ensure that the most regular breathing condition was 

utilised throughout the patient’s subsequent treatment planning and treatment delivery, either (1) 

free breathing, or (2) audiovisual biofeedback. A training session was performed to familiarise the 

patient with audiovisual biofeedback. The training session involved a brief information video 

describing the audiovisual biofeedback system and how to follow it, followed by a one minute 

practice session using the audiovisual biofeedback system. After the training session, breathing 

motion was monitored for 4 minutes for each of the breathing conditions (1) free breathing and (2) 

audiovisual biofeedback. At the 2 minute mark, CBCT images were acquired. Determining which 

breathing condition would be selected was based on the regularity of the 4 minutes of external 

breathing motion (regularity quantified by the root mean square error (RMSE) in displacement);14 

the lower the RMSE value, the more regular the breathing motion. Decisions were made in situ using 

 

Figure 4-2. General flowchart of the study from 

screening procedure to treatment 
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an ‘Analyse Respiratory Session’ function within the audiovisual biofeedback software. Workflow of 

the screening procedure is shown in Figure 4-3. The breathing condition that was performed first, 

audiovisual biofeedback or free breathing, alternated between patients.  

 

Figure 4-3. Workflow of the screening procedure. 4 

minutes of breathing was recorded from the Varian 

RPM, with a CBCT acquired at the 2 minute mark, 

providing 1 minute of internal motion information. 

The audiovisual biofeedback training included an 

information video and 1 minute practice with 

audiovisual biofeedback to determine whether any 

modifications to the guiding wave were necessary.    

4.2.3.2. Treatment Planning and Treatment Delivery 

Treatment planning and treatment delivery proceeded as per the currently implemented clinical 

liver SBRT protocol with the addition of the audiovisual biofeedback setup, as shown in Figure 4-1, 

should that be the resultant decision from the screening procedure.  
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Figure 4-4. Workflow of treatment planning and 

treatment delivery. Only the RPM signal was acquired 

during 4DCT imaging. During radiation treatment, pre-

treatment CBCTs are acquired before treatment 

delivery. Hence, during actual treatment delivery, only 

external RPM signal was acquired. For each patient, 

one CT sim session was performed and 6 treatment 

fractions were performed.  

As evident from Figure 4-4, during radiation treatment, internal breathing motion was acquired in 

the pre-treatment CBCTs, not during treatment delivery. In reporting the radiation treatment 

results, the external RPM breathing signal during treatment delivery is reported on, and the internal 

breathing signal from the CBCTs during pre-treatment are reported on.    

4.2.3.3. Data Analysis 

To satisfy the primary and secondary objectives, intrafraction and interfraction breathing motion 

was assessed in addition to the internal-external motion correlation, and reporting on the survey 

results. External breathing motion was extracted from the RPM text files. Internal breathing motion 

of implanted radio-opaque markers was extracted from the CBCT projections images utilising a 

method developed by Poulsen, et al,19, 20 and illustrated in Figure 4-5. 
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Figure 4-5. (a) CBCT projection image with marker to be tracked circled in red. (b) Segmented marker 

highlighted in red square, with the marker being tracked as it moves. (c) Motion of the tracked fiducial marker. 

Data analysis was performed for the screening procedure and SBRT treatment separately. The screening 

procedure allowed a direct comparison between free breathing and audiovisual biofeedback for all patients as 

they underwent both breathing conditions in the screening procedure. Whereas for the CT sim and treatment 

delivery the patient underwent these procedures under one breathing condition only.  

It should be noted that while Figure 4-5  illustrates the one dimensional superior-inferior breathing 

motion of the implanted radio-opaque marker, the method developed by Poulsen, et al19, 20 obtains 

three dimensional information of the marker. The method developed by Poulsen, et al19, 20 utilises 

the two dimensional rotating coordinate system from the CBCT images to estimate the 3D marker 

trajectory. Figure 4-5 illustrates the superior-inferior motion as this is the dominant direction of 

breathing motion due to its proximity to the thoracic diaphragm, and is what was analysed in the 

results section.     

4.2.3.3.1. Breathing Motion Regularity 

External and internal breathing motion were analysed by assessing the regularity of breathing 

motion, quantified as the root mean square error (RMSE) of displacement and period.13-15, 21, 22  

RMSE was calculated was described by equations 1 and 2. For a breathing pattern comprised of 

𝑛 individual breathing cycles, where each cycle in the phase domain can be written as  𝑋 =

{𝑥1, 𝑥2, … , 𝑥360} and the average waveform of these cycles can be written as 𝑌 = {𝑦1, 𝑦2, … , 𝑦360}, 

the RMSE in displacement is calculated as:  

𝑅𝑀𝑆𝐸 𝑖𝑛 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =  
∑ √∑

(𝑥𝑖−𝑦𝑖)
2

360𝑖=1…360𝐴𝑙𝑙 𝐶𝑦𝑐𝑙𝑒𝑠

𝑛
  (1) 
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The period of each of the 𝑛 breathing cycles, in seconds, can be written as 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛}, with 

the period of the average waveform expressed as 𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑒𝑎𝑛, the RMSE in period is calculated as: 

𝑅𝑀𝑆𝐸 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 =  √
∑ (𝑝𝑖−𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑒𝑎𝑛)2

𝑖=1…𝑛

𝑛
 (2) 

4.2.3.3.2. Interfraction Motion Consistency  

External respiratory displacement data was also sorted into phase bins from 0% to 90% in 10% 

increments, as per standard for 4DCT imaging.23-25 The mean difference of the displacement in each 

phase bin was compared for each fraction of treatment to the CT sim, normalised by CT sim 

amplitude, to determine the relative difference between what was planned to motion during 

treatment, as illustrated by Figure 4-6.  

 

Figure 4-6. Relative difference 

between CT bins and treatment 

bins averaged over all treatment 

fractions (𝑛 = 6, 𝐹𝑥1, … , 𝐹𝑥6). 

𝐴𝑚𝑝𝐶𝑇 refers to the peak-to-

peak amplitude of CT sim 

motion. 

4.2.3.3.3. Internal-External Motion Correlation 

The internal-external motion correlation was assessed using the Pearson’s correlation coefficient (r), 

which has been utilised as the correlation test in previous intern-external respiratory motion 

studies.26, 27 The Pearson’s correlation coefficient was selected as the statistical test of choice 

because: (1) Pearsons’ correlation coefficient is a common test for bivariate data,28 (2) a 

scatterplot of the internal-external displacements was plotted to visually inspect the relationship 

between the two datasets; the relationship clearly appeared to be linear and therefore adequately 

described by Pearson’s correlation coefficient,28 and (3)  also from the visual inspection of the 

scatterplot, no outlier data was evident (which the Pearson’s correlation coefficient is sensitive to), 

and therefore Pearson’s correlation coefficient was still an adequate test.28 Motion utilised here was 

from the pre-treatment external and internal breathing motion as indicated in Figure 4-3. It should 

be noted that the external breathing motion from the Varian RPM was not saved during CBCT 
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imaging for Patient 1, as such, only Patients 2 – 5 are reported on for the internal-external 

correlation results.  

4.2.3.3.4. Patient and staff survey 

An evaluation of the patient and radiation therapist experience with the audiovisual biofeedback 

was also assessed though a survey, which can be found in Appendix II. Radiation therapists 

completed the survey because they were the hospital staff responsible for setting up and 

audiovisual biofeedback hardware and operating the audiovisual biofeedback software during the 

study. Surveys were taken by all patients and radiation therapists immediately after the Screening 

Procedure, and once more on the final fraction of treatment for those patients who had been 

utilising audiovisual biofeedback during treatment. These surveys involved responding to questions 

on a scale of 0 to 5 (required), in addition to inviting further comments (optional).   
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4.3. Results 

A Case Report published in the Journal of Medical Imaging and Radiation Oncology (see Appendix III) 

details the first patient recruited into the study. 

4.3.1. Screening Procedure 

The screening procedure yielded the decision to utilise audiovisual biofeedback over a course of 

SBRT with 3 of the 5 recruited liver cancer patients; hence, 2 patients underwent SBRT free 

breathing. Figure 4-7 compares the individual patient breathing cycles for free breathing and 

audiovisual biofeedback. Breathing condition outcome of the screening procedure highlighted in 

green.  

Patient Free Breathing Audiovisual Biofeedback 

1 

 
RMSE in displacement = 0.31 cm 

  
RMSE in displacement = 0.26 cm 

2 

 
RMSE in displacement = 0.18 cm 

 
RMSE in displacement = 0.07 cm 

3 

 
RMSE in displacement = 0.18 cm 

 
RMSE in displacement = 0.19 cm 
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4 

 
RMSE in displacement = 0.15 cm 

 
RMSE in displacement = 0.10 cm 

5 

 
RMSE in displacement = 0.05 cm 

 
RMSE in displacement = 0.15 cm 

Figure 4-7. Patient breathing cycles for free breathing (left) and audiovisual biofeedback (right). Solid blue 

lines are each individual breathing cycle, dashed red lines are the average of all breathing cycles. Plots 

outlined in green indicate the breathing condition that yielded more regular breathing in the screening 

procedure. 

The average RMSE in displacement values across all patients in the screening procedure are given in 

Table 4-2.  

Table 4-2. Screening procedure average ± STD RMSE values for audiovisual biofeedback and free breathing 

across all patients for external and internal breathing motion. 

RMSE in Displacement 

 Free breathing (cm) 
Audiovisual 

biofeedback (cm) 

Improvement due to  

audiovisual biofeedback 

External motion 0.17 ± 0.09 0.15 ±  0.08 11% (p = 0.6) 

Internal motion 0.14 ± 0.06 0.18 ±  0.07 -24% (p = 0.2) 

RMSE in period 

 Free breathing (s) 
Audiovisual 

biofeedback (s) 

Improvement due to  

audiovisual biofeedback 

External motion 0.85 ±  0.46 0.56 ± 0.22 34% (p = 0.2) 

Internal motion 0.62 ±  0.32 0.42 ±  0.09 33% (p = 0.2) 

91



 

Audiovisual biofeedback improved the regularity of external breathing period for 4 patients, and 

improved the regularity of internal breathing period for 3 patients, these 3 patients then utilised 

audiovisual biofeedback for their subsequent CT sim and treatment deliverry procedures.  

4.3.2. CT sim and Treatment Delivery 

For the 5 recruited liver cancer patients, 3 utilised audiovisual biofeedback and 2 were free 

breathing during their CT sim and 6 treatment fractions. Data presented here is organised into each 

individual patient’s course of SBRT (CT sim → fraction 6) in the figures, and mean ± standard 

deviation values for all audiovisual biofeedback and free breathing patients, respectively. For the 

data presented as boxplots, the horizontal edges of each box represent the 25th, 50th and 75th 

percentile values (bottom, middle, and top lines of box, respectively). Whiskers represent other 

points extending out to 1.5 times the interquartile range. Any points beyond the whiskers (‘+’) are 

considered outliers. 

4.3.2.1. Motion Regularity 

Intrafraction motion regularity of displacement was quantified by equation (1). The screening 

procedure identified the most regular breathing condition, either free breathing or audiovisual 

biofeedback, for each patient. Over their courses of SBRT, Patients 1, 2, and 4 utilised audiovisual 

biofeedback, and Patients 3 and 5 were free breathing, based on the decision made in the screening 

procedure. Figure 4-8 shows the RMSE in displacement results of external and internal breathing 

motion across the course of the SBRT. Internal breathing motion was acquired from CBCT projection 

images, and as such, internal motion was acquired for fractions of treatment only, and not from the 

CT sim session.    
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Figure 4-8. Average RMSE in displacement values for each patient over the course of SBRT from CT sim to 

fraction 6 for (a) external motion, and (b) internal motion. Free breathing patients shown as red, audiovisual 

biofeedback patients shown as blue. 

Intrafraction motion regularity of period was quantified by equation (2). Figure 4-9 shows the RMSE 

in period results of external and internal breathing motion across the course of the SBRT.  
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Figure 4-9. Average RMSE in period values for each patient over the course of SBRT from CT sim to fraction 6 

for (a) external motion, and (b) internal motion. Free breathing patients shown as red, audiovisual biofeedback 

patients shown as blue. 

Table 4-3. Average ± STD RMSE values for audiovisual biofeedback and free breathing for all patients across 

all treatment fractions for external and internal breathing motion. 

RMSE in Displacement (cm) 

 Free breathing 
Audiovisual 

biofeedback 

Improvement due to  

audiovisual biofeedback 

External motion 0.13 ± 0.06 0.13 ± 0.07 
-2% (p = 0.9)  

(no improvement) 

Internal motion 0.16 ± 0.08 0.17 ± 0.05 
-8% (p = 0.7) 

(no improvement) 

RMSE in period (seconds) 

 Free breathing 
Audiovisual 

biofeedback 

Improvement due to  

audiovisual biofeedback  
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External motion 0.66 ± 0.19 0.47 ± 0.19 28% (p = 0.01) 

Internal motion 0.59 ± 0.29 0.46 ± 0.15 23% (p = 0.2) 

In terms of RMSE in displacement, audiovisual biofeedback and free breathing patients 

demonstrated comparable breathing motion regularity. For external breathing motion, Patient 2 

(audiovisual biofeedback) demonstrated the most regular breathing over their course of SBRT with 

an average RMSE in displacement of 0.11 cm; the next most regular breathing was Patient 4 

(audiovisual biofeedback) with an RMSE  in displacement of 0.11 cm, followed by Patient 5 (free 

breathing) with an RMSE in displacement of 0.12 cm, followed by Patient 3 (free breathing) with an 

RMSE in displacement of 0.15 cm, followed by Patient 1 (audiovisual biofeedback) with an RMSE in 

displacement of 0.19 cm. For internal breathing motion, Patient 5 (free breathing) demonstrated the 

most regular breathing over their course of SBRT with an average RMSE in displacement of 0.08 cm; 

the next most regular breathing was Patient 4 (audiovisual biofeedback) with an RMSE  in 

displacement of 0.15 cm, followed by Patient 2 (audiovisual biofeedback) with an RMSE in 

displacement of 0.16 cm, followed by Patient 3 (free breathing) with an RMSE in displacement of 

0.21 cm, followed by Patient 1 (audiovisual biofeedback) with an RMSE in displacement of 0.22 cm. 

4.3.2.2. External Interfraction Motion Consistency 

Interfraction motion consistency is described by Figure 4-6, the breathing signal was organised into 

10 phase bins, from 0% to 90% in 10% increments. The phase bins from CT sim were compared to 

the phase bins from each treatment fraction. Figure 4-10 shows the breathing signals from the CT 

sim and each treatment fraction organised into 10 phase bins for patients 1 to 5 for the CT sim and 

each fraction of treatment.  
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Figure 4-10. Breathing displacements organised into 10 phase bins for breathing motion during CT sim (black 

line, filled markers), and each fraction of treatment (coloured line, hollow markers) for free breathing (red) and 

audiovisual biofeedback (blue) patients. 

The difference of each fraction of treatment to the CT sim are shown in Figure-14.  
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Figure 4-11. Average (a) relative difference, and (b) absolute difference between CT sim phase bins and the 

each  fraction of treatment phase bins. Free breathing patients shown as red, audiovisual biofeedback patients 

shown as blue. 

Table 4-4. Average ± STD Inter-fraction motion consistency values for audiovisual biofeedback and free 

breathing. 

Relative Difference 

 Free breathing 
Audiovisual 

biofeedback 

Improvement due to  

audiovisual biofeedback 

Inter-fraction motion 

consistency (%) 
22.0 ± 16.3 14.9 ± 10.0 32% (p < 0.001) 

Absolute Difference 

 Free breathing 
Audiovisual 

biofeedback 

Improvement due to  

audiovisual biofeedback 

Inter-fraction motion 

consistency (cm) 
0.15 ± 0.10 0.14 ± 0.13 4% (p = 0.6) 
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In terms of relative difference, Patient 2 (audiovisual biofeedback) demonstrated the most 

consistent interfraction motion with an average relative difference of 12% over their course of SBRT. 

Patient 1 (audiovisual biofeedback) demonstrated the next most consistent interfraction motion 

with an average relative difference of 14%, followed by Patient 5 (free breathing) with an average 

relative difference of 18%, followed by Patient 4 (audiovisual biofeedback) with an average relative 

difference of 19%, followed by Patient 3 (free breathing) with an average relative difference of 25%. 

In terms of absolute difference, Patient 2 (audiovisual biofeedback) demonstrated the most 

consistent interfraction motion with an average absolute difference of 0.07 cm over their course of 

SBRT. Patient 4 (audiovisual biofeedback) demonstrated the next most consistent interfraction 

motion with an average absolute difference of 0.07 cm, followed by Patient 3 (free breathing) with 

an average absolute difference of 0.14 cm, followed by Patient 5 (free breathing) with an average 

absolute difference of 0.15 cm, followed by Patient 1 (audiovisual biofeedback) with an average 

absolute difference of 0.27 cm.    

As shown in Figure 4-11(b), for two patients audiovisual biofeedback largely produced sub-

millimetre interfraction motion consistency. While Patient 1 demonstrated low inter-fraction motion 

consistency in terms of relative difference, it had a considerably larger inter-fraction motion 

consistency in terms of the absolute difference. This is because Patient 1 had the largest amplitude 

of the 5 patients (see Figure 4-10), and therefore, by normalising the respiratory signal by its 

amplitude, the larger absolute differences (in cm) corresponded to a lower relative difference.  

4.3.2.3. Internal-External Motion Correlation 

Examples of the median R value for each patient are shown in Figure 4-12. 

Table 4-5. Median R values for patients 2 to 5 and their corresponding breathing signals and correlation 
plots.  

Patient Breathing signals Correlation plot r 

2 (AV) 

  

0.96 
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3 (FB) 

  

0.84 

4 (AV) 

  

0.93 

5 (FB) 

  

0.96 

In the screening procedure a stronger r-value was yielded for two audiovisual biofeedback patients, 

and stronger for free breathing for the other two patients. It should be noted that Patient 1 was not 

included in this analysis due to external motion data loss during CBCT imaging.  Figure 4-12 shows 

the Pearson’s correlation coefficient (r) values for the internal-external motion correlation across 

each patient’s course of SBRT and Table 4-6 provides the average values for the two breathing 

conditions over the entire course of SBRT. 
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Figure 4-12. R values for free breathing 

(red) and audiovisual biofeedback (blue) 

across all CBCT imaging sessions (decision 

procedure and pre-treatment imaging). 

 

 

 

 

 

Table 4-6. Average ± STD R values for all patients’ course of SBRT for Audiovisual 

biofeedback and free breathing. 

 Free breathing 
Audiovisual 

biofeedback 

Improvement due to  

audiovisual biofeedback 

R 0.89 ± 0.08 0.93 ± 0.04 4% (p = 0.14) 

4.3.2.4. Patient and Staff Survey 

Audiovisual biofeedback surveys were taken by patients and radiation therapists on the patient’s 

first and last use of audiovisual biofeedback, on the screening procedure and on the final fraction of 

treatment. The survey was taken a second time on the final fraction of treatment only for the 

patients and radiation therapists who utilised audiovisual biofeedback during their course of 

treatment. All patients completed the survey on the screening procedure. Table 4-7 and Table 4-8 

details the questions and average scores given by the patients and radiation therapists, respectively.  
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Table 4-7. Questions and average responses from all patients 

Question Response options Average patient response 

Do you feel your breathing was more 

consistent using audiovisual 

biofeedback?  

0 (no) , moderately (3), to 5 (yes)  3.75 

Was the training session that you had 

prior to this session helpful?  
0 (no) , moderately (3), to 5 (yes)  4.67 

Did you feel physically comfortable 

with the audiovisual biofeedback 

system?  

0 (no) , moderately (3), to 5 (yes)  4.5 

Did you feel the audiovisual 

biofeedback visual guide (white curve) 

was too fast or too slow?  

0 (too slow) , just right (3), to 5 (too 

fast)  
3.13 

Did you feel the audiovisual 

biofeedback visual guide (white curve) 

was too shallow or deep?  

0 (too shallow) , just right (3), to 5 

(too deep)  
2.38 

Did you like having the music?  0 (no) , moderately (3), to 5 (yes)  3.14 

Did the music help you breathe more 

consistently?  
0 (no) , moderately (3), to 5 (yes)  2.33 

Did you feel anxious during the 

session?  
0 (no) , moderately (3), to 5 (yes)  1.25 

Table 4-7 demonstrates the importance of the training session performed in assisting patients 

becoming familiar and comfortable with the audiovisual biofeedback system. Further to this, the 

survey also demonstrates that the audiovisual biofeedback system was comfortable for the patient 

to use and did not make the patient anxious, with patients reporting a low level of anxiety. Patients 

reported that the speed and amplitude of the guiding wave were almost ‘just right’, with one 

patient commenting that the guiding wave was a little slow, and another noting that it was a little 

fast, and another patient noting that it seemed a little fast at one time and a little slow at another.     
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Table 4-8. Questions and average responses from radiation therapists 

Question Response options Average patient response 

Do you think that the training session 

was useful for the patient?   
0 (no) , moderately (3), to 5 (yes)  4 

Do you think that audiovisual 

biofeedback helped your patient to 

breathe more regularly? 

0 (no) , moderately (3), to 5 (yes)  4.25 

Was the audiovisual biofeedback 

system easy to setup?  
0 (no) , moderately (3), to 5 (yes)  3.75 

Was the audiovisual biofeedback 

system easy to operate?   

0 (too slow) , just right (3), to 5 (too 

fast)  
4 

Would you recommend the audiovisual 

biofeedback guidance to your 

colleagues at other centres in similar 

treatment?   

0 (no) , 3 (moderately), to 5 (yes)  3.25 

Responses from the radiation therapists support the importance of an audiovisual biofeedback 

training session. Radiation therapists also reported to be confident in audiovisual biofeedback 

facilitating regular patient breathing. In addition to providing scores, radiation therapists also 

commented that the multiple components involved in setting up audiovisual biofeedback could be 

cumbersome, initially. Radiation therapists also commented that they would hold off recommending 

audiovisual biofeedback to colleagues until the results from the clinical trial were disseminated and 

whether such results demonstrated clinical improvements.  
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4.4. Discussion 

This was the first investigation into the use of breathing guidance during a course of liver SBRT 

employing an initial screening procedure to ensure the most regular breathing condition is utilised 

for each patient. For the five patients recruited into this study, the findings from the screening 

procedure yielded the decision to utilise audiovisual biofeedback during treatment planning and 

treatment delivery for 3 of the 5 patients.  

Over the course of SBRT treatment, there was no significant difference in the average 

breathing regularity between free breathing and audiovisual biofeedback patients. The mean RMSE 

in displacement of the external RPM motion for audiovisual biofeedback patients in this study was 

0.13 cm, comparable to the findings of a lung cancer patient audiovisual biofeedback study, which 

obtained average RMSE in displacement values of 0.14 cm for audiovisual biofeedback patients 

(results presented in chapter 5.). Whereas the free breathing patients in this study yielded an 

average RMSE in displacement values of 0.12 cm, considerably lower than the RMSE values obtained 

in a previous cancer patient study (0.20 cm, see chapter 5.), and either comparable to or lower than 

RMSE values yielded in healthy volunteer studies (0.13 cm13 and 0.16 cm14). This suggests that the 

screening procedure initially performed is an effective method of producing regular breathing over 

the subsequent course of SBRT, either by providing audiovisual biofeedback guidance or by 

identifying naturally regular free breathing patients.  

While no significant difference in terms of breathing regularity was observed between free 

breathing and audiovisual biofeedback patients, a significant improvement in interfraction motion 

consistency was observed from the use of audiovisual biofeedback, with 32% more agreement 

between respiratory motion during each treatment fraction and CT sim. This demonstrates that 

audiovisual biofeedback could be a useful tool in maintaining consistent interfraction breathing 

motion, minimising the deviation in respiratory motion from what was planned in CT sim to each 

fraction of treatment. While internal radio-opaque marker motion was not obtained during 

treatment delivery, the Pearson’s correlation coefficient (r) results indicate a significant correlation 

between internal and external respiratory motion. Further to this, audiovisual biofeedback 

produced a 4% improvement (p = 0.14) in Pearson’s correlation coefficient (r) values over free 

breathing. Previous studies have found that audiovisual biofeedback does not impact the correlation 

between internal and external respiratory motion in healthy volunteers; a study by Steel, et al., 

(2014) found that the correlation between external RPM motion and thoracic diaphragm motion 

was 0.96 for both free breathing and audiovisual biofeedback.26 However, recent preliminary 
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findings by Lee, et al., (2015) from a lung cancer patient study indicate that audiovisual biofeedback 

does improve the correlation between external surrogates and internal tumour motion over free 

breathing.29 Lee, et al., (2015) found the correlation between abdominal to thoracic diaphragm 

motion to be 0.91 and 0.95 for free breathing and audiovisual biofeedback, respectively. The 

findings reported in this chapter here appear consistent with those of Lee, et al., (2015), with the 

average correlation between external RPM and implanted radio-opaque marker motion being 0.89 

and 0.93 for free breathing and audiovisual biofeedback, respectively. This indicates that audiovisual 

biofeedback could be a useful tool in facilitating a more robust correlation between external 

respiratory surrogates and abdominal or thoracic tumours. However, further investigation is 

required to determine the factors responsible for the improvement in this correlation. Additionally, 

utilising more direct measurements of the tumour by the audiovisual biofeedback system, such as 

ultrasound or MR Navigator signal,30, 31 would yield a stronger correlation between audiovisual 

biofeedback signal and the tumour.       

Survey results also demonstrated that patients were comfortable using audiovisual biofeedback, 

both in terms of physical comfort and patients reporting near ‘just right’ responses in terms of speed 

(i.e. period) and amplitude of the guiding wave. Further to this, both patients and radiation 

therapists indicated the importance of the training session to help familiarise the patient with 

audiovisual biofeedback. 

The results presented here demonstrate the effectiveness of an initial screening procedure 

in facilitating regular breathing over the course of liver cancer SBRT by either providing audiovisual 

biofeedback breathing guidance or identifying naturally regular free breathing. Further to this, this 

study indicates that audiovisual biofeedback can improve the agreement between respiratory 

motion during CT sim and during treatment delivery.  
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4.5. Conclusion 

This was the first clinical implementation of audiovisual biofeedback utilising a screening procedure 

to ensure regular breathing is produced during the subsequent course of liver SBRT. This screening 

procedure yielded the decision to utilise audiovisual biofeedback over a course of SBRT in 3 / 5 

patients recruited into this study, with the other 2 patients receiving their SBRT under free breathing 

conditions. These 5 liver cancer patients demonstrated regular breathing over the course of their 

SBRT regardless of whether they used audiovisual biofeedback or free breathing, with RMSE values 

comparable to previous audiovisual biofeedback cancer patient studies, and considerably lower than 

free breathing patients in previous studies. These 5 liver cancer patients demonstrated regular 

breathing over the course of their SBRT regardless of whether they used audiovisual biofeedback or 

free breathing. While respiratory regularity was comparable between the two breathing conditions, 

audiovisual biofeedback did improve the interfraction motion consistency over free breathing; 

significantly improving the agreement between CT sim and treatment fraction respiratory motion.  

Audiovisual biofeedback also improved the internal-external respiratory motion correlation, 

however these results were non-significant. These findings demonstrate the effectiveness of the 

screening procedure in facilitating regular respiration over the course of SBRT in addition to 

audiovisual biofeedback being a potentially valuable tool in producing consistent respiratory motion 

between CT sim and treatment delivery. However, a study with a larger patient cohort is necessary 

to investigate this further. 
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CHAPTER 5 
 

Designing and initialising a multi-insitutional randomisation phase 
II audiovisual biofeedback clinical trial 

 

This chapter contains the study protocol titled “Audiovisual biofeedback breathing guidance for 
lung cancer patients receiving radiotherapy: a multi-institutional phase II randomised clinical trial” 

which has been published in BMC Cancer (2015; 15(1) 526-533) 
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CHAPTER 5 

Designing and initialising a multi-institutional randomisation phase II 

audiovisual biofeedback clinical trial 

As evident in chapter 2, to date, there have not been any randomised clinical trials testing breathing 

guidance interventions. Studies to date have largely demonstrated the proof of principle that 

breathing guidance improves the regularity and stability of respiratory motion. This chapter will 

focus on the design and initiation of a multi-site, randomised audiovisual biofeedback clinical trial. 

This chapter is presented in two parts: 5.1. retrospective analysis of a previous lung cancer patient 

audiovisual biofeedback study, and 5.2. the design and initiation of the randomised clinical trial. The 

aim of chapter 5.1. was to yield estimates of clinically relevant outcomes based on a retrospective 

analysis of a previous lung cancer patient audiovisual biofeedback investigation. The aim of chapter 

5.2. was to take the insights obtained in chapter 5.1. to design and then initiate a randomised 

audiovisual biofeedback clinical trial.    

5.1. Retrospective Analysis 

The previous audiovisual biofeedback study that recruited lung cancer patients was conducted at 

Virginia Commonwealth University by George, et al. (2003 – 2004).1-3 This study recruited a total of 

24 lung cancer patients who breathed both with and without audiovisual biofeedback across 5 

sessions, with each session being performed on a different date. The George, et al. study was also 

the largest audiovisual biofeedback study, to date. Given that there were no completed audiovisual 

biofeedback clinical trials, clinical insights to go into designing a randomised clinical trial needed to 

be estimated based on previous investigations. Considering that the George, et al. study was the 

largest audiovisual biofeedback lung cancer study, the George, et al., study data,1-3 was employed to 

estimate clinically relevant outcomes to determine the design and statistical considerations of a 

randomised audiovisual biofeedback clinical trial.  

5.1.1. Introduction 

As noted in chapter 1.3., for highly mobile tumors, such as those in the thoracic and abdominal 

regions,4,5 unstable and irregular breathing motion has a deleterious impact on the accuracy of 

medical imaging and radiation therapy.6-9 During radiation treatment there are two fundamental 

types of errors: the errors occurring during treatment preparation (systematic) and the errors 

occurring during treatment delivery (random); both these types of errors are exacerbated by 

irregular breathing-motion.  
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As noted in chapter 3 and chapter 4, the use of interactive breathing guidance interventions to 

engage with the patient, informing the patient in real-time on how to adjust their breathing to 

achieve stable and regular breathing motion, is one such technique to reduce systematic and 

random errors. The breathing guidance system audiovisual biofeedback,10 has demonstrated to 

facilitate regular anatomic motion10,11 and regular tumour motion,12,13 in addition to achieving 

improved medical image quality,14 imaging time,15 and gating efficiency.1 In studies that involved 

participants utilizing breathing guidance across multiple sessions on different dates, a trend that the 

participant exhibited increasingly regular breathing with increased usage of the breathing guidance 

intervention has been observed. A study by Kim, et al., (2012) performed MR imaging on 15 healthy 

volunteers over two days, spaced approximately one week apart, and observed that the breathing 

motion of the abdominal wall and the thoracic diaphragm was, on average, more regular on the 

second day.11 A study by Cossmann, et al., (2012), recruiting breast cancer patients and observed a 

decrease in treatment duration over 16 fractions from the use of breathing guidance in examples of 

two patients’ course of radiotherapy.16 A study performed by Venkat, et al. (2008), tested two 

different types of breathing guidance on 10 healthy volunteers performing a total of three breathing 

sessions over three different days. A trend towards more regular breathing with time was observed 

for one of the types of breathing guidance tested, but not for the other.10 However, the relationship 

between free breathing and audiovisual biofeedback guided breathing interfractionally has yet to be 

assessed. Given the observations of previous studies, should a training effect be determined to be a 

non-stochastic process, this would have valuable implications for achieving higher patient 

compliance with breathing guidance thereby further minimizing irregularities present in breathing 

motion. This would also give insights into optimising this training effect to achieve more regular 

breathing motion earlier in the patient’s course of treatment.  

Further to this, the impact of audiovisual biofeedback on systematic and random errors has also yet 

to be assessed. An audiovisual biofeedback study by Lu, et al, (2014) investigated the impact of 

breathing guidance on the match between ITVMIP (internal target volume generated by contouring in 

the maximum intensity projection scan) and ITV10 (ITV generated by combining the gross tumor 

volumes contoured over the 10 phases of a 4D-CT), however, this study did not assess the impact of 

audiovisual biofeedback on margin size.  

A study by George, et al. (2006), investigated the impact of audiovisual biofeedback on respiratory 

gating efficiency across five days of breathing sessions. George, et al., (2006) assessed the standard 

deviation of breathing motion within a gating window and found that audiovisual biofeedback 
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improved gating efficiency over free breathing and audio-only guidance, however this study did not 

assess the contribution of this to systematic or random errors.  

To address this gap in the literature, a retrospective analysis of the George data was performed to 

investigate the impact of audiovisual biofeedback breathing guidance on interfraction breathing 

regularity in addition to the respiratory-components of systematic and random errors, and the 

combination of these errors using the van Herk margin calculation. It should be noted that the 

George, et al., (2006) data is the respiratory signal from the real-time position management (RPM) 

external surrogate, and as such, a number of limitations of this methodology are prevalent. The 

calculation of systematic and random errors assume no other sources of error are present, so this 

represents a lower bound estimate of errors. It additionally includes the assumption that the RPM 

motion is similar to the tumour motion, which is a reasonable assumption in some circumstances, if 

the tumour is located in the lower lobe of the lung for example, but may not be an accurate 

surrogate for upper lobe tumours.17 However, given that a clinical evaluation of audiovisual 

biofeedback has not yet been performed, such an approximation is the best available option. 

George, et al., (2006) data was utilised as the five days of breathing sessions is representative of a 

hypofractionated course of radiotherapy.18 

5.1.2. Methods 

331 four minute breathing signals were acquired from 24 lung cancer patients in the George, et al., 

(2006) study.1,2 Patients participated in five breathing sessions performed on five different days. In 

each of the sessions three breathing conditions were tested for 4 minutes each: (1) free breathing 

(no guidance), (2) audio breathing guidance, and (3) audiovisual biofeedback breathing guidance. For 

the purpose of this study we only considered free breathing and audiovisual biofeedback breathing 

sessions. Of the 24 lung cancer patients recruited, 3 did not complete all five breathing sessions. 

Henceforth, each breathing session will be referred to as a fraction.  

5.1.2.1. Breathing motion Analysis 

Breathing motion was analysed in terms of average breathing peak-to-peak amplitude and breathing 

regularity. The root mean square error (RMSE) of breathing displacement and period was used to 

quantify breathing regularity.10,11 A lower value of RMSE is indicative of more regular motion. RMSE 

values were organised into the five separate breathing sessions to assess the trend of breathing 

regularity interfractionally.    
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5.1.2.2. Phase-based gating analysis for inhale, exhale and static beam 

Phase-based gating was utilized. An example phase and displacement signal is shown below. 

 

Figure 5-1. Top: Anterior-posterior (AP) breathing motion. Bottom: Phase of the top breathing motion. 

Peak exhale corresponds to 𝑃ℎ𝑎𝑠𝑒 =  𝜋 and peak inhale corresponds to 𝑃ℎ𝑎𝑠𝑒 =  0, 2𝜋. A gating 

window of 40% is typical for radiation therapy. So for exhale, a 40% gating window refers to the 

breathing signal within Phase =  𝜋 ± 20% =  (1.9 → 4.4). For inhale, a 40% gating window refers to 

the breathing signal within Phase =  {
0 + 20%

2𝜋 − 20%
=  

(0 → 1.3)
(5.0 → 2𝜋)

. 

A static beam refers to a gating window of 100%, i.e. the entire breathing signal from Phase = 0 →

2𝜋. Figure 5-2 illustrates these gating windows by highlighting them on the same respiratory signal 

illustrated in Figure 5-1.  

 

Figure 5-2. The same respiratory signal as displayed in Figure 5-1, with phase-based gating at exhale indicated 

in black, and phase-based gating at inhale indicated in red. 

113



5.1.2.3. Margin Calculation 

The systematic error (Σ) is the error between the anatomy at the time of set-up and the anatomy 

during treatment. A breathing signal with displacement 𝑋 = {𝑥1, … , 𝑥𝑛} can be expressed between 

times 𝑡1 and 𝑡2 as 𝑋𝑡1

𝑡2 = {𝑥𝑡1
, … , 𝑥𝑡2

}, where 𝑡1 and 𝑡2 are in seconds. Assuming a setup time of 15 

seconds, the systematic error for each fraction can be described as the difference in mean 

displacement between setup (first 15 seconds) and delivery (from 15 seconds to end of fraction (240 

seconds)):  

Σ𝑓 =  𝑋15
240̅̅ ̅̅ ̅̅ −  𝑋𝑜

15̅̅ ̅̅ ̅ (1) 

For each patient, the systematic error across all 𝑓 fractions can be expressed as:  

Σ𝑝𝑡 =  
1

𝑓
∑ Σ𝑓

𝑓
1   (2) 

The random error (σ) is the error during treatment, the random error for each fraction can be 

expressed as the standard deviation during treatment delivery (from 15 seconds to end of fraction (4 

minutes)): 

𝜎𝑓 = 𝑆𝐷(𝑋15
240)  (3) 

For each patient, the random error across all 𝑓 fractions can be expressed as:  

𝜎𝑝𝑡 =  
1

𝑓
∑ 𝜎𝑓

𝑓
1   (4) 

Systematic and random errors are used to estimate margin size using the van Herk formula:  

2.5Σ𝑝𝑡 +  0.7𝜎𝑝𝑡   (5) 

The van Herk formula was used to calculate the respiratory component of margins for static beam, 

exhale phase-based gating, and inhale phase-based gating. Free breathing and audiovisual 

biofeedback results were compared using a paired two-tailed Student’s t-test.  

5.1.2.4. Correlation between margins and breathing regularity 

The correlation between the calculated margins and respiratory motion regularity was assessed 

using the Pearson’s correlation coefficient (r), and a p-value for testing the hypothesis of no 

correlation. Respiratory motion regularity was quantified by the mean root mean square error 

(RMSE) in displacement for each lung cancer patient as described in chapter 5.1.2.1. 

5.1.3. Results 

5.1.3.1. Interfraction Breathing Regularity  

Figure 5-3 demonstrates the change in RMSE in displacement values over the five study days 

114



 

Figure 5-3. Mean RMSE 

values for each study 

session for audiovisual 

biofeedback (AVB, blue) 

and free breathing (red) 

Mean ± standard deviation (STD) RMSE values across the five study days, in addition to how 

significant the improvement in breathing regularity was on each study day, are given in Table 5-1.  

Table 5-1. Mean ± STD breathing regularity (RMSE in displacement, in cm) values for each study session performed 

across five days.   

 Session 1 Session 2 Session 3 Session 4 Session 5 All Sessions 

Free breathing 0.17 ± 0.06 0.18 ± 0.07 0.20 ± 0.07 0.22 ± 0.12 0.21 ± 0.08 0.20 ± 0.08 

Audiovisual 
biofeedback 

0.16 ± 0.08 0.15 ± 0.07 0.15 ± 0.08 0.12 ± 0.05 0.13 ± 0.07 0.14 ± 0.07 

Reduction due to 
audiovisual 
biofeedback 

6% 

(p = 0.48) 

19% 

(p = 0.04) 

28% 

(p = 0.003) 

43% 

(p < 0.001) 

40% 

(p < 0.001) 

28% 

(p < 0.001) 

While the improvement in breathing regularity was not significant on the patients’ first breathing 

session, by the second day of the study the improvement in breathing regularity was significant, 

reaching peak disparity between audiovisual biofeedback and free breathing on day 4. The Pearson’s 

correlation coefficient (r) between session day and RMSE value for audiovisual biofeedback was 

found to be -0.93 (p = 0.02), and 0.92 (p = 0.02) for free breathing. Further to this, the correlation 

between time and RMSE was found to be significant for audiovisual biofeedback with r = -0.93 (p = 

0.02). 

5.1.3.2. Margin Calculation 

Results of the respiratory components of the van Herk margin calculation for static beam, exhale 

phase-based gating (exhale gated), and inhale phase-based gating (inhale gated) are shown in Figure 

5-4 and given in Table 5-2.  
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Figure 5-4. Margin calculations for all 24 lung cancer patients for audiovisual biofeedback (AVB, blue) and free 

breathing (red) for static beam, exhale gated, and inhale gated. 

Table 5-2. Margin calculations (in cm) based on the respiratory components of patient breathing motion for static 

beam, and phase-based gating with a duty cycle of 40% for exhale and inhale.  

 Static beam Exhale Inhale 

Free breathing 
0.75 ± 0.38 

(range: 0.30 – 1.99) 

0.51 ± 0.35 

(range: 0.18 – 1.66) 

0.73 ± 0.46 

(range: 0.30 – 2.12) 

Audiovisual biofeedback 
0.45 ± 0.19 

(range: 0.19 – 0.89) 

0.09 ± 0.67 

(range: 0.09 – 0.67) 

0.34 ± 0.20 

(range: 0.13 – 0.78) 

Margin reduction due to 

audiovisual biofeedback 

40% 

(p = 0.0006) 

48% 

(p = 0.002) 

54% 

(p = 0.0003) 
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Audiovisual biofeedback reduced the calculated margin size for 20 out of 24 patients for static 

beam, 19 out of 24 for exhale gating, and 21 out of 24 patients for inhale gating. Further to this, 14, 

22, and 19 out of 24 lung cancer patients had margins less than 5 mm for audiovisual biofeedback 

for static beam, exhale gated, and inhale gated margins respectively; while only 5, 14, and 9 lung 

cancer patients had margins less than 5 mm for free breathing for static beam, exhale gated, and 

inhale gated margins respectively.   

5.1.3.3. Correlation between margins and breathing regularity 

Figure 5-5 shows the calculated margins as a function of RMSE in displacement values. Table 5-3 

shows the Pearson’s correlation coefficient (r) irrespective of breathing condition. 

 

Figure 5-5. Calculated margins as a function of RMSE in displacement for (from left to right) static beam, 

exhale gated, and inhale gated. Audiovisual biofeedback (AVB) indicated as blue circles, and free breathing 

indicated a red squares.   

Table 5-3. Pearson’s correlation coefficient (r) values and their respective p-values for the 

correlation between respiratory motion regularity (RMSE) and calculated margins for static 

beam, exhale gated, and inhale gated. 

 r p-value 

Static beam 0.59 < 0.001 

Exhale gated 0.41 0.004 

Inhale gated 0.58 < 0.001 

Figure 5-5 and Table 5-3 demonstrate a significant correlation between calculated margin and 

respiratory motion regularity.  

5.1.4. Discussion 

This retrospective analysis of the George, et al.1,2 data has yielded the clinically relevant insights 

pertaining to the impact of audiovisual biofeedback on both training effect in addition to calculated 
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treatment margins. The original study by George et al., monitored the breathing of 24 lung cancer 

patients across five sessions performed over five separate days and observed an improvement in the 

standard deviation of breathing motion within a gating window, but observed no trend of this with 

respect to time.1 In this study, the George et al. data was analysed utilising a metric of motion 

regularity (RMSE),10-12 rather than a metric for gating efficiency, to determine the interfraction 

relationship between breathing regularity and time. Further to this, the respiratory-components of 

systematic and random errors were analysed utilising the van Herk margin calculation.19  

On day 1 of the study, there was no significant difference in terms of breathing regularity 

between audiovisual biofeedback and free breathing (6% improvement, p = 0.48). However, by day 2 

a significant difference between audiovisual biofeedback and free breathing was observed, with 

audiovisual reaching peak regularity by day 4, significantly more regular than free breathing (43% 

improvement, p < 0.001). The correlation between time and RMSE was found to be significant for 

audiovisual biofeedback with r = -0.93 (p = 0.02). Interestingly, the correlation between time and 

RMSE was also found to be significant for free breathing, too, with r = 0.92 (p = 0.03). The main 

difference between these two relationships is that the trend for audiovisual biofeedback is for RMSE 

to decrease with time, whereas RMSE increased with time for free breathing. The decrease in RMSE 

(i.e. increasing regularity) for audiovisual biofeedback is evidence for a training effect, with patients’ 

familiarity and compliance with breathing guidance increasing with time. This increase in RMSE for 

free breathing may have had to do with their ongoing radiation treatment which was being 

performed in parallel with this study, with potential radiation toxicities compromising their 

respiratory function as evident as their decreasing free breathing regularity. However, as radiation 

toxicities were not reported in the George, et al., investigation, this hypothesis is difficult to test.  

Audiovisual biofeedback also facilitated an improvement in margin reduction, significantly 

improving static beam, exhale gated, and inhale gated margins by 40%, 48%, and 54% respectively. 

Furthermore, a significant correlation between breathing regularity (RMSE) and margin size was 

observed, providing evidence that breathing motion regularity can significantly impact clinically 

relevant outcomes. Audiovisual biofeedback achieved a margin size of less than 5 mm for 14, 22, and 

19 out of 24 lung cancer patients for static, exhale gated, and inhale gated margins respectively; 

whereas free breathing achieved this for much few patients, with 5, 14, and 9 out of 24 lung cancer 

patients had margins less than 5 mm for static, exhale gated, and inhale gated margins respectively.   

However, the margin calculation performed is not a direct measure of treatment margins, as 

it only takes into account the respiratory components of systematic and random errors of an 

external respiratory surrogates signal and assumes no other radiotherapy errors. Furthermore, the 

respiratory signal utilised in these margin calculations was from an external surrogate, the real-time 
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position management (RPM) system. It should be noted that there are several other factors that 

impact margin size that are independent of respiratory motion. So the results presented here should 

not be interpreted as the impact of audiovisual biofeedback on the PTV margin size, rather, the 

reduction of what the respiratory component contributes to systematic and random errors in 

radiation therapy.    

This was the first study to investigate the impact of audiovisual biofeedback on systematic 

and random errors in radiation therapy in addition to the first study to investigate the training effect 

of audiovisual biofeedback. The results presented here provide valuable insights in terms of patient 

training and clinical outcomes to contribute to the design of a randomised audiovisual biofeedback 

clinical trial.   
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5.2. Clinical Trial Design and Initiation 

Based on the findings from chapter 2, a randomised clinical trial investigating breathing guidance 

interventions has yet to be performed, further to this, investigations to date have all be single-

institution studies. Using the findings presented in chapter 5.1. to drive the design and statistical 

considerations of a randomised clinical trial.    

5.2.1. Introduction 

The precision of radiotherapy can be reduced due to respiratory-related tumour motion, particularly 

for tumours in the thoracic region, leading to increased irradiation of healthy surrounding tissues, 

resulting in a significant increase in radiation-related toxicity.20-22 This is further exacerbated when 

respiration is irregular in nature.23,24 A 1Gy increase in tumour dose results in a 4% improvement in 

survival,20 however, a 0.5 cm range of tumour motion can cause a 4% variation in radiation dose22 

which leads to an increase in mean dose to healthy surrounding tissues resulting in an increase in 

risk of pneumonitis and radiation toxicity.21,25  

Breathing guidance is one such technique which specifically aims to facilitate regular patient 

breathing by showing the patient how to adjust their breathing in real-time. One such breathing 

guidance system is the audiovisual biofeedback system, developed by Venkat, et al.10 

Audiovisual biofeedback is a real-time, interactive and personalised respiratory guide designed to 

facilitate regular patient breathing. However, the findings of a recent literature search, presented in 

chapter 2, yielded that a randomised clinical trial with any breathing guidance intervention has not 

yet been performed. To fill the gap in the literature, we have designed a multi-institutional, phase II, 

randomised clinical trial to thoroughly assess the clinical impact of the audiovisual biofeedback 

breathing guidance system. Based on previous findings and the results presented in chapter 5.1.3., 

we hypothesise that audiovisual biofeedback will significantly improve breathing regularity and 

reduce medical imaging errors for lung cancer patients undergoing imaging and treatment 

procedures during radiotherapy.  

5.2.2. Study Design 

The statistical considerations for this study are largely based on the analysis performed in chapter 

5.1. utilising the data from a study conducted at Virginia Commonwealth University (VCU) on 24 lung 

cancer patients.1,2 26 patients were recruited for the VCU study, however, 2 patients dropped out 

due to not being treated with radiotherapy or rapid worsening of disease, and so their data was not 

collected. A clinically significant different in clinical improvement due to audiovisual biofeedback has 

been determined to be a margin calculation of less than 5 mm. Irregular breathing causes larger 
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systematic errors (Σ) from motion artefacts and variations between the planned and treated 

anatomy as well as random day to day variations (σ) in the treated anatomy (see chapter 5.1.3.). To 

combine systematic and random errors and estimate the margin contribution due to breathing 

irregularity we will use the van Herk method26: margin = 2.5Σ + 0.7σ (as described in chapter 

5.1.2.3.). From this calculation, there were 14/24 patients with margins <5 mm with audiovisual 

biofeedback, while only 5/24 for free breathing in the static beam case. The limitations of this 

margin analysis have been outlined in chapter 5.1.4. in that the margin calculation performed is not 

a direct measure of treatment margins, as it only takes into account the respiratory components of 

systematic and random errors of an external respiratory surrogates signal and assumes no other 

radiotherapy errors. But given that a clinical evaluation of audiovisual biofeedback has not yet been 

performed, such an approximation is the best available option.  

In this proposed study, we would like to increase the proportion of patients with reduced 

margins calculated using the van Herk method. This will be achieved in an exploratory phase II 

randomised clinical trial examining the potential impact of the audiovisual biofeedback system in 

facilitating regular breathing in lung cancer patients receiving radiation therapy for the treatment of 

lung cancer. Without this system, it is conservatively estimated that approximately 40% of patients 

experience regular breathing (margin component below 5mm). Increasing this proportion to 60% 

using the audiovisual biofeedback system would be clinically worthwhile. Based on Simon’s design,27 

a sample size of 50 patients receiving the audiovisual biofeedback system will have at least 80% 

power with 95% confidence to rule out a regular rate of 40% in favour of a 60% rate. To minimise 

patient selection bias and provide an estimate of regular breathing from a contemporary control, the 

proposed design will be a randomized phase II with 50 patients receiving the intervention and 25 

patients receiving the standard of care (no biofeedback intervention). Patients will be randomised in 

a 2:1 ratio, with 2/3 of the patients being recruited into the audiovisual biofeedback (intervention) 

arm and 1/3 in the free breathing (control) arm as shown in Figure 5-3 in chapter 5.2.3. 2:1 

randomisation is appropriate as within the interventional arm there is a screening procedure where 

only patients whose breathing is more regular with audiovisual biofeedback use this system for their 

imaging and treatment procedures (Figure 5-3 in chapter 5.2.3.).  Patients will be stratified by 

treating institution and for treatment intent (palliative vs. radical) to ensure similar balance in the 

arms across the sites. As the study is not powered for formal comparisons between the groups, 

estimates of the proportion of patients which do not experience irregular breathing will provide 

information as to whether further investigation is warranted. 

Assuming a contamination and dropout rate of no more than 10%, this study will require that 

75+8=83 patients be recruited (the 10% value was based on the 2/26 patient drop-out rate in the 
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VCU study). The estimated patient numbers are conservative because they are derived from the 24-

lung cancer patient VCU study which used a cruder breathing training system that what will be used 

in this study. Further to this, from the results presented in chapter 5.1.3.1., a training effect is 

evident with patients using audiovisual biofeedback, with their breathing becoming increasingly 

regular with time. With this in mind, additional measures of patient training will be incorporated into 

this clinical trial to expedite this training effect, implementing a brief practice period and a patient 

information video to further familiarise the patient with the audiovisual biofeedback system. 

Providing lengthy training sessions for each patient is not feasible in a busy department, therefore 

the training session was designed to fit within a reasonable amount of time such that the patient 

could be informed and introduced to audiovisual biofeedback in a time-efficient manner. Over-

training the patient through lengthy information and practice sessions that are clinically impractical 

may bias the results to have more audiovisual biofeedback patients in the intervention arm, 

compromising the secondary objective (see subsequent section 5.2.3. Study Protocol) of determining 

the indications and contra-indications for the use of audiovisual biofeedback.  

Patients at each institution will be treated per department protocol with no additional 

constraints on dose, fractionation, immobilisation or image guided procedures.  

5.2.3. Study Protocol 

The ethics, governance, legal, and regulatory processes were completed prior to the initiation of the 

clinical trial. The clinical trial was registered with the Australian New Zealand Clinical Trials Registry 

(ANZCTR), trial ID: ACTRN12613001177741. Documentation approved by the Hunter New England 

Human Research Ethics Committee is presented in Appendix II.  

This study’s protocol was published in BioMed Central Cancer. 
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Abstract 
 

Background: There is a clear link between  irregular breathing  and errors in medical imaging and radiation 
treatment.  The audiovisual biofeedback  system is an advanced form of respiratory guidance that has previously 
demonstrated to facilitate regular patient breathing. The clinical benefits of audiovisual biofeedback will be 
investigated in an upcoming  multi-institutional,  randomised, and stratified clinical trial recruiting a total of 75 lung 
cancer patients undergoing  radiation therapy. 
Methods/Design: To comprehensively  perform  a clinical evaluation of the audiovisual biofeedback  system, a multi-
institutional  study will be performed. Our methodological  framework will be based on the widely used Technology  
Acceptance  Model, which  gives qualitative  scales for two specific variables, perceived usefulness and perceived  
ease of use, which are fundamental  determinants  for user acceptance. A total of 75 lung cancer patients will be 
recruited  across seven radiation  oncology  departments  across Australia. Patients will be randomised in a 
2:1 ratio, with 2/3 of the patients being recruited into the intervention arm and 1/3 in the control  arm. 2:1 
randomisation  is appropriate  as within the interventional arm there is a screening procedure where only patients 
whose breathing is more regular with audiovisual biofeedback will continue to use this system for their imaging 
and treatment procedures. Patients within the intervention arm whose free breathing is more regular than 
audiovisual biofeedback in the screen procedure  will remain in the intervention arm of the study but their imaging 
and treatment procedures will be performed without audiovisual biofeedback. Patients will also be stratified by 
treating institution and for treatment intent (palliative vs. radical) to ensure similar balance in the arms across the 
sites. Patients and hospital staff operating the audiovisual biofeedback system will complete questionnaires to 
assess their experience with audiovisual biofeedback. The objectives of this clinical trial is to assess the impact of 
audiovisual biofeedback on breathing motion, the patient experience and clinical confidence in the system, clinical 
workflow, treatment margins, and toxicity outcomes. 
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(Continued from previous page) 

Discussion: This clinical trial marks an important  milestone in breathing guidance studies as it will be the first 
randomised, controlled trial providing the most comprehensive evaluation of the clinical impact of breathing 
guidance on cancer radiation therapy to date. This study is powered  to determine the impact of AV biofeedback 
on breathing regularity and medical image quality. Objectives  such as determining the indications and contra- 
indications for the use of AV biofeedback, evaluation  of patient experience, radiation toxicity occurrence and 
severity, and clinician confidence will shed light on the design of future  phase III clinical trials. 
Trial registration: This trial has been registered with the Australian New Zealand Clinical Trials Registry (ANZCTR), 
its trial ID is ACTRN12613001177741. 
 

Keywords: Breathing guidance, Motion management, Randomised, Stratified, Phase II clinical trial, Lung cancer, 
Radiotherapy 

 
 

Background 
The precision of radiotherapy can be reduced due to 

respiratory-related tumour  motion,  particularly  for  tu- 

mours in the thoracic region, leading to increased ir- 

radiation  of healthy surrounding tissues, resulting in a 

significant  increase  in  radiation-related toxicity  [1–3]. 

This is further  exacerbated  when respiration is irregular 

in  nature   (deep/shallow   breaths,   baseline  shifts,  sus- 

pended  breathing,  etc.) [4, 5]. A 1Gy increase in tumour 

dose results  in a 4 % improvement in survival, [6] how- 

ever, a 0.5 cm range  of tumour motion  can cause a 4 ~ 

5 % variation  in radiation  dose [7] which leads to an 

in- crease   in  mean   dose  to  healthy   surrounding  

tissues resulting  in an increase in risk of pneumonitis 

and radi- ation toxicity [8, 9]. 

Techniques such as respiratory  gating, breath-holds and 

tumour tracking are clinically useful for tumour motion 

management [10, 4, 11]. However, irregular respiration can 

reduce the efficiency of such motion management tech- 

niques, [12, 13] irregular respiration also causes motion  ar- 

tefacts and anatomic  errors in medical imaging [14–19]. 

Breathing guidance is one such technique  which spe- 

cifically aims  to  produce   regular  patient   breathing   by 

showing  the  patient   how  to  adjust  their  breathing   in 

real-time.  One such breathing  guidance system is the au- 

diovisual (AV) biofeedback  system (shown  in Fig. 1), de- 

veloped by Venkat, et al [13]. 

AV biofeedback  is a real-time,  interactive  and  persona- 

lised respiratory  guide designed to facilitate regular patient 

breathing.  Table 1 outlines  the findings from previous AV 

biofeedback investigations. 

However, none of the studies presented in Table 1 were 

randomised trials, in addition  to this, the findings of a re- 

cent  literature   search  yielded  that  a randomised clinical 

trial with any breathing  guidance  intervention has not yet 

been performed.  To fill the gap in the literature,  we have 

designed  a multi-institutional,  phase  II, randomised clin- 

ical trial to thoroughly  assess the clinical impact of the AV 

biofeedback breathing  guidance system. Based on previous 

findings, we hypothesise  that  AV biofeedback  will signifi- 

cantly improve breathing regularity and reduce medical 

imaging  errors  for  lung  cancer  patients  undergoing im- 

aging and treatment procedures during radiotherapy. 

This trial has been registered with the Australian New 

Zealand  Clinical  Trials  Registry (ANZCTR),  its trial  ID 

is ACTRN12613001177741. 

 
Methods/Design 
This study aims to assess the clinical impact of AV biofeed- 

back by recruiting  75 lung cancer patients  across seven ra- 

diation  oncology  departments.  What  follows is an outline 

of the AV biofeedback setup, primary and secondary objec- 

tives, participant selection criteria, the study workflow, and 

statistical considerations for our study design. 

 

 

 

Fig. 1 AV biofeedback system (left). Display goggles and real-time position management  (RPM) marker block  on the abdomen shown. The 
visual display (right), as seen by the patient, of the AV biofeedback guiding  interface shows the waveguide (white curve) and a marker position 
(grey marker) in real time 
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Table 1 Details of previous AV biofeedback  investigations 
Investigation  author (Year) Participants Findings 
George [23] (2006) 24 lung cancer patients • Residual breathing  motion within a gating  window improved 
 

Venkat [13] (2008) 10 healthy volunteers • Waveguide breathing guidance produced more regular breathing             
__________________________________________________than bar-model guidance and free breathing 

Yang [22] (2012) Phantom study • 4D  PET image quality improved 
 

An [36] (2013) Retrospective  analysis 
___________________________of George (2006) data 

• CTV coverage  improved 

• Internal  motion variation improved 
 

Kim, [21] Pollock, [37] & 
Steel [38] (2012–2014) 

15 healthy volunteers • Kim (2012): Breathing  regularity  of thoracic diaphragm and abdominal wall improved 

 • Pollock  (2013): Accuracy  of kernel density estimation motion prediction improved 
 

• Steel (2014): Strong correlation  between  internal and external anatomic  motion 
for both AV biofeedback and free breathing 

Lee [24] (2014) 5 healthy volunteers • Improved  3D MR image quality 

• Reduced  gated  MRI scan time 

Lu [39] (2014) 13 lung & liver cancer patients • Breathing regularity improved 

• ITVMIP underestimated  ITV10 

Lee [40] (2014) 7 lung cancer patients • Improved intrafraction lung tumour motion consistency 

• Improved interfraction lung tumour motion consistency 
 

 
 

Research Ethics Committee 
The protocol for this clinical trial has been reviewed and 

approved by the Hunter New England Human Research 

Ethics Committee (HREC). This  Human  Research  Ethics 

Committee is constituted and operates  in accordance  with 

the   National   Health   and   Medical   Research   Council’s 

‘National  Statement on  Ethical  Conduct   in  Human   Re- 

search (2007)’ (National Statement) and the ‘CPMP/ICH 

Note of Guidance  on Good Clinical Practice’. The Hunter 

new England HREC has also been accredited  by the New 

South Wales Department of Health as a lead HREC under 

the single ethical and scientific review. A report on the 

progress of this clinical trial is required  to be submitted 

annually to the Hunter New England HREC. 

 

 
Audiovisual biofeedback system 
The  AV biofeedback  system,  as shown  in Fig. 1, utilises 

the Real-time Position  Management system (RPM, Varian 

Medical Systems, Palo Alto, USA) to track  the motion  of 

an external  marker  positioned  on the  patient’s  abdomen. 

This real-time  respiratory-motion is used by the AV bio- 

feedback software  to calculate  an average cycle of respir- 

ation  (using  a Fourier  series  fit from  10 obtained 

respiratory  cycles). This average cycle is used as the wave- 

guide  (white  curve  in  Fig. 1)  which  continually   moves 

from right-to-left across the visual display and acts as part 

of the visual prompt for AV biofeedback. Also on the vis- 

ual  display  is  a  grey  marker   moving  vertically  up-and- 

down  corresponding to  the  anterior-posterior motion  of 

the marker  block positioned  on the patent’s  abdomen.  It is 

the  goal for the  patient  to keep the  marker  block within 

inhale-exhale  limits (presented as the blue region in Fig. 1) 

and  match  the  grey marker  block  over  the  white  wave- 

guide.  The  audio  component of AV biofeedback  is clas- 

sical  music  playing  to  the  patient;  the  music  fades  to 

silence  should  the  marker  block  move  outside  the  blue 

area breathing  limits. AV biofeedback  has been shown  to 

be compatible  in a number of imaging and treatment mo- 

dalities, [20–22] as well as utilising  different  types of pa- 

tient   displays  [23,  21,  24].  There   are  two  options   for 

patient display in this study: video goggles, or a screen 

mounted to  the  couch.  Which  patient  display  option  is 

utilised  in this  study  will depend  on  what  is available at 

each institution. 

Figure  2 illustrates  the  schematic  of the  AV biofeed- 

back study setup,  from  the RPM camera  monitoring pa- 

tient  breathing  motion,  to the AV biofeedback  computer 

receiving the RPM signal and extending  the AV biofeed- 

back guiding interface  to the patient  display. 

 

 
Objectives 
This  clinical  trial  will  recruit   75  lung  cancer  patients 

across  7 radiation  oncology departments testing  the  fol- 

lowing objectives: 

Primary  objective: In  a prospective  multi-institutional 

randomised clinical trial we will test  the  hypothesis  that 

AV biofeedback will significantly improve breathing 

regularity  and  reduce  medical  imaging  errors  for  lung 

cancer patients  undergoing imaging and treatment pro- 

cedures  during  radiotherapy. 

Secondary  objectives  will involve  patient-specific and 

department-specific objectives: 
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Fig. 2 Audiovisual biofeedback study setup schematic 
 

 

Patient-specific  objectives are to evaluate the impact  of 

AV biofeedback by: 

 
1) Quantifying the proportion of patients for whom 

breathing  is more regular with AV biofeedback, 

2) Quantifying the variability in breathing  motion 

throughout a course of treatment, 

3) Quantifying the improvement in image quality with 

AV biofeedback, 

4) Evaluating the patient experience through  a 

perception  of care survey, 

5) Developing indications and contra-indications for 

the use of AV biofeedback, 

6) Quantifying the differences in image-guided radio- 

therapy (IGRT) shifts during treatment, and 

7) Recording toxicity outcomes  for up to 12 months 

after treatment has been completed. 

 
Department-specific objectives are to evaluate  the  im- 

pact of AV biofeedback  on clinical testing  by: 

 
1) Quantifying any practice changes (e.g. margin 

reduction), 

2) Quantifying the impact on workflow using the AV 

biofeedback device through  time-motion studies, 

3) Evaluating the operator  and clinician confidence in 

the AV biofeedback device’s reliability and clinical 

efficacy through  a technology-impact survey, 

4) Quantifying the system robustness  through 

hardware  and software fault reporting,  and 

5) Performing system quality assurance, sharing the 

results through  web-based uploads and provide 

feedback for QA improvement. 

Our methodological  framework will be based on the 

widely used Technology Acceptance Model (TAM) 

[25, 26]. The TAM gives qualitative scales for two 

specific variables, perceived usefulness and perceived 

ease of use, which are fundamental  determinants for 

user acceptance. 

Study participant selection criteria 
This study will recruit  patients  with cancer of the lung 

receiving  external  beam  radiation   therapy.  Patients  fit- 

ting  the  eligibility criteria  (see below)  will be identified 

and introduced to this study by their treating  physicians, 

who will participate as investigators  in this study. The 

eligibility criteria are as follows: 

 
1) Lung cancer patients 

i.  No restrictions  to type of external beam radiation 

therapy being received 

ii. Primary or secondary cancer 

2) >18 years old 

3) No gender or ethnic restrictions 

4) An ECOG score in the range of 0 to 2 

5) Able to give written  informed consent  and 

willingness to participate  and comply with the study 

6) No pregnant  / lactating woman 

 
Study workflow 
Once informed  consent  has been obtained,  the patient  will 

be randomised into  either  the intervention or control  arm 

of the study. For patients  randomised into the intervention 

arm,   prior   to   their   planning   and   treatment  they   will 

undergo  a breathing  decision session during which they will 

breathe  both with and without  the guidance of AV biofeed- 

back. Preceding  each breathing  session will be a training 

session to familiarise the patient with the AV biofeedback 

system. After the breathing  decision session has been com- 

pleted, the most reproducible breathing  condition (AV bio- 

feedback or free breathing)  will be determined in situ by an 

‘Analyse Respiratory  Session’ function  within  the  AV bio- 

feedback software. It will be the most reproducible breath- 

ing condition  that  will continue to be used throughout the 

rest of that particular  patient’s  planning  and treatment. The 

flowchart for this study is shown in Fig. 3. 

For  all  patients,   each  follow-up  visitation  they  have 

with their treating  physician for the first 12 months  after 

their  treatment has finished, their  treating  physician  will 
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Fig. 3 Study flowchart 
 

 
complete   a  toxicity   report   to   satisfy  the   Secondary 

Patient-Specific    Objective   7:  Recording   toxicity   out- 

comes for up to 12 months  after treatment has been 

completed   by reporting   the  occurrence and  severity  of 

any radiation  toxicities. 

 
Patient randomisation 
This trial is stratified,  hence,  study group  random  alloca- 

tion will be determined by minimisation [27, 28]. Patients 

will be stratified  by treating  institution and  for treatment 

intent  (palliative  vs. radical)  and  minimisation consider- 

ably reduces the imbalance of these stratification  factors 

across the control and intervention groups of the study. 

Patients  will be randomised in a 2:1 ratio, 2 out  of 3 pa- 

tients  will be randomised into the AV biofeedback  (inter- 

vention)  arm  and  1 out  of 3 will be randomised into  the 

free breathing  (control) arm as illustrated  by Fig. 3. 

 
Sample size and power calculation 
The  statistical  considerations  for  this  study  are  largely 

based on a previous study conducted at Virginia Com- 

monwealth  University (VCU) on 24 lung cancer  patients 

[23, 29]. Prior to this multi-institutional clinical trial, the 

VCU study was the largest AV biofeedback  investigation, 

recruiting  a total of 26 lung cancer patients, however, 2 

patients dropped out due to not being treated with 

radiotherapy or rapid  worsening  of disease, and  so their 

data was not collected. In the VCU study 109 breathing 

sessions  were  performed  comparing  AV biofeedback  to 

free  breathing,   of  which,  87  sessions  (80  %) demon- 

strated more regular breathing  with AV biofeedback. 

Framing  this is in a more  clinical relevant  way: irregular 

breathing   motion  exacerbates  the  systematic  errors  (Σ) 

arising  from  motion  image  artefacts  and  variations  be- 

tween  the  planned  and  treated  anatomy,  as well as ran- 

dom  errors  (σ) from  day-to-day  variations  in the treated 

anatomy  [30, 15, 31]. To  combine  systematic  and  ran- 

dom  errors  and estimate  the margin  contribution due to 

breathing  irregularity  we will use  the  van Herk  method 

[32]: margin = 2.5Σ + 0.7σ, incorporating the  respiratory 

components of systematic  and  random  errors.  A clinic- 

ally significant difference in clinical improvement due to 

AV biofeedback  has been determined to be a margin  cal- 

culation  of less than  5 mm. This magnitude of reduction 

was  elected  as  clinically  significant  because  this  is  the 

same magnitude  of displacement attributed to contribut- 

ing to  significant  artefacts  and  errors  during  radiother- 

apy procedures as detailed  in AAPM Task Group  76 [4]. 

From  this van Herk  calculation,  in the VCU study there 

were 14/24 patients  with margins <5 mm with AV bio- 

feedback, while only 5/24 for free breathing. 

In this proposed  study, to get a more  accurate  indica- 

tion  of the  proportion of patients  with reduced  margins 

calculated  using the van Herk method  we have designed 
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an  exploratory   phase  II  randomised  study  examining 
the potential impact of an AV biofeedback system in 
regulating  breathing  in patients  receiving  radiation 
therapy  for the  treatment of lung  cancer.  Without the 
AV  biofeedback  system,  it  is  conservatively  estimated 
that  approximately   40  % of  patients   naturally  exhibit 
regular breathing  (margin  component below 5 mm). In- 
creasing  this proportion to 60 % using the  AV biofeed- 
back system would be clinically worthwhile. Based on 
Simon’s design, [33] a sample size of 50 patients  receiv- 
ing the  AV biofeedback  system  will have at least  80 
% power  with  95 % confidence  to  rule  out  a regular  
rate of 40 % in favour  of a 60 % rate.  To  minimise  
patient selection   bias   and   provide   an   estimate    of   
regular breathing  from a contemporary control, the 
proposed design will be a randomised phase II with a 
50 patients receiving the intervention and 25 receiving 
current standard of care.  Patients  will be  randomised 
in  a 2:1 ratio,  with  2/3 of the  patients  being  recruited  
into  the AV biofeedback (intervention) arm and 1/3 in 
the free breathing  (control)  arm  as illustrated  by Fig. 3. 
2:1 ran- domisation is appropriate as within  the  
interventional arm  there  is a screening  procedure 
where only patients whose  breathing  is more  regular  
with  AV biofeedback 

use this system  for their  imaging  and  treatment proce- 

dures.  Patients  will be stratified  by treating  institution 

and for treatment intent  (palliative vs. radical) to ensure 

similar balance in the arms across the sites. As the study 

is  not  powered   for  formal  comparisons  between   the 

groups, estimates  of the proportion of patients  which do 

not experience  irregular  breathing  will provide informa- 

tion as to whether  further  investigation  is warranted. 

Assuming  a  contamination  and  dropout  rate  of  no 

more  than  10 %, this study will require  that  75 + 8 = 83 

patients  be recruited  (the  10 % value was based  on the 

2/26 patient  drop-out rate in the VCU study).  

Patients  at each  institution will be treated  per  depart- 

ment protocol  with no additional constraints on dose, 

fractionation, immobilisation or image guided procedures. 

Results will be adjusted for institution (using a fixed effect) 

to account  for differences between institutions. 

 
Data analysis 
The primary objective is to assess the impact of AV 

biofeedback  on  breathing  regularity  and  image  errors; 

the section that follows details the metrics  to be utilised 

for the primary  objective. 

Breathing  motion  regularity  is quantified  as the  root 

mean  square  error  (RMSE) in displacement and  period 

[13, 21, 24, 34]. A breathing  signal is separated  into its 

individual  cycles  and  an  ‘average’  waveform  is  calcu- 

lated using a Fourier series fit. Figure 4 illustrates an 

example  breathing  trace,  its separation  into  cycles, and 

its average waveform. 

RMSE will be calculated  as detailed  by Venkat,  et al., 

(2008),[13] but will be outlined  here for clarity. For a 

breathing  pattern comprised  of n individual breathing 

cycles,  where  each  cycle  in  the  phase  domain   can  be 

written  as X = {x1,  x2, …, x360} and the average waveform 

of these  cycles can be written  as Y = {y1, y2, …, y360},  the 

RMSE in displacement is calculated  as: 

 
The period of each of the n breathing  cycles, in seconds, 

can be written  as P = {p1, p2, …, pn}, with the period of the 

average waveform  expressed  as Periodmean,  the  RMSE in 

period is calculated as: 

 
The impact  of AV biofeedback  on 4D-CT  image qual- 

ity will utilise an automated method  of image artefact 

identification   developed  by Cui,  et  al., (2012),  [35] but 

will be outlined  here for clarity. The method  is based on 

.

Fig. 4 Example of breathing motion  trace (left) then separated into individual cycles with the average waveform shown as the red dashed curve (right) 
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the similarity between edge slices at adjacent  couch posi- 

tions  A and  B; the  edge  similarity  between  slice A and 

slice B is expressed  by the normalised  correlation coeffi- 

cient  (NCC). Deviations  from  standard NCC, represent- 

ing  normal   anatomical   changes   between   edge   slices, 

signify  the  presence   of  an  image  artefact.  Cui,  et  al., 

(2012)  reported   good  agreement   of  their  method   with 

the assessment  of two observers. 

 
Discussion 
This clinical trial marks an important milestone  in breath- 

ing guidance studies as it will be the first randomised, con- 
trolled  trial providing  the most  comprehensive evaluation 

of the clinical impact of breathing  guidance  on cancer 

radiation therapy to date. Based on the structure of 

previous investigations and taking into consideration the 

increase in scope of this study, the authors have designed 

a multi-institutional, randomised, phase II, stratified 

clinical trial to test the hypothesis that audiovisual 

biofeedback breathing guidance will significantly 

improve breathing regularity and reduce medical 

imaging errors for lung cacner patients undergoing 

imaging and treatment procedures during radiotherapy. 

While patients will be stratified by treating institution 

and for treatment intent, the study is not powered for 

formal comparisons between these stratified groups; 

estimates from the current proposed study of the 

proportion of patients which do not experience irregular 

breathing will provide information as to whether further 

investigation is warranted. Further to this, objectives 

such as determining the indications and contra-

indications for the use of audiovisual biofeedback, 

evaluation of patient experience, radiation toxicity 

occurrence and severity, and clinician confidence will 

shed light on the design of future phase III clinical trials. 
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5.2.4. Institution Credentialing 

For an institute to become fully credentialed to recruit patients in this clinical trial it is required to:  

1) Receive ethics approval from a Human Research Ethics Committee (HREC) 

2) Receive ethics approval from Local Health District (LHD) 

3) Receive a receipt notification from the  Therapeutic Goods Administration (TGA) for the 

Clinical Trial Notification (CTN) 

4) Perform audiovisual biofeedback daily and monthly quality assurance (QA) in CT sim and 

linac rooms  

5) Perform clinical trial workflow, imaging, and data acquisition in CT sim and linac rooms with 

a motion phantom 

6) Perform clinical trial workflow and data acquisition in CT sim and linac rooms with a 

volunteer 

7) Transfer de-identified data from institution’s radiation oncology department to University of 

Sydney  

Points 4) through 7) need to be performed by investigators affiliated with the participating 

institution without input or assistance from investigators from the University of Sydney. This is to 

ensure that each institution can perform the clinical trial unsupervised, as it is not feasible for a 

University investigator to be present at all participating institutions during the study.   

Table 5-4 details the progress of each participating institution towards full credentialing.  

Nepean Cancer Centre has yet to commence training and credentialing due to not having a Varian 

RPM system available. Alternative motion sensors solutions are being explored; however, the 

absence of a current solution has limited the amount of progress of this institution towards 

credentialing.    
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Table 5-4. Audiovisual biofeedback details for each of the seven participating institutions. 

Institution 
HREC 

approval 
LHD approval TGA approval QA performed 

Phantom tests 

performed 

Volunteer tests 

performed 
Data transfer Credentialed 

Patient 

recruited 

Calvary Mater 

Hospital, 

Newcastle 

Complete Complete Complete Complete Complete Complete Complete Yes 

Yes 

(April 11th, 

2016) 

Canberra Hospital Complete Complete Complete Complete Complete Complete Complete Yes No 

Royal North 

Shore Hospital 
Complete Complete Complete Complete Complete Complete To be done No No 

Gosford Hospital Complete Complete To be done Complete Complete Complete To be done No No 

Westmead 

Hospital 
Complete Complete To be done Complete Complete To be done To be done No No 

Chris O’Brien 

Lifehouse 
To be done To be done To be done Complete Complete Complete To be done No No 

Nepean Cancer 

Centre 
Complete To be done To be done To be done To be done To be done To be done No No 
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5.2.4.1. Investigator Training 

In order to be able to conduct the workflow of the clinical trial unsupervised, training was provided 

by University of Sydney investigators to institution investigators. This training involved:  

1) Clinical trial information presentation 

2) Performing daily and monthly QA under supervision  

3) Performing clinical trial workflow with phantom under supervision  

Documentation utilised to perform this investigator training is given in Appendix II. 

5.2.4.2. Credentialed Institutions 

Once investigator training was completed, investigators at each institution performed the 

credentialing procedures; the credentialing form used for this clinical trial can be found in Appendix 

IV. Table 5-5 illustrates the credentialing performed at the clinical trial study institutions.  

Table 5-5. Photo evidence of credentialing and training performed at each of the clinical trial’s participating 

institutions. Evidence of hospital staff training prior to credentialing is indicated with “training purposes”.   

Calvary Mater 

Hospital, 

Newcastle 
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Canberra Hospital 

 

Royal North Shore 

Hospital 

 

134



 

Gosford Hospital 

 

Westmead 

Hospital 

 

Chris O’Brien 

Lifehouse 
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Nepean Cancer 

Centre 

Training and credentialing to be performed once motion sensor solution is 

implemented. 
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5.2.5. Discussion 

This clinical trial marks an important milestone in breathing guidance studies as it will be the first 

randomised, controlled trial providing the most comprehensive evaluation of a breathing guidance 

intervention on cancer radiation therapy to date. Based on the structure of previous investigations, 

as detailed in chapter 5.1. and taking into consideration the increased in scope of this study, a multi-

institutional, randomised, phase II, stratified clinical trial has been designed to test the hypothesis 

that audiovisual biofeedback breathing guidance will significantly improve breathing regularity and 

reduce medical imaging errors for lung cancer patients undergoing imaging and treatment 

procedures during radiotherapy. While patients will be stratified by treating institution and for 

treatment intent, the study is not powered for formal comparisons between the these stratified 

groups; estimates from the current proposed study of the proportion of patients which do not 

experience irregular breathing will provide information as to whether further investigation is 

warranted. Further to this, objectives such as determining the indications and contra-indications for 

the use of audiovisual biofeedback, evaluation of patient experience, radiation toxicity occurrence 

and severity, and clinician confidence will shed light on the design of future phase III clinical trials.   
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5.3. Conclusion 

Through a retrospective analysis of a previous lung cancer patient audiovisual biofeedback study, 

valuable insights into patient training and the clinical impact of audiovisual biofeedback on radiation 

therapy were obtained to be utilised in the design of a randomised, phase II audiovisual biofeedback 

clinical trial.  Such a clinical trial marks an important milestone in breathing guidance studies as it will 

be the first randomised, controlled trial providing the most comprehensive evaluation of the clinical 

impact of breathing guidance on cancer radiation therapy to date. Objectives such as determining 

the indications and contraindications for the use of audiovisual biofeedback, evaluation of patient 

experience, radiation toxicity occurrence and severity, and clinician confidence will shed light on the 

design of future phase III clinical trials. 
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CHAPTER 6 

Translating evidence into clinical practice through commercialisation 

Translational research refers to translating research findings into medical practice, to enable broader 

implementation of a medical intervention outside the confines of a clinical trial to general clinical 

use. For audiovisual biofeedback, a medical device which has demonstrated benefits in proof-of-

principle studies1-4 has also further demonstrated more clinically relevant benefits in the 

translational research conducted and detailed in chapter 3, chapter 4, and chapter 5. Further to this, 

there is also granted patent protection5 underpinning the audiovisual biofeedback technology. One 

such method to translate evidence into clinical practice is through commercialisation; this 

commercialisation process was explored in-house.  

What follows is an analysis of the radiation oncology market in which the audiovisual biofeedback 

medical device will exist, the commercialisation process of audiovisual biofeedback, and how 

insights from these processes further developed the audiovisual biofeedback technology. The goal of 

the commercialisation process was to determine the feasibility of an audiovisual biofeedback 

medical product, to enable broader implementation of audiovisual biofeedback outside the confines 

of clinical trials in order to be used by more radiation oncology departments with more patients 

receiving radiation therapy.   

6.1. Radiation Oncology Market 

6.1.1. Global Market 

Cancer radiotherapy is a market which generates US$5.5 billion per annum worldwide and is 

growing 8% each year.6 Worldwide there are 7879 radiotherapy centres housing 11239 linear 

accelerators, 2275 Cobalt-60 therapy machines, and 7168 CT scanners and simulators for 

radiotherapy treatment planning.7  The largest markets in the world are the United States of 

America (USA), China, and Japan with 2736, 1118, and 792 radiotherapy centres, respectively. 

Western Europe is also a large market with 1050 radiotherapy centres. Australia is home to 71 

radiotherapy centres with 168 linear accelerators.8  

Two major companies operate in the cancer radiotherapy market, with a combined 80% market 

share for the companies Varian and Elekta. Figure 6-1 illustrates the major companies’ market share 

in cancer radiotherapy.9 
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Figure 6-1. Cancer radiotherapy companies and their market share. 

*Tomotherapy, Brainlab, IBA, Still River Systems, ViewRay. 

It should be noted that Siemens has since left the cancer radiotherapy linear accelerator market.10 

6.1.2. Regulatory Bodies 

In cancer radiotherapy, regulatory bodies are responsible for assuring the safety, efficacy, and 

security of medical devices utilised for patient treatment. The Australian regulatory body is the 

Therapeutic Goods Administration (TGA), which follows a similar structure to the regulatory body of 

the European Economic Area, the Conformité Européenne (CE). The Food and Drug Administration 

(FDA) is the governing body over the world’s single largest cancer radiotherapy market: the USA.    

Medical devices are typically ranked according to classifications which indicate their risk and 

required controls. Risk is determined by the medical devices’ intended use, the probability of harm 

from the use of the device and the severity of that harm; the level of risk is determined by the 

medical device’s manufacturer. For consistency, the classifications will be outlined here in 

accordance with the Australian TGA, since this is where the audiovisual biofeedback technology is 

based and operates under. The TGA medical devices categories are detailed in Table 6-1.11  

Table 6-1. Medical device classifications, in order of lowest risk to highest risk. 

Classification Level of risk 

Class I Low risk medical device. 

Class I (measuring / supplied sterile) Low – medium risk medical device. 

Class IIa Low – medium risk medical device. 

Class IIb Medium – high risk medical device. 

Class III High risk medical device. 

Active Implantable Medical Devices (AIMD) High risk medical device. 

With increasing risk of the medical devices’ classification come increasing regulatory requirements 

for the medical device to satisfy, as illustrated by Figure 6-2.   
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Figure 6-2. Risk of 

medical device verses 

regulatory 

requirements. Adapted 

from  Australian 

regulatory guidelines 

for medical devices 

(ARGMD) Version 

1.1.12 

6.1.3. Cancer Radiotherapy Customers  

Who and what constitute a customer can be divided into three main customer segments: Users, 

Choosers, and Payers.13 There can be overlap between these categories in the radiotherapy market, 

and it is important to map out the decision making process towards a medical device being 

purchased, as there may be different value propositions desired by the different customer segments.  

Users are considered those who directly interact with the medical device itself. In cancer 

radiotherapy the users are typically the patients, radiotherapists, and medical physicist. The patients 

are the end recipient of the medical device designed to form part of the radiation treatment 

process. Radiotherapists are responsible for the setup and operation of medical devices involved in 

each patient’s treatment. Medical physicists are responsible for conducting the quality assurance for 

the medical devices involved in the patients’ radiation treatment.  

Choosers are those who strongly influence the decision of whether or not to acquire new 

equipment. In cancer radiotherapy the users are primarily the department heads (chief physicist, 

chief radiotherapist) and radiation oncologists. Department heads coordinate the activities of their 

respective staff (either medical physicists or radiotherapists); they will not typically use the medical 

devices themselves and operate in more of a managerial role. Radiation oncologists prescribe the 

radiation treatment for the patient and will often be there to oversee the treatment delivery 

process. Choosers will often attend conferences and training days to identify new techniques to 

implement. While Choosers are the key decision makers, they often strongly rely on the hospital 

Users involved in executing the patient treatments such as the radiotherapists and medical 

physicists.  
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Payers are those responsible for the monetary purchase of the medical device. In cancer 

radiotherapy, Payers are often not involved in the patient’s treatment, and occupy more of a 

hospital administrative role indented from the patient’s treatment. In cancer radiotherapy, the 

Payer is typically the radiation oncology department, and unlike the Users and Choosers, is the only 

customer responsible for the monetary purchase of the medical device.    

6.1.4. Existing respiratory motion management interventions 

Table 6-2 below lists respiratory motion management medical devices currently available on the 

cancer radiotherapy market, their primary functionalities, their class of medical device, and their 

price. As indicated in chapter 2,14 of the medical devices presented in Table 6-2 the Varian Real-time 

Position Management (RPM) system has been the most prominently utilised medical device in 

cancer radiotherapy respiratory motion management research.  
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Table 6-2. Cancer radiotherapy respiratory motion management medical devices currently available.  

Proposed audiovisual biofeedback medical device also included for comparison.  

Medical device 
Monitors patient  

breathing 

Synchronises 

with treatment 

/ imaging 

Breathing 

guidance 

biofeedback 

Does not 

touch the 

patient 

Key components 

Class of 

Medical 

device 

Price 

(Australian 

dollars) 

Varian Real-time Position 

Management (RPM)15 

 

 

Infra-red (IR) 

camera 

   

1. IR camera 

2. Marker block 
Class IIb $62,000 * 

Elekta Active Breathing 

Coordinator (ABC)16 

 

 

Spirometer 
 ‡  

1. Mouthpiece 

2. Spirometer tube 

3. Nose plug 

Class IIb $80,000 * 

QFix SpiroDynr’X (SDX)17 

 

 

Spirometer 
 

 

Breathing signal 

and target 

 

1. Mouthpiece 

2. Spirometer tube 

3. Nose plug 

4. Video goggles 

Class IIb $104,000 † 

VisionRT AlignRT18 

    

1. Camera Class IIb $200,000 * 
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Optical surface 

tracking 

Medspira19 

 

 

Chest belt 
 

 

Light-up display 

panel 

 

1. Patient display 

2. Chest belt 
Class I $32,000 † 

Calypso20 

 

 

Beacon 
   

1. Beacon 

2. Panel 
Class IIb $800,000 * 

Audiovisual Biofeedback 

 
  ‖   

1. All-in-one unit Class I $50,000 

* Information obtained from customer interviews  

† Information obtained from vendors 

‡ Reflective mirrored prism-goggles are available to view monitor display across room 

‖ Integration with the CT scanner and linac to facilitate CT sorting and beam holds respectively is a desirable feature of the AVB system, but is not planned for the initial 

product release 
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6.2. Commercialising Audiovisual Biofeedback   

The following programs, shown in Figure 6-3 were utilised to explore and develop audiovisual 

biofeedback’s commercialisation pathway: the University of Sydney offered Genesis21 and Incubate22 

startup accelerator programs, and NSW Health’s Medical Device Commercialisation Training 

Program (MDCTP).23 

   

 

 

 

Figure 6-3. Left to right: the University of Sydney Genesis, Incubate, and NSW Health MDCTP startup 

accelerator programs.  

The general approach for each of these programs was that of a startup company, typically defined by 

the search for the right business model,24 which is achieved by talking to customers, investigating 

regulatory affairs, and determining the product-market fit.25 For the purposes of these programs, the 

current research setup described in chapter 4 and chapter 5 was considered a research prototype, 

with the details of what the final medical product would be becoming more and more apparent 

through the progression through each of these commercialisation programs and with increasing 

customer engagement.  

6.2.1. Value Proposition of Audiovisual Biofeedback 

The first step is to determine what the value proposition of the medical device is. Determining what 

value the device creates for the proposed customers, what customer pains does it alleviate and what 

desired gains does it create for the customer? For audiovisual biofeedback, the proposed value 

propositions are the following:  

1) Patient-customised breathing guidance biofeedback  

o Breathing guidance negates the errors arising from breathing motion irregularities 

as detailed in chapter 2, chapter 3, and chapter 4. 

o Personalised guide adds an additional element of personalised healthcare appealing 

to both the patient and their physicians 

2) All-in-one motion sensor, patient display medical device unit 
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o By having all required components for the device housed in a single unit, this 

reduces the needed setup and calibration times compared to existing medical 

devices presented in Table 6-2 

3) Active patient involvement in assisting accurate radiation treatment 

o Patient is no longer a passive participant in their treatment 

o Patient empowered in helping improve their own treatment  

The value propositions described above were used to develop the concept for the final audiovisual 

biofeedback medical device, highlighted in Figure 6-4. 

  

Figure 6-4. Audiovisual biofeedback product concept design, highlighted on the CT couch on the left, and 

components indicated on the right. Images curtesy of DESIGN + INDUSTRY Sydney.26 

Prior to conducting customer interviews the initial value propositions are effectively hypotheses on 

what we think customers want. In order to effectively conduct customer interviews, the customers 

for audiovisual biofeedback need to be identified and mapped out.  

6.2.2. Customer Segments for Audiovisual Biofeedback 

As described above, customers are not only the ones responsible for the monetary purchase of the 

medical device but also the conceptual purchase of the device. The majority of those that will 

interact with the medical device, the radiotherapists, the medical physicists, the radiation 

oncologists, may not be responsible for the actual monetary purchase of the device, but are 

instrumental in recommending its use and acquisition.  Table 6-3 details the Users, Choosers, and 

Payers and their interaction with the audiovisual biofeedback medical device.  
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Table 6-3. Details of the Users, Choosers, and Payers of the audiovisual biofeedback medical device.  

User 

Patient. The cancer patient will directly interact with the audiovisual biofeedback device. The 

medical device will monitor their breathing and the patient will then follow the guiding 

prompts. The patient is understandably anxious about their treatment.  

Radiotherapist. Radiotherapists prepare the treatment rooms for each patient’s treatment, so 

they will be responsible for setting up the audiovisual biofeedback device prior to the patient’s 

arrival, controlling the software during treatment, and packing it away once the treatment is 

over. 

Medical Physicist. Medical physicists perform quality assurance tests on the audiovisual 

biofeedback device, assuring that the hardware and software components will perform robustly 

during patient treatment. 

Chooser 

Radiation Oncologist. The radiation oncologists will not directly interact with the audiovisual 

biofeedback medical device, but are crucial in recommending its use. Radiation oncologists are 

key decision makes in adopting new techniques and technologies. 

Department Head. Similar to the radiation oncologists, department heads are crucial in 

recommending the acquisition of audiovisual biofeedback. However, while radiation oncologists 

will be more motivated by clinical benefits of the medical device, the department head will also 

have more focus on the cost-benefits of the medical device. 

Payer 

Radiation oncology department. Typically from a capital budget, the radiation oncology 

department will represent the final stage of approving and paying for a purchase recommended 

by the radiation oncologist and/or department head.  

The typical decision making process, highlighting the users, choosers, and payers in a radiation 

oncology department, is illustrated in Figure 6-5. 

 

Figure 6-5. Typical decision making process in a radiation oncology department. 

Each of the customer segments presented in Table 6-3 and Figure 6-5 prioritise the value 

propositions of audiovisual biofeedback differently. To best align the value propositions of 

audiovisual biofeedback with its customer segments, customer interviews are required to determine 

whether there is a product-market fit for the medical device. It should be noted that the 

relationships in a multi-disciplinary radiation oncology department are far more complex than 
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linearly indicated in Figure 6-5, with each indicated segment having influence over the others. For 

example, a radiation oncologist will defer to the judgement of the radiation therapist as they are the 

ones conducting the patient treatments every day; or a department head heeding the advice of 

medical physics on the technical feasibility of medical equipment.     

6.2.2.1. Customer Interviews 

A total of 106 customer interviews were conducted; interviewees ranged from hospital staff, medical 

companies and vendors, cancer patients, and business and startup mentors. Table 6-4 details the 

number of interviews and interviewees. 

Table 6-4. Total number of interviews conducted. 

Hospital Staff 73 

Radiotherapists 30 

Medical Physicist 12 

Radiation Oncologists 12 

Department Heads 11 

Other* 8 

Companies/ vendors 15 

Cancer patients 6 

Business/startup mentors 12 

*Radiologists, technicians, scientists 

32 interviews were conducted during the Incubate accelerator program, and 74 were conducted 

during the MDCTP.  

An online survey was conducted during Incubate interviews determining how important regular 

respiratory motion and the importance of the use of audiovisual biofeedback was in the facilitation 

of this. The questions provided in the online survey and the overall responses are given in Table 6-5. 

Table 6-5. Responses to interview questions conducted in the Sydney Incubate program. 

(1) How important do you consider 

regular and stable patient 

breathing-motion to be during 

imaging and/or radiation 

treatment? 
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(2) How useful would audiovisual 

biofeedback be for patients' 

imaging and/or treatment? 

 

 

(3) How likely is it that you would 

recommend audiovisual 

biofeedback’s use in patient 

imaging and/or radiation 

treatment 

 

(4) How useful would breath-hold 

guidance be for patients' imaging 

and/or treatment? 

 

(5) Which function do you consider 

more useful: standard breath 

holds (SBH) or deep-inspiration 

breath holds (DIBH)? 

 

(6) How likely is it that you would 

recommend audiovisual 

biofeedback to a colleague?  

(7) For which patients / conditions 

do you consider audiovisual 

biofeedback to be useful? 

(Multiple answers possible)  

Lung cancer 87% 

Liver cancer 73% 

Breast cancer 60% 

Stress/anxiety 53% 

Kidney cancer 40% 

Pancreas cancer 33% 

Hypertension 27% 

Pneumonitis 20% 
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Interviews conducted throughout the MDCTP, rather than focusing on what customers thought 

about audiovisual biofeedback, focused on what customers thought about what they currently 

implemented in cancer radiotherapy. Information gathered from these interviews provided insights 

into what the customers’ main frustrations and desired improvements were and whether the value 

propositions offered by audiovisual biofeedback aligned with, or could be adapted to, addressing 

these problems encountered by customers. Also, given the interest expressed from previous 

interviews in breath hold guidance, MDCTP interviews also perused this functionality of audiovisual 

biofeedback.  

From the 74 interviews conducted in the MDCTP, Table 6-6 details the main frustrations and desires 

expressed by cancer radiotherapy hospital staff.  

Table 6-6. Key insights from hospital staff on current medical devices used in cancer radiotherapy. 

Radiation Oncologists Medical Physicists Radiotherapists 

Reproducibility of medical device 
Extra time is needed to implement 

new technologies 
Poor patient communication 

Cost-effectiveness of medical 

device 

Software interface of current 

medical devices (see Table 6-2) 

often frustrating to use 

Poor patient compliance 

A total of 37 Australian radiation oncology departments (52% of the Australian market) participated 

in these interviews. Clinically in Australia, there are no hospitals with a solution to facilitate regular 

patient breathing, and there are 20 hospitals that are not performing DIBH with their breast cancer 

patients. A key element of the commercialisation process is establishing a product-market fit, 

ensuring the product offering matches your customers’ wants and needs, pivoting if need be to 

ensure that it does. A key element that customers communicated during the interview process is 

that there is a strong desire for biofeedback methods for deep inspiration breath holds with breast 

cancer patients. As such, DIBH for breast cancer patients was also considered in the 

commercialisation process.  

Patients who were interviewed indicated that had there been an option for them to help assist with 

improving their radiation therapy, they would have wanted to contribute.  

Customer interviews yielded that there is not an equivalent breathing guidance solution on the 

market to audiovisual biofeedback, and that the key insights from hospital staff highlighted the need 

for an effective and simple to use solution to maximise communication efficiency between patients 

and radiotherapists and minimise setup time. This higher efficiency would lead to faster treatments 
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times per patient, allowing more patients to be treated per day, increasing the cost-effectiveness of 

the medical device.  

6.2.3. Regulatory Approval 

While audiovisual biofeedback does monitor patient breathing motion, but these measurements are 

not used to diagnose, prescribe, or guide treatment, and as such audiovisual biofeedback is 

considered a non-measuring device. For the cancer radiotherapy procedures it will be used for, 

audiovisual biofeedback is not required to be kept sterile. Therefore, audiovisual biofeedback is a 

Class I medical device. Table 6-7 details the regulatory requirements of audiovisual biofeedback for 

the regulatory bodies TGA, CE, and FDA.  

Table 6-7. Regulatory approval classification and details for the regulatory bodies of Australia, the USA, and 

Europe. 

 Australia Europe USA 

Regulatory Admin TGA CE FDA 

Classification Class I Class I Class I 

Quality 

Management 

System 

Not needed27 Not needed28 Not likely needed29 

Risk Analysis Low risk30 Low risk31 No risk analysis needed32 

Regulatory body 

intervention 

Incidence reporting to 

TGA33 

Notify local government 

authorities of adverse event34 
Incidence reporting to FDA35 

It should be noted that should audiovisual biofeedback be synchronised with the radiation 

treatment beam, this would increase the class of medical device to Class IIb, because then the 

measurements taken by audiovisual biofeedback are being used to guide treatment.  

6.2.4. Intellectual Property & Freedom to Operate 

Current intellectual property (IP) is primarily in the form of United States patent US 7955270 B2 

protecting the methodology of producing a customised patient-specific interface for biofeedback 

breathing guidance.5  
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Figure 6-6. US 7955270 B2 figures demonstrating the audiovisual biofeedback setup (left) and guiding interface 

(right).5  

This patent protects the world’s single largest radiation oncology market, the United States of 

America, which is also where the largest radiation oncology company, Varian, is based. Personalised 

medicine is becoming increasingly of interest,36, 37 so producing a customised patient-specific 

breathing guide to further tailor radiation treatment to the patient is one of audiovisual 

biofeedback’s competitive advantages. This patent details claims pertaining to a respiratory audio-

visual biofeedback device for medical imaging and radiotherapy treatment procedures incorporating 

a target position and the patient’s position and presenting them in such a way such that the 

difference between the target position and patient position is readily apparent. Subsequent claims 

relate back to this core claim further incorporating elements of learning patient breathing and 

producing target position via mathematical algorithms. This protects the audiovisual biofeedback IP 

by protecting the use of audio and visual prompts to guide patient respiration, in addition to 

producing a customised guiding interface by learning the patient breathing through mathematical 

algorithms. 

Table 6-8 details the findings of a freedom to operate search, detailing similar patents to patent US 

7955270 B2 protecting audiovisual biofeedback and their relative risk to US 7955270 B2. For 

reference, audiovisual biofeedback’s patent US 7955270 B2 was filed on 04/10/2006 and granted on 

07/06/2011. 

Table 6-8. Findings of freedom to operate search.  

Patent Summary of claims Relative risk of IP 

Patent number: US 6,937,696 

B1 

Title: Method and system for 

predictive physiological gating 

Filed: 26/06/2001 

 Method of detecting / estimating 

regular cycles of physiological 

activity 

 Gating of radiation treatment based 

on the phase of physiological 

Low.  

Patient guidance / feedback not 

considered. 
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Date of patent: 30/08/2005 activity  

Patent number: US 7,393,329 

B1 

Title: Method and apparatus for 

delivering radiation therapy 

during suspended ventilation 

Filed: 22/05/1998 

Date of patent: 01/07/2008 

 Apparatus: ventilator controlling 

inhalation and exhalation 

 Valves in ventilator shut to suspend 

patient breathing 

 Display apparatus of lung volume 

and target 

 Apparatus of mirror-glasses to view 

display 

Low-Medium.  

Apparatus described is decidedly 

different from audiovisual 

biofeedback.  

Claims detailing a ‘target’ and 

‘display’ relate it back to lung 

volume and mirror-glasses. 

Infringement between 

audiovisual biofeedback and this 

unlikely.   

Patent number: US 7,869,562 

Title: Automatic patient 

positioning system 

Filed: 18/03/2009 

Date of patent: 11/01/2011 

 3D optical imaging system for 

positioning patient relative to 

radiographic equipment 

 3D optical system produces 

positional signal 

 Used to reposition the couch 

relative to various scanners 

Low.  

Filing date is later than 

audiovisual biofeedback’s.  

audiovisual biofeedback utilises 

a 1D signal, this was focussed on 

3D 

No details regarding displaying 

signal to patient  

Patent number: US 7,769,430 

B2 

Title: Patient visual instruction 

techniques for synchronising 

breathing with a medical 

procedure 

Filed: 30/09/2004 

Date of patent: 03/08/2010 

 Continuation of ‘US 6,937,696 B13’ 

 Informing patients of the 

relationship between an action 

performed by the patient and a 

target result to be achieved 

 Focus on synchronisation with 

radiation source and medical device. 

High.  

Has earlier filing date than 

audiovisual biofeedback’s. 

Details relationship between 

patient position and the desired 

target position.  

Details synchronisation with 

‘radiation source’ and ‘medical 

device’.  

Patent number: US 8,619,945 

B2 

Title: Prediction-based breathing 

control apparatus for radiation 

therapy 

Filed: 20/09/2011 

Date of patent: 31/12/2013 

 Method of radiation delivery based 

by determining a future treatment 

opportunity 

 Past observed motion is used to 

predict future positions 

Low.  

Details using the breathing signal 

to predict future position for the 

radiation beam to fire upon.  

No details on providing feedback 

to the patient or breath holds.  

Patent number: US 8,781,558 

B2 

 Ventilator used to generate 

respiratory manoeuvres 

Medium.  

Patent specific to ventilation 
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Title: System and method of 

radiation dose targeting through 

ventilator controlled anatomical 

positioning 

Filed: 07/11/2011 

Date of patent: 15/07/2014 

 Closed loop with imaging / 

treatment machines  

 

methods (spirometry), however, 

feedback to patient is mentioned 

in one of the claims.  

audiovisual biofeedback has 

earlier filing date. 

Patent number: US 

2006/0129044 A1 

Title: Device for monitoring 

anatomical imaging unit or a 

radiotherapy unit 

Filed: 22/04/2002 

Date of patent: 15/06/2006 

 Representing ventilator level of 

their suspended ventilator level for 

inhalation and exhalation  

 Two valves: rest valve, triggering 

valve  

Medium.  

Has earlier filing date than 

audiovisual biofeedback. But 

pertains to ventilation, i.e. 

measuring airflow, not anatomic 

motion.  

Potential conflict of ‘suspended 

breathing’ claims.  

Patent number: US 

2013/0211261 A1 

Title: Motion compensation and 

patient feedback in medical 

imaging systems 

Filed: May 7, 2010 

Date of patent: 15/08/2013 

 An optical motion sensing system  

 This was confusingly worded… 

 Generate feedback data, providing 

audio and visual feedback indicative 

of the anatomic structure 

Medium-High.  

Details of the feedback motion 

sensor descriptions seem to 

infringe on audiovisual 

biofeedback patent claims.  

audiovisual biofeedback’s patent 

predates this one. 

Patent number: US 

2013/0261424 A1 

Title: System for inducing 

respiration using biofeedback 

principle 

Filed: 08/03/2013 

Date of patent: 03/10/2013 

 A system for processing a 

biofeedback-treated, respiration-

induced signal image using the 

biofeedback principle.  

 Claims focussed on image 

processing for segmenting an 

observed image into regions and 

extracting signal from there 

Medium.  

While biofeedback is detailed in 

the application, the claims 

pertain to image processing.  

Potential conflict for how certain 

motion sensors can operate.   

From the results of the freedom to operate search, there is one patent (US 7,769,430 B2) with an 

earlier priority date that poses a high risk to audiovisual biofeedback’s IP. However, Varian, which 

owns patent US 7,769,430 B2, did not extend this patent to protect the Australian market. 

Therefore, audiovisual biofeedback has freedom to operate in the Australian market, with a 

potential risk of patent infringement in the American market.  
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6.2.5. Reimbursement 

In order to be eligible for insurance reimbursement a medical device, under the Australian Medicare 

system, needs:  

 TGA approval 

 To lodge an application to Medical Services Advisory Committee (MSAC) 

o To demonstrate health benefit and economic benefit in terms of quality adjusted life 

years (QALYs) and incremental cost-effectiveness ratio (ICER), respectively. 

The Medicare Benefits Schedule (MBS) doesn’t usually make reference to the specific equipment 

used, it typically just refers to the service provided; radiation Oncology – General has the MBS Note 

T2.1.38 However, there are exceptions should the medical device demonstrate a certain level of 

health benefits and cost-effectiveness. For example, gold fiducial markers implanted in the prostate 

for use in radiotherapy has the MBS item number 37217.39 

Audiovisual biofeedback needs to demonstrate a certain level of health and economic benefits 

before it can be listed on the MBS for reimbursement. Outcomes of ongoing and future clinical trials 

will provide evidence as to whether this is achievable; otherwise, the radiation oncology department 

will be the sole payer of the device. 

6.2.6. Market Analysis and Business Model 

Based on the price of similar medical devices shown in Table 6-2, the revenue stream of the 

audiovisual biofeedback medical device is a capital cost of $50,000 for the audiovisual biofeedback 

product was determined to be both competitive and conducive to generate positive cash flow once 

making sales. Further to this, similar medical devices also include a service cost of 20% to cover staff 

training, installation, system breakages, and maintenance. As such, there will also be an annual 

service charge of an additional 20% ($10,000) for audiovisual biofeedback.  

6.2.6.1. Audiovisual Biofeedback Market    

The market for audiovisual biofeedback will be considered from three perspectives: the total 

addressable market, served available market, and the target market.24 The total addressable market 

refers to monetary value representative of if everyone who could purchase the medical device did 

purchase the medical device. The served available market represents those customers in the total 

addressable market that can be feasibly reached through an available sales channel. The target 

market represents the medical device’s first customers.  

Audiovisual biofeedback would be used on CT scanners and simulators in addition to linacs; as 

detailed in chapter 6.1.1., there are 11244 linacs and 7169 CT scanners and simulators worldwide,7 
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therefore there are a total of 18413 facilities where audiovisual biofeedback can be used, 

representing a total addressable market size of $1,104,780,000. Note that each purchase takes into 

account the capital cost of $50,000 in addition to the first years’ service cost ($10,000).  

Since it is more likely that our serviceable markets are Australia, the USA, and Europe, where there 

are 6523 linacs and 2818 CT scanners and simulators,7 this represents a served available market size 

of $560,460,000.  

The first sales of audiovisual biofeedback will likely be made in Australia, as that is where both the 

technology and the team behind it are based. The first customers will most likely be those hospitals 

who currently no not perform breathing guidance for both regular breathing and DIBH. As detailed 

in chapter 6.2.2.1., this is represented by 20 hospitals. Each Australian hospital will have one CT 

scanner or simulator, and has an average of 2.3 linacs per radiation oncology department.7 Taking 2 

linacs per department as a conservative estimate, audiovisual biofeedback’s first customers 

comprise of 40 linacs and 20 CT scanners and simulators, representing a target market of 

$3,600,000.  

6.2.6.2. Business Model Canvas  

A business model canvas, shown in Figure 6-7, is a tool to identify and plan out the main aspects of a 

company, a startup company is typically defined as the search for the business model outlining not 

only their first customers, but a scalable business.24   

 

Figure 6-7. A blank business model canvas.40 
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The value proposition, customer segments, and revenue streams have already been described. The 

order in which to approach each component of the business model canvas is as follows: (1) 

Customer segments, (2) Value proposition, (3) Customer relationships, (4) Channels, (5) Revenue 

streams, (6) Key resources, (7) Key activities, (8) Key partners, (9) Cost structure.40 When the value 

proposition aligns with the customer segments, this is referred to a product market fit.25  

Customer relationships outline the different types of relationships the business has with its 

customer segments. These could be how first contact is made with customers and how the 

relationship is sustained once the customer acquires the medical device. Channels describe how the 

medical device and the value it delivers is provided to the customer segments.   

Key resources describes business’ infrastructure and what resources of are crucial for the business’ 

success. This can involve the team itself executing the business plan and IP protection.  Similarly, key 

activities describe what needs to be done for the business to succeed; these activities can be 

broadening IP protection, fund raising, and regulatory approval. Key partnerships describe those 

outside your business who can assist in adding value to your business. Examples of key partners 

include clinical trial partners, manufacturing partners, and distribution partners. 

Once components (1) through (8) on the business model canvas are well understood will reveal how 

much each of these components will cost. If the cost structure is appropriately less than the revenue 

stream, then there is a viable business model. 

Initially, the business model canvas for audiovisual biofeedback was filled in with assumptions about 

what we thought its model model should be. Over time, the business model canvas for audiovisual 

biofeedback was continuously refined over the 106 performed customer and mentor interviews. 

Figure 6-8 details the current business model canvas for audiovisual biofeedback after all the 

customer interviews.  

Through the customer interviews, the decision making process for acquiring new equipment of 

radiation oncology departments was determined, as such, key relationships with customers and the 

channel to customers was determined to best utilise existing relationships through clinical trials, 

demonstrate the technology at hospital research meetings, providing the technology to customers 

via distributions channels provided by the manufacturers.  

Also throughout the interview process, component providers, designers, and manufacturers were 

identified and enganged to produce the final audiovisual biofeedback product.41-43 The audiovisual 

biofeedback product concept design shown in Figure 6-4 is a result of these engagements.  
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This business model canvas details the not only audiovisual biofeedback’s first customers (the target 

market) but is scalable and so describes customers for when audiovisual biofeedback enters the 

international market (the served available market).  
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Figure 6-8. Business model canvas for audiovisual biofeedback. 
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6.2.6.3. Cost-effectiveness of audiovisual biofeedback  

In addition to determining a product-market fit, a key element to be demonstrated by medical 

devices is the cost-effectiveness, especially for it to be eligible for insurance reimbursement, as 

detailed in chapter  6.2.5.. The primary health benefit of audiovisual biofeedback  will present itself 

in terms of reducing the occurance and severity of radiation toxicities, and therefore, the primary 

cost-effectiveness of audiovisual biofeedback will be in terms of reducing the costs associated with 

managing these toxicities.  

As shown in Table 6-5, the patients for whom audiovisual biofeedback was considered most useful 

were lung, liver, and breast cancer patients; lung and breast cancer are also the two most common 

forms of cancer. The most common radiation toxicities for such patients include esophagitis, 

pneumonitis, pulmonary fibrosis, and cardiovascular complications such as ischemic heart disease. 

For the purpose of this analysis, cost-effectiveness for lung cancer patients was considered from the 

perspective of regular breathing audiovisual biofeedback, and cost-effectiveness for breast cancer 

patients was considered from the perspective of deep inspiration breath hold (DIBH) audiovisual 

biofeedback. Table 6-9 details the costs involved in managing radiation toxicities. 

Table 6-9. Costs involved in managing radiation toxicities. Values given are 

in Australian dollars.  

Cardiac toxicities 

Event Cost 

Coronary Artery Grafts-Bypass surgery $38,10044 

Insertion of a Cardiac Stent $7,80044 

Coronary Angiogram $9,10044 

Pulmonary toxicities 

Esophagitis $1,754.2445 

Pneumonitis $5,672.5245 

Pulmonary fibrosis $1,502.6145 

Miscellaneous costs 

Hospital bed per day $325.9146 

Economic cost of one sick day $37547 

Table 6-10 details the occurrence and length of recovery for lung and breast cancer patients with 

such aforementioned toxicities. It has been reported that for patients presenting with cardiac 

toxicities 1/3rd of these patients require an angiogram and stents and 10% are treated with coronary 
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artery bypass surgery.48  Based on this and the values presented in Table 6-9, the average cost of 

cardiac toxicities per patient was calculated to be $9,443.33.  

Table 6-10. Occurance and recovery time of raidation toxicities for free breathing lung 

and breast cancer patients.  

Breast cancer patients 

Occurrence of serious cardiac event 

(no radiotherapy) 
19.2%49 

Increase of risk due to the use of radiotherapy 43%50  

Relationship between risk of cardiac event and 

radiation dose to the heart 

Increases by 7.4% with each Gy of 

mean heart dose51 

Hospital days after surgery 

(see Table 6-9) 
Up to 852 

Sick days after surgery 
Up to 2 months52 

(40 business days)  

Risk of pneumonitis 14%50 

Lung cancer patients 

Risk of esophagitis 31.6%45 

Risk of pneumonitis 30%45 

Risk of pulmonary fibrosis 8.3%45 

Relationship between risk of pulmonary toxicity 

and radiation dose to the lungs 

Increases by 10% from an increase 

of 4.5% in mean lung dose53 

Relationship between treatment margin size and 

dose to the lungs 

23% reduction in PTV (~0.29cm) 

corresponds to 10% reduction in 

mean lung dose54 

Based on the information presented in Table 6-10, radiotherapy increases the risk of a serious 

cardiac event by 43%, from 19.2% to 27.5%, for free breathing breast cancer patients. Further to 

this, for free breathing breast cancer patients receiving radiotherapy, the risk of a cardiac event 

increases by 7.4% with each Gy delivered to the heart. In addition to this, also taking into account 

the information presented in Table 6-9, the cost of an 8 days stay at the hospital equates to 

$2,607.28 and 40 sick days equates to $15,000. However, this would only be applicable to the 

43.33% of patients requiring cardiac procedures (detailed in Table 6-9, 10% of patient receiving 

bypass surgery, 1/3rd receiving angiogram and stents), resulting in an average hospital stay and sick 

day cost of $7,629.82.  

Pulmonary toxicities do not typically require surgery, as such, there are negligible additional days 

spent at the hospital and days spent home from work for the patient. Also, a 4.5% reduction in mean 
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lung dose corresponds to a 10% decrease in pulmonary toxicity, corresponding to approximately a 

2.22% increase in toxicity risk with each percent increase in mean lung dose.  

Table 6-11 details the benefits of providing DIBH to breast and regular breathing for lung cancer 

patients.   

Table 6-11. Impact of DIBH and audiovisual biofeedback on mean dose and treatment 

margins.   

Impact of DIBH on mean heart dose  
Mean heart dose is reduced by 

2.5Gy55 

Impact of DIBH on mean lung dose 
Mean ipsilateral lung dose is 

reduced by 1 Gy56   

Impact of regular breathing on margin size  

Audiovisual biofeedback reduced 

margin size by 0.30 cm (see 

chapter 5.)* 

* Assuming no other errors 

Hence, based on the information presented in Tables 6-9 to 6-11, for breast cancer patients:  

 DIBH reduced mean heart dose by 2.5 Gy (Table 6-11), and therefore reduces the risk of a 

serious cardiac event by 2.5 × 7.4% = 18.5% (Table 6-10), reducing the risk of a cardiac event 

from 27.5% to 22.4% 

 DIBH reduced mean lung dose by 1 Gy, which as stated earlier, corresponds to a 2.22% 

decrease in toxicity risk, resulting in a decrease in risk of pneumonitis from 14% to 11.78%. 

 Audiovisual biofeedback reduced margins by 0.30 cm (Table 6-11), comparable to the 0.29 

cm reduction achieving a 10% reduction in mean lung dose (Table 6-10), which corresponds 

to a 10 × 2.22 = 22.2% reduction in risk of pulmonary toxicity. Reducing the risk of 

esophagitis from 31.6% to 24.6%, pneumonitis from 30% to 23.34%, and pulmonary fibrosis 

from 8.3% to 6.5%.  

The cost-effectiveness was determined to be the difference between the cost of managing toxicities 

(free breathing) and the cost of managing toxicities (DIBH/regular breathing) for breast and lung 

cancer patients. The cost of managing toxicities was determined to be:  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 =  [𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠] × [𝑅𝑖𝑠𝑘 𝑜𝑓 𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦] × [𝑀𝑜𝑛𝑒𝑡𝑎𝑟𝑦 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑜𝑥𝑖𝑐𝑖𝑡𝑦] (1) 

Where, in Australia, only left-sided breast cancer patients are considered since DIBH is not typically 

performed for right-sided breast cancer patients:  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑓𝑟𝑒𝑒 𝑏𝑟𝑒𝑎𝑡ℎ𝑖𝑛𝑔

= ([7090] × [27.46%] × [$9443.33 + $7629.82])𝑐𝑎𝑟𝑑𝑖𝑎𝑐

+ ([7090] × [14%] × [$5,672.52])𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑡𝑖𝑠 = $38,870,504  
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𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝐷𝐼𝐵𝐻 = ([7090] × [22.38%] × [$9443.33 + $7629.82])𝑐𝑎𝑟𝑑𝑖𝑎𝑐

+ ([7090] × [11.78%] × [5,672.52])𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑡𝑖𝑠 = $31,828,389  

Yielding a cost-effectiveness of $7,042,000 from the use of DIBH for breast cancer patients, or $993 

per patient. Globally, this translates to cost-effectiveness of $844,000,000 each year. 

For lung cancer patients treated with radiotherapy in Australia each year:  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑓𝑟𝑒𝑒 𝑏𝑟𝑒𝑎𝑡ℎ𝑖𝑛𝑔

=  ([5000] × [31.60%] × [$1754.24])𝑒𝑠𝑜𝑝ℎ𝑎𝑔𝑖𝑡𝑖𝑠

+ ([5000] × [30%] × [$5672.52])𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑡𝑖𝑠

+  ([5000] × [8.60%] × [$1502.61])𝑓𝑖𝑏𝑟𝑜𝑠𝑖𝑠 = $11,926,602  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑟𝑒𝑔𝑢𝑙𝑎𝑟

=  ([5000] × [24.85%] × [$1754.24])𝑒𝑠𝑜𝑝ℎ𝑎𝑔𝑖𝑡𝑖𝑠  

+ ([5000] × [23.34] × [$5672.52])𝑝𝑛𝑒𝑢𝑚𝑜𝑛𝑖𝑡𝑖𝑠

+  ([5000] × [6.46%] × [$1502.61])𝑓𝑖𝑏𝑟𝑜𝑠𝑖𝑠 = $9,284,817  

Yielding a cost-effectiveness of $2,640,000 from the facilitation of regular breathing from audiovisual 

biofeedback for lung cancer patients, or $528 per patient. Globally, this translates to cost-

effectiveness of $475,000,000 each year. 

The use of audiovisual biofeedback for both DIBH and regular breathing stands to reduce the 

Australian health-care associated costs of lung and breast cancer patients’ radiotherapy by a 

combined $9,684,000, and $1,319,000,000 worldwide.   

Further to this, a typical radiation oncology department will treat 100 lung cancer patients and 100 

breast cancer patients each year. After purchasing audiovisual biofeedback for $50,000 (see Table 6-

2), the cost savings from the use of audiovisual biofeedback will make up for the cost of the device 

itself after 66 lung and breast cancer patients have been treated (within 8 months).   

6.2.7. Market Capture Strategy and Future Projections  

In keeping with a lean startup approach, the Australian go-to-market strategy is direct distribution, 

starting in NSW and moving across Australia, leveraging the existing NSW-focused clinical trials 

detailed in chapter 4 and chapter 5. Direct distribution refers to directly delivering the product to 

customers personally rather than through contracted distributors. Direct distribution is lower cost 

than going through a contracted distributor but also limits the company to a low volume of sales; 

however given the high gross margin of the product allows the company to be sustainable 

throughout early low-volume customer sales. The proximity to our customer base through direct 

distribution will enable close company-customer feedback and interaction, with rapid product 
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improvement to meet user needs. As of August 2016, two NSW radiotherapy centres have signed an 

intent-to-purchase letter to secure the audiovisual biofeedback device once it becomes TGA-

approved. Early adopters in Australia will help us establish a viable business model, determine its 

multipliers and generate funds for international growth. Contracted distributors will be engaged for 

international sales and service. Figure 6-9 illustrates projected sales revenue and company growth in 

terms of full time equivalent (FTE) employees over the next 3 years until end of financial year (EOFY) 

2018/2019.    

Figure 6-9. Projections of sales revenue (blue) and number of FTE employees (red) by EOFY 2018/19. 

Projections indicate revenue from sales to be $4.8M by EOFY 2018/19, with 11 new jobs created by 

EOFY 2018/19. Assumptions made in regards to the projections illustrated in Figure 6-10 include:  

 TGA approval and first sales in Australia in November, 2016  

 FDA approval and first sales  in the USA in November, 2017 

 New employees are recruited when (i) an additional 20 products are in service, and (ii) 

company demonstrates continuous growth 3 months in a row 

 Direct sales implemented in Australia, distributor channels utilised in the USA with a 40% 

distributor margin.    
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6.3. Feeding Customer Insights back into research approach 

From the interviews conducted, both with hospital staff currently using audiovisual biofeedback for 

the clinical trials described in chapter 3 and chapter 4 and with hospital stuff who have never used 

audiovisual biofeedback, a number of insights were garnered in terms of what desired features for 

the audiovisual biofeedback system in addition to currently used motion management technologies 

(see chapter 1.2.1.5.).   

6.3.1. Development of the audiovisual biofeedback hardware  

From the insights garnered by talking with radiation oncology hospital staff, the most cumbersome 

element of the current research setup of the audiovisual biofeedback system is interfacing with and 

receiving the respiratory signal from the Varian RPM motion sensor. This requires:  

1) “Enabling Serial Protocol” in the RPM software to enable the real-time output of respiratory 

information  

2) Installing the required cable drivers on the research computer with audiovisual biofeedback 

installed  

Various firewalls and limitations to internet access can greatly inhibit the two critical steps detailed 

above which are necessary to simply adequately connect the research computer with audiovisual 

biofeedback installed to the Varian RPM. Once connectivity between audiovisual biofeedback and 

the RPM is enabled, there is still the need to connect all the components together; the schematic 

shown in Figure 6-10(a) is from a clinical trial workflow guide (included in Appendix IV) illustrates the 

current audiovisual biofeedback setup. Figure 6-10(b) illustrates the schematic setup of a condensed 

audiovisual biofeedback system setup, housing the motion sensor, patient display, and software in a 

single unit.  
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Figure 6-10. Audiovisual biofeedback system components and connectivity, with (a) the current research setup 

and (b) the proposed condensed setup on the right. 

6.3.1.1. Development of stand-alone motion sensor 

The first major hurdle to house the necessary audiovisual biofeedback components in a single unit 

was to identify and test a physiologically-accurate respiratory sensor alternative to the current 

sensor: the Varian RPM.  

6.3.1.1.1. Microsoft Kinect 

One such respiratory sensor was the Microsoft Kinect, which monitors respiratory motion as a depth 

sensor.57, 58 Figure 6-11 illustrates the Microsoft Kinect operating as a depth sensor.  

 

Figure 6-11. Screenshot of the Microsoft Kinect’s motion tracking software developed in-house, demonstrating 

(a) depth image, (b) optical image, (c) depth signal of the determined region of interest, and (d) the Microsoft 

Kinect interfaced with the audiovisual biofeedback software.  
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Figure 6-12 demonstrates a volunteer Microsoft Kinect test performed at the Seattle Cancer Care 

Alliance Proton Therapy Center on August 7th, 2015.  

 

Figure 6-12. Volunteer testing with the Microsoft Kinect and the Elekta ABC. (a) Volunteer test setup. (b) 

Screenshot of the Microsoft Kinect depth sensor tracking volunteer abdominal respiratory motion.  

As shown in Figure 6-12, an Elekta ABC (see chapter 1.2.1.5.2.) was also used in this volunteer 

testing; the signals of the Elekta ABC and the Microsoft Kinect were compared, as shown in Figure 6-

13. Correlation between the two respiratory signals was assessed using Pearson’s correlation 

coefficient (r).  

 

Figure 6-13. (a) Respiratory signals obtained from the Microsoft Kinect (blue) and Elekta ABC (red); two exhale 

breath holds were performed. (b) Correlation plot between the Microsoft Kinect and Elekta ABC respiratory 

signals.  

Validation tests of the Microsoft Kinect were also performed with the AlignRT (see chapter 

1.2.1.5.3.); volunteer setup shown in Figure 6-14, performed July 22nd at the University of Texas 

SouthWestern.  
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Figure 6-14. (a) Volunteer test setup in the CT sim room with the Kinect mounted on a tripod fixed to the end of 

the patient couch. (b) Depth image, optical image, and respiratory signal from the region of interest on the 

volunteer’s abdomen. (c) Schematic of the setup with distance from Microsoft Kinect to monitored region of 

interest included. 

The region of interest monitored by the Microsoft Kinect was created to be as close as possible to 

the region being tracked by the ceiling-mounted AlignRT, shown in Figure 6-15.  

 

Figure 6-15. (a) Ceiling-mounted AlignRT 

monitoring volunteer abdominal motion. 

(b) Screenshot of AlignRT software, pink 

region indicates registered abdominal 

surface, green region indicates the area of 

the abdominal surface being tracked.   

The signals of the AlignRT and the Microsoft Kinect were compared, as shown in Figure 6-16. 

Correlation between the two respiratory signals was assessed using Spearman's rank correlation 

coefficient (rho).  

 

Figure 6-16. (a) Respiratory signals obtained from the Microsoft Kinect (blue) and AlignRT (red). (b) Correlation 

plot between the Microsoft Kinect and AlignRT respiratory signals.  

While the correlation between the Microsoft Kinect and AlignRT was considerably higher than that 

between the Microsoft Kinect and the Elekta ABC, as evident from Figure 6-14(b) and Figure 6-16(a), 

more noise was evident in the Microsoft Kinect signal in the AlignRT tests. This was largely due to 
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the greater distance between the Microsoft Kinect and the region being monitored in the AlignRT 

test compared to the Elekta ABC test, where the Microsoft Kinect was directly next to the volunteer 

as shown in Figure 6-12(a). Microsoft reports that the Microsoft Kinect depth sensor range is from 

80 cm to 400 cm;59 however, studies have reported depth sensor ranges of 75 cm to 250 cm.60  

6.3.1.1.2. Intel RealSense 

Another depth sensor that was identified was the Intel RealSense,61 which can also be utilised as a 

depth sensor.62, 63 Figure 6-17 illustrates the Intel RealSense operating as a depth sensor. The 

operational distance of the Intel RealSense depth sensor is 20cm to 120 cm.61  

 

Figure 6-17. (a) Setup with a motion phantom as a surrogate for respiratory motion with the Intel RealSense 

positioned above the phantom by a table frame. (b) Screenshot of Intel RealSense motion depth sensor 

software, highlighting the region of interest and its corresponding respiratory motion signal. (c) It’s possible to 

switch the depth image display with an optical image display.  

Volunteer testing was performed at the University of Sydney on January 14th, 2016. The Varian RPM 

system (see chapter 1.2.1.5.1.) was also used to compare the respiratory signals of the two motion 

sensors. The setup for this test is shown in Figure 6-18. The region being monitored was selected to 

be the surface of the RPM marker block, therefore, the two respiratory signals should have the same 

amplitude.  
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Figure 6-18. (a) Volunteer study setup indicating the position of the Intel RealSense, Varian RPM, and RPM 

marker block. (b) Optical view of the Intel RealSense, indicating that the region of interest being monitored was 

the anterior surface of the RPM marker block.  

The signals of the Varian RPM and the Intel RealSense were compared; the sampling frequency of 

the Varian RPM was found to be 29.9 ± 1.2 Hz, the sampling frequency of the Intel RealSense was 

found to be 23.5 ± 7.4 Hz. Figure 6-19 shows the respiratory signals and correlation between the 

Varian RPM and Intel RealSense.  

 

Figure 6-19. (a) Respiratory signals obtained from the Intel RealSense (blue) and Varian RPM (red). (b) 

Correlation plot between the Intel RealSense and Varian RPM respiratory signals.  
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6.3.1.2. Logistics of single unit audiovisual biofeedback 

A wooden prototype frame was built to test the logistics of dimensions for how future audiovisual 

biofeedback systems would fit in imaging and treatment rooms; this frame is shown in Figure 6-20. 

 

Figure 6-20. (a) Wooden frame prototype, (b) in the CT sim bore, and (c) on the treatment couch. 

Measurements were taken in order to ensure the frame will fit within the CT imaging bore as well as 

avoiding any potential collisions with the linac’s gantry. The dimensions for the frame are illustrated 

in Figure 6-21.  

 

Figure 6-21. Dimensions and design considerations for the audiovisual biofeedback frame to be positioned on 

the linac treatment couch without risk of gantry collision. Image provided by Design + Industry Sydney.26 
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As shown in Figure 6-21, the minimum distance between the subject and the frame is 22 cm, as 

such, it will be required of the motion sensor to produce a physiologically accurate signal for 

distances as low as 22 cm. This eliminates the Microsoft Kinect as a viable motion sensor as the 

minimum achievable distance for the Microsoft Kinect is 75 cm.60 The Intel RealSense achieves the 

desired distance from frame to subject by having an operational distance of 20cm to 120 cm,61 and 

the distance from the Intel RealSense sensor to the region being monitored, as shown in Figure 6-18, 

was 25 cm. Further to this, the Intel RealSense achieved a strong correlation with the clinically 

implemented Varian RPM system.  

6.3.2. Development of Audiovisual Biofeedback for Deep Inspiration Breath 

Holds 

While audiovisual biofeedback has been utilised to facilitate regular respiration and anatomic 

motion,1-4 inhale and exhale breath holds,64, 65 and quasi-breath holds,66 it has yet to be utilised to 

assist with deep inspiration breath holds (DIBH). Further to this, many of the interviewees described 

respiratory guidance biofeedback for DIBH to be a highly desirable feature.  

6.3.2.1. Deep Inspiration Breath Holds for Breast Cancer Radiation Therapy 

DIBH is performed with breast cancer patients because by taking a deep breath in, lung volume 

increases and the heart position moves inferiorly in the thorax, this reduces the pulmonary and 

cardiac dose during radiation therapy,56, 67, 68 illustrated by Figure 6-22. 
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Figure 6-22. Axial and sagittal CT 

scans of a breast cancer patient 

free breathing: (a) and (b), and 

performing DIBH: (c) and (d). PTV 

indicated as the green area, and 

boost PTV indicated by the orange 

area. Adapted from Hayden, et al. 

(2012).69 

As shown in Figure 6-22(a), for the free breathing case the heart is proximal to the PTV and boost 

PTV areas in addition to partially being in the path of the planned tangential radiation beam. 

Whereas, as shown in Figure 6-22(c), the heart is now more distal to the PTV and boost PTV areas in 

addition to being outside of the planned tangential radiation beam. Figure 6-22(d) demonstrates the 

heart in a more inferior position during DIBH compared to free breathing.  

Previous findings have demonstrated the advantages of treating their left-sided breast cancer 

patients with DIBH over free breathing.56, 70, 71 The Vikström, et al. (2011) study noted a reduction in 

mean heart dose of 54% from the use of DIBH compared to free breathing (from 3.7 Gy to 1.7 Gy 

with DIBH). Vikström, et al. (2011) also found that the ipsilateral lung volume receiving at least 20 Gy 

(V20) was reduced by 18%.56 

Further to this, utilising visual feedback to assist patients perform DIBH has demonstrated to further 

improve upon unguided DIBH procedures.72, 73 Cerviño noted an improvement in breath hold 

reproducibility and stability of 76% and 53%, respectively from the use of visual feedback DIBH 

compared to DIBH without feedback. Figure 6-23 illustrates examples of DIBH from the use of DIBH 

with visual feedback and DIBH without feedback.  
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Figure 6-23. Examples of DIBHs 

performed by a volunteer. The first 

four DIBHs (red, solid lines) are 

without visual feedback, the second 

four (blue, dashed lines) are with 

visual feedback. Adapted from 

Cerviño, et al. (2009).73  

 

Figure 6-23 demonstrates that through the use of visual feedback, volunteers were able to 

reproduce the same DIBH each time in addition to sustaining a stable breath-hold level compared to 

DIBH without visual feedback, where DIBH amplitude varied in addition to the respiratory signal 

drifting downwards mid-breath hold. Damkjær, et al. (2013) compared gated breath holds to DIBH 

with visual feedback and found that V20 was significantly reduced by 9% from the use of visual 

feedback.72  

6.3.2.2. Audiovisual biofeedback for Deep Inspiration Breath Holds 

Given the positive findings of both DIBH over free breathing and the use of visual feedback in 

assisting patients perform DIBH over DIBH with no feedback in addition to customer interview 

feedback, the functionalities of audiovisual biofeedback have been extended to assist patients to 

perform DIBH. In the Damkjær, et al. (2013) study, they extended the display of the Varian RPM to 

show the patient their respiration and the gating window to hold their breath at. Audiovisual 

biofeedback will utilise an automated method of producing a customised breath hold guide for each 

patient. Table 6-12 details the main differences between the two methods.  
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Table 6-12. Comparison of DIBH used in Damkjær, et al. (2013) study to the proposed audiovisual biofeedback 

DIBH. 

 Damkjær, et al. (2013) DIBH72 Audiovisual Biofeedback DIBH 

Visual display 

Before DIBH 

  

During DIBH 

  

Breath hold level Set manually Automatically detected and loaded 

Miscellaneous 
 Synchronised with Varian 

RPM gating 

 Save and load patient-specific 

breath hold guides  

 Breath hold countdown shown 

to patient 

 Markerless  
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6.4. Conclusion 

Given the proof of principle research detailed in chapter 1.4.2. and chapter 2., the translational 

research conducted and detailed in chapter 3., chapter 4., and chapter 5., and the granted patent 

protection5 underpinning the audiovisual biofeedback technology, this positions audiovisual 

biofeedback towards the commercialisation pathway. This commercialisation pathway was explored 

utilising a variety of commercialisation accelerator programs paired with extensive customer 

interviews to map out the market, regulatory, and intellectual property landscape of the audiovisual 

biofeedback technology and search for the best business model to address the customer’s unmet 

need, ultimately yielding commitments from NSW radiotherapy centres to purchase the audiovisual 

biofeedback device. Extensive customer engagement also yielded the expansion of audiovisual 

biofeedback functionalities to deep inspiration breath holds for use with breast cancer patients. 

Learnings from these customer interviews were then applied back into the research component to 

further develop the audiovisual biofeedback technology and functionalities. Further to this, the cost-

effectiveness of audiovisual biofeedback for both lung and breast cancer patients can potentially 

reduce the health-care burden by almost $10 million a year in Australia alone, and over $1.3 billion 

worldwide.      
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CHAPTER 7 

Summary, Conclusions, and Future Work 

7.1. Summary and Conclusions  

This thesis has identified the gaps in the literature by performing the first systematic review of 

breathing guidance interventions in radiation treatment and imaging procedures (chapter 2), and 

then utilised these insights to perform experiments and design clinical trials to address these gaps in 

the literature. By initiating the first randomised, phase II clinical trial for a breathing guidance 

intervention, this thesis also explored the next steps in determining the pathway to broaden the 

audiovisual biofeedback’s use beyond the current limited number of hospitals under clinical trial 

conditions to widespread clinical implementation through commercialisation.   

This thesis has given evidence that audiovisual biofeedback significantly improves 4DCT image 

quality (chapter 3), interfraction motion consistency with liver cancer patients (chapter 4), and the 

respiratory-components of treatment margin calculation (chapter 5.1.). There was also an observed 

training effect where audiovisual biofeedback became more regular interfractionally which 

demonstrated a significant correlation between time and RMSE values (chapter 5.1.). These insights 

went towards the design and workflow of the largest respiratory guidance intervention investigation 

study, to date (chapter 5.2.), which recruited its first patient on April 11th, 2016. This clinical trial 

demonstrates a number of firsts for respiratory guidance investigations: it is the first (1) 

randomised, (2) multi-site, (3) stratified, (4) phase II, (5) lung cancer radiotherapy audiovisual 

biofeedback clinical trial.  

With the proof of principle of respiratory guidance interventions explored (chapter 1, chapter 2), 

and the more clinically relevant metrics of 4DCT image quality (chapter 3), interfraction consistency 

(chapter 4), and margin size (chapter 5.1.), coupled with its patent protection, warranted the 

exploration of the commercialisation of the audiovisual biofeedback technology in order for cancer 

patients to benefit from this technology. This was done through an extensive evaluation of the 

radiation oncology field and over one hundred interviews to determine the product-market fit of 

audiovisual biofeedback.  

The culminations of these findings demonstrate the clinical benefit of the audiovisual biofeedback 
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respiratory guidance system, and the need to make breathing guidance systems more widely 

available to patients.  
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7.2. Future Work 

While a number of the results presented in this thesis address the gaps in the literature as detailed 

in chapter 1 in addition to the systematic review presented in chapter 2, as detailed in chapter 2 

there still areas of research to fill these gaps further. As detailed in Table VI in chapter 2, prospective 

studies focussing on the impact of breathing guidance on radiation dose to healthy tissue, tumour 

tracking, target coverage, and treatment margins would be valuable future work. Further to this, as 

noted in chapter 4, it is recommended that the clinical impact of audiovisual biofeedback on liver 

cancer patients is evaluated with a larger patient cohort.    

In addition to future studies further addressing the identified gaps in the literature, future 

work of audiovisual biofeedback will also pertain to building upon the results presented in this 

thesis. Building upon the results in chapter 3 with a prospective 4DCT patient study, for example. 

The clinical trials detailed in chapter 4 and chapter 5 will provide insight into the design of a phase III 

audiovisual biofeedback clinical trial. Clinical studies will also need to be conducted to test the 

hardware and software updates detailed in chapter 6. In the subsequent sections, such studies that 

are being prepared to build upon this thesis are detailed.   

7.2.1. Audiovisual biofeedback with tumour tracking 

Further to this, a clinical trial tracking and adapting to prostate motion during cancer radiation 

therapy in real-time utilising multi-leaf collimator (MLC) tracking1-3 and the Calypso electromagnetic 

transponder tracking system4-6 was recently completed at Northern Sydney Cancer Centre, Royal 

North Shore Hospital. This clinical trial demonstrated that utilising tracking significantly improved 

the agreement between delivered and planned doses compared to no tracking.7  

Given the positive findings from this prostate tracking clinical trial, a follow up tumour tracking 

clinical trial recruiting lung cancer patients has been developed. However, the system latency of the 

tumour tracking software and hardware has been demonstrated to be 350 ms.8 The use of the 

Calypso transponders will also provide further insights into the correlation between external 

respiratory surrogates and internal respiratory motion.   

7.2.2. Audiovisual biofeedback during breast cancer DIBH 

The audiovisual biofeedback setup with the Intel RealSense described in chapter 6.3.1.1.2., coupled 
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with the functionality for DIBH, as described in chapter 6.3.2.2., will be utilised in an upcoming 

breast cancer patient clinical trial to be performed at Royal North Shore Hospital. This study will 

recruit a total of 40 breast cancer patients and its primary objective is to test the efficacy of 

audiovisual biofeedback to assist DIBH during breast cancer radiotherapy compared with the current 

treatment standard, the Varian RPM. The primary hypothesis is that accuracy of audiovisual 

biofeedback is non-inferior to the RPM system.  

7.2.3. Audiovisual biofeedback during proton therapy  

The audiovisual biofeedback setup with the Intel RealSense described in chapter 6.3.1.1.2., has been 

provided to the University of Washington, Seattle, to be used to guide regular respiration during 

lung cancer patient proton therapy. This study represents a landmark in the field as it will be the 

first study to investigate the use of a breathing guidance intervention over the course of proton 

therapy. It was noted by Figure 1-15 in chapter 1.3. (shown here for clarity) that the size of the ITV 

can vary not only over the course of treatment but also during treatment delivery. The University of 

Washington will be testing the hypothesis that audiovisual biofeedback will reduce the variations in 

ITV size, compared to free breathing, over the course of lung cancer patient proton therapy. Interest 

was also indicated for the use of audiovisual biofeedback for guided exhale breath holds for liver 

cancer patients receiving proton therapy.   

 

Figure 1-15. Variations of the volume of 

ITV over a fraction of treatment for 8 

lung cancer patients. From St James, et 

al. (2012).9 
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Summary 

Study Title:  Investigation of respiratory-related tumour motion in 

liver cancer patients undergoing stereotactic body 

radiotherapy treatment (SBRT) using audiovisual (AV) 

biofeedback.   

Protocol version:  V4.0 

Objectives Primary objective: Evaluate the improvement in 

reproducibility of respiratory-related tumour motion (via 

fiducial maker surrogacy) for liver cancer patients with 

the AV biofeedback respiratory guidance system. 

 Secondary objectives: Assess the potential clinical 

benefit of AV biofeedback. 

 Analysis of obtained data will involve: 

 (1) Based on the respiratory motion analysis, the 

proportion of patients with improved reproducibility 

of respiratory motion from AV biofeedback will be 

obtained 

 (2) Quantification of the improvement in dose 

distributions and treatment margins with and without 

AV biofeedback by reconstructing the delivered 

dose using a method developed for liver SBRT 

 (3) Quantification of the reduction in 4D CT errors 

with and without AV biofeedback by programming 

the Quasar phantom with the AV biofeedback and 

free breathing respiratory traces 

 (4) Reconstruction of cone beam CT (CBCT) images 

into 4D CBCT using the respiratory signal and 

comparing the image quality with and without AV 

biofeedback 

 (5) Evaluation of the correlation between internal 

fiducial marker and external marker motion. 

 (6) An evaluation of the patient and operator 

experience with the AV biofeedback system through 

a questionnaire will also be performed. 

  

Study design The reproducibility (i.e. the consistency of respiratory 

amplitude and period) of liver fiducial-marker motion 

due to respiration will be assessed with AV biofeedback 

and for free breathing using CBCT imaging.  To improve 

the image quality and radiation targeting for the patient, 

all subsequent imaging and treatment sessions will use 

the most reproducible breathing condition, AV or free 

breathing.     
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 Planned sample size  

 This study will involve the participation of 30 liver 

cancer patients.  

 

 Selection criteria  

 The following patients are eligible for this study: 

 1) Liver cancer patients, either primary 

hepatocellular carcinoma or liver metastases, 

eligible for stereotactic radiotherapy.  

 2) >18 years old 

 3) No gender or ethnic restrictions 

 4) Radio-opaque markers implanted (fiducials and/or 

surgical clips previously implanted in the liver) 

 5) Able to give written informed consent and 

willingness to participate and comply with the study 

 6) No pregnant / lactating woman 

   

Study procedure The AV biofeedback system is simple and easy to 

implement. It is comprised of a screen or AV goggles 

that the patient views to receive their audio and visual 

guiding prompts. As a part of their clinical treatment 

plan, the patients will already be having 18 CBCT scans; 

by participating in this study, they will have only two 

additional CBCT scans.  

 Eligible patients that have agreed to participate in the 

study and have given informed consent will undergo 

routine radiotherapy planning in preparation for their 

SBRT treatment. During the planning procedure, as part 

of this study, the following will also be performed in 

addition to standard procedure: Two additional CBCT 

scans will be obtained, one while the patient undergoes 

AV biofeedback and the other with the patient during 

free breathing.  The reproducibility of liver tumour 

motion due to respiration will be assessed with AV 

biofeedback and for free breathing using cone beam CT 

imaging.  To improve the image quality and radiation 

targeting for the patient, all subsequent imaging and 

treatment sessions will be undertaken with the best and 

most reproducible breathing condition, either AV 

feedback or free breathing (signed off by radiation 

oncologist, see Figure 14: Proposed Patient Report).  

 

 Patient time commitment  

 Each session will take a total of 1 hour inclusive of 

setting and packing up the AV biofeedback system in 

addition to the CBCT scans, but it may be completed in 
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less time than this. After each initial study session 

(during planning) the patient will be asked to complete a 

questionnaire regarding the AV biofeedback system; 

each questionnaire is designed to only take 2 minutes to 

complete. In the event that AV biofeedback is the more 

reproducible breathing condition, it will be continued to 

be used as a part of their treatment in the remainder of 

their 18 CBCT scans and treatment. Should AV 

biofeedback remain in the patient’s treatment, a single 

follow-up questionnaire will be performed towards the 

end of their treatment to gauge any change in opinion 

towards the AV biofeedback system.  

  

 Data analysis 

 For each patient the acquired internal motion (from 

CBCT images) and respiratory data (from the TGA-

approved real-time position management (RPM) system) 

will be analysed in order to quantify the clinical impact 

of AV biofeedback through the following measurements:  

 1) Quantify the proportion of patients for whom 

respiration is more regular with the guidance of AV 

biofeedback.  

 2) Quantify the respiratory reproducibility with AV 

biofeedback and free breathing. Respiratory results 

will be evaluated using the root mean squared error 

(RMSE) method and compared using statistical 

analysis methods such as the Student t-test.  

 3) Quantify the improvement in treatment margins 

and dose distributions with and without AV 

biofeedback by reconstructing the delivered dose 

using a method developed for liver SBRT. 

 4) Quantify the reduction in 4D CT errors 

with/without AV biofeedback by programming the 

Quasar phantom with the AV and free-breathing 

respiratory traces. 

 5) Reconstruct the CBCT into the 4D CBCT using 

the respiratory signal and compare the image quality 

with and without AV biofeedback.  

 (6) The correlation between internal and external 

motion  

 

Estimate the clinical benefit To estimate the improvement in treatment margins and 

dose distributions, dose reconstruction using the method 

of Poulsen et al (Med Phys 2012)
1,2

will be performed 

using the tumour motion extracted from AV 

biofeedback-guided CBCT images and free breathing 

CBCT images. Using radiobiological response models 
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from QUANTEC (Quantitative Analysis of Normal 

Tissue Effects in the Clinic) we will assess the impact of 

the change in radiation dose delivered to healthy tissues 

with and without AV biofeedback respiratory guidance. 

 4D CBCT image quality will also be investigated. CBCT 

images will be reconstructed into 4D CBCT using the 

obtained respiratory signals and the image quality will be 

compared for with and without AV biofeedback.    

Statistical considerations According to preliminary results from 15 healthy human 

subjects, assuming a type I error rate of 5%, 80% power 

and a moderate effect size of 0.34σ for the paired 

differences between free breathing and AV biofeedback, 

a sample size of 30 patients will be required. If we 

assume that the standard deviations of these differences 

in the patient population will be approximately double 

that of the healthy volunteers then the minimal detectable 

difference will be 0.068, (σ = 0.2). 

  

Duration of the Study 2 years 
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1.BACKGROUND 

In Australia, 115,000 cancer patients are newly diagnosed each year and 40% of cancer 

patients receive radiotherapy as part of their treatment plan
3
 with radiotherapy being an 

effective anti-cancer treatment by delivering high-energy radiation directly to tumours to 

destroy cancer cells.
4
 Stereotactic body radiotherapy (SBRT) in particular has recently been 

incorporated into the treatment of liver cancer due to its demonstrated effectiveness in 

clinical studies as well as improving survival rate,
5,6

 with over 54% of American liver cancer 

patients being treated with SBRT.
7
 SBRT is a high-precision, high-dose irradiation of a lesion 

in a small number of fractions (typically 1 – 6).
8
In 2008, there were 1304 new cases of liver 

cancer diagnosis across Australia,
9
 with NSW having a higher rate of diagnosis than the 

national average.
9,10

 Liver tumours are considered highly mobile due to their proximity to the 

thoracic diaphragm, which is a dominant factor in inducing respiratory motion in the thoracic 

and abdominal regions.
11,12

 

Such respiratory motion reduces the precision of radiation therapy resulting in poor radiation 

targeting and tumour control.
12,13

 A key problem to be solved in this study is inadequate 

respiratory-related tumour motion management, especially for irregular respiratory-related 

tumour motion which further negatively affects the clinical outcome.
14,15

 A 1Gy increase in 

tumour dose results in a 4% improvement in survival,
16

 however, a 0.5cm tumour motion 

leads to a 4~5% variation in radiation dose
17

 which can lead to an increase in mean dose to 

healthy surrounding tissues. In previous reports, tumours subject to respiratory motion have 

been shown to move up to 5 cm,
12

 and rotate up to 45° during respiration.
18

 Given that 

average liver motion in the superior-inferior (SI) direction has been shown to be 9 ± 5 mm,
19

 

this can exacerbate the variation in radiation dose by up to 10%, leading to a further  increase 

in mean radiation dose to the healthy liver tissue.  

During radiotherapy, in order to irradiate the tumour at all times, the treatment volume must 

be increased to cover the entire range of tumour motion; this increases the dose delivered to 

the surrounding healthy tissue.
16,17,20,21

 Without respiratory motion management, patients can 

receive an underdose of radiation to the tumour and overdose to the surrounding healthy 

tissues, which can lead to cancer recurrence and severe radiation side effects. For example: a 

1Gy increase in mean lung dose results in on average a 1% reduction in pulmonary function
22

 

and a 2% increase in risk of pneumonitis(28% of patients were suspected of having radiation 

pneumonitis in a previous study).
20,23

We hypothesise that the more reproducible respiratory 

motion as a result of AV biofeedback will result in reduced treatment margins leading to 

improved radiation sparing of the surrounding healthy tissue. 

Techniques such as respiratory gating, breath-holds and tumour tracking are clinically useful 

for tumour motion management;
24-26

 abdominal compression is also used to reduce the 

magnitude of liver tumour motion.
27

 However, irregular respiration (such as deep/shallow 

breaths, baseline shifts, inconsistent amplitude, etc) can reduce the efficiency of such motion 

techniques
28,29

 as well as causing motion artefacts and anatomic errors in medical imaging.
30-

35
 

Respiratory guidance is one such technique which specifically aims to produce regular 

patient breathing. At the forefront of respiratory guidance is the audiovisual (AV) 

biofeedback system. The AV biofeedback system (Figure 1) developed by Venkat, et al
29

 is 

one such management technique to minimise irregular respiration. AV biofeedback uses a 

non-invasive external marker to measure abdominal motion and guides the patient to produce 

regular respiration. This system has demonstrated a reduction in average cycle-to-cycle 

variations in respiratory amplitude and period by up to 50% and 70% respectively,
29

 which 

has also shown to be beneficial in improving motion reproducibility for respiratory-gated 

radiotherapy
36

 in addition to reducing blurring artefacts in 4D PET
37

 and CT.
38
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Figure 1. AV biofeedback system. AV goggles (left) and screen (right) setups; marker block on the abdomen 

shown (IR camera not shown, see section 5.1: Study Equipment). The visual display (centre) as seen by the 

subject (sans arrows) of the AV biofeedback system shows the guiding wave (white curve) and a marker position 

(marker image) in real time.   

 

Additionally, this system can be employed for real-time tumour tracking and respiratory 

gating. In this case, tumour motion can be indirectly managed by regularising respiratory 

motion based on the correlation between the external abdominal position and the internal 

tumour position during regular breathing.
39,40

 

Despite the positive results of AV biofeedback studies to date, the participants have thus far 

been healthy volunteers, which are sufficient when investigating tumour surrogates. 

However, to determine the true clinical value of the AV biofeedback system a study 

involving the monitoring of tumours themselves needs to be undertaken; that is the purpose 

of this study. 
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2.PRELIMINARY RESULTS 

2.1. IRREGULAR RESPIRATION LEADS TO MEDICAL IMAGE AND ANATOMIC ERRORS 

There is a clear link between respiratory irregularity and anatomic errors on 4D CT images.
30-

35
 The irregularity of breathing is shown in Figure 2; the impact of this irregularity on 

medical images is shown in Figure 3. 

Figure 2.  Example lung tumour motion (superior-inferior) with time showing the variation in breathing period, 

shape, magnitude and baseline position.  From Suh et al.
12 

 

 

Figure 3.  Irregular breathing causes four different types of errors in 4D CT images: 46 of 50 patients had 

scans with an on average 11mm error.  From Yamamoto et al.
31
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2.2. LIMITATIONS OF PRIOR STUDIES OF BREATHING TRAINING IN RADIATION ONCOLOGY 

To address the problem of respiratory irregularity, various methods of patient respiratory 

guidance have been applied by other groups, as summarised in Table 1.  However there are a 

number of limitations: none of the studies used audio biofeedback, only a single measurement 

point was used for the respiratory signal and none of these systems are commercially 

available.  Despite these limitations, improvements in the respiratory signal reproducibility 

was observed, indicating the potential for breathing training to improve image quality and 

radiation targeting. 

This will be the first study to implement AV biofeedback in liver cancer patients undergoing 

radiation therapy. 

Table 1.  Summary of breathing training studies in radiation oncology 

Author, year Sensor Subjects Comments 

Wang 1995
41 Bellows belt 6 Audio prompt for breath-hold MRI 

Wang 1995
42 MR navigator 6 Visual prompt for multiple breath-hold MRIs 

Wong 1999
24 Flow monitor 12 Immobilizing breathing motion 

Vedam 2003
28 RPM 5 

Visual motion wave with two motion limits (inhale 

and exhale limits) 

George 2005,
43

 

2006
36,44 

RPM 24 
Visual motion bar with two motion limits with audio 

instruction 

Lim 2007
45 Thermocouple 10 

Visual guidance with audio prompt.  Baseline drift not 

observed using the thermocouple 

Locklin 2007
46 Bellows belt 16 Visual biofeedback only for breath-hold CT scans 

Ono 2011
47 Accelerometer Phantom Used cheap, available equipment.  No patient studies. 

 

This study will involve the recruitment of 30 participants, which is considerably greater than 

the participants involved in the vast majority of previous respiratory guidance studies as 

shown in Table 1. Such a number of participants in this study would make it the most 

comprehensive AV biofeedback study to date. The inclusion of more participants would also 

produce more accurate and significant results.  

Unlike previous studies that tested the effect of AV biofeedback on respiration,
29

 CT image 

quality,
38

 or treatment margins, such studies involved the participation of healthy 

volunteers,
28

 this study involves the recruitment and imaging of cancer patients.  

 

2.3. RESPIRATORY REPRODUCIBILITY 

Respiratory reproducibility refers to how consistent a breathing signal’s amplitude and period 

are. The commonly used quantification of respiratory reproducibility used throughout the 

literature is the root mean square error (RMSE).
5,29,48

 A low value of RMSE is indicative of a 

highly reproducibly respiratory signal. Figure 4(c & f) exemplifies the difference in 

respiratory reproducibility; the respiratory signal shown in Figure 4f would have a much 

lower RMSE value (in both amplitude and period) that the signal presented in Figure 4c, and 

is therefore the more reproducible signal of the two. Even though the two respiratory signals 

presented in Figure 4c & f have similar ranges of motion, a lower value of RMSE has been 

demonstrated to result in reduced treatment margins. A previous study found that the 

superior-inferior (SI) margins were reduced from 1.1cm to 0.8cm by implementing 

respiratory guidance.
28
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2.4. AV BIOFEEDBACK SYSTEM COMBINED WITH MRI AND CT 

Recently, Kim et al. (2012) reported the feasibility of respiratory motion management with 

15 healthy human subjects using the AV biofeedback system combined with a 3 Tesla 

MRI.
48-50

 These studies demonstrated a reduction of motion artefacts and improvement of 

organ motion reproducibility in MRI using the AV biofeedback system in conjunction with 

the real-time position management (RPM) external position management system from Varian 

Medical Systems. This study demonstrated that using the AV biofeedback system could 

improve the reproducibility of internal structure’s (in this case: the thoracic diaphragm) 

respiratory motion. By using the AV biofeedback system, diaphragm motion reproducibility 

was significantly improved (Figure 4). Average RMSE in diaphragm displacement of 15 

healthy human subjects was reduced from 2.7 mm with free breathing to 1.6 mm with AV 

biofeedback (p-value < 0.05). Additionally, the average RMSE in the diaphragm motion 

period was reduced from 1.84 s with free breathing to 0.34 s with AV biofeedback (p-value < 

0.05). However, a limitation of this study was that the participants were healthy volunteers, 

not cancer patients, as such the true clinical viability was difficult to achieve.  

While the thoracic diaphragm has been demonstrated to be an accurate tumour surrogate,
39,40

 

fiducial markers are frequently used clinically due to their increased proximity to the tumour 

(compared to the diaphragm) and are therefore a highly accurate tumour surrogate.
51,52

 

  

In addition to MRI, AV biofeedback has also been implemented in imaging studies utilising 

PET
37

 and CT.
38,46

 AV biofeedback has the advantage of being compatible with a range of 

imaging modalities, as such, implementation with the CBCT imaging modality will be very 

straight-forward and the improvements to image quality are expected to be consistent with 

the previously mentioned AV biofeedback imaging studies. This study is a continuation from 

the Kim’s 2012 MRI study, as the fast MR pulse sequence utilised in that study (fast gradient 

 

Figure4. (a, d) ROI (region of interest) boxes on coronal images in Study 6. (b, e) 1D signal profile of the 

ROI over 512 images. Outline of diaphragm shown (red line). (c, f) Diaphragm motion cycles (blue) and 

average curve (red) shown in phase domain. By using the AV biofeedback system the diaphragm motion 

reproducibility has been significantly improved. 
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echo: fGRE) would have comparable image quality to images obtained using CBCT. The 

advancement from Kim’s study to this one is the recruitment of liver cancer patients in 

addition to monitoring a more accurate tumour surrogate: fiducial markers implanted within 

the liver. 

 

2.5. ASSESSMENT OF THE BENEFIT OF REDUCING TUMOUR MARGINS 

Additional margins about the tumour are generally measured as the CTV-to-PTV margins: 

where CTV is the clinical target volume (approximation of the tumour volume) and PTV is 

the planning target volume (the CTV with additional margins to account for tumour motion 

and geometric uncertainties). 

A liver cancer study by Molinelli, et al (2008) found that the reduction of CTV-to-PTV 

margins of liver tumours resulted in both dose escalation to the tumour (higher dose to the 

tumour: more effective in eliminating the tumour) as well as improved sparing of the healthy 

liver tissue (reducing post-treatment complications and improving long-term survival rate).
53

 

Molinelli’s study found that a reduction of the CTV-to-PTV margin by 50% resulted in a 

further sparing of health liver tissue by up to 47% (average: 26%).  

Therefore, if imaging can be improved to reduce geometric uncertainties in addition to 

improving motion management techniques to compensate tumour motion more accurately, 

then the CTV-to-PTV margins can be further reduced resulting in more efficient dose 

delivery to the tumour itself while improving the sparing of the surrounding healthy tissue. 

AV biofeedback is proposed to improve both these aspects.  

Treatment margins for liver SBRT patients at the Chris O’Brien Lifehouse Department of 

Radiation Oncology are determined by internal target volume (ITV). ITV is defined as the 

CTV plus a margin to account for uncertainties in shape, size and position of the CTV, much 

like the PTV, although the ITV is typically a tighter margin than the PTV.    
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3.STUDY OBJECTIVES AND AIMS 

Liver tumour motion management using AV biofeedback will be investigated using fiducial 

markers as a surrogate and test the hypothesis that the more regular respiration as 

produced by AV biofeedback will result in more reproducible liver tumour motion 

which will have numerous clinical advantages. To test this we will conduct a 30 liver 

cancer patient clinical using CBCT and correlative outcomes study with the following 

objectives: 

 

3.1. PRIMARY AIM: 

Evaluate improvement in the reproducibility of respiratory-related tumour motion for 

liver cancer patients with the AV biofeedback system: We propose a study involving 30 

liver cancer patients. Each patient will undergo a CBCT scan during which two breathing 

conditions will be tested: (1) with AV biofeedback and (2) without AV biofeedback (free 

breathing) in order to assess tumour motion reproducibility. Respiratory motion of an 

external marker and internal fiducial markers (and/or surgical clips) will be assessed via a 

respiratory displacement and frequency analysis. 

 

3.2. SECONDARY AIM: 

Assess the potential clinical benefit of AV biofeedback: Analysis of obtained data will 

involve:  

(1) Based in the respiratory motion analysis, the proportion of patients benefitting from 

AV biofeedback will be obtained. 

(2) Quantification of the improvement in dose distributions and treatment margins with 

and without AV biofeedback by reconstructing the delivered dose using a method 

developed for liver SBRT.  

(3)  Quantification of the reduction in 4D CT errors with/without AV biofeedback by 

programming the Quasar phantom with the audiovisual and free-breathing traces.  

(4) Reconstruction of CBCT images into 4D CBCT using the respiratory signal and 

compare the image quality with/without AV biofeedback. 

(5) Evaluation of the correlation between internal fiducial marker and external marker 

motion.  

(6) An evaluation of the patient and operator experience with the AV biofeedback 

system though a questionnaire will be performed. 

The methods of achieving these aims will be further detailed in section 5.3: Investigation 

Plan. 

To achieve these objectives the following data will be collected: 

 External breathing motion data from RPM & AV biofeedback computers: 

 CBCT projection & image data: 

 Patient and staff surveys 

 4DCT images 

 Free breathing CTs 

 Patient treatment plan  
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4.PARTICIPANT SECTION 

This study is specifically aimed at liver cancer patients.  Patients fitting the eligibility criteria 

(see below) will be identified and introduced to this study by their treating physician who will 

participate as a principal investigator in this study.  

 

4.1. INCLUSION CRITERIA 

1)  Liver cancer patients, either primary hepatocellular carcinoma or liver metastases, 

eligible for stereotactic radiotherapy 

2) > 18 years old 

3) No gender or ethnic restrictions 

4) Radio-opaque markers implanted (fiducials and/or surgical clips previously implanted 

in the liver) 

5) Ability to give written informed consent and willingness to participate and comply 

with the study 

 

4.2. EXCLUSION CRITERIA 

1) Pregnant/ lactating women  

2) <18 years old.  

3) Prior radiotherapy treatment to the liver 

4) Life expectancy less than 6 months 

5) Non-liver cancer patients 

 

4.3. NUMBER OF PARTICIPANTS 

30 liver cancer patients. As shown in Table 1, 30 participants are considerably greater than 

the participants involved in the vast majority of previous respiratory guidance studies. Such a 

number of participants in this study would make it the most comprehensive AV biofeedback 

study to date. The inclusion of more participants would also produce more accurate and 

significant results.  

 

4.4. NUMBER OF CENTRES 

This study will be conducted solely at Chris O’Brien Lifehouse Department of Radiation 

Oncology, Sydney. 

 

4.5. DURATION 

The expected duration of the study is 2 years.  Estimated time of first recruitment is early 

2014. The study recruitment phase and data analysis phase will be done concurrently; 

analysis of data for each patient can commence once CBCT scans have been acquired for that 

patient. Overall analysis will commence after last patient recruitment.  

  

215



   

Liver tumour motion using audiovisual biofeedback 

Version 4.0, 29/06/2015 

18 

 

5.STUDY OUTLINE 

The data required for the study: external and internal respiratory signals in addition to the 

CBCT scans, will be collected before and during treatment. All patients will receive the same 

CBCT scans. 

Each CBCT study (inclusive of setting up and packing away the AV biofeedback system in 

addition to CBCT scan time) will be completed within a 1 hour timeframe on a single day as 

per SBRT clinical trial protocol. Once informed consent has been obtained, the principal 

investigator will schedule a time for the study.  

 

5.1. STUDY EQUIPMENT 

The additional hardware needed for this study is comprised of the AV goggles or screen. The 

CBCT images will be acquired using a Novalis Tx linear-accelerator (linac). In the data 

analysis stage of the study, further equipment and software will be used, both of which are 

frequently used in quality assurance tests and treatment planning.  

 

5.1.1. AV BIOFEEDBACK 

In this study the audio and visual prompts of the AV biofeedback system will be delivered to 

the patient via easy to wear and light-weight goggles, shown in Figure 5, or a screen, shown 

in Figure 6. The screen to be used is the Google Nexus tablet computer.  

 

 

Figure 5. The AV goggles (left) and being worn by a volunteer (right). 

The patients will view a high resolution built-in monitor for the visual component in addition 

to hearing the audio component via built-in speakers.  
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Figure 6. The screen (Google Nexus tablet computer) in a linac (left) and CT (right) room. 

The Google Nexus tablet has built-in speakers as well as a 3.5mm headphone jack if the 

patient would rather wear headphones.  

The respiratory motion information will be acquired using the RPM system (Figure 7), which 

is comprised of an infrared (IR) camera tracking the motion of a marker block at a rate of 30 

Hz (real-time). 

 
Figure 7. The RPM system: an IR camera tracking the marker block at a rate of 30 Hz. 

 

AV biofeedback is a non-invasive, interactive respiratory guide designed to guide the patient 

towards regular respiration in the most comfortable way possible. 

 

5.1.2. NOVALIS LINEAR ACCELERATOR 

For the CBCT scans, a TGA-approved, fully clinical, routine SBRT treatment unit at Chris 

O’Brien : Novalis Tx Linear Accelerator (Figure 8) will be used. As a part of their SBRT 

treatment plan, each patient will already be receiving 18 CBCT scans. By participating in this 

study, each patient will receive two additional CBCT scans with an addition piece of 

equipment: the AV goggles (Figure 5) or screen (Figure 6), in order to test the AV 

biofeedback system.  

 
Figure 8.The Novalis Tx Linear Accelerator. 
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5.1.3. QUASAR PHANTOM 

In the data analysis stage of the study, the reduction in 4D CT errors with/without AV 

biofeedback will be quantified by programming the Quasar phantom (Figure 9) with the AV 

and free-breathing traces.  

 
Figure 9. The Quasar phantom.  

The Quasar phantom is a breathing simulator and is frequently used in quality assurance tests 

on radiotherapy systems. By programming the Quasar with an acquired patient respiratory 

signal we are able to study the effect of AV biofeedback on 4D CT image quality without 

giving additional dose to the patient.  

 

5.1.4. ECLIPSE FOR DOSE RECONSTRUCTION 

The impact of AV biofeedback on dose distribution will be assessed using the Varian 

treatment planning software: Eclipse. In a method developed by Poulsen et al (Med Phys, 

2012)
1,2

 the respiratory motion will be incorporated into treatment plans. Dose distributions 

and dose volume histograms (DVH) will be acquired through this method to assess the 

impact of AV biofeedback on the patients’ treatment plan. Examples of dose distributions 

acquired in the Poulsen (Med Phys, 2012)
2
 study are shown in Figure 10. Also computed by 

the Eclipse software are the DVHs which are a mathematical tool frequently used in 

radiotherapy to determine the adequacy of a treatment plan. DVHs graphically describe dose 

distributions across a target volume in addition to organs at risk. A DVH from Poulsen, et 

al’s (Med Phys, 2012) study is shown in Figure 11.  

The Eclipse dose reconstruction software is available is both the Radiation Oncology 

Department at Chris O’Brien Lifehouse as well as the University of Sydney.  
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Figure 10. Calculated (left side of each pair) and measured (right side) 2D dos distributions for a conformal 

field delivered to a static target and to a moving target with and without dynamic multi-leaf collimator (DMLC) 

tracking. 

 

 

 

 

Figure 11. A DVH from Poulsen’s study (Med Phys 2012). It is describing how much of the tumour itself (GTV: 

Gross Tumour Volume) is receiving what percentage of radiation dose.  
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5.2. STUDY FLOW CHART 

The study flow chart is shown in Figure 12. Details of the investigation plan will be 

described in section 5.3. 

 

Figure 12.  Data acquisition procedure for the 30 cancer patients in the CBCT AV biofeedback study. Each 

study will involve the patient breathing both with and without the guidance of AV biofeedback. 
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5.3. INVESTIGATION PLAN 

The study will progress much the same as per the currently implemented clinical liver SBRT 

protocol with the addition of an AV biofeedback training session prior to the scans and then 

the implementation of AV biofeedback during a CBCT scan at the treatment planning stage, a 

second CBCT scan will also be taken without the implementation of AV biofeedback. 

Should fiducial marker motion be more than 10 mm, abdominal compression may be used. 

Our AV biofeedback system is shown schematically in Figure 13. The real-time (30 Hz) 

respiratory data is input into the respiratory motion management system to determine a 

patient’s respiratory-related motion pattern (waveguide). Two CBCT scans will be taken 

during the study under two different breathing conditions: (1) with AV biofeedback and (2) 

without AV biofeedback (free breathing). To improve the image quality and radiation 

targeting for the patient, all subsequent imaging and treatment sessions will use the most 

reproducible breathing condition: free breathing or AV biofeedback.  

 

 

During each patient’s CBCT scans they will breathe under two conditions: (1) with AV 

biofeedback and (2) without AV biofeedback (free breathing). To improve the image quality 

and radiation targeting for the patient, all subsequent imaging and treatment sessions will use 

the most reproducible breathing condition, free breathing or AV biofeedback.  

Numbers 1 – 5 on the study flow chart (Figure 12) indicate the progression of the study plan:  

1) Patient order selection: Non-randomised. Patients will alternate between what 

breathing condition is implemented first in their study: AV biofeedback or free 

breathing. 

2) Use external (RPM signal) and internal marker signals for respiratory signals.  

Respiratory data analysis; respiratory reproducibility will be quantified by 

RMSE (in displacement and period). 

3) Patient report: proposed report shown in Figure 14.  

4) Patient/Radiation Therapist (RT) questionnaire: to gauge the level of acceptance of 

AV biofeedback from both the patient and clinician. (See section 10.2. Questionnaire) 

5) Respiratory Data Analysis. For each patient, the acquired internal motion and 

external respiratory data will be analysed in order to quantify the clinical impact of 

AV biofeedback through four criteria: 

 
 

Figure 13.  Schematic AV biofeedback system to be used in this study. Not shown: abdominal compression to be 

utilised if tumour has range of motion larger than 10mm. Shown here is the use of the screen to show patients 

the visual display, however, the use of goggles are also available (see Figures 1 & 5).  
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i) Quantify the fraction of patients for whom breathing is more regular 

(reproducibility calculated in point 2) with AV biofeedback and proceed to 

simulation and treatment.  

ii) Quantify the improvement in dose distributions and DVHs with and 

without AV biofeedback by reconstructing the delivered dose using the dose 

reconstruction method of Poulsen et al (Med Phys, 2012).
1,2

 This dose 

reconstruction method incorporates the motion information of the target and is 

compatible with a number of treatment planning systems including Eclipse, 

Varian Systems.  

iii) Quantify the reduction in 4D CT errors with/without AV biofeedback by 

programming the Quasar phantom with the AV and free-breathing traces. 

iv) Reconstruct the CBCT into 4D CBCT using the respiratory signal and 

compare the image quality with and without AV biofeedback.  
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Figure 14. Proposed Patient Report, V1.0.  
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Procedures Pre Study 
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Visit with 
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Study Analyses     
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5.4. STUDY PROCEDURE RISKS 

Considering that patients are receiving standard oncology treatments, which they are subject 

to regardless of participation in this study, their treating physician will be counselling them 

on the risk of their appropriate treatments. Studies have found that the risks of major and 

minor complications as a result of the implantation of fiducial markers are 5% and 17.3%, 

respectively,
54

 and that very few patients have mild side effects lasting more than 2 weeks.
55

 

However, it should be emphasised that patients will undergo fiducial marker implantation as 

per clinical SBRT protocol, not as a result of participating in this study.  

For the procedures pertaining to this study, the risks to the patient are low: this research study 

involves exposure to a very small amount of radiation from the CBCT scans (which are done 

multiple times routinely as a part of SBRT treatment). As part of everyday living, everyone is 

exposed to naturally occurring background radiation and receives a dose of about 2 to 3 

millisieverts (mSv) each year. This study will involve the addition of two additional CBCTs:  

the upper-range estimate of effective dose from this study is about 16.4 mSv (8.2 mSv per 

CBCT scan).
56

 At this dose level, the risk is low. The dose from this study is comparable to 

that received from routine diagnostic x-ray and nuclear medicine procedures. 
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The RPM and AV biofeedback systems do not involve any invasive procedures or ionising 

radiation and are of no risk to the patients.  

 

5.5. RECRUITMENT AND SCREENING 

Patients fitting the eligibility criteria will be identified and introduced to this study by the 

treating physician who will participate as a principal investigator in this study.  

 

5.6. ENROLMENT PROCEDURE AND INFORMED CONSENT PROCESS 

The patients will be given ample time to completely read the informed consent form as well 

as ask any questions that they may have.
57,58

 The patients will be contacted by the principal 

investigator with regards to their decision in partaking in the study. Patients that agree to 

partake in the study will be asked to sign an informed consent form at their next hospital visit. 

The participant will receive a study enrolment number and this will be documented in the 

participant’s medical record and on all study documents. Patients who agree to participate 

will be contacted by principal investigator to organise times for to the study scans to be 

conducted.   

 

5.7. INFORMED CONSENT PROCESS 

The principal investigator will be obtaining informed consent from patients after consulting 

with their physician prior to commencing the study.  

 

5.8. RANDOMISATION PROCEDURE 

There is no randomisation procedure in this study.  
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6.SAFETY 

6.1. ADVERSE EVENT REPORTING 

6.1.1. CLINICAL TRIALS AND ADVERSE EVENT REPORTING 

The principal investigator and sub investigators will report adverse events to the Radiation 

Safety Officer on site and to the Human Research Ethics Committee and the Research 

Governance Officer within 72 hours of the event occurring unless immediate notification is 

required. 

 

6.1.2. ADVERSE EVENT 

The AV biofeedback system is not invasive and is not expected to cause any adverse event. 

The goggles used for AV biofeedback are easy to put on and are comfortable to wear. The 

Google Nexus tablet computer also to be used as the screen for is held above the patient by a 

tablet-holder clamped on to the treatment couch; the screen is held at a comfortable distance 

from to patient and is anticipated to be a more comfortable option over the goggles. For the 

audio component, there is volume control on the goggles and tablet themselves for built-in 

speakers. The other procedures performed (fiducial marker/surgical clips, CBCT scans) are 

standard/routinely performed for SBRT treatment therefore no adverse effect is anticipated 

by the participation in this study 

The risks associated with the acquisition of radiological scans are outlined in the risk Section 

5.4. (No known side effects). 

 

6.1.3. SERIOUS ADVERSE EVENT (SAE) 

We do not anticipate any serious adverse events as a result of the procedures pertaining to 

this study. 

 

6.1.4. DEVICES EVENTS 

Standard imaging protocols and full clinical, treatment and imaging software will be used in 

the acquisition of imaging scans in this study. We do not anticipate that any adverse event 

will occur as a result of AV biofeedback as the addition equipment needed to implement AV 

biofeedback: the goggles, are lightweight and easy to wear (and take off), in addition to the 

screen and tablet-holder are is easy to clamp to and remove from the treatment couch. 

Accidental protocol breaches will be reported to the hospital’s Radiation Safety Committee. 

 

6.2. SERIOUS ADVERSE EVENT REPORTING 

The principal investigator and sub investigators will report adverse events to the Radiation 

Safety Officer on site and to the Human Research Ethics Committee and the Research 

Governance Officer within 72 hours of the event occurring unless immediate notification is 

required. 

 

6.3. DATA SAFETY AND MONITORING BOARD 

The imaging modalities that are used in this study are approved for clinical practice, therefore 

this study we will not nominate a separate Data and Safety Monitoring Board.  

Our steering committee (investigators and sub investigators including consumer 

representatives) will meet monthly to monitor the conduct of the study and assess progress. In 

addition, the principal and majority of sub investigators will maintain weekly contact via 
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email and face-face or teleconference meetings in order to facilitate implementation of the 

study and provide quality assurance to all aspects of the study. The principal investigator will 

be on-site to personally conduct, oversee, and supervise all of the activities. 

 

6.4. EARLY TERMINATION 

We do not anticipate any reason for early termination of the study. 
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7.BLINDING AND UNBLINDING 

There is no blinding in this study.   
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8.STATISTICAL CONSIDERATIONS 

8.1. SAMPLE SIZE, POWER CALCULATION AND ANALYSIS PLAN  

According to preliminary results from 15 healthy human subjects, assuming a type I error rate 

of 5%, 80% power and a moderate effect size of 0.34σ for the paired differences between free 

breathing and AV biofeedback, a sample size of 30 patients will be required. If we assume 

that the standard deviations of these differences in the patient population will be 

approximately double that of the healthy volunteers then the minimal detectable difference 

will be 0.068, (σ = 0.2). 

For the primary objective, tumour motion reproducibility with and without AV biofeedback 

will be quantified. Results will be evaluated using the RMSE method and compared using 

statistical analysis methods such as the Student t-test. The possible changes in treatment 

planning will be evaluated qualitatively by visual inspection of dose distribution and 

quantitatively by analysing dose-volume metrics derived from dose-volume histograms 

(DVHs) as described by Poulsen et al.
1,2
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9.CONFIDENTIALITY AND STORAGE AND ARCHIVING OF STUDY       

DOCUMENTS 

Collected data, as itemised on page 16, will be collected from the subjects. After acquisition 

the CBCT data will be de-identified, however, patient data could be made re-identifiable to 

obtain additional clinical information for the data analysis stage of the project, but only by the 

principal investigator. De-identified data will be stored on a secure, password protected 

backed up database that will be created, much the same to what we have designed for our 

previous studies. A separate key of the subject study number and their medical record number 

will be securely stored by the principal investigator to allow re-identification if necessary. 

Only the principal investigator will have the ability to re-identify subjects. All other 

investigators will only have access to the de-identified data. The data will be stored for 15 

years as per clinical trial guidelines. 

 The location of data storage will be in the University of Sydney’s Medical Foundation 

Building. Access to the building requires swipe card access; therefore, the general public has 

no access to it. In addition to this, the lab rooms within the Medical Foundation Building 

require a key to enter it. 
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10.DISCLOSURE OF CONFLICT OF INTEREST 

Audiovisual biofeedback is being developed towards commercialisation. This has led to the 

incorporation of a company, Respiratory Innovations Pty Ltd, by University of Sydney 

investigators Prof. Paul Keall, Mr. Kuldeep Makhija, and Mr. Sean Pollock. No financial 

support is provided by Respiratory Innovations to any of the investigators or to the 

investigation itself; however, Paul Keall, Kuldeep Makhija, and Sean Pollock are 

shareholders in Respiratory Innovations.  

No patient data will be used for promotion for Respiratory Innovations outside of what is 

publically available, e.g. presentations or publications.  

11.APPENDIX 

11.1. LIST OF ABBREVIATIONS 

- AV Biofeedback: Audiovisual biofeedback 

The respiratory guidance system to be testing in this study composing of screen or 

goggles and motion tracking  

- FB: Free Breathing 

 The respiratory condition during which AV biofeedback will not be used 

- RMSE: Root mean square error. 

Metric to quantify the reproducibility of a respiratory signal. A lower value is 

indicative of a more reproducible signal.  

- CBCT: Cone beam computed tomography 

 Medical imaging modality to be used to monitor fiducial marker motion 

- RPM: Real-time position management 

Infra-red tracking camera and marker block used to obtain the external 

respiratory signal for the real-time input for AV biofeedback 

- SBRT: Stereotactic body radiotherapy 

Cancer radiation treatment which involves the high-precision delivery of high-

dose radiation to a localised area in a small number of treatment fractions.  

- DVH: Dose volume histogram  

Mathematical representation of three-dimensional dose distributions in a two-

dimensional graph.  

- mSv: milli Sieverts  

 Sieverts are the SI unit of equivalent absorbed radiation dose 

- TGA: Therapeutic Goods Administration 

- GTV: Gross Tumour Volume 

 GTV is the physical volume of the tumour 

- CTV: Clinical Target Volume 

 CTV is the approximation of tumour volume (given imaging uncertainties) 

- PTV: Planning Target Volume 

PTV is the CTV with additional margins to account for variations in size, shape 

and position of the tumour. 
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11.2. QUESTIONNAIRE  

Audiovisual (AV) Biofeedback Survey 
 
Goal: To evaluate your experience with the audiovisual (AV) biofeedback guidance 

system and identify any areas where development is needed to improve the AV 

biofeedback experience.   

 

 

Patient status 
Disease and stage: Body-mass index: 

Lung function: or Height/Weight: 

Immobilisation: Cognitive ability: 

Treatment schedule: Heart rate/ blood pressure: 

Performance status:  

 

 

Date:  
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Audiovisual (AV) Biofeedback Patient Survey  
 

Goal: To evaluate your experience with the audiovisual (AV) biofeedback guidance 

system and identify any areas where you feel development is needed to improve the 

AV biofeedback experience.   

 

Introduction: In medical imaging and radiotherapy, irregular breathing negatively 

impacts image quality, in addition to inaccurate tumour targeting. AV biofeedback 

provides respiratory guidance to produce consistent respiratory motion. AV 

biofeedback will help to improve the quality of imaging scans in addition to the 

accuracy of radiotherapy treatment. 

 

Timing: After initial simulation session and within last week of treatment 

 

Demographics  

 

Age range: Impeded eyesight: y / n 

Sex: Impeded hearing:  y / n  

Height: Highest level of education: 

Weight: Frequency of computer use: 

 Anxiety level: 

     1 (not at all anxious) – 10 (very anxious)  

(1) Do you feel your breathing was more 

consistent using the AV biofeedback? 
No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

 

(2) Was the training session that you had 

prior to this session helpful? 
No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

 

(3) Did you feel physically comfortable with 

the AV biofeedback system? 
No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

 

(4) Did you feel the AV biofeedback visual Too slow  Just right  Too fast 
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guide (blue curve) was too slow or fast? 1 2 3 4 5 

Comment: 

 

 

 

 

(5) Did you feel the AV biofeedback visual 

guide (blue curve) was too shallow or deep? 
Too shallow  Just right  Too deep 

1 2 3 4 5 

Comment: 

 

 

 

(6) Did you like having the music? 

 

No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

 

(7) Did the music help you breathe more 

consistently? 

 

No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

 

(8) Did you feel anxious during the session? 

 

No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

 

 (9) Do you have any comments or suggestions either on your experience or how we 

can improve the AV Biofeedback system?  
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Audiovisual (AV) Biofeedback Radiotherapist Survey  
 

Goal: To quantify the user acceptance of audiovisual (AV) biofeedback and identify 

areas to improve the user AV biofeedback experience.   

 

Introduction: In medical imaging and radiotherapy, variations in cycle-to-cycle 

breathing results in imaging artefacts, leading to inaccurate radiation beam coverage 

and tumour targeting. AV biofeedback guides patients to produce regular respiratory 

motion using an AV device combined with a respiratory monitoring system. The AV 

biofeedback system will help to improve the quality of scans and the accuracy of 

radiotherapy treatment for patients. 

 

Timing: After initial simulation session and within last week of treatment for each 

patient 

 

Demographics  

Position: 

Years of experience: 

 

(1) Do you think that the training session was 

useful for the patient? 
No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

(2) Do you think the AV biofeedback system 

helped your patient to breathe more 

regularly? 

 

No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

(3) Was the AV biofeedback system easy to 

setup? 
No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

(4) Was the AV biofeedback system easy to 

operate? 
No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

(5) Would you recommend the AV No  Moderately  Yes 
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biofeedback guidance to your colleagues at 

other centres to implement in similar 

treatment? 

 

1 2 3 4 5 

Comment: 

 

 

(6) Do you have any comments or suggestions on your experience or how we can 

improve the AV Biofeedback system? 
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 Department of Radiation Oncology, Royal Prince Alfred Hospital  
 

Investigation of liver tumour respiratory motion for SBRT cancer patients 
using audiovisual biofeedback 

 
INFORMATION FOR PARTICIPANTS 

 
Introduction 
 
You are invited to participate in this study because you have liver cancer and will be 
receiving a course of standard radiotherapy. 
 
The aim of your cancer treatment is to deliver the radiation as precisely as possible 
to the liver and to spare the surrounding organs such as the parts of the liver 
unaffected by the cancer and kidneys. However, even when are lying still, the liver 
and surrounding organs will move when you breathe.  In order to compensate for the 
liver movement, we need to treat a “margin” around the liver to be certain that all of 
the cancer is being treated every day. If we can help you to visualise and regulate 
your breathing using an audio-visual device, we may be able to reduce the 
movement and make this margin smaller, allowing more accurate targeting of the 
radiation beam to the tumour and, reducing the side effects and, importantly, the 
radiation dose to the surrounding normal organs. 
 
This Information Sheet gives detailed information about the research study, which 
your Doctor will discuss with you. Its purpose is to explain to you as openly and 
clearly as possible all the procedures involved in this project before you decide 
whether or not to take part. Participating in the study is voluntary. Please take the 
time to read the information sheet carefully, and discuss it with family, friends and/or 
your GP if you wish.  Please ask if there is anything you do not understand or if you 
would like more information.  Once you understand the study, you will be asked to 
sign the Consent Form if you wish to participate. You will have a copy to keep as a 
record. 
 
The study is being conducted by: 
 
Dr Regina Tse (Department of Radiation Oncology, Chris O’Brien Lifehouse) 
 
Dr Robin Hill (Department of Radiation Oncology, Chris O’Brien Lifehouse) 
 
Gwi Cho (Department of Radiation Oncology, Chris O’Brien Lifehouse) 
 
Darren Martin (Department of Radiation Oncology, Chris O’Brien Lifehouse) 
 
Professor Paul Keall (Radiation Physics Laboratory, Sydney Medical School, 
University of Sydney) 
 
Sean Pollock (PhD student, Radiation Physics Laboratory, Sydney Medical School, 
University of Sydney) 
 
Danny Lee (PhD student, Radiation Physics Laboratory, Sydney Medical School, 
University of Sydney) 
 
Sean Pollock is conducting this study as a part of the requirements for the degree of 
Doctor of Philosophy in Medicine under the supervision of Professor Paul Keall.   
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It is planned that thirty (30) patients will be recruited from the  Chris O’Brien 
Lifehouse into this study.  
 
What is the purpose of this study? 
The aim of the study is to evaluate whether the Audio Visual (AV) Biofeedback 
system will improve the reproducibility of respiratory motion.  
 
This AV biofeedback system comprises a screen or goggles that you view in addition 
to speakers and controlling software. The goggles or screen allow you to visualize 
your respiration pattern on a graph (see illustrations below) and with this feedback, 
allow you to control and regulate your breathing.  
 

 
The goggles (left) and screen (right) displaying the AV biofeedback guiding software 
(centre). 
 
What will happen to me if I decide to take part? 
As part of your standard SBRT planning and treatment you will have 18 Cone Beam 
CT (CBCT) scans which are used to position you during radiotherapy. If you are 
participating in this study, you will have 2 extra CBCT scans done at your planning 
visit. During the CBCT scans, two breathing conditions will be tested: 
 
(1) with you using AV biofeedback and  
(2) without using AV biofeedback  (free breathing). 
 
The pattern of your breathing will be measured,- whichever method (with AV 
biofeedback or without) that produces more regular and consistent breathing patterns 
will be selected for use throughout your treatment. 
 
When you are breathing with the AV biofeedback system, you will either be wearing a 
pair of goggles or viewing a screen. The AV biofeedback system will guide you to 
produce regular breathing. 
 
You will also be asked to complete a questionnaire which will take about 2 minutes to 
do. You may also be asked to do a follow-up questionnaire later in your treatment, 
depending on the results of the initial study.  
 
Finally, the researchers would like to have access to your medical record to obtain 
information relevant to this study. 
 
What are the risks? 
All medical procedures - whether for diagnosis or treatment, routine or experimental 
– involve some risk. In addition, there may be risks associated with this study that are 
presently unknown and unforeseeable.  In spite of all precautions, you might develop 
medical complications from participating in this study. 
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The goggles that you will wear as part of the AV biofeedback are similar to a pair of 
glasses and are not expected to cause any discomfort. However, if you feel 
uncomfortable at any stage, they can be immediately taken off. 
The screen that you may view is a tablet computer that will be held a comfortable 
distance from you by a table-mounted tablet stand. 
 
The CBCT scans are similar to regular CT scans. The dose from the two (2) extra 
CBCT in this study is comparable to that received from routine diagnostic x-ray and 
nuclear medicine procedures. At this dose level, no harmful effects of radiation have 
been demonstrated and the risk is low.  
 
Please inform us if you have participated in any other research studies using 
radiation in the last five years.   
 
Please keep this form in a safe place for the next five years in case you volunteer for 
any more studies using radiation, when you should show it to the Investigator. 
 
It is important that women participating in this study are not pregnant and do not 
become pregnant during the course of the study. If you suspect that you are pregnant 
while you are receiving treatment on this study, you should advise your study doctor 
immediately. 
 
What are the benefits? 
While we intend that this research study furthers medical knowledge and may 
improve radiotherapy for liver cancer and lessen its side effects (and for treatment of 
other cancers which move as the patient breathes), we cannot guarantee that it will 
be of benefit to you.  However, if the AV biofeedback system proves successful it will 
continue to be used in your treatment plan. In addition, the images obtained in this 
study will be used for your treatment plan.  
 
What are the alternatives? 
This study is purely voluntary and if you choose not to participate in this study, you 
will be offered the standard SBRT for your liver cancer in this hospital. Your decision 
will not affect your treatment, follow-up or relationship with any of the medical staff 
involved in your care. 
 
Costs 
Participation in this study will not cost you anything, nor will you be paid.   
 
Compensation for injuries or complications 
If you suffer any injuries or complications as a result of this study, you should contact 
the study doctor as soon as possible, who will assist you in arranging appropriate 
medical treatment. If you are eligible for Medicare, you can receive any medical 
treatment required to treat the injury or complication, free of charge, as a public 
patient in any Australian public hospital.   
 

In addition, you may have a right to take legal action to obtain compensation for any 
injuries or complications resulting from the study.  Compensation may be available if 
your injury or complication is sufficiently serious and is caused by unsafe drugs or 
equipment, or by the negligence of one of the parties involved in the study (for 
example, the researcher, the hospital, or the treating doctor).  You do not give up any 
legal rights to compensation by participating in this study.  
 
Voluntary Participation 
Participation in this study is entirely voluntary.  You do not have to take part in it.  If 
you do take part, you can withdraw at any time without having to give a reason.  
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Whatever your decision, please be assured that it will not affect your medical 
treatment or your relationship with the staff who are caring for you.   
 
Confidentiality 
All the information collected from you for the study will be treated confidentially, and 
only the researchers named above will have access to it.  The study results may be 
presented at a conference or in a scientific publication, but individual participants will 
not be identifiable in such a presentation. 
 
Further Information 
When you have read this information, Dr. Regina Tse will discuss it with you further 
and answer any questions you may have.  If you would like to know more at any 
stage, please feel free to contact her on (02) 9515 8057. 
 
Results of Project 
It may be a number of years before the results of this research are available. The 
results will be published in medical journals. Please ask your doctor if you want to 
know more about this. 
 
Ethics Approval and Complaints 
This study has been approved by the Ethics Review Committee (RPAH Zone) of the 
Sydney Local Health District.  Any person with concerns or complaints about the 
conduct of this study should contact the Executive Officer on 02 9515 6766 and quote 
protocol number X13-0089. 
 
Disclosure of conflict of interest 
AV biofeedback is also being developed towards commercialisation. This has led to the 
incorporation of a company, Respiratory Innovations Pty Ltd, by University of Sydney 
investigators Prof. Paul Keall, and Mr. Sean Pollock. No financial support is provided 
by Respiratory Innovations to any of the investigators or to the investigation itself; 
however, Paul Keall and Sean Pollock are shareholders in Respiratory Innovations.  
No patient data will be used for promotion for Respiratory Innovations outside of what 
is publically available, e.g. presentations or publications.   
 
This information sheet is for you to keep. 
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Summary 

Study Title:  AVIATOR: Audio-Visual Investigation Advancing ThOracic 

Radiotherapy 

Protocol version:  V5.0 

Objectives There is a clear link between irregular breathing and errors in 

medical imaging and radiation treatment. We assume that 

irregular respiration is a surrogate for clinical outcomes in 

lung cancer radiotherapy. In a prospective multi-institutional 

randomised clinical trial we will test the impact of AV 

biofeedback on clinical outcomes. 

 Primary objective: Test the hypothesis that AV biofeedback 

will significantly improve breathing regularity and reduce 

medical imaging errors for lung cancer patients undergoing 

radiotherapy.  

 Secondary objectives: Patient-specific objectives will evaluate 

the impact of AV biofeedback by: (1) Quantifying the 

proportion of patients for whom breathing is more regular 

with AV biofeedback, (2) Quantifying the variability in 

breathing motion throughout a course of treatment, (3) 

Quantifying the improvement in image quality with AV 

biofeedback, (4) Evaluating the patient experience through a 

perception of care survey, (5) Developing indications and 

contra-indications for the use of AV biofeedback, (6) 

Quantifying the differences in image-guided radiotherapy 

(IGRT) shifts during treatment, and (7) recording toxicity 

outcomes for up to 12 months after treatment has been 

completed.  

 Department-specific objectives will evaluate the impact of AV 

biofeedback on clinical testing by: (1) Quantifying any 

practice changes (e.g. margin reduction), (2) Quantifying the 

impact on workflow using the AV biofeedback device through 

time-motion studies, (3) Evaluating the operator and clinician 

confidence in the AV biofeedback device’s reliability and 

clinical efficacy through a technology-impact survey, (4) 

Quantifying the system robustness through hardware and 

software fault reporting, and (5) Performing system quality 

assurance, sharing the results through a web-based upload and 

provide feedback for QA improvement.  

Study design We will perform a comprehensive clinical evaluation of the 

AV biofeedback system, a multi-institutional study will be 

performed in the following radiation oncology departments 

in the NSW/ACT region: Canberra Hospital, Calvary Mater 
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Hospital, Nepean Cancer Centre, Northern Sydney Cancer 

Centre, Chris O’Brien Lifehouse, Westmead Hospital, and 

Gosford Hospital. Our methodological framework will be 

based on the widely used Technology Acceptance Model 

(TAM).1,2 The TAM gives qualitative scales for two 

specific variables, perceived usefulness and perceived ease 

of use, which are fundamental determinants for user 

acceptance.    

 Planned sample size  

 Across the seven departments there will be a minimum of 75 

patients (+10% dropout: 83 patients).  

 Selection criteria  

 1) Lung cancer patients 

 2) >18 years old 

 3) No gender or ethnic restrictions 

 4) An ECOG score in the range of 0 to 2 

 5) Able to give written informed consent and willingness 

to participate and comply with the study 

 6) No pregnant / lactating woman 
  

Study procedure Prior to each patient’s planning and treatment they will 

undergo a breathing session during which they will breathe 

both with and without the guidance of AV biofeedback. 

Preceding each of these breathing sessions will be an AV 

biofeedback training session to familiarise the patient with the 

system. After the breathing session has been completed, the 

most reproducible breathing condition (AV biofeedback or 

free breathing) will be determined via respiratory analysis. It 

will be the most reproducible breathing condition that will 

continue to be used throughout the rest of that particular 

patient’s planning and treatment. Each patient will then be 

monitored throughout their treatment, noting any differences 

in image quality and dose distributions as a result of their 

breathing.  The AV biofeedback system is simple and easy to 

implement; the system consists of a respiratory sensor, a 

computer with customised software and a display screen. The 

simplicity of the AV biofeedback system makes it compatible 

with a number of imaging and treatment modalities.  

 Eligible patients that have agreed to participate in the study 

and have given informed consent will breathe both with and 

without the guidance of AV biofeedback. The most 

reproducible breathing condition will then be implemented in 

their planning and treatment. Further details on study 

procedure can be found in Section 4: Study Outline.  
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 Patient Time Commitment   

 Each session will take a total of 1 hour, inclusive of setting 

and packing up the AV biofeedback system in addition to AV 

biofeedback training, but it may be completed in less time 

than this. After each session the patient will be asked to 

complete a questionnaire regarding the AV biofeedback 

system; each questionnaire is designed to only take 2 minutes 

to complete.    

 

 Data Analysis 

 For each patient the acquired respiratory sensor data will be 

analysed in order to quantify the clinical impact of AV 

biofeedback through the following measurements:  

 1) Quantify the proportion of patients for whom respiration is 

more regular with the guidance of AV biofeedback. 

 2) Quantify the variability in breathing motion throughout a 

course of treatment. Respiratory results will be evaluated 

using the root mean squared error (RMSE) method and 

compared using statistical analysis methods such as the 

Student t-test. 

 3) Quantify the differences in IGRT shifts during treatment 

 4) Quantify any practice changes, such as margin reduction 

 

Estimate the clinical benefit Successful completion of this trial and positive testing of the 

primary hypothesis will give clinicians a simple tool to 

improve breathing regularity and reduce imaging and 

treatment errors for cancer radiotherapy patients. AV 

biofeedback will enable (1) identification and delineation of 

primary tumours and positive nodes, (2) identification and 

avoiding critical structures, (3) reduction of false positives and 

false negatives during image interpretation, (4) improvement 

of rigid and deformable registration algorithm performance to 

facilitate online corrections and adaptive radiotherapy 

strategies and (5) reduction of margins, leading to lower 

toxicity. From a patient perspective, the successful 

implementation of AV biofeedback will allow patients to be 

empowered by active participation in their treatment. From a 

department perspective, it will allow them to perform system 

QA in addition to developing indications for the use of AV 

biofeedback. The clinical benefit will also be assessed by 

recording toxicities for up to 12 months after the patient’s 

treatment is complete. This will offer insight into the benefits 

of AV biofeedback to patient outcomes. Successful 

completion of this study will ensure Australia is at the 

forefront of technological developments and clinical 

improvements and pave the way for broader clinical use.  
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Statistical Considerations  Without the AV biofeedback system, it is anticipated that 

approximately 40% of patients experience regular breathing. 

Increasing this proportion to 60% using the AV biofeedback 

system would be considered clinically worthwhile and 

promising for further investigation in a larger study. Based on 

the Simon’s design, a sample size of 50 patients receiving the 

AV biofeedback system will have at least 80% power with 

95% confidence to rule out a regular rate of 40% in favour of 

a 60% rate. The proposed design will be a randomized phase 

II with a 50 patients receiving the intervention and 25 standard 

care; adding 10% (8 patients) to account for 

contamination/drop out gives a total of 83 patients.  Patients 

will be stratified by treating institution and for treatment intent 

(palliative vs. radical) to ensure similar balance in the arms 

across the sites.  

 

Duration of Study 2 years 
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1.INTRODUCTION 

Lung cancer has the highest incidence of cancer-related death in Australia,
3
 and more than 50% of lung 

cancer patients are treated with radiotherapy. However, the precision of radiotherapy can be reduced due 

to respiratory-related tumour motion, leading to increased irradiation of healthy surrounding tissues, 

resulting in a significant increase in radiation-related toxicity,4-6 this is further exacerbated when 

respiration is irregular in nature (deep/shallow breaths, baseline shifts, suspended breathing, etc.).
7,8

 A 1Gy 

increase in tumour dose results in a 4% improvement in survival,
4
 however, a 0.5cm range of tumour motion 

can cause a 4~5% variation in radiation dose
6
 which leads to an increase in mean dose to healthy surrounding 

tissues resulting in an increase in risk of pneumonitis and radiation toxicity.
5,9

  

Techniques such as respiratory gating, breath-holds and tumour tracking are clinically useful for tumour 

motion management.
7,10,11

 However, irregular respiration can reduce the efficiency of such motion 

techniques
12,13

 in addition to causing motion artefacts and anatomic errors in medical imaging.
14-19

  

Respiratory guidance is one such technique which specifically aims to produce regular patient breathing. At 

the forefront of respiratory guidance is the audiovisual (AV) biofeedback system (Figure 1), developed by 

Venkat, et al.
13

 AV biofeedback is a real-time, interactive and personalised respiratory guide designed to help 

the patient breathe regularly. AV biofeedback has demonstrated a reduction in average cycle-to-cycle 

variations in respiratory amplitude and period by up to 50% and 70% respectively,
13

 which is beneficial in 

improving motion reproducibility for respiratory-gated radiotherapy
20

 in addition to reducing blurring 

artefacts in 4D PET
21

 and CT.
22

  

 
Figure 1. AV biofeedback system (left). AV goggles and real-time position management (RPM) marker block on 

the abdomen shown (IR camera not shown, see section 5.1: Study Equipment). The visual display (right) as seen 

by the subject (sans arrows) of the AV biofeedback system shows the guiding wave (white curve) and a marker 

position (grey marker) in real time.   

 

This system is ideally to be utilized for image-guided radiotherapy (IGRT) , during which the tumour motion 

can be managed by regularising respiratory motion based on the correlation between the external abdominal 

position (location of RPM marker) and the tumour itself.
23,24

 

Despite the positive results of AV biofeedback studies to date, the participants have thus far largely been 

healthy volunteers, which are sufficient when investigating tumour surrogates. There has also not been any 

analysis of the patient perception of AV biofeedback to understand and stratify responders and non-

responders to the training. Here, we will perform clinical testing of AV biofeedback in seven radiation 

oncology departments. Our study differentiates itself from previous investigations by being multi-

institutional, randomised, with a much larger number of patients, the use of an improved AV biofeedback 

device, the inclusion of patient-reporting and a comprehensive technology assessment. 
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2.BACKGROUND 

2.1. IRREGULAR BREATHING LEADS TO MEDICAL IMAGE AND TREATMENT ERRORS 

There is a clear link between respiratory irregularity and errors in medical imaging and treatment, as shown 

in Table 1 and Table 2. Irregular breathing patterns are shown in Figure 2 and Figure 3, demonstrating 

baseline drifts and inconsistent amplitude and period. The impact of this irregularity on medical images and 

targeting are shown Table 1, and are elaborated on in Table 2. 

 

Table 1. Clinical errors in medical images due to irregular respiration. Further studies in which these errors 

have been investigated are listed in the bottom row.   

Tumour delineation errors Image artefacts (CT) Image artefacts (PET) 

 
From Persson et al. (2010)

25
 

 
From Yamamoto et al. (2008)

15
 

 

From Sureshbabu et al. (2005)
26

 

Persson
25

 and Ge
27

 
Pan,

18
 Fitzpatrick,

28
 Abdelnour,

14
 

Yamamoto
15

 and Low
29

 
Sureshbabu

26
 and Yang

21
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Figure 2.  Example of tumour motion (superior-

inferior) during radiation treatment showing the 

variation in period, baseline, magnitude and mean 

position.  Adapted from Worm.
30

  

Figure 3. Example of irregular patient breathing both 

during treatment (intrafraction) and from day-to-day 

(interfraction). 46 of 50 patients had errors with an 11mm 

average error.  From Yamamoto.
15
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Table 2 details previous studies investigating the impact of irregular respiration on radiotherapy 

planning and treatment:  

Table 2. Clinical Problems of Irregular Respiration 

Clinical Problem Author # of participants Imaging Modality Comments on clinical problem 

Tumour edge 

detection errors 
Persson

25
 19 patients 4DCT 

 Variations in delineated gross 

tumour volume (GTV) sizes of up to 

15.6 cm
3
 

 Delineation error occurred in 16 out 

of 20 tumours across 19 patients.  

Tumour edge 

detection errors 
Ge

27
  10 patients 4DCT 

 Disagreement in treatment margins 

between planning and treatment.     

(Under- and over-estimation) 

 Overestimation: 39% of the fractions 

in 7 of 10 patients. Median 

overestimation: 11.4 mm (SI), 2.5 

mm (AP), and 2.5 mm (LR) 

 Underestimation: 53% of the 

fractions in 8 of 10 patients. Median 

underestimation: 3.9 mm (SI), 3.0 

mm (AP) and 1.7 mm (LR)   

Image artefacts Yamamoto
15

  50 patients 4DCT 

 90% of patients had at least one 

artefact (other than blurring) in the 

diaphragm / heart. Mean magnitude 

of artefact: 11.6 mm 

 30% of patients had at least one 

artefact (other than blurring) in the 

lung / mediastinum 

Image artefacts Pan
18

  10 patients 4DCT 
 Image artefacts: incomplete, 

overlapping, duplicate and blurring 

artefacts.  

Image artefacts Abdelnour
14

  
Phantom 

2 patients 
4DCT 

 Incorrect/incomplete binning for 

both phase and amplitude 4D-CT 

binning. 

 Phase binning: average consistency 

error (μe ± σe) ranged from 

18%±20% to 30%±35%. 

 Amplitude binning: average 

consistency error (μe ± σe) ranged 

from 11%±14% to 20%±24%.  

Image artefacts Yang
21

  

Motion phantom 

programmed 

with patient 

breathing 

PET 

 Average increase in structure due to 

image blurring was 1.3±2.2 mm.  

 Dice coefficient (metric of overlap 

between two volumes): 0.88±0.10 

Inaccurate motion 

prediction 
Murphy

31
  9 patients 

CyberKnife infra-red 

tracking 

 Observed trend that with more 

irregular respiratory signals came a 

larger prediction error.  

Inaccurate motion 

prediction 
Pollock

32
  

15 healthy 

volunteers 
MRI 

 Inaccurate respiratory motion 

prediction for both internal and 

external surrogates 

 Prediction accuracy became 

increasingly unreliable at higher 

system latencies 
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2.2. DEVELOPMENT OF BREATHING TRAINING IN RADIATION ONCOLOGY 

To address the problem of respiratory irregularity, various methods of patient respiratory guidance 

have been applied by other groups, as summarised in Table 3.  

Table 3.  Development of breathing-guidance 

Author, year 
Breathing 

Sensor 
Subjects Developments in Breathing-Guidance 

Wang, 1995
33

  Bellows belt 6  Verbal prompts for breath-hold MRI 

Wang, 1995
34

  MR navigator 6  Visual prompts for multiple breath-hold MRIs 

Wong, 1999
10

  Flow monitor 12  Immobilizing breathing motion 

Vedam, 2003
12

  RPM 5 

 Visual motion wave with two motion limits (inhale and 

exhale limits) 

 Early respiratory-guidance biofeedback (no audio, visual 

biofeedback limited to inhale/exhale limits) 

George, 2005,
35

 

2006
20,36

  
RPM 24 

 Visual motion bar with two motion limits and verbal 

instruction (“breathe in”, “breathe out”) 

 Similar to Vedam (2003) with the addition of audio prompts 

(however, audio and visual prompts were tested separately)  

Lim, 2007
37

  Thermocouple 10 
 Visual guidance with audio prompt.   

 Baseline drift not detected using the thermocouple 

Locklin, 2007
38

  Bellows belt 16 

 Visual biofeedback only for breath-hold CT scans 

 Bellows belt signal is self-correcting, and any variations in 

respiratory baseline or amplitude are lost 

Venkat, 2008
13

 RPM 10 

 First generation AV biofeedback system.  

 Audio and visual prompts performed simultaneously 

 Customizable to volunteer breathing 

 Visual prompt: wave- and bar guide were tested.  

 Wave-guide found to be the more effective of the two. 

 Audio prompts: ascending and descending tones for inhale 

and exhale, respectively.  

 Healthy volunteer study 

Kim, 2012
39

 

Pollock, 2013
40

 
RPM 15 

 More developed version of AV biofeedback, continuing on 

from Venkat’s study.  

 Visual prompt: wave-guide 

 Audio prompt: music (polyphonic midi-files) that changes in 

speed if subject deviated from wave-guide.  

 Set-up compatible with MRI. 

 Healthy volunteer study 

AVIATOR  

2013-2015 
RPM 83 

 Most recent version of AV biofeedback.  

 Visual prompt: wave-guide 

 Audio prompt: music (classical music, mp3-compatible) that 

fades out should the subject deviate from the breathing 

limits.  

 Survey of clinicians and patients to be taken for 

technological assessment of AV biofeedback 

 Randomised and stratified 

 Multi-department nature of study will give strong indication 

of clinical applicability 

 Will be the first study to comprehensively assess the impact 

of respiratory-guidance on clinical oncology planning & 

treatment for both patients and clinicians  
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As shown in Table3, respiratory-guidance has developed from simple verbal instructions for breath-

holds to the interactive, customizable and real-time AV biofeedback to be tested in this study. This 

study will involve the recruitment of at least 75 participants (+10% to counter dropout: 83 

participants), which is considerably greater than the participants involved in previous respiratory 

guidance studies. Such a number of participants in this study would make it the most comprehensive 

AV biofeedback study to date. The inclusion of more participants in a randomised clinical trial would 

also produce more accurate and significant results.  

2.3. AUDIOVISUAL BIOFEEDBACK SYSTEM 

As shown in Table 3, the AV biofeedback system is the culmination of years of respiratory-guidance 

research with a real-time, interactive and personalised respiratory-guidance system. AV biofeedback 

has demonstrated to reduce average cycle-to-cycle variations in respiratory amplitude and period by 

up to 50% and 70% respectively,
13

 which has also shown to be beneficial in improving motion 

reproducibility for respiratory-gated radiotherapy
20

 in addition to reducing blurring artefacts in 4D 

PET
21

 and CT.
22

 A schematic of the AV biofeedback system is shown below in Figure 4. 

 

A RPM system tracks the motion of an external marker positioned on the patient’s abdomen, this 

respiratory-motion is used to calculate an average cycle of respiration (using a Fourier series fit from 

10 obtained respiratory cycles). This average cycle is used as the wave-guide (white curve in Figure 

4); it continually moves from right-to-left across the visual display and acts as part of the visual 

prompt for AV biofeedback. Also on the visual display is a grey marker moving vertically up-and-

down, it is the goal of the patient to match this grey marker over the white wave-guide. The grey 

marker is made to look like the RPM marker block to be used in monitoring the patient’s breathing.  

The audio component of AV biofeedback is classical music playing to the patient; the music fades out 

should they deviate from the breathing limits (blue region shown in Figures 1 & 4). AV biofeedback 

has been shown to be compatible in a number of imaging and treatment modalities,
21,39,41

 as well as 

utilising different types of visual displays;
39,41,42

 the screen-setup as shown in Figure 4 will be utilized 

here, however, if one or more departments are not equipped with these or faults occur, there are other 

options available.  

Previous AV biofeedback studies have involved the recruitment of healthy volunteers, not cancer 

patients. This study will be the first to assess the impact of AV biofeedback on clinical oncology 

planning and treatment for both patients and clinicians.   

  

Figure 4.  The University of Sydney AV biofeedback device as used for pre-treatment imaging and treatment. 

The system consists of a respiratory sensor, a computer with customised software and a patient screen. The 

patient sees a visual representation of their current breathing and tries to match this to a personalised pattern 

of more regular breathing.  
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3.STUDY OBJECTIVES AND AIMS 

3.1. OBJECTIVES 
This study aims to assess the AV biofeedback system efficacy in a clinical setting.  To test this we 

will conduct an 83 lung cancer patient clinical study across 7 departments with the following 

objectives: 

Primary objective: In a prospective multi-institutional randomised clinical trial we will test the 

hypothesis that AV biofeedback will significantly improve breathing regularity and reduce medical 

imaging errors for lung cancer patients undergoing imaging and treatment procedures during 

radiotherapy. The patients will be randomised in a 2:1 ratio, with 2/3 of the patients being recruited 

into the AV biofeedback (intervention) arm and 1/3 in the free breathing (control) arm.  

 

Secondary objectives will involve patient-specific and department-specific objectives: 

Patient-specific objectives are to evaluate the impact of AV biofeedback by: 

1)  Quantifying the proportion of patients for whom breathing is more regular with AV 

biofeedback, 

2)  Quantifying the variability in breathing motion throughout a course of treatment, 

3)  Quantifying the improvement in image quality with AV biofeedback, 

4)  Evaluating the patient experience through a perception of care survey, 

5)  Developing indications and contra-indications for the use of AV biofeedback,  

6)  Quantifying the differences in image-guided radiotherapy (IGRT) shifts during treatment, and 

7)  Recording toxicity outcomes for up to 12 months after treatment has been completed. 

Department-specific objectives are to evaluate the impact of AV biofeedback on clinical testing by: 

1)  Quantifying any practice changes (e.g. margin reduction), 

2)  Quantifying the impact on workflow using the AV biofeedback device through time-motion 

studies, 

3)  Evaluating the operator and clinician confidence in the AV biofeedback device’s reliability 

and clinical efficacy through a technology-impact survey, 

4)  Quantifying the system robustness through hardware and software fault reporting, and 

5) Performing system quality assurance, sharing the results through web-based uploads and 

provide feedback for QA improvement. 

Our methodological framework will be based on the widely used Technology Acceptance Model 

(TAM).1,2 The TAM gives qualitative scales for two specific variables, perceived usefulness and 

perceived ease of use, which are fundamental determinants for user acceptance. 

 

3.2. PARTICIPANT SECTION 
This study is aimed at patients receiving radiation therapy for their treatment of lung cancer.  Patients 

fitting the eligibility criteria (see below) will be identified and introduced to this study by their 

treating physicians, who will participate as investigators in this study.  

3.3. INCLUSION CRITERIA 

1) Lung cancer patients (no restrictions to type of radiotherapy being received) 

2) >18 years old 

3) No gender or ethnic restrictions 

4) An ECOG score in the range of 0 to 2  

5) Able to give written informed consent and willingness to participate and comply with the 

study 
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6) No pregnant / lactating woman 

 

3.4. NUMBER OF PARTICIPANTS 

A minimum of 75 lung cancer patients. Adding a 10% drop-out rate yields 83 patients; the 

explanation for this is given in Section 7: Statistical Considerations. As shown in Table 3, 83 

participants are considerably greater than the participants involved in previous respiratory guidance 

studies. Such a number of participants in this study would make it the most comprehensive respiratory 

guidance study to date. The inclusion of more participants would also produce more accurate and 

significant results. Statistical justification for 83 patients is elaborated on in Section 7: Statistical 

Consideration.  

3.5. NUMBER OF CENTRES 

This study will be conducted across 7 radiation oncology departments in the NSW/ACT region: 

Canberra Hospital, Calvary Mater Hospital, Nepean Cancer Centre, Northern Sydney Cancer Centre, 

Chris O’Brien Lifehouse, Westmead Hospital, and Gosford Hospital.  

3.6. DURATION 

The expected duration of the study is 2 years.  Estimated time of first recruitment is early 

2014. The study recruitment phase and data analysis phase will be done concurrently; 

analysis of data for each patient can commence once images have been acquired for that 

patient. Overall analysis will commence after last patient recruitment.  
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4.STUDY OUTLINE 

Prior to each patient’s planning and treatment they will undergo a breathing session during which they 

will breathe both with and without the guidance of AV biofeedback. Preceding each breathing session 

will be an AV biofeedback training session to familiarise the patient with the system. After the 

breathing session has been completed, the most reproducible breathing condition (AV biofeedback or 

free breathing) will be determined via respiratory analysis. It will be the most reproducible breathing 

condition that will continue to be used throughout the rest of that particular patient’s planning and 

treatment. Each patient will then be monitored throughout their treatment, noting any differences in 

image quality and dose distributions as a result of their breathing.  

  Once informed consent has been obtained, the principal investigator will schedule a time for the 

study. 

  

4.1. STUDY FLOW CHART 

The study flow for each department will vary slightly depending on department preferences. The 

general study flow chart is shown in Figure 5. For more details on randomisation and stratification, 

see Section 7: Statistical Considerations.  

 

Figure 5.  AVIATOR study flowchart. 
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Procedures Pre Study 

Visit 

Visit with 

Treating 

Physician   

Pre Study 

Visit 

 

Study Visit 

 

Post Study 

Visit/s 

Review 

Inclusion/Exclusion 

Criteria 

    

Medical History     

Obtain Informed 

Consent 

    

Book Scan Time     

CT sim Scans     

Study Analyses     

Review of Study 

Progression 

    

Treatment and 

Follow-up Visits 

 

    

 

4.2. STUDY PROCEDURE RISKS 

By participating in this study, the risks to the patient are extremely low: this research study involves 

the inclusion of respiratory sessions of AV biofeedback and free breathing. These study sessions 

involve the use of the RPM system and the additional equipment of a visual display (e.g. monitor, 

tablet computer), none of which are of any risk to the patient. The RPM and AV biofeedback systems 

do not involve any invasive procedures or ionising radiation and are of no risk to the patients. Any 

imaging and radiation treatment that follows are a part of the patient’s standard oncology treatments, 

which they are subject to regardless of participation in this study. The patient’s treating physician will 

be counselling them on the risk of their appropriate treatments. 

 

4.3. RECRUITMENT AND SCREENING 

Patients fitting the eligibility criteria will be identified and introduced to this study by the treating 

physicians who will participate as investigators in this study.  
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4.4. ENROLMENT PROCEDURE AND INFORMED CONSENT PROCESS 

The patients will be given ample time to completely read the informed consent form as well as ask 

any questions that they may have. The patients will be contacted by the principal investigator with 

regards to their decision in partaking in the study. Patients that agree to partake in the study will be 

asked to sign an informed consent form at their next hospital visit. 

The participant will receive a study enrolment number and this will be documented in the participant’s 

medical record and on all study documents. Patients who agree to participate will be contacted by 

principal investigator to organise times for to the study scans to be conducted.   

 

4.5. INFORMED CONSENT PROCESS 

The principal investigator will be obtaining informed consent from patients after consulting with their 

physician prior to commencing the study.  

 

4.6. RANDOMISATION PROCEDURE 

A randomised procedure will be used in this study.  
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5.SAFETY 

5.1. ADVERSE EVENT REPORTING 

5.1.1. CLINICAL TRIALS AND ADVERSE EVENT REPORTING 

The principal investigator and sub investigators will report adverse events to the Radiation Safety 

Officer on site and to the Human Research Ethics Committee and the Research Governance Officer 

within 72 hours of the event occurring unless immediate notification is required. 

 

5.1.2. ADVERSE EVENT 
The AV biofeedback system is not invasive and is not expected to cause any adverse event. The visual 

component involves viewing a display (e.g. monitor, tablet computer); for the audio component, the 

computer tablet will have built-in speakers, alternatively, the in-house speaker system could be 

utilised.  

 

5.1.3. SERIOUS ADVERSE EVENT (SAE): 

Adverse events are considered ‘serious’ if they threaten life or function. SAEs are defined as any 

adverse event which: results in death (i.e. fatal/grade 5 CTC AE); is life-threatening (i.e. grade 4 CTC 

AE); requires inpatient hospitalisation or prolongation of existing hospitalisation; results in persistent 

or significant disability/incapacity; or is a congenital anomaly/birth defect. 

Given the simple and non-invasive nature of this study’s setup, we do not anticipate any serious 

adverse events as a result of the procedures pertaining to this study. 

 

5.1.4. DEVICES EVENTS 

Standard imaging protocols and full clinical, treatment and imaging softwares will be used in the 

acquisition of imaging scans in this study.  Accidental protocol breaches will be reported to the 

hospital’s Radiation Safety Committee. 

 

5.2. SERIOUS ADVERSE EVENT REPORTING 
SAE reporting in this study will pertain only to procedures directly related to this study’s workflow; 

i.e. additional procedures undergone by patients not related to the AVIATOR trial (e.g. chemotherapy, 

surgery) that result in an SAE will not be reported for this study. This will limit the SAEs to be 

reported in this study to imaging and external-beam radiation therapy procedures. 

The principal investigator and sub investigators will report adverse events to the Radiation 

Safety Officer on site and to the Human Research Ethics Committee and the Research Governance 

Officer within 72 hours of the event occurring unless immediate notification is required. 

 

5.3. DATA SAFETY AND MONITORING BOARD 
The imaging modalities that are used in this study are approved for clinical practice, therefore this 

study we will not nominate a separate Data and Safety Monitoring Board.  

Our steering committee (investigators and sub investigators including consumer representatives) will 

meet monthly to monitor the conduct of the study and assess progress. In addition, the chief and 

majority of sub investigators will maintain weekly contact via email and face-face or teleconference 

meetings in order to facilitate implementation of the study and provide quality assurance to all aspects 

of the study. The chief investigator will be on-site to personally conduct, oversee, and supervise all of 

the activities. 
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5.4. EARLY TERMINATION 

We do not anticipate any reason for early termination of the study. 
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6.BLINDING AND UNBLINDING 

There is no blinding in this study.   
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7.STATISTICAL CONSIDERATIONS 

7.1. SAMPLE SIZE, POWER CALCULATION AND ANALYSIS PLAN  

The statistical considerations for this study are largely based on a previous study conducted at 

Virginia Commonwealth University (VCU) by the chief investigator, Prof Paul Keall, on 24 lung 

cancer patients.
36,42

 26 patients were recruited for the VCU study, however, 2 patients dropped out due 

to not being treated with radiotherapy or rapid worsening of disease, and so their data was not 

collected. A clinically significant different in clinical improvement due to AV biofeedback has been 

determined to be a margin calculation of less than 5 mm. Irregular breathing causes larger systematic 

errors (Σ) from motion artefacts and variations between the planned and treated anatomy as well as 

random day to day variations (σ) in the treated anatomy (see Table 1 and Figures 2 & 3).  To combine 

systematic and random errors and estimate the margin contribution due to breathing irregularity we 

will use the van Herk method
43

: margin = 2.5Σ + 0.7σ. From this calculation, there were 14/24 

patients with margins <5 mm with AV biofeedback, while only 5/24 for free breathing.  

In this proposed study, we’d like to increase the proportion of patients with reduced margins 

calculated using the van Herk method. Therefore we have designed an exploratory phase II 

randomised study examining the potential impact of an AV biofeedback system in regulating 

breathing in patients receiving radiation therapy for the treatment of lung cancer. Without this system, 

it is conservatively estimated that approximately 40% of patients experience regular breathing 

(margin component below 5mm). Increasing this proportion to 60% using the AV biofeedback system 

would be clinically worthwhile. Based on Simon’s design,
44

 a sample size of 50 patients receiving the 

AV biofeedback system will have at least 80% power with 95% confidence to rule out a regular rate 

of 40% in favour of a 60% rate. To minimise patient selection bias and provide an estimate of regular 

breathing from a contemporary control, the proposed design will be a randomized phase II with a 50 

patients receiving the intervention and 25 standard care. Patients will be randomised in a 2:1 ratio, 

with 2/3 of the patients being recruited into the AV biofeedback (intervention) arm and 1/3 in the free 

breathing (control) arm as shown in Figure 5. 2:1 randomisation is appropriate as within the 

interventional arm there is a screening procedure where only patients whose breathing is more regular 

with AV biofeedback use this system for their imaging and treatment procedures (Figure 5).  Patients 

will be stratified by treating institution and for treatment intent (palliative vs. radical) to ensure similar 

balance in the arms across the sites. As the study is not powered for formal comparisons between the 

groups, estimates of the proportion of patients which do not experience irregular breathing will 

provide information as to whether further investigation is warranted. 

Assuming a contamination and dropout rate of no more than 10%, this study will require that 

75+8=83 patients be recruited (the 10% value was based on the 2/26 patient drop-out rate in the VCU 

study).  The estimated patient numbers are conservative because they are derived from the 24-lung 

cancer patient VCU study which used a cruder breathing training system that what will be used in this 

study. 

Patients at each institution will be treated per department protocol with no additional 

constraints on dose, fractionation, immobilisation or image guided procedures.  Results will be 

adjusted for institution (using a fixed effect) to account for differences between institutions.  
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8.CONFIDENTIALITY AND STORAGE AND ARCHIVING OF STUDY       

DOCUMENTS 

Collected respiratory data, CT images, demographic information, and treatment data will be collected 

from the subjects at each site. At the randomisation stage of the study, patient’s will receive a trial ID, 

this is to ensure that the data saved for the trial is done so under this de-identified trial ID. However, 

patient data could be made re-identifiable to obtain additional clinical information for the data 

analysis stage of the project, but only by the chief investigator, Professor Paul Keall. De-identified 

data will be transferred from each study site (hospital) to the study sponsor (University of Sydney) for 

analysis. De-identified data will then be stored on a secure, password protected backed up database 

that will be created, much the same to what we have designed for previous University of Sydney 

studies. A separate key of the subject study number and their medical record number will be securely 

stored by the chief investigator to allow re-identification if necessary. Only the chief investigator will 

have the ability to re-identify subjects. All other investigators will only have access to the de-

identified data. De-identified data transfer from study site to study sponsor will be performed in 

accordance with each study site’s ethics and security allowances and protocols. The data will be 

stored for 15 years as per clinical trial guidelines. Data across the multiple study sites will be shared 

via an online file sharing component (e.g. Redmine). 
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Department Name, Site Name 
 

Investigating breathing training for lung cancer radiotherapy  
 

INFORMATION FOR PARTICIPANTS 
 
INTRODUCTION 
 
You are invited to participate in this study because you have lung cancer and will be 
receiving a course of standard radiotherapy.  
 
The aim of your cancer treatment is to deliver the radiation as precisely as possible 
to the lung and to spare the nearby organs such as the parts of the lung unaffected 
by the cancer, as well as the heart and liver. However, even when you are lying still, 
the lung and surrounding organs will move when you breathe.  If we can help you to 
monitor and regulate your breathing using an audio-visual guidance device, we may 
be able to more accurate target the radiation beam to the cancer.  
 
This information sheet provides detailed information about the study including its 
purpose and all the procedures involved. Your doctor will also discuss this with you. 
Its purpose is to explain to you as openly and clearly as possible all the procedures 
involved in this project before you decide whether or not to take part. Participating in 
the study is voluntary. Please take the time to read the information sheet carefully, 
and discuss it with family, friends and/or your GP if you wish.  Please ask if there is 
anything you do not understand or if you would like more information.  Once you 
understand the study, you will be asked to sign the Consent Form if you wish to 
participate. You will have a copy to keep as a record. 
 
The study is being conducted within this institution by: 
 
Dr __________ (site physician)  
 
Professor Paul Keall (Radiation Physics Laboratory, Sydney Medical School, 
University of Sydney) 
 
Dr Ricky O’Brien (Radiation Physics Laboratory, Sydney Medical School, University 
of Sydney) 
 
Sean Pollock (PhD student, Radiation Physics Laboratory, Sydney Medical School, 
University of Sydney) 
 
Sean Pollock is conducting this study as a part of the requirements for the degree of 
Doctor of Philosophy in Medicine under the supervision of Prof. Paul Keall.   
 
It is planned that eighty-three (83) patients will be recruited across the NSW and ACT 
region into this study.  
 
What is the purpose of this study? 
The aim of the study is to evaluate whether breathing training will improve the 
regularity of your breathing, and therefore, lung motion.  
 
The breathing training system is comprised of a screen, speakers and controlling 
software. The screen allows you to visualise your pattern of breathing on a graph 
(see illustrations below) and with this feedback, allow you to control and regulate 
your breathing.  
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What will happen to me if I decide to take part? 
This study will begin with testing which breathing condition will be best for you to use 
throughout the rest of the study. This will be either: (1) with breathing training, or (2) 
free breathing. We will compare the results from these two breathing conditions, and 
whichever one is deemed to yield the best results for you will be the one that will be 
selected for usage throughout your treatment. The initial test will only take 
approximately 15 minutes; the extra time needed during your treatment due to using 
breathing training will only be approximately 10 minutes.  

When you are breathing with the training system, you will be watching a screen and 
listening to music. The training system will guide you to produce regular breathing.  

You will also be asked to complete a questionnaire which will take about 2 minutes to 
do. You may also be asked to do a follow-up questionnaire later in your treatment, 
depending on the results of the initial study. In this questionnaire we want to gauge 
your opinion of the training system and suggest ways we could improve upon it.  

However, by participating in this study you may not even need to use breathing 
training; this could be due to one of two reasons: 

1) In the initial test, you performed better breathing freely, so breathing training 
is not best for you.  

2) This study is randomised. A randomised study means that the patients are 
split into two groups: a tested group and an untested group. The tested group 
will be tested with breathing training, and the untested group will have their 
treatment as per normal, with no breathing training. This is done so the 
researchers can compare their new technology the current clinical standard 
and determine how much it might improve upon it.  

Finally, the researchers would like to have access to your medical record to obtain 
information relevant to this study. 
 
What are the risks? 
All medical procedures - whether for diagnosis or treatment, routine or experimental 
– involve some risk. In addition, there may be risks associated with this study that are 
presently unknown and unforeseeable.  In spite of all precautions, you might develop 
medical complications from participating in this study. 

The visual display for breathing training will be either wearing display-goggles with a 
built-in screen or watching a computer screen held in place by a clamp to the bed. 
Such setups are not expected to cause any discomfort. However, if you feel 
uncomfortable at any stage, do not hesitate to notify staff. 
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Please inform us if you have participated in any other research studies using 
radiation (or exposed by other means, e.g. occupational) in the last five years. By 
participating in this study, you will not be exposed to any additional radiation that 
would otherwise be a part of your treatment; this study will be performed alongside 
your treatment. However, it should be noted that the prescribed imaging procedures 
do involve a small level of radiation exposure; at radiation dose level of the imaging 
procedures, no harmful effects of radiation have been demonstrated and the risk is 
low.  

Please keep this form in a safe place for the next five years in case you volunteer for 
any more studies using radiation, when you should show it to the Investigator. 

It is important that women participating in this study are not pregnant and do not 
become pregnant during the course of the study 
 
What are the benefits? 
You may not benefit from participating in this study; while we intend that this research 
study furthers medical knowledge and may improve radiotherapy for lung cancer and 
lessen its post-treatment side effects (and for treatment of other cancers which move 
as the patient breathes), we cannot guarantee that it will be of benefit to you.  
However, if breathing training proves successful it will continue to be used in your 
treatment plan. In addition, the images obtained in this study will be used for your 
treatment plan.  
 
What are the alternatives? 
This study is purely voluntary and if you choose not to participate in this study, you 
will be offered the standard radiation treatment for your lung cancer in this hospital. 
Your decision will not affect your treatment, follow-up, or relationship with any of the 
medical staff involved in your care. 
 
Costs 
Participation in this study will not cost you anything, nor will you be paid.   
 
Compensation for injuries or complications 
If you suffer any injuries or complications as a result of this study, you should contact 
the study doctor as soon as possible, who will assist you in arranging appropriate 
medical treatment. If you are eligible for Medicare, you can receive any medical 
treatment required to treat the injury or complication, free of charge, as a public 
patient in any Australian public hospital.   

In addition, you may have a right to take legal action to obtain compensation for any 
injuries or complications resulting from the study.  Compensation may be available if 
your injury or complication is sufficiently serious and is caused by unsafe drugs or 
equipment, or by the negligence of one of the parties involved in the study (for 
example, the researcher, the hospital, or the treating doctor).  You do not give up any 
legal rights to compensation by participating in this study.  
 
Voluntary Participation 
Participation in this study is entirely voluntary.  You do not have to take part in it.  If 
you do take part, you can withdraw at any time without having to give a reason. If you 
decide to withdraw from the study all the information relation to you will be destroyed.  
Whatever your decision, please be assured that it will not affect your medical 
treatment or your relationship with the staff who are caring for you.   
 
Confidentiality 
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All the information collected from you for the study will be treated confidentially, and 
only the researchers named above will have access to it.  The study results may be 
presented at a conference or in a scientific publication, but individual participants will 
not be identifiable in such scientific distributions. Researchers from the University of 
Sydney will be analysing the data for this study, therefore the data we obtain from 
your participation in this study will be transferred securely and confidentially from the 
hospital to the University of Sydney for analysis. 
 
Further Information 
When you have read this information, Dr __________ (site physician) will discuss it 
with you further and answer any questions you may have.  If you would like to know 
more at any stage, please feel free to contact him/her on (02) ________. 
 
Results of Project 
It may be a number of years before the results of this research are available. The 
results will be published in medical journals. Please ask your doctor if you want to 
know more about this. 
 
Ethics Approval and Complaints 
This research has been approved by the Hunter New England Human Research Ethics 
Committee of Hunter New England Local Health District, Reference  12/08/21/3.01   
Should you have concerns about your rights as a participant in this research, or you 
have a complaint about the manner in which the research is conducted, it may be 
given to the researcher, or, if an independent person is preferred, to Dr Nicole 
Gerrand, Manager Research Ethics and Governance, Hunter New England Local 
Health District, Locked Bag 1, New Lambton NSW 2305, telephone (02) 49214950, 
email HNEHREC@hnehealth.nsw.gov.au 
 
 
This information sheet is for you to keep. 

278



Participant Information Sheet, version 6, 20/02/15 
  Page 5 of 6 

Audio-Visual Investigation Advancing Thoracic Radiotherapy (AVIATOR) 
 

PARTICIPANT CONSENT FORM 
 
I, 
...................................................................................................................................... 
[name]  
 
of 
 
..............................................................................................................................……. 
[address]  
 
have read and understood the Information for Participants on the above named 
research study 
 
and have discussed the study with  
 
.............................................................................................. 
 
I have been made aware of the procedures involved in the study, including any 
known or expected inconvenience, risk, discomfort or potential side effect and of their 
implications as far as they are currently known by the researchers. 
 I understand that my participation in this study will allow the researchers and 
others, as described in the Information for Participants, to have access to my medical 
record, and I agree to this. 
 I freely choose to participate in this study and understand that I can withdraw at 
any time. 
 
I also understand that the research study is strictly confidential. 
 
I hereby agree to participate in this research study. 
 
NAME:   
 ........................................................................................................... 
 
 
SIGNATURE:  
 ........................................................................................................... 
 
 
DATE:   
 ........................................................................................................... 
 
 
NAME OF WITNESS: 
 .................................................................................................. 
 
 
SIGNATURE OF WITNESS:
 .................................................................................................. 
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NAME OF INVESTIGATOR: 
 .................................................................................................. 
 
 
SIGNATURE OF INVESTIGATOR:
 .................................................................................................. 
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Confidential 

This document is confidential and the property of [site], [address]. 

No part of this document may be transmitted, reproduced, published or used without prior written 

authorization from the institution.
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1. Introduction 

AV biofeedback is a simple, personalised and customisable respiratory guidance system which aims 

to produce regular patient breathing. The problem that AV biofeedback is addressing is that should a 

lung cancer patient’s breathing be irregular, it can result in incorrect information presented in medical 

imaging in addition to incorrect tumour targeting in radiotherapy. This can result in an increase in 

radiation dose delivered to healthy tissue and less precise dose delivered to the tumour itself. The 

following details the software required for the implementation of this novel technique. By facilitating 

regular breathing we can improve the quality of planning images as well as the accuracy of radiation 

treatment delivery.  

The AVIATOR trial aims to assess the AV biofeedback system efficacy in a clinical setting. To test 

this we will conduct a 75 lung cancer patient clinical study across 7 departments with the following 

objectives: 

Primary objective: In a prospective multi-institutional randomised clinical trial we will test the 

hypothesis that AV biofeedback will significantly improve breathing regularity and reduce medical 

imaging errors for lung cancer patients undergoing imaging and treatment procedures during 

radiotherapy. The patients will be randomised in a 2:1 ratio, with 2/3 of the patients being recruited 

into the AV biofeedback (intervention) arm and 1/3 in the free breathing (control) arm. 

Secondary objectives will involve patient-specific and department-specific objectives: 

Patient-specific objectives are to evaluate the impact of AV biofeedback by: 

1) Quantifying the proportion of patients for whom breathing is more regular with AV 

biofeedback, 

2) Quantifying the variability in breathing motion throughout a course of treatment, 

3) Quantifying the improvement in image quality with AV biofeedback, 

4) Evaluating the patient experience through a perception of care survey, 
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5) Developing indications and contra-indications for the use of AV biofeedback, 

6) Quantifying the differences in image-guided radiotherapy (IGRT) shifts during treatment, and 

7) Recording toxicity outcomes for up to 12 months after treatment has been completed. 

Department-specific objectives are to evaluate the impact of AV biofeedback on clinical testing by:  

1) Quantifying any practice changes (e.g. margin reduction),  

2) Quantifying the impact on workflow using the AV biofeedback device through time-motion 

studies,  

3) Evaluating the operator and clinician confidence in the AV biofeedback device’s reliability 

and clinical efficacy through a technology-impact survey,  

4) Quantifying the system robustness through hardware and software fault reporting, and  

5) Performing system quality assurance, sharing the results through web-based uploads and 

provide feedback for QA improvement.  

 

2. Physical Properties 

A software package has been written by The University of Sydney that will be used in the Clinical 

Trial to guide the patients to breathe regularly. The system is called AV biofeedback. The system, for 

approval through TGA CTN process, is illustrated in Figure 1 and detailed below. 

2.1  Alterations to Standard Treatment 

The AV biofeedback system is simple and easy to use; there will be no alterations to standard 

treatment as part from the use of AV biofeedback: the same images will be acquired and the same 

treatment will be delivered as per department protocol.  

There will be an addition of audio and visual prompts displaying the AV biofeedback interface to the 

patient as well as the controlling software in the control room. An example of the AV biofeedback 

interface as well as in-room displays is shown in Figure 1.  

After imaging and treatment it is imperative that the following data be saved: RPM files, AV 

biofeedback files, image files, questionnaires.  
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FIGURE 1. The AV biofeedback system. The visual display (centre) as seen by the subject (sans arrows) of the 

AV biofeedback system shows the guiding wave (white curve) and a marker position (marker block) as an 

indicator of their real time breathing.  

 

2.2  AV biofeedback software 

This software for AV biofeedback is known as the Sydney University Audio-Visual biofeedback 

Experience (SUAVE). SUAVE will read the breathing signal from the RPM system and display this 

breathing signal to the patient.  The primary functionality of AV biofeedback for this clinical trial is:  

1) Compile a patient-specific guiding wave 

2) Commence breathing-guidance session 

3) Analyse breathing session 

These points are illustrated in Figure 2:  

The AV biofeedback software is operated by treatment staff. The menu items detail the necessary 

operations to complete during patient imaging/treatment. Point 1 above only needs to be performed 

once per patient to ensure consistent breathing across imaging and treatment sessions.  

 

3.  Effects in Humans 

3.1  Safety and Efficacy 

The AV biofeedback system does not result in any additional radiation dose.  

A tablet-computer screen for the breathing guidance will be held in place by a clamp to the bed. Such 

a setup is not expected to cause any discomfort or risk of injury to the patient.   
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FIGURE 2. Primary functionalities of SUAVE software. Numbers 1-3 correspond to points 1-3 in section 2.2. 

AV biofeedback software. 1) the calculation of a guiding wave using patient breathing data. 2) Patient display of 

their guiding wave and real-time breathing motion. 3) Analysis of breathing with regularity metrics in the top-

right corner of the display.  
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Audiovisual (AV) Biofeedback Toxicity Report 
 

Goal: To determine any impact on patient outcomes by identifying radiation-related toxicities and their 

severity 12 months after treatment has concluded.  

 

Introduction: To correlate the impact of such study objectives as breathing regularity, margin-

calculation, and image quality with patient outcomes. Should the primary object of the study achieve a 

positive result, then we would expect the patients in the AV biofeedback arm to have less numerous and 

less severe radiation-related toxicities.  

Toxicities listed here were taken from Common Terminology Criteria for Adverse Events (CTCAE), 

Version 4. The grading of severity here will largely remain consistent with the CTCAE document:  

 Grade 1: Mild; asymptomatic or mild symptoms; clinical or diagnostic observations only; 
intervention not indicated.  

 Grade 2: Moderate; minimal, local or non-invasive intervention indicated; limiting age-
appropriate instrumental ADL (Activities of Daily Living). 

 Grade 3: Severe or medcally significant but not immediately life-threatening; hospitalisation or 
prolongation of hospitalisation indicated; disabling; limiting self-care ADL 

 Grade 4: Life-threatening consequences; urgent intervention indicated. 

 Grade 5: Death related to AE. 
Instrumental ADL refers to preparing meals, shopping for groceries or clothes, using the telephone, 
managing money, etc. 
Self-care ADL refers to bathing, dressing and undressing, feeding self, using the toilet, taking 
medications, not bedridden.  
 

Timing: To be completed up to 12 months after patient treatment has concluded with each patient follow 

up. 

 

Date: 

 

Patient ID: 
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Toxicity/Outcome Severity/Grade 

Pneumonitis 

(inflammation of lung 

tissue) 

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 

Comments: 

 

 

 

Radiation fibrosis 

(scarring of lung tissue) 

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 

Comments: 

 

 

 

Dyspnoea 

(shortness of breath) 

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 

Comments: 

 

 

 

Dysphagia 

(difficulty swallowing) 

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 

Comments: 

 

 

 

Odynophagia 

(painful swallowing) 

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 

Comments: 

 

 

 

Pleuritic pain 

(inflammation of the 

pleura) 

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 

Comments: 
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Toxicity/Item(?) Severity/Grade 

Oesophagitis 

(inflammation of the 

oesophagus) 

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 

Comments: 

 

 

 

Fistula 

(abnormal communication 

between anatomic 

sites/organs) 

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 

Nature of fistula / comments: 

 

 

 

Respiratory 

failure 

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 

Comments: 

 

 

 

Sleep Apnea 

(cessation of breathing for 

short periods during sleep) 

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 

Comments: 

 

 

 

Fatigue 

Not present  Moderate  Severe 

1 2 3 4 5 

Comments: 

 

 

 

Stenosis 

(abnormal narrowing of 

vessel/tubular organ) 

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 

Nature of stenosis / comments: 

 

 

288



AV biofeedback toxicity report  

Version 1.2. 17/02/2015 

 

Toxicity/Item(?) Severity/Grade 

Lung Function 

(lung function test) 

Improved  
No 

difference 
 Worsened 

1 2 3 4 5 

Score/Comments: 

 

 

Nausea 

Not present  Moderate  Severe 

1 2 3 4 5 

Comments: 

 

 

Sexual Function 

Improved  
No 

difference 
 Worsened 

1 2 3 4 5 

Comments: 

 

 

Number of 

unscheduled visits 

since treatment’s 

end 

Number of unscheduled visits: 

Comments: 

 

 

 

Cancer 

Reoccurrence 

Yes No 

Comments: 
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ADDITIONAL 

COMMENTSS 

(and/or additional issue(s) 

not already covered) 

Comments: 

 

 

 

 

 

 

 

 

 
______________ _______________ _______________ 
Oncologist name  Signature  Date 
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Audiovisual (AV) Biofeedback Patient Survey  
 

Goal: To evaluate your experience with the audiovisual (AV) biofeedback guidance 

system and identify any areas where you feel development is needed to improve the 

AV biofeedback experience.   

 

Introduction: In medical imaging and radiotherapy, irregular breathing negatively 

impacts image quality, in addition to inaccurate tumour targeting. AV biofeedback 

provides respiratory guidance to produce consistent respiratory motion. AV 

biofeedback will help to improve the quality of imaging scans in addition to the 

accuracy of radiotherapy treatment. 

 

Timing: After initial simulation session and within last week of treatment 

 

Demographics  

 

Age range: Impeded eyesight: y / n 

Sex: Impeded hearing:  y / n  

Height: Highest level of education: 

Weight: Frequency of computer use: 

 Anxiety level: 

     1 (not at all anxious) – 10 (very anxious)  

(1) Do you feel your breathing was more 

consistent using the AV biofeedback? 
No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

 

(2) Was the training session that you had 

prior to this session helpful? 
No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

 

(3) Did you feel physically comfortable with 

the AV biofeedback system? 
No  Moderately  Yes 

1 2 3 4 5 

Comment: 
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(4) Did you feel the AV biofeedback visual 

guide (blue curve) was too slow or fast? 
Too slow  Just right  Too fast 

1 2 3 4 5 

Comment: 

 

 

 

 

(5) Did you feel the AV biofeedback visual 

guide (blue curve) was too shallow or deep? 
Too shallow  Just right  Too deep 

1 2 3 4 5 

Comment: 

 

 

 

(6) Did you like having the music? 

 

No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

 

(7) Did the music help you breathe more 

consistently? 

 

No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

 

(8) Did you feel anxious during the session? 

 

No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

 

 (9) Do you have any comments or suggestions either on your experience or how we 

can improve the AV Biofeedback system? 
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AVIATOR survey. Version 1. Dated: 11/07/2013  

Audiovisual (AV) Biofeedback Radiotherapist Survey  
 

Goal: To quantify the user acceptance of audiovisual (AV) biofeedback and identify 

areas to improve the user AV biofeedback experience.   

 

Introduction: In medical imaging and radiotherapy, variations in cycle-to-cycle 

breathing results in imaging artefacts, leading to inaccurate radiation beam coverage 

and tumour targeting. AV biofeedback guides patients to produce regular respiratory 

motion using an AV device combined with a respiratory monitoring system. The AV 

biofeedback system will help to improve the quality of scans and the accuracy of 

radiotherapy treatment for patients. 

 

Timing: After initial simulation session and within last week of treatment for each 

patient 

 

Demographics  

Position: 

Years of experience: 

 

(1) Do you think that the training session was 

useful for the patient? 
No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

(2) Do you think the AV biofeedback system 

helped your patient to breathe more 

regularly? 

 

No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

(3) Was the AV biofeedback system easy to 

setup? 
No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

(4) Was the AV biofeedback system easy to 

operate? 
No  Moderately  Yes 

1 2 3 4 5 

Comment: 

 

 

(5) Would you recommend the AV No  Moderately  Yes 
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biofeedback guidance to your colleagues at 

other centres to implement in similar 

treatment? 

 

1 2 3 4 5 

Comment: 

 

 

(6) Do you have any comments or suggestions on your experience or how we can 

improve the AV Biofeedback system? 
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Appendix III 
 

Published Case Report of patient 1 recruited into the study detailed in 

Chapter 4. Published in The Journal of Medical Imaging and Radiation 

Oncology (2015; 59(5) 654-656) 
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Summary

This case report details a clinical trial’s first recruited liver cancer patient who
underwent a course of stereotactic body radiation therapy treatment utilising
audiovisual biofeedback breathing guidance. Breathing motion results for both
abdominal wall motion and tumour motion are included. Patient 1 demon-
strated improved breathing motion regularity with audiovisual biofeedback. A
training effect was also observed.

Key words: abdomen; intervention; physics; radiation oncology imaging;
radiation oncology; respiratory.

Introduction

Liver tumours are highly mobile due to their proximity
to the thoracic diaphragm. When a patient’s breathing
motion is irregular, it exacerbates both systematic and
random errors which compromise the accuracy of
radiation therapy.1,2 To reduce these errors, breathing
guidance strategies have been investigated to facilitate
stable and regular breathing.3,4 This study represents a
milestone in breathing guidance investigations as it
addresses a gap in the literature by assessing the
impact of the breathing guidance system, audiovisual
biofeedback (AVB), on intra- and inter-fraction liver
tumour motion, via fiducial marker surrogacy, in liver
cancer patients undergoing stereotactic body radiation
therapy (SBRT). The AVB system, shown in Figure 1,
utilises audio and visual prompts to guide the patient
to breathe regularly. External breathing motion from

the Real-time Position Management (RPM) system
(Varian Medical Systems, Palo Alto, CA, USA) of the
patient’s abdominal wall is shown on the patient
display. The marker block moves up as they inhale and
down as they exhale. The patient adjusts their breath-
ing such that the marker block stays within the blue
region and traces the motion of the waveguide (white
wave in Fig. 1).

Case report

Patient 1 was a 65-year-old male with metastatic (recur-
rent) cholangiocarcinoma and received 36 Gy across 6
fractions using volumetric-modulated arc therapy-based
SBRT to a 30 mm solitary lesion in segment 8 of the liver.
Due to previous liver resection, this patient had pre-
existing surgical clips implanted into his liver, which were
utilised for image guidance. He had a number of other
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comorbidities including bronchiectasis with impaired pul-
monary function and was of Karnofsky performance
status 1. Prior to treatment planning, a screening pro-
cedure was performed to ensure that the most regular
breathing condition (free breathing (FB) or AVB) was
utilised throughout the patient’s subsequent course of
SBRT. Breathing motion was monitored for 4 minutes for
each of the breathing conditions FB and AVB; at the
2-minute mark, cone beam CT (CBCT) images were
acquired. Determining which breathing condition would
be selected was based on the regularity of the 4 minutes
of external breathing motion (quantified by the root mean
square error (RMSE) in displacement and period); the
lower the RMSE, the more regular the breathing motion.
Decisions were made in situ using a function within the
AVB software. Patient 1’s screening procedure yielded the
decision to utilise AVB for the remainder of their course of
SBRT.

Patient 1’s treatment planning and treatment delivery
proceeded as per the currently implemented clinical liver
SBRT protocol with the addition of the AVB setup (see
Fig. 1). CBCT images were acquired prior to treatment
delivery on each day of treatment, motion of the surgical
clips was extracted from the CBCT projection images
utilising a method developed by Fledelius et al.,5 as a
surrogate for tumour motion. Figure 2 and Figure 3
demonstrate the breathing motion results across patient
1’s course of radiotherapy. It was also observed that AVB
increased the average range of tumour motion from
1.5 cm for FB, to 1.8 cm for AVB.

Discussion

This study reported on the first patient recruited into a
clinical trial investigating the use of breathing guidance
during a course of liver SBRT planning and treatment

Fig. 1. Study setup in the linac bunker with the Real-time Position Management (RPM) marker block and patient display (left). AVB (audiovisual biofeedback)

interface (right).

Fig. 2. AVB (audiovisual biofeedback) and FB (free breathing) RMSE (root mean square error) results for Screening Procedure (left); and results for AVB across

patient 1’s course of treatment (right), for RMSE of displacement (RMSE Disp, blue circle markers) and RMSE of period (RMSE Per, purple triangle markers). External

motion shown as hollow markers/bars and dotted lines, tumour motion shown as solid markers/bars and unbroken lines.

AVB in liver cancer SBRT
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utilising an initial screening procedure. A training effect
was observed, with the patient’s breathing motion
becoming more regular inter-fractionally, plateauing at
peak regularity around Fraction 3. It was also observed
that AVB increased breathing amplitude compared with
FB. Given that the AVB waveguide peak-to-peak ampli-
tude was set at 1.5 cm and the observed external peak-
to-peak amplitude was 1.7 cm indicates that Patient 1
‘over-shot’ the AVB breathing limits. For future patients in
this study further attention will be given to managing
breathing motion amplitude and patient training.

In conclusion, the first patient recruited into this study
yielded the decision to utilise AVB through their course of
SBRT. Patient 1 demonstrated good acceptance of the
breathing guide in addition to increasingly regular
breathing throughout their course of SBRT.

Acknowledgements

This project was supported by an NHMRC Australia Fel-
lowship and the Bob and Nancy Edwards Scholarship.
The authors thank Julie Baz for reviewing this paper for
clarity.

References

1. Atkins K, Varchani A, Nam TL, Fuss M, Tanyi JA.
Interfraction regional variation of tumor breathing
motion in lung stereotactic body radiation therapy
(SBRT). Int J Radiat Oncol Biol Phys 2013; 87: S68–9.

2. Persson GF, Nygaard DE, Brink C, Jahn JW,
Munck af Rosenschöld P, Specht L et al. Deviations in
delineated GTV caused by artefacts in 4DCT. Radiother
Oncol 2010; 96: 61–6.

3. Kim T, Pollock S, Lee D, O’Brien R, Keall P.
Audiovisual biofeedback improves diaphragm motion
reproducibility in MRI. Med Phys 2012; 39: 6921.

4. George R, Chung TD, Vedam SS, Ramakrishnan V,
Mohan R, Weiss E et al. Audio-visual biofeedback for
respiratory-gated radiotherapy: impact of audio
instruction and audio-visual biofeedback on
respiratory-gated radiotherapy. Int J Radiat Oncol Biol
Phys 2006; 65: 924–33.

5. Fledelius W, Worm E, Elstrøm UV, Petersen JB, Grau
C, Høyer M et al. Robust automatic segmentation of
multiple implanted cylindrical gold fiducial markers in
cone-beam CT projections. Med Phys 2011; 38:
6351–61.

Fig. 3. The external motion (top) and tumour (bottom) individual breathing cycles for FB and AVB Decision Sessions (left) and Fraction 6 (right). Unbroken blue lines

represent each individual breathing cycle, and the dotted red line is the average cycle.

S Pollock et al.

© 2015 The Authors. Journal of Medical Imaging and Radiation Oncology published by Wiley Publishing Asia Pty Ltd on behalf of The Royal Australian and
New Zealand College of Radiologists

656
298



Appendix IV 
 

Documentation provided for study site credentialing for the clinical trial 

presented in Chapter 5 
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AVIATOR Credentialing v1.2. for software version v2.3.  

AVIATOR Site Credentialing 
Prior to commencing patient recruitment patient, each site needs to complete the following 
credentialing, please tick off as completed: 

CREDENTIALING ITEM COMPLETE 

1) Perform patient Randomisation call  
 

2) Pass AV biofeedback Daily & Monthly QA using motion phantom in the: 

a) CT imaging room 

 

b) Treatment room  

3) Simulate CT imaging and treatment sessions with a volunteer in the: 

a) CT imaging room (complete Analysis and Decision Form as well) 

 

b) Treatment room  

4) Anonymised data transferred to University of Sydney secure storage  

 

Once the above Credentialing points have been completed and signed off by a member of the Radiation 
Physics Laboratory, that site is open to patient recruitment.  
 
Required Documentation to complete this Credentialing:  

 AV biofeedback QA (version 3 – ‘Breathe Well’) 

 Patient questionnaire 

 Staff questionnaire 

 Session information form 

 AVIATOR Randomisation document 

 
For further details and assistance on the AV biofeedback system setup, user guide, and study workflow, 
please see the following: 

 AV biofeedback User Guide (version 4.1) 

 Clinical Workflow 

 AV biofeedback system components (version 7.1)  
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AVIATOR Credentialing v1.2. for software version v2.3.  

 

Contents 
AVIATOR Site Credentialing ............................................................................................................................ 1 

Simulations with motion phantom ................................................................................................................. 3 

CT sim room - Phantom .......................................................................................................................... 4 

Linac room - Phantom ............................................................................................................................. 5 

Dry-run with a volunteer ................................................................................................................................ 6 

CT sim room - Volunteer ......................................................................................................................... 7 

Linac room - Volunteer ........................................................................................................................... 9 
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AVIATOR Credentialing v1.2. for software version v2.3.  

Performing QA with motion phantom 
These motion phantom tests will test the completion of quality assurance (QA), setup compatibility with 
department equipment, and incorporation of AV biofeedback procedures into department protocol. In 
addition to the AV biofeedback software and hardware, you will also need a motion phantom: 

  
 
The motion phantom dry run is performed in both the CT sim room and linac room, the workflow and 
checklist needs to be completed individually for each room.  
At the start of the study, each patient will have been given a study ID number, use this number as the 
patient name in AV biofeedback software to create a New Patient, and for reference for when you load 
an Existing Patient.  
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AVIATOR Credentialing v1.2. for software version v2.3.  

CT sim room - Phantom 

Action Steps 
Success (y/n) 

If ‘no’, detail why 

AV biofeedback 
system setup 

1. Setup AV biofeedback system and motion 
phantom. 

 

2. Move couch to patient imaging position 
with motion phantom in place at the typical 
position of a patient’s abdomen. 

 

AV biofeedback 
Quality 

Assurance 

3. Complete AV biofeedback Daily QA  
 

4. Complete AV biofeedback Monthly QA 
 

Imaging with 
AV biofeedback 

5. Perform 4D-CT scan as per department 
protocol with the AV biofeedback system 
running. 

 

6. Stop Session and save data 
 

Data retrieval 

7. Save the following data to the database 
allocated by [site data manager]: 

a. RPM breathing files 

 

b. Image files 
 

c. AV biofeedback software breathing 
files 

 

8. University of Sydney researchers received 
saved data?  

 

 
 
______________ _______________ _______________ 
Site credentialing   Signature  Date 
name 
 
 
 
______________ _______________ _______________ 
RPL name  Signature  Date  
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Linac room - Phantom 

Action Steps 
Success (y/n) 

If ‘no’, detail why 

AV biofeedback 
system setup 

1. Setup AV biofeedback system and motion 
phantom. 

 

2. Move couch to patient treatment position 
with motion phantom in place at the typical 
position of a patient’s abdomen. 

 

AV biofeedback 
Quality 

Assurance 

3. Complete AV biofeedback Daily QA  
 

4. Complete AV biofeedback Monthly QA 
 

Imaging/ 
treatment with 
AV biofeedback 

5. Perform CBCT scan (if linac has OBI) as per 
department protocol with the AV biofeedback 
system running. 

a. Record start and finish times of imaging 
from AV biofeedback software. 

 

6. Stop Session and save data 
 

Data retrieval 

7. Save the following data to the database 
allocated by [site data manager]: 

a. RPM breathing files 

 

b. Image files 
 

c. AV biofeedback software breathing files 
 

8. University of Sydney researchers received 
saved data?  

 

 
 
 
______________ _______________ _______________ 
Site credentialing   Signature  Date 
name 
 
 
______________ _______________ _______________ 
RPL name  Signature  Date 
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AVIATOR Credentialing v1.2. for software version v2.3.  

Dry-run with a volunteer 
These volunteer tests will test the setup compatibility with department equipment, and incorporation of 
AV biofeedback procedures into department protocol as well as performing breathing session analysis 
and decision form (CT room only). 

  
 
The volunteer dry run is performed in both the CT sim room and linac room, the workflow and checklist 
needs to be completed individually for each room.  
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AVIATOR Credentialing v1.2. for software version v2.3.  

CT sim room - Volunteer 

Action Steps 
Success (y/n) 

If ‘no’, detail why 

AV biofeedback 
system setup 

1. Setup AV biofeedback system and couch for 
lung cancer patient imaging, with volunteer. 

 

2. Move couch to patient imaging position with 
volunteer positioned in accordance with 
department lung cancer patient protocol. 

 

Free breathing 
session 

3. Create a New Patient under the name “AV 
TEST” and start Free Breathing session 

 

4. After four minutes stop respiratory session 
and save session 

 

AV biofeedback 
session 

5. Acquire a new waveguide, and commence a 
new respiratory session. 

 

6. After 1 minute, ask volunteer if breathing-
guide is OK. If not modify waveguide based on 
volunteer comments (increase/decrease 
waveguide amplitude/period) and start 
respiratory session with modified waveguide. 

 

7. After loading new waveguide (or not, 
depending on volunteer comments), have 
volunteer follow AV biofeedback for four 
minutes. Stop session and save data.  

 

AV biofeedback 
Analysis and 

Decision Form 

8. Analyse and save the Free Breathing and AV 
biofeedback breathing sessions using 
‘Analyse’.  

 

9. Fill in and save Breathing Decision Form  
 

Data retrieval 

10. Save the following data to the database 
allocated by [site data manager]: 

a. RPM breathing files 

 

b. AV biofeedback software breathing 
files 

 

c. Respiratory Analysis images 
 

d. Decision Form 
 

11. University of Sydney researchers received 
saved data?  
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______________ _______________ _______________ 
Site credentialing   Signature  Date 
name 

 
______________ _______________ _______________ 
RPL name  Signature  Date 
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AVIATOR Credentialing v1.2. for software version v2.3.  

Linac room - Volunteer 

Action Steps 
Success (y/n) 

If ‘no’, detail why 

AV biofeedback 
system setup 

1. Setup AV biofeedback system and motion 
phantom 

 

2. Move couch to patient treatment position 
with volunteer positioned in accordance with 
department lung cancer patient protocol. 

 

AV biofeedback 
session 

3. Load existing “AV TEST” patient and load their 
waveguide. 

a. Record start and finish times of imaging 
from AV biofeedback software.  

 

4. After four minutes, end respiratory session 
and save session  

 

Data retrieval 

5. Save the following data to the database 
allocated by [site data manager]: 

a. RPM breathing files 

 

b. AV biofeedback software breathing files 
 

6. University of Sydney researchers received 
saved data?  

 

 
 
 
 
______________ _______________ _______________ 
Site credentialing   Signature  Date 
name 

 
______________ _______________ _______________ 
RPL name  Signature  Date 

 

Last Updated: 26th February 2015 
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AVIATOR Site Credentialing 
Prior to commencing patient recruitment patient, each site needs to complete the following 
credentialing, please tick off as completed: 

CREDENTIALING ITEM COMPLETE 

1) Pass AV biofeedback Daily & Monthly QA using motion phantom in the: 

a) CT imaging room 

 

b) Treatment room  

1) Simulate CT imaging and treatment sessions with a volunteer in the: 

c) CT imaging room (complete Analysis and Decision Form as well) 

 

d) Treatment room  

2) Anonymised data transferred to University of Sydney secure storage  

 

Once the above Credentialing points have been completed and signed off by a member of the Radiation 
Physics Laboratory, that site is open to patient recruitment.  
 
Required Documentation to complete this Credentialing:  

 AV biofeedback QA (version 3 – ‘Breathe Well’) 

 Patient questionnaire 

 Staff questionnaire 

 Session information form 

 
For further details and assistance on the AV biofeedback system setup, user guide, and study workflow, 
please see the following: 

 AV biofeedback User Guide (version 4.1) 

 Clinical Workflow 

AV biofeedback system components (version 7.1)  
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Performing QA with motion phantom 
These motion phantom tests will test the completion of quality assurance (QA), setup compatibility with 
department equipment, and incorporation of AV biofeedback procedures into department protocol. In 
addition to the AV biofeedback software and hardware, you will also need a motion phantom: 

  
 
The motion phantom dry run is performed in both the CT sim room and linac room, the workflow and 
checklist needs to be completed individually for each room.  
At the start of the study, each patient will have been given a study ID number, use this number as the 
patient name in AV biofeedback software to create a New Patient, and for reference for when you load 
an Existing Patient.  
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CT sim room - Phantom 

Action Steps 
Success (y/n) 

If ‘no’, detail why 

AV biofeedback 
system setup 

1. Setup AV biofeedback system and motion 
phantom. 

 

2. Move couch to patient imaging position 
with motion phantom in place at the 
typical position of a patient’s abdomen. 

 

3. Setup has adequate clearance of imaging 
bore? 

 

AV biofeedback 
Quality 

Assurance 

4. Complete AV biofeedback Daily QA  
 

5. Complete AV biofeedback Monthly QA 
 

Imaging with 
AV biofeedback 

6. Perform 4D-CT scan as per department 
protocol with the AV biofeedback system 
running. 

 

7. Stop Session and save data 
 

Data retrieval 

8. Save the following data to the database 
allocated by [site data manager]: 

a. RPM breathing files 

 

b. Image files 
 

c. AV biofeedback software breathing 
files 

 

9. University of Sydney researchers received 
saved data?  

 

 
 
______________ _______________ _______________ 
Site credentialing   Signature  Date 
name 
 
 
 
______________ _______________ _______________ 
RPL name  Signature  Date  
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Linac room - Phantom 

Action Steps 
Success (y/n) 

If ‘no’, detail why 

AV biofeedback 
system setup 

1. Setup AV biofeedback system and motion 
phantom. 

 

2. Move couch to patient treatment position 
with motion phantom in place at the typical 
position of a patient’s abdomen. 

 

3. Rotate the gantry 360° about the couch. 
Setup has adequate clearance of gantry? 

 

AV biofeedback 
Quality 

Assurance 

4. Complete AV biofeedback Daily QA  
 

5. Complete AV biofeedback Monthly QA 
 

Imaging/ 
treatment with 
AV biofeedback 

6. Perform CBCT scan (if linac has OBI) as per 
department protocol with the AV biofeedback 
system running. 

a. Record start and finish times of imaging 
from AV biofeedback software. 

 

7. Stop Session and save data 
 

Data retrieval 

8. Save the following data to the database 
allocated by [site data manager]: 

a. RPM breathing files 

 

b. Image files 
 

c. AV biofeedback software breathing files 
 

9. University of Sydney researchers received 
saved data? 

 

 
 
 
______________ _______________ _______________ 
Site credentialing   Signature  Date 
name 
 
 
______________ _______________ _______________ 
RPL name  Signature  Date 
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Dry-run with a volunteer 
These volunteer tests will test the setup compatibility with department equipment, and incorporation of 
AV biofeedback procedures into department protocol as well as performing breathing session analysis 
and decision form (CT room only). 

  
 
The volunteer dry run is performed in both the CT sim room and linac room, the workflow and checklist 
needs to be completed individually for each room.  
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CT sim room - Volunteer 

Action Steps 
Success (y/n) 

If ‘no’, detail why 

AV biofeedback 
system setup 

1. Setup AV biofeedback system and couch for 
lung cancer patient imaging, with volunteer. 

 

2. Move couch to patient imaging position with 
volunteer positioned in accordance with 
department lung cancer patient protocol. 

 

3. Setup has adequate clearance of imaging 
bore? 

 

Free breathing 
session 

4. Create a New Patient under the name “AV 
TEST” and start Free Breathing session. 

 

5. After four minutes stop respiratory session 
and save session 

 

AV biofeedback 
session 

6. Acquire a new waveguide, and commence a 
new respiratory session. 

 

7. After 1 minute, ask volunteer if breathing-
guide is OK.  

a. If not, edit waveguide accordingly. 

 

8. After loading new waveguide (or not, 
depending on volunteer comments), have 
volunteer follow AV biofeedback for four 
minutes. Stop session and save data 

 

AV biofeedback 
Analysis and 

Decision Form 

9. Analyse and save the Free Breathing and AV 
biofeedback breathing sessions using 
‘Analyse’ 

 

10. Fill in and save Breathing Decision Form. 
 

Data retrieval 

11. Save the following data to the database 
allocated by [site data manager]: 

a. RPM breathing files 

 

b. AV biofeedback software breathing 
files 

 

c. Respiratory Analysis images 
 

d. Decision Form 
 

315



12. University of Sydney researchers received 
saved data? 

 

 
 
 
______________ _______________ _______________ 
Site credentialing   Signature  Date 
name 

 
______________ _______________ _______________ 
RPL name  Signature  Date 
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Linac room - Volunteer 

Action Steps 
Success (y/n) 

If ‘no’, detail why 

AV biofeedback 
system setup 

1. Setup AV biofeedback system and motion 
phantom 

 

2. Move couch to patient treatment position 
with volunteer positioned in accordance with 
department lung cancer patient protocol. 

 

3. Rotate the gantry 360° about the couch. 
Setup has adequate clearance of gantry? 

 

AV biofeedback 
session 

4. Load existing “AV TEST” patient and load their 
waveguide 

a. Record start and finish times of imaging 
from AV biofeedback software.  

 

5. After four minutes, end respiratory session 
and save session 

 

Data retrieval 

6. Save the following data to the database 
allocated by [site data manager]: 

a. RPM breathing files 

 

b. AV biofeedback software breathing files 
 

7. University of Sydney researchers received 
saved data? 

 

 
 
 
 
______________ _______________ _______________ 
Site credentialing   Signature  Date 
name 

 
______________ _______________ _______________ 
RPL name  Signature  Date 

 

Last Updated: 27th February 2015 
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AVIATOR Clinical Workflow 

1. General Workflow 
The AVIATOR study is a randomised clinical trial, as such, not all patients will be using the breathing-
guidance system: audiovisual (AV) biofeedback. Once an eligible patient has been identified, the 
Canberra Hospital data manager will contact the University of Sydney Randomisation group to know 
which study group each patient will be allocated to as well as receiving that patient’s Trial ID number.  
Below are the general workflows for two AVIATOR study groups:  
 

Intervention Group  

(Test with AV biofeedback) 

Control Group 
 (no AV biofeedback) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

NB. AV Biofeedback-specific steps shown as blue; Free Breathing (no AV biofeedback) steps shown as red; General 
steps (or both AV and Free Breathing) shown as purple. 

 
What follows is an outline for each of these steps.  
For more details on AV Biofeedback see documents:  

 User Guide (Version 4-2) 

 AVIATOR Protocol (Version 5) 

 BreatheWell QA (Version 3-1) 
  

Decision Session: 
Will the patient use  

AV biofeedback? 

YES NO 

Image and Treat 
using  

AV biofeedback 

Image and Treat 
without  

AV biofeedback 

Data to collect:  
 RPM & AV Breathing 

signals 

 AV Decision Form 

 All images (CT sim & 
CBCT) 

 Surveys  

 Toxicity Reports 

Data to collect:  
 RPM Breathing signals 

 All images (CT sim & 
CBCT) 

 Toxicity Reports 

Image and Treat 
without  

AV biofeedback 

Data to collect:  
 RPM Breathing signals 

 All images (CT sim & 
CBCT) 

 Toxicity Reports 
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2. Intervention Group 
The AVIATOR trial is randomised in a 2:1 ratio meaning that for every 3 patients that are recruited into 
the study, 2 of them will be allocated to the intervention group to be tested with AV biofeedback while 1 
in 3 are allocated to the control group. The advantage of using AV biofeedback is that their breathing 
becomes more regular; however, to ensure that this is the case, each patient will undergo a Decision 
Session prior to their CT sim and treatment to determine whether AV biofeedback is the best option for 
them. Once Randomisation has been performed the patient will receive a ‘Trial ID’, use this number to 
label and save the relevant AVIATOR trial data.  

2.1. Decision Session 
There are cases where patients naturally have regular breathing, or have difficulty following the AV 
biofeedback guide, so a Decision Session will be performed to determine whether it is best to use AV 
biofeedback for each patient. The general workflow of the Decision Session is below:  

 

What follows are the details and user guide for each of the above processes.  

2.1.1 AV Biofeedback information video 

A brief (~1 minute) information video has been made to inform the patients about what AV Biofeedback 
is and what they will be required to do to follow it. Have the patient watch the video on the research 
computer before they go into the CT sim room and answer any question that they may have (video file 
should be on the research computer’s desktop).  

Setup AV Biofeedback 
System 

Record patient Free 
Breathing  

(NO AV biofeedback)  
for 4 minutes  

AV Biofeedback information 
video 

Record AV Biofeedback 
breathing for 4 minutes 

Complete Breathing Analysis 
& Decision Form 

AV Biofeedback practice  
(1 - 2 minutes) 

Modify guide if necessary  
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Screen shot from information video 

2.1.2 Setup AV Biofeedback System 

Equipment needed:  

 Research computer with AV Biofeedback software (called ‘BreatheWell) installed 

 Audio-visual (AV) display goggles 

 RPM System 

 Cabling 

Schematic of the setup is shown below: 
  

 

Open up AV Biofeedback using the ‘Breathe Well’ desktop icon on the Research computer:  
You will see the initial AV Biofeedback screen:  
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If the Patient Display Preview reads “No preview available” (like it does above) it means that the display 
goggles are not properly connected to the AV biofeedback computer.  
The functions to perform on the Breathe Well software (in order) are:  

1) Connect to RPM  
2) Create New Patient / Load Existing Patient  
3) Create New Waveguide / Load Existing Waveguide 
4) New Respiratory Session 
5) Analyze 
6) Breathing Decision Form  

Once the patient is on the couch ensure that the RPM is both tracking AND recording the RPM marker 
block motion. In the RPM screenshot on the following page, the Record button is highlighted and a bar 
containing blue blocks is highlighted. Once the number of blue blocks on the bar is 3 or fewer, click 
‘Record’.  

If there are more than 3 blue blocks it means that the phase calculation is not performing optimally, and 
errors can occur in the Breathe Well software if the number of blue blocks exceeds 3 for an extended 
period of time.  
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Screen shot of RPM. There are fewer than 3 blue blocks present on the highlighted bar, so it’s good to Record.  

Once the RPM is recording the breathing signal, in the Breathe Well software click ‘Connect’ to start 
receiving the RPM breathing signal (if unsuccessful, try a different COM# from the dropdown menu in 
the Breathe Well software and click ‘Connect’ again).  

2.1.3. Record Patient Free Breathing 

Once connected to the RPM, click ‘New Patient’ and enter 
Trial ID (received with the Randomisation call) as their first 
name, ‘AVIATOR’ as their last name, and their Trial ID again 
as the Patient ID: 

 
Do not have the patient wear the display goggles at this point and ensure that the music is muted. It is 
important that they breathe as naturally as possible without instruction.  

 After you have created a New Patient file, click ‘New Waveguide’, this will acquire 10 breaths to 
and calculate the average of these to create the waveguide, and save it without any 
modifications.  

 Click ‘New Respiratory Session’ and once the wave appears on the screen click ‘Start’ on the 
stopwatch panel:  

 At 4 minutes click ‘Stop Session’ and save the data as ‘FB’:  
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 The functions described above are shown below, highlighted by a red rectangle.   

 
 

 After the session has been saved, click ‘Analyse’, this will analyse the session you just saved  

 In the analysis screen, click ‘Save’ and then close the analysis screen.  

 Click ‘Reset’ in the Breathe Well software 

 Stop and save in the RPM software, then re-track and record in preparation for the AV 
biofeedback session.  

 

This concludes the Free Breathing Session. 
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2.1.4. AV Biofeedback Practice 

With the RPM tracking and recording the signal, now the patient wears the display goggles and unmute 
the audio. In the Breathe Well software:  

 Connect to RPM 

 Click ‘Existing Patient’ and select the correct ‘Trial ID AVIATOR’ patient 

 Click ‘New Waveguide’, AV Biofeedback will acquire 10 breaths before displaying them to you: 

 

Blue curves:  each of the 10 acquired 
breathing cycles 
Red curve:  a selected blue curve 
Green curve: the average of the blue 
curves, which will be displayed as the 
waveguide 
The slider-bar (highlighted by the red 
rectangle) underneath the curves scrolls 
through each of the 10 cycles.  
 

 
If there are any outlier breathing cycles not representative of their “normal” breathing (e.g. 
overly-deep breaths, coughs, yawns, etc.) select them using the slider-bar and delete them: 

 
Too shallow Too deep  
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 An issue with making patients conscious of their breathing is that they tend to put more effort 
in to their breathing, inadvertently breathing slightly more deeply than they usually would.  

o To counter this, scale the waveguide’s ‘Avg Wave – Scale’ from 1.0 down to 0.9   

 
 The ‘Avg Wave Time Period’ (given in seconds) can also be modified if it exceeds the limits of 

4D-CT reconstruction (e.g. 10 breaths per minute: 6 seconds). 

 Save this waveguide 

 Next click ‘Select Waveguide’ and select the one you just saved (most recently saved files 
appear at the top of the list – time the file was created highlighted with red rectangle: 
hour:minute:second) 

 
 Click ‘New Respiratory Session’, this will commence AV biofeedback guided breathing. After a 

brief calculation of mean position the waveguide will appear and the music will begin to play. 

 Give the patient 1 minute to attempt the AV biofeedback guidance (use the sidebar stopwatch 
if necessary). Are there any issues? 

o Is the patient having difficulty staying within the blue region?  
o Is the patient having difficulty following the waveguide? (Is it too fast? Too slow?) 

 If points a) and/or b) are issues, then a modification of the waveguide may be necessary: click 
Reset → Existing Patient → Edit Waveguide and select the recently acquired Waveguide you 
wish to modify 

 This will bring up the selected waveguide and options to modify it:   
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o If patient consistently moved outside of the blue region, increase Waveguide Amplitude (it’s 

a scaling factor, so changing it from 1.0 to 1.2 will yield a waveguide with 1.2×Amplitude). 
o OR if the patient remained well within the blue region, perhaps decreasing the 

amplitude from 1.0 to 0.8 may be more appropriate  
o If patient found the waveguide to move too fast, increase Waveguide Period 
o If patient found the waveguide to move too slow, decrease Waveguide Period 
o Only minor modifications to these numbers should achieve the desired result.  
o Save modified waveguide 

 Click ‘New Respiratory Session’; after a brief moment to position the marker in the correct 
position, the breathing session will commence.  

 Once the white waveguide appears on the screen (and the music commences) click ‘Start’ on the 
sidebar stopwatch. 

 After 4 minutes ‘Stop Session’ save it as ‘AV_Decision’:  
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 After the session has been saved, click ‘Analyse’, this will analyse the session you just saved  

 In the analysis screen, click ‘Save’ and then close the analysis screen 

 
 

 Stop and save in the RPM software. 

 Aside: in the analysis form, the blue curves are each individual breath, the red curve is the 
waveguide, and the yellow curve is the average curve based on all the blue breaths 

o RMSE Disp is a measure of how much all the breaths vary from this average curve 

 
This concludes the AV Biofeedback Session 
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2.1.5. Breathing Decision Form 

 Now that both breathing sessions have been performed and both sessions have been analysed 
and saved click ‘Breathing Decision Form’  

 This will bring up the Decision Form window, select the AV biofeedback (AV) and Free Breathing 
(FB) analysis files you just saved (they will be jpegs) and fill in the rest of the patient details:  

 
Breathing Decision Form.  

Left: Unfilled. Right: Complete. 

Note: Enter the same patient name and ID information here as you did in 

creating a new patient file (Trial ID and AVIATOR).  

Decisions are made by which breathing session has the lower ‘RMSE Disp’ value.  In this instance, the AV 

biofeedback session was more regular (RMSE Disp (AV) = 0.48, less than RMSE Disp (FB) = 0.59).   

There is no threshold for how much less the RMSE value needs to be to make the decision (e.g. if RMSE 

Disp (AV) = 0.48, and RMSE Disp (FB) = 0.49, then AV would still be the decision).  

Save the Decision Form as a PDF.  

The entire Decision Session takes approximately 20-30 minutes to complete.  

 If Decision Session is being performed on a different day to the CT sim, have the patient and the 
staff member who operated the Breathe Well software complete the patient and staff surveys 

o If Decision Session and CT sim session are being performed on the same day, wait until 
the CT sim is completed to perform the surveys.   

 

This concludes the Decision Session. 
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2.2. Image and Treat Using AV Biofeedback 
Continuing on from the previous section, we will first address those patients for whom, based on the 
Decision Session, AV Biofeedback was selected to remain in their imaging and treatment.  

 

2.2.1. CT sim with AV Biofeedback 

The setup here is the same as used for the Decision Session:  

 

The purpose of AV Biofeedback is to not only facilitate regular breathing during imaging and treatment, 

but also across multiple imaging and treatment sessions, so it is important to use the same Waveguide 

as used in the 4 minute of AV biofeedback breathing in the Decision Session: 

  
 Position patient as per department protocol in preparation for their CT sim 

AV Biofeedback during  
CT sim 

AV Biofeedback during  
Treatment Delivery 

Complete Patient and 
Radiotherapist Surveys 
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 Once in position, ensure patient is wearing display goggles and imaging and sound from AV 
Biofeedback computer is clear.  

 Start a New Respiratory Session 
o Select the correct Waveguide 

 After a brief moment to position the marker in the correct position, the breathing session will 
commence.  

 Perform imaging as per department protocol. 

 After imaging is complete, click ‘Stop Session’ and save data as ‘AV_CT’: 

 
 Stop and save in the RPM software 

 Also save:  
o CT sim images (DICOM data) [file location] 

 It is important to save these files straight away, as they may be automatically deleted within 
days 

 If Decision Session was performed on the same day as CT sim, have the patient and the staff 
member who operated the Breathe Well software complete the patient and staff surveys  

 

This concludes the AV Biofeedback CT sim Session. 
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2.2.2. Treatment Delivery with AV Biofeedback 

The setup here is similar to the setup used for the Decision and CT sim Sessions: 

 

Use the same Waveguide as used in the 4 minutes of AV biofeedback breathing in the Decision Session, 

and then again in the CT sim Session.  

 
 Position patient as per department protocol in preparation for treatment. 

 Once in position, ensure patient is wearing display goggles and imaging and sound from AV 
Biofeedback PC is clear.  

 Start a New Respiratory Session and select the correct Waveguide. 

 After a brief moment to position the marker in the correct position, the breathing session will 
commence.  

 Perform treatment delivery as per department protocol – regarding any couch shifts:  
o After a couch shift, in the Breathe Well software click ‘Renormalise’, which repositions 

the marker-block at the centre of the AV biofeedback display because the couch shifts 
may have moved the marker-block off-screen 

o DO NOT click renormalise during any beam-on times 
o Renormalise will automatically save the breathing data, so after a treatment session and 

‘Renormalise’ was clicked once, there will be two breathing data files for that one 
session.  
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 Once treatment is complete, click ‘Stop Session’ and save the data as ‘AV_Treatment’: 

 
 Also save:  

o CBCT images (DICOM data) if used (if linac does not have on-board imaging, disregard 
this point) 

o RPM File [file location] 

 It is important to save these files straight away, as they may be automatically deleted within 
days.  
 

 If this is the final fraction of treatment, complete patient and staff surveys  
 

This concludes the AV Biofeedback Treatment Session 
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2.3. Image and Treat with Free Breathing 
In the event that the patient is randomised into the control arm, or in the event that ‘RMSE Disp’ for 
Free Breathing is less than the ‘RMSE Disp’ for AV Biofeedback in the Decision Session, then the AV 
Biofeedback system will not be used in their imaging and treatment, the setup will be as per department 
protocol, and it is important that the RPM system is used:  

 

While AV Biofeedback will not be used, it is still important to save the 
following data for each CT sim and treatment fraction:  

 RPM Breathing signals 

 CT sim images  

 CBCT images (if CBCTs are not acquired then disregard this point) 
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3. Control Group 
Patients in the Control Group will have been identified as an eligible patient by the Radiation Oncologist, 
and then agreed to take part in the study. However, they have been randomised into the Control Group 
and will not be using AV Biofeedback. The setup, conduct of AVIATOR in the control group as well as the 
data to save will be the same as detailed in the previous section: ‘2.3. Image and Treat with Free 
Breathing’.  

4. Post-Treatment Toxicity Report 
As noted in the Flowcharts on page 1, a Toxicity Report is required for every patient regardless of their 
allocation to intervention or control groups.  
With each patient follow-up visitation the Toxicity Report must be completed by the treating physician; 
this is done for each follow-up for up to 12 months after each patient has completed their treatment.  
The completion of this Toxicity Report marks the conclusion of the AVIATOR trial for each patient.  
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AVIATOR Clinical Workflow 

1. General Workflow 
The AVIATOR study is a randomised clinical trial, as such, not all patients will be using the breathing-
guidance system: audiovisual (AV) biofeedback. Once an eligible patient has been identified, Fiona Hegi-
Johnson will contact the University of Sydney Randomisation group to know which study group each 
patient will be allocated to as well as receiving that patient’s Trial ID number.  
Below are the general workflows for two AVIATOR study groups:  
 

Intervention Group  

(Test with AV biofeedback) 

Control Group 
 (no AV biofeedback) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

NB. AV Biofeedback-specific steps shown as blue; Free Breathing (no AV biofeedback) steps shown as red; General 
steps (or both AV and Free Breathing) shown as purple. 

 
What follows is an outline for each of these steps.  
For more details on AV Biofeedback see documents:  

 User Guide (Version 4-1: Breathe Well) 

 AVIATOR Protocol  

Decision Session: 
Will the patient use  

AV biofeedback? 

YES NO 

Image and Treat 
using  

AV biofeedback 

Image and Treat 
without  

AV biofeedback 

Data to collect:  
 RPM & AV Breathing 

signals 

 AV Decision Form 

 All images (CT sim & 
CBCT) 

 Surveys  

 Toxicity Reports 

Data to collect:  
 RPM Breathing signals 

 All images (CT sim & 
CBCT) 

 Toxicity Reports 

Image and Treat 
without  

AV biofeedback 

Data to collect:  
 RPM Breathing signals 

 All images (CT sim & 
CBCT) 

 Toxicity Reports 
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2. Intervention Group 
The AVIATOR trial is randomised in a 2:1 ratio meaning that for every 3 patients that are recruited into 
the study, 2 of them will be allocated to the intervention group to be tested with AV biofeedback while 1 
in 3 are allocated to the control group. The advantage of using AV biofeedback is that their breathing 
becomes more regular; however, to ensure that this is the case, each patient will undergo a Decision 
Session prior to their CT sim and treatment to determine whether AV biofeedback is the best option for 
them. Once Randomisation has been performed the patient will receive a ‘Trial ID’, use this number to 
label and save the relevant AVIATOR trial data.  

2.1. Decision Session 
There are cases where patients naturally have regular breathing, or have difficulty following the AV 
biofeedback guide, so a Decision Session will be performed to determine whether it is best to use AV 
biofeedback for each patient. The general workflow of the Decision Session is below:  

 

What follows are the details and user guide for each of the above processes.  

2.1.1 AV Biofeedback information video 

A brief (~1 minute) information video has been made to inform the patients about what AV Biofeedback 
is and what they will be required to do to follow it. Have the patient watch the video on the research 
computer before they go into the CT sim room and answer any question that they may have (video file 
should be on the research computer’s desktop).  

Setup AV Biofeedback 
System 

Record patient Free 
Breathing  

(NO AV biofeedback)  
for 4 minutes  

AV Biofeedback information 
video 

Record AV Biofeedback 
breathing for 4 minutes 

Complete Breathing Analysis 
& Decision Form 

AV Biofeedback practice  
(1 - 2 minutes) 

Modify guide if necessary  
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Screen shot from information video 

2.1.2 Setup AV Biofeedback System 

Equipment needed:  

 Research laptop with AV Biofeedback software (called ‘BreatheWell’) installed 

 Audio-visual (AV) screen/tablet 

 RPM System 

 Cabling: 
o Serial Cable 
o USB-to-Serial Cable 
o USB 20 m extension cable 
o USB-tablet cable 

Schematic of the setup is shown below: 
  

 

 Once connected, open iDisplay software on the research laptop:  
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 Open up iDisplay on the tablet and press ‘connect via USB’, you should then see the laptop’s 
background on the tablet 

o Connecting the laptop to the tablet via iDisplay is quite sequence-sensitive. If an error 
occurs, the best solution is typically to close iDisplay on the laptop and tablet and try 
again. 

 Open up AV Biofeedback software: ‘BreatheWell’ using the Desktop icon on the Research 

laptop:   

 You will see the initial AV Biofeedback screen:  
 

 
 

 If the Patient Display Preview reads “No preview available” (like it does above) it means that the 
display goggles are not properly connected to the AV biofeedback computer.  

 The functions to perform on the Breathe Well software (in order) in the Decision Session are:  
1) Connect to RPM  
2) Create New Patient / Load Existing Patient  
3) Create New Waveguide / Load Existing Waveguide 
4) New Respiratory Session 
5) Analyze 
6) Breathing Decision Form  

 Once the patient is on the couch ensure that the RPM is both tracking AND recording the RPM 
marker block motion.  

 In the RPM screenshot on the following page, the Record button is highlighted and a bar 
containing blue blocks is highlighted. Once the number of blue blocks on the bar is 3 or fewer, 
click ‘Record’.  

 If there are more than 3 blue blocks it means that the phase calculation is not performing 
optimally, and errors can occur in the Breathe Well software if the number of blue blocks 
exceeds 3 for an extended period of time.  
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Screen shot of RPM. There are fewer than 3 blue blocks present on the highlighted bar, so it’s good to Record.  

 Once the RPM is recording the breathing signal, in the Breathe Well software click ‘Connect’ to 
start receiving the RPM breathing signal  

o If unsuccessful, try a different COM# from the dropdown menu in the Breathe Well 
software and click ‘Connect’ again 

2.1.3. Record Patient Free Breathing 

 
Once connected to the RPM, click ‘New Patient’ and 
enter Trial ID (received with the Randomisation call) as 
their first name, ‘AVIATOR’ as their last name, and their 
Trial ID again as the Patient ID: 

 

 
Turn off the tablet at this point and ensure that the music is muted. It is important that they breathe as 
naturally as possible without instruction.  

 After you have created a New Patient file, click ‘New Waveguide’, this will acquire 10 breaths to 
and calculate the average of these to create the waveguide, and save it without any 
modifications.  

 Click ‘New Respiratory Session’ and once the wave appears on the screen click ‘Start’ on the 
stopwatch panel:  

 At 4 minutes click ‘Stop Session’ and save the data as ‘FB’:  
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 The functions described above are shown below, highlighted by a red rectangle.   

 
 

 After the session has been saved, click ‘Analyse’, this will analyse the session you just saved  

 In the analysis screen, click ‘Save’ and then close the analysis screen.  

 Click ‘Reset’ in the Breathe Well software 

 Stop and save in the RPM software, then re-track and record in preparation for the AV 
biofeedback session.  

 

This concludes the Free Breathing Session. 
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2.1.4. AV Biofeedback Practice 

With the RPM tracking and recording the signal, turn on the tablet (and double-check iDisplay is still 
running properly, extending the laptop screen to the tablet) and unmute the audio. 
In the Breathe Well software:  

 Connect to RPM 

 Click ‘Existing Patient’ and select the correct ‘Trial ID AVIATOR’ patient 

 Click ‘New Waveguide’, AV Biofeedback will acquire 10 breaths before displaying them to you: 

 

Blue curves:  each of the 10 acquired breathing 
cycles 
Red curve:  a selected blue curve 
Green curve: the average of the blue curves, 
which will be displayed as the waveguide 
The slider-bar (highlighted by the red rectangle) 
underneath the curves scrolls through each of the 
10 cycles.  
 

 
If there are any outlier breathing cycles not representative of their “normal” breathing (e.g. 
overly-deep breaths, coughs, yawns, etc.) select them using the slider-bar and delete them: 

 
Too shallow Too deep  
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 An issue with making patients conscious of their breathing is that they tend to put more effort 
into their breathing, inadvertently breathing slightly more deeply than they usually would.  

o To counter this, scale the waveguide’s ‘Avg Wave – Scale’ from 1.0 down to 0.9   

 
 The ‘Avg Wave Time Period’ (shown above as 5.2177 seconds) can also be modified if it 

exceeds the limits of 4D-CT reconstruction (e.g. 10 breaths per minute: 6 seconds). 

 Save this waveguide 

 Next click ‘Select Waveguide’ and select the one you just saved (most recently saved files 
appear at the top of the list – time the file was created highlighted with red rectangle:  
hour-minute-second) 

 
 Click ‘New Respiratory Session’, this will commence AV biofeedback guided breathing. After a 

brief calculation of mean position the waveguide will appear and the music will begin to play. 

 Give the patient 1 minute to attempt the AV biofeedback guidance (use the sidebar stopwatch 
if necessary). Are there any issues? 

a) Is the patient having difficulty staying within the blue region?  
b) Is the patient having difficulty following the waveguide? (Is it too fast? Too slow?) 

 If points a) and/or b) are issues, then a modification of the waveguide may be necessary: click 
Reset → Existing Patient → Edit Waveguide and select the recently acquired Waveguide you 
wish to modify 

 This will bring up the selected waveguide and options to modify it:   
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o Avg Wave Time Period: period of the waveguide in seconds  
o Avg Wave - Scale: Amplitude of waveguide scale:  

 More than 1.0: Increasing amplitude size   
 Smaller than 1.0: Decreasing amplitude size 

o Only minor modifications to these numbers should achieve the desired result.  
o Save modified waveguide 

 Click ‘New Respiratory Session’; after a brief moment to position the marker in the correct 
position, the breathing session will commence.  

 Once the white waveguide appears on the screen (and the music commences) click ‘Start’ on the 
sidebar stopwatch. 

 After 4 minutes ‘Stop Session’ and save it as ‘AV_Decision’: 
 

 

 
 After the session has been saved, click ‘Analyse’, this will analyse the session you just saved  
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 In the analysis screen, click ‘Save’ and then close the analysis screen 

 
 

 Stop and save in the RPM software 

 Aside: in the analysis form, the blue curves are each individual breath, the red curve is the 
waveguide, and the yellow curve is the average curve based on all the blue breaths 

o RMSE Disp is a measure of how much all the breaths vary from this average curve 

  
This concludes the AV Biofeedback Session 
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2.1.5. Breathing Decision Form 

 Now that both breathing sessions have been performed and both sessions have been analysed 
and saved click ‘Breathing Decision Form’  

 This will bring up the Decision Form window, select the AV biofeedback (AV) and Free Breathing 
(FB) analysis files you just saved (they will be jpegs) and fill in the rest of the patient details:  

 
Breathing Decision Form.  

Left: Unfilled. Right: Complete. 

Note: Enter the same patient name and ID information here as you did in 

creating a new patient file (Trial ID and AVIATOR).  

Decisions are made by which breathing session has the lower ‘RMSE Disp’ value.  In this instance, the AV 

biofeedback session was more regular (RMSE Disp (AV) = 0.48, less than RMSE Disp (FB) = 0.59).   

There is no threshold for how much less the RMSE value needs to be to make the decision (e.g. if RMSE 

Disp (AV) = 0.48, and RMSE Disp (FB) = 0.49, then AV would still be the decision).  

Save the Decision Form as a PDF.  

The entire Decision Session takes approximately 20-30 minutes to complete.  

 If Decision Session is being performed on a different day to the CT sim, have the patient and the 
staff member who operated the Breathe Well software complete the patient and staff surveys 

o If Decision Session and CT sim session are being performed on the same day, wait until 
the CT sim is completed to perform the surveys.   

 

This concludes the Decision Session. 
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2.2. Image and Treat Using AV Biofeedback 
Continuing on from the previous section, we will first address those patients for whom, based on the 
Decision Session, AV Biofeedback was selected to remain in their imaging and treatment.  

 

2.2.1. CT sim with AV Biofeedback 

The setup here is the same as used for the Decision Session:  

 

The purpose of AV Biofeedback is to not only facilitate regular breathing during imaging and treatment, 

but also across multiple imaging and treatment sessions, so it is important to use the same Waveguide 

as used in the 4 minute of AV biofeedback breathing in the Decision Session: 

AV Biofeedback during  
CT sim 

AV Biofeedback during  
Treatment Delivery 

Complete Patient and 
Radiotherapist Surveys 
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 Position patient as per department protocol in preparation for their CT sim 

 Once in position, ensure the tablet is on and iDisplay is correctly extending the laptop’s screen.  

 Select the correct patient and waveguide 

 Start a New Respiratory Session 

 After a brief moment to position the marker in the correct position, the breathing session will 
commence.  

 Perform imaging as per department protocol. 

 After imaging is complete, click ‘Stop Session’ and save data as ‘AV_CT’: 

 
 Stop and save in the RPM software 

 Also save:  
o CT sim images (DICOM data) [file location] 

 It is important to save these files straight away, as they may be automatically deleted within 
days 

 If Decision Session was performed on the same day as CT sim, have the patient and the staff 
member who operated the Breathe Well software complete the patient and staff surveys  

 

This concludes the AV Biofeedback CT sim Session. 
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2.2.2. Treatment Delivery with AV Biofeedback 

The setup here is similar to the setup used for the Decision and CT sim Sessions: 

 

Use the same Waveguide as used in the 4 minutes of AV biofeedback breathing in the Decision Session, 

and then again in the CT sim Session.  

 
 Position patient as per department protocol in preparation for treatment. 

 Once in position, ensure the tablet is on and iDisplay is correctly extending the laptop’s screen.  

 Select the correct patient and waveguide 

 Start a New Respiratory Session 

 After a brief moment to position the marker in the correct position, the breathing session will 
commence.  

 Perform treatment delivery as per department protocol – regarding any couch shifts:  
o After a couch shift, in the Breathe Well software click ‘Renormalise’, which repositions 

the marker-block at the centre of the AV biofeedback display because the couch shifts 
may have moved the marker-block off-screen 

o DO NOT click renormalise during any beam-on times 
o Renormalise will automatically save the breathing data, so after a treatment session and 

‘Renormalise’ was clicked once, there will be two breathing data files for that one 
session.  
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 Once treatment is complete, click ‘Stop Session’ and save the data as ‘AV_Treatment’: 

 
 Also save:  

o CBCT images (DICOM data) if used (if linac does not have on-board imaging, disregard 
this point) 

o RPM File [file location] 

 It is important to save these files straight away, as they may be automatically deleted within 
days.  

 If this is the final fraction of treatment, complete patient and staff surveys  
 

This concludes the AV Biofeedback Treatment Session 
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2.3. Image and Treat with Free Breathing 
In the event that the patient is randomised into the control arm, or in the event that ‘RMSE Disp’ for 
Free Breathing is less than the ‘RMSE Disp’ for AV Biofeedback in the Decision Session, then the AV 
Biofeedback system will not be used in their imaging and treatment, the setup will be as per department 
protocol, and it is important that the RPM system is used:  

 

While AV Biofeedback will not be used, it is still important to save the 
following data for each CT sim and treatment fraction:  

 RPM Breathing signals 

 CT sim images  

 CBCT images (if CBCTs are not acquired then disregard this point) 
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3. Control Group 
Patients in the Control Group will have been identified as an eligible patient by the Radiation Oncologist, 
and then agreed to take part in the study. However, they have been randomised into the Control Group 
and will not be using AV Biofeedback. The setup, conduct of AVIATOR in the control group as well as the 
data to save will be the same as detailed in the previous section: ‘2.3. Image and Treat with Free 
Breathing’.  

4. Post-Treatment Toxicity Report 
As noted in the Flowcharts on page 1, a Toxicity Report is required for every patient regardless of their 
allocation to intervention or control groups.  
With each patient follow-up visitation the Toxicity Report must be completed by the treating physician; 
this is done for each follow-up for up to 12 months after each patient has completed their treatment.  
The completion of this Toxicity Report marks the conclusion of the AVIATOR trial for each patient.  
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Audiovisual biofeedback (AV) Software 

Quality Assurance Guidelines 

1 | P a g e  

Breathe Well QA version 3 for software version 2.3.   Date: 14/01/2015 

Introduction 
 
This document describes the quality assurance tests that should be performed after any software or 
hardware change of the Audiovisual biofeedback (AV) system or before each simulation and gated 
treatment with the AV system. For background see Cui et al. Commissioning and quality assurance for a 
respiratory training system based on audiovisual biofeedback JACMP 11(4) 2010.   
The QA presented in this document is relevant for Breathe Well software version 2.3 or higher.  
 

Daily QA or prior to each simulation and treatment if used less frequently than daily 
 
1. Visual inspection of the hardware 
Is there any visible damage to the AV control computer, cables and the screen or goggles? 

 Yes (Report) 
 No 

 
2. Visual display and auditory sounding tests for the screen or video goggles 
Connect the screen or goggles to the AV computer. Play a sample video.  Is the video displayed properly 
and the sound volume comfortable and is sound coming from left and right speakers (goggles only)? 

 Yes 
 No (Report) 

Potential issue: If ‘no’ for video display:  
Goggles: go to ‘Screen Resolution’ (Control Panel\All Control Panel Items\Display\Screen Resolution) to 
ensure display is extended to the screen/goggles and that the resolution for the screen/goggles is 
correct (800 x 600).  
Tablet: Ensure that, in Settings, in Developer Options, USB debugging is ticked. If video problems persist, 
there may be an issue with the tablet drivers on the laptop not being installed.  
 
3. Initialization of the Breathe Well software 

a) Start the BreatheWell software first. Is the AV computer showing the operator interface, as 
shown in Fig. 1(a), while the screen/goggles showing the patient interface with a welcome 
instruction as in Fig. 1(b)?  
 Yes 
 No (Report) 

  
(a) (b) 

Fig. 1. (a) The operator interface 
(b) Patient display as shown on the screen/goggles 

(intentionally blank). 

b) On the operator interface, does the in-screen patient display match what is shown on patient 
screen/goggles?   
 Yes 
 No (Report) 

352



Audiovisual biofeedback (AV) Software 

Quality Assurance Guidelines 

2 | P a g e  

Breathe Well QA version 3 for software version 2.3.   Date: 14/01/2015 

 
Monthly QA. Also to be performed after a software change. 
Details of test 
 
_______________ _______________   _______________ 
Centre name  Breathe Well Software Version**  RPM Software Version (Help->About)

* 

**see Breathe Well software top-bar for version number 

1. AV computer-RPM computer Connectivity 
AV computer connects to RPM computer via serial cable. Once connected, ensure RPM computer is 
tracking RPM marker block. On AV computer select correct COM# from the ‘RPM dropdown menu’ in 
Breathe Well software and click ‘Connect’. If unsuccessful, try a different COM# from the dropdown 
menu. Successful?  

  Yes 
 No (Report) 

If unsuccessful, refer to User Guide ‘Appendix A: Troubleshooting’ for further options to address AV-
RPM connectivity issues. 
 
2. Create an unmodified New Waveguide Session 

Use the RPM test phantom. In the Breathe Well software create New Patient (First Name: ‘AVQA’. Last 
Name: (the date) ‘DDMMYYYY’), then create New Waveguide. With the RPM phantom in motion acquire 
sample respiratory traces, and save it without any modification. Successful? 

 Yes 
 No (Report) 

 
3. Play a New Respiratory Session for the unmodified waveforms 
Still using the RPM test phantom. Click Load unmodified waveguide by clicking ‘Select Waveguide’ (file 
to select will be the only option available in the menu). Now click ‘New Respiratory Session. After 
calculating the mean, the audio patch should be toggled automatically and the music should sound 
synchronous and harmonious. Is the block tracing the motion magnitude, shape and time period of the 
background wave?  
Note: small variations in period may be observed, <0.1s per cycle, causing a small drift out of 
synchronisation (the phantom is not performing biofeedback!) and are acceptable.  

 Yes 
 No (Report) 

Is the exhale (bottom) period longer than the inhale (top) period on the AV screens? 

 Yes 
 No (Report) 

Stop Session. Do not save file.  
 
4. Create a modified New Waveguide Session 
Still using the RPM test phantom. Click ‘Restart’, click ‘Existing Patient’ and select the patient name you 
created in Step 2. Click ‘New Waveguide’. Remove one sample; adjust the average wave time period and 
scale. Are all of these operations successful and the modified waveforms saved? 

 Yes 
 No (Report) 
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5. Play a New Respiratory Session for the modified waveforms 
Still using the RPM test phantom. Click ‘Select Waveguide’, there should now be two files to choose 
between. Select the top one (top option is always the most recent). Begin another New Respiratory 
Session for the modified waveform. The block should be immediately out of synch with respect to the 
background waveguide. Observed successfully? 

 Yes 
 No (Report) 

Stop Session. Do not save file.  
 

6. Audio synchronization test & Randomization – Out-of-bounds respiratory pattern 
a) Still using the RPM test phantom. Load the original unmodified guiding waveform such as the 

one in Step 2 (second file option in ‘Select Waveguide’ – if you are uncertain, the timestamp is 
written into the file name - select the earlier option). Start ‘New Respiratory Session’. Once 
session is started, slightly raise the motion phantom itself (by ~2 cm) by placing something 
beneath it, producing a partially out-of-bounds respiratory pattern. When the block moves 
outside the blue region the music should fade to silence, and when the block returns within the 
blue region, the music volume should increase back to normal. Successful? 

 Yes 
 No (Report) 

Press ‘Renormalize’. After the mean had been calculated, the block should be continuously 
within the blue region and music should be playing continuously, not fading in and out.  
Stop Session. SAVE FILE. 
Successful? 

 Yes 
 No (Report) 

b) On the AV computer, open folder: ‘C:\ProgramData\UniversityofSydney\BreatheWell’ and open 
the folder with the correct patient name you created in Step 2. There should be two ‘REC files’, 
these are the breathing files. Renormalizing the data creates an additional breathing file. 
Successful? 

 Yes 
 No (Report) 

  
7. Changed range of motion function test 
Turn off RPM test phantom, and add tape (4-5 layers) to the widest point of the rotating disc. This will 
increase the range of motion of the phantom. Turn test phantom back on. It is best to slightly elevate 
the RPM test phantom for this as the added layers of tape may scrape across the couch surface.  

a) Using the original unmodified wave, begin another New Respiratory.  The block should NOT 
trace the background wave and should move above and/or below the ranges of the background 
wave. Successful?   

 Yes 
 No (Report) 

b) Then click the Renormalize button and the ball/block should still NOT trace the background 
wave. Successful? 

 Yes 
 No (Report) 

Stop Session. Do not save file. Remove tape from test phantom.  
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Attestation 
 
_______________ _______________ _______________ 
Physicist name  Signature  Date 
 
Notes 
*
There are known problems with RPM v1.7.5 3D option and a Varian Medical Device Correction Notice 

has been issued.  
 
Reporting 
Report any problems electronically to the Chief of Clinical Physics and Sean Pollock (sean.pollock@sydney.edu.au). 
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Revision History: Do not print this with QA document 
2008-09-29 PJK  Initial draft 
2008-12-08 PJK/SG/GC Modified after actual test 
2009-03-02 PJK/SG/GC Add the audio function into the feedback system and test the synchronization between  
    the audio patch and the video patch. 
2009-04-03 PJK/SG/GC Run a QA procedure and found the audio patch is still not stable. 
2009-04-07 PJK/GC  Test the video goggles. 
2009-04-08 SG/GC  Run another QA procedure and passed. Need a phantom that has an irregular breathing  
    pattern. 
2009-04-13 SG/GC  Run the QA procedure using the motorized programmable phantom and passed. 
2009-05-22 PK/GC  Test updated A/V patches, which did not work properly. Switch back to older version  
    and they worked fine, with PK and GC as volunteers simulating real clinical setting. 
2009-06-05 PK/GC/SG Test the updated A/V patches with Renormalization function. Successful. 
2009-10-08 GC  Update the QA worksheet. 
2009-12-15 GC  After redefine the session names. 
2011-06-07 PK/THK  Applied to Sydney 
2012-02-09 THK  Modified with the latest version of Breathe Well 
2012-05-25 THK  Modified with the latest version of Audiovisual biofeedback software 
2012-08-30 PJK  Modified to add larger motion 
2012-10-02 PJK/EE  Added test for sound coming from both speakers.   
2013-03-25 SP  Added resolution info for goggles (Point 2).  
2013-05-10 PK  Added directionality test based on EE/EC/JK observation from RPM  
2013-05-10 PK  Added version number for RPM due to Device Correction Notice and above observation  
2013-05-17 DL  Removed offset test from Point 3 and 4. 
2013-06-21 SP  Goggles resolution dimensions (800 x 600) added to Point 2.  
2013-06-16 PK/DL  Added allowable variation in period (<0.1s).  
2013-10-14 PK/SP  General revisions for screen and V2.0.  
2013-10-15 SP  General revisions for V2.0. Point 6 in Monthly QA separated into a) and b).  
2013-10-15 SP  ‘Potential  issue’ added in to point 2 in Daily QA and points 1 & 2 for Monthly QA to  
    counter potential problems user may come across for those steps. 
2014-04-02 SP  Amended sections pertaining to ‘music speeding up’ as this is no longer a function in  

Breathe Well v2.1.0 – Previous Step 5 (Audio synchronization test – irregular respiratory 
pattern) in Monthly QA replaced with Step 5 (Audio synchronization test – out-of- 
bounds respiratory pattern).  

2014-11-4 SP/PK  SUAVE -> Breathe Well and improved clarify in several sections.  
2015-01-14 SP  Updated for Breathe Well v2.3: 

 Screenshots updated for latest version in Daily QA. 

 New first step in Monthly QA: ‘AV computer-RPM computer Connectivity’ 

o  This negates a previous ‘Potential issue’ comment.  

 Step added for testing ‘Free Breathing’ function.  

 Out-of-bounds respiratory pattern & Renormalization steps merged into 
one 

 Step added to check whether Renormalzing created an additional .rec file. 
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1. Setup 
1.1 Breathe Well Software Initialization and Setup 
After Breathe Well software has been installed it will auto-save patient data to folders in the location: 

C:\ProgramData\UniversityofSydney\BreatheWell   

If this location does not show up, it means the folder is hidden; type the file location into Windows 

Explorer and you will see it there. 

IMPORTANT: Breathe Well software is compatible with a number of different motion sensor cameras, it 
is important to specify which sensor is being used in the config.txt text file located in 
C:\ProgramData\UniversityofSydney\BreatheWell:  

 If the Intel Realsense is being used, ensure the line in config.txt reads:  
Clinical,Realsense,COM4,30,1  

 If the Microsoft Kinect is being used, ensure the line in config.txt reads:  
Clinical,Kinect,COM4,30,1  

 If the Varian RPM (6-dot) is being used, ensure the line in config.txt reads:  

 Clinical,RPM-6Dot,COM4,30,1 

 If the Varian RPM (2-dot) is being used, ensure the line in config.txt reads:  

 Clinical,RPM-2Dot,COM4,25,1 
 
Start the Breathe Well software 

i. Run the BreatheWell executable file 
ii. The initial screens on the Breathe Well computer are shown below.  

Operator Display Patient Display (intentionally blank) 

 
 

Figure 1.  Screenshot of the video patch of the Breathe Well audiovisual biofeedback system for operator and 
patient displays. 
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1.2 Breathe Well Operator Bar 
As shown on the Operator Display in Figure 1, there is an options bar to the left of the screen. Various 

options will become active once certain actions are completed; this is illustrated below in Figure 2.  

ACTION 
Initial Display – 

Not connected to 

motion sensor 

Connected to 

Motion sensor – 

Perform Regular 

Breathing or Breath 

Hold 

Create New Patient 

file or select 

Existing Patient 

Waveguide options 

(Regular Breathing) 

Breathing Session 

options 

(Regular Breathing) 

OPERATOR 

BAR 

     

Figure 2.  Breathe Well options becoming activated as workflow actions are completed. 

Breathing Session 

options 

(Breath Hold) 
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2. Breathe Well Patient Session 
2.1. Audiovisual Biofeedback Session 
2.1.1 Create a Waveguide 

Setup the Breathe Well software as well as the RPM software (see Section 1.SETUP). 
Select New Patient and enter patient details (if patient has already been entered into Breathe Well, 
select Existing Patient and select correct patient). 

 

  

Figure 3.  Selecting either a New Patient or an Existing Patient. 

Select New Waveguide, the software will start obtaining ten breaths to construct the waveguide for 
the patient to follow.  
When the program has completed collecting samples, the waveforms for each sample will be 
displayed on the screen along with options to edit the waveforms (see Figure 4 below).   

 

  
Figure 4.  Screen to determine patient’s waveguide.  The blue curves are sampled from the patient (each 

individual breath).  The green curve is the average waverform for the remaining samples (to be used as the 

waveguide).  The red curve is the selected breath that can be deleted.  Move the arrow at the lower left to 

change the selected blue patient curve.  The period and scale of the average waveform can be modified 

using the options on the bottom-right.   
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Select individual curves and delete outliers if necessary. No threshold is available on when to 
delete/keep waveforms – it is up to the personal judgment of the operator as to what is an ‘outlier’ 
breath is.  
Click Save to save the waveguide.  
Select Select Waveguide and select the waveguide files created for your patient (see Figure 5).  

 
Figure 5.  Screen to select a created waveguide. If multiple waveguides have been created, the most 

recently saved waveguide will be at the top of the list. 

 
If the patient is having difficulty following the waveguide, modifying the waveguide may be necessary. 
Click Edit Waveguide and adjust the average wave time period and scale using the respective controls 
(see Figure 4).  

 
2.1.2. New Respiratory Session 

Ensure correct patient and desired waveguide have been selected.  
Select New Respiratory Session. The session will commence automatically.  

 
Figure 6.  Starting a new respiratory session. 
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The software will start calculating the mean marker-position to correctly position it on within the 
breathing limits (within the blue region). 

 
Figure 7.  Breathe Well software calculating marker mean position (from 4 breathing cycles) to correctly position 

marker on guiding interface. 

Once the mean marker-position has been calculated, the session will start automatically. 
The waveguide is displayed as a white wave moving from left-to-right while the real-time respiratory 
breathing of the patient is displayed as a grey marker-block. 

 
Figure 8.  Patient Display: showing their waveguide (white) and their current breathing position (block). 
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It is important that the patient uses exactly the same waveguide throughout their course of treatment 
to minimize inter-fraction breathing motion variations.  

If the couch is shifted/moved or patient shifts position, this will move the marker, potentially off-screen.  
When couch/patient shifts occur, click the ‘Renormalize’ button to renormalize the baseline of the 
marker block; it readjusts the mean position of the marker block to be in the middle of the display.  
Only click Renormalize before imaging and treatment procedures, not during beam-on time. 
Clicking Renormalize will also prompt you to save the file for the pre-renormalize data.  

 
Figure 9.  Location of Renormalize function (top), and save the file (bottom). 

N.B. By renormalizing, this will save a data file of the breathing session up until to the point Renormalize 
was clicked and then commence a new file from the point after renormalization. i.e. there will be two 
data files for the one session if Renormalization is used once. This should not discourage the use of the 
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Renormalize function, it is especially important to use after couch-shifts, just note that there will be 
multiple breathing data files associated with its use.   

When the session is over, click Stop Session and select Yes when you are prompted to Save 
Current Session and select the appropriate option for the session (AV_Decision, AV_CT, or 
AV_Treatment): 

 
Figure 10.  Pop-up options when you click ‘Stop Session’ for AV biofeedback sessions. 

Data will be saved automatically into that patient’s folder 

If using goggles - Discard the hygiene covers and wipe down the goggles using sani-wipes after use 
(thanks to Diana Browder’s input, 10/28/2009). 
Place the goggles/tablet carefully away in the appropriate storage place.   
 
2.1.3. Audiovisual Biofeedback Operator’s Display 

The Operator’s Display presents information pertaining to the current Respiratory Session, illustrated 
and explained below:   

 
Figure 11.  Operator’s Display with session information highlighted 
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Brown box: Breathe Well software version number  
Dark blue box: The sensor being used  
Yellow box: Patient name. 
Purple box: Stopwatch. To time length of breathing sessions in minutes and seconds if needed.  
Light blue box: Time and displacement information from the motion sensor being used.   
Red box: An in-screen display of the patient display which refreshes at a rate of 1 Hz (hence it may 
appear out of synch, but it isn’t, it’s just a slow refresh-rate). This informs the operator if the Patient 
Display is not properly connected, or not displaying the correct information.  
 

2.2. Free Breathing Session 
A Free Breathing session is performed when a Screening Procedure is required, i.e. when a decision 
needs to be made as to what the more regular breathing condition is, either (1) unguided (Free 
Breathing), or (2) guided (audiovisual biofeedback) breathing. 
Setup the Breathe Well software as per Section 1. SETUP. 
 
Important: Ensure that the patient display is turned off. 
 
Following the selection of the correct Existing Patient, select New Waveguide. Immediately save the 
waveguide without modification, click Select Waveguide and select the one you just saved (it will be at 
the top of the option list), and then click New Respiratory Session. Record the patient’s free breathing 
for 4 minutes.   
 
Click Stop Session and select Yes when you are prompted to Save Current Session and select FB from 
the options presented.  

 
Figure 12.  Pop-up options when you click ‘Stop Session’. 

Data will be saved automatically into that patient’s folder with ‘FB’ tagged at the end of the file 
name for Free Breathing.  
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3. Respiratory Analysis & Decision Form  
If a screening procedure is being utilized to determine whether or not to use the Breathe Well software 

audiovisual biofeedback guidance, then a comparison of breathing regularity between guided and 

unguided breathing will need to be performed. The Breathe Well software has a function that allows this 

decision to be made in situ. This section will only need to be performed once per patient prior to CT sim. 

3.1. Analyse Respiratory Sessions 
Once respiratory session has been saved for unguided breathing (see Section 2.2. Free Breathing 

Session) and guided breathing (see Section 2.1 Audiovisual Biofeedback Session) select Analyse, this 

will bring up the Analyse window, shown below in Figure 13:  

  

Figure 13. Analyse option and Analysis window. Blue curves: each individual breath. Yellow curve: average breath. 

Red curve: selected waveguide (later versions of the software may not display the red curve). 

The analysis for most recently saved session will automatically be brought up. However you can select 

another breathing session from the dropdown menu. Files with ‘FB’ tagged on the end is the Free 

Breathing file, the file with ‘AV_Decision’ tagged on the end of the AV biofeedback file.  

Save each analysis for these two sessions.  

N.B. Analysis window saved as a jpeg. A new jpeg is saved each time you click ‘Save’, so best not spam 

the ‘Save’ button.  

Also present on the Analyse window are metrics for measuring regular-breathing: the root-mean-

square-error (RMSE) of displacement and period.  
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3.2. Breathing Decision Form 
Bring up the Decision Form by selecting Breathing Decision Form.  

  
Figure 14. How to bring up Breathing Decision Form 

Complete the Decision Form by selecting each of the saved ‘Analyse Respiratory Session’s, by selecting 

on the Decision Form menu Select FB/AV Image. Once the Decision form has been completed, save 

and/or print the Form by selecting File  Save, and/or File  Print. The Decision Form menu options 

are shown below in Figure 15.  

 

Figure 15. Decision Form menu options. 
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Figure 16. Breathing Decision Form.  

Left: Incomplete. Right: Complete. 

Decisions are made based on which breathing session has the lower ‘RMSE Disp’ value.  In this instance, 

the audiovisual biofeedback (AV) session was more regular (RMSE Disp (AV) = 0.48 compared to RMSE 

Disp (FB) = 0.59). So for patient ‘John Smith’, audiovisual biofeedback breathing guidance with the 

Breathe Well software will remain in his treatment planning and treatment delivery utilizing THE SAME 

WAVEGUIDE as was acquired here.     

This screening procedure (if utilized) with Free Breathing, Analyse, and Decision Form will only need to 

be completed once per patient prior to their treatment planning.    
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Appendix A: Troubleshooting 
 
If the system is working at all after trying the options below the fallback position is to use no 
training and contact the developers.   
 
If audio is causing problems or not easy to understand by the patient, turn audio off using 
computer volume control.   
 
If system is not working it may be that ‘record’ on the RPM software is not depressed, or a 
loose/wrong connection.  The RPM connects to the audiovisual through a serial port.   
 
If after learn respiratory session the green line is not a smooth curve similar to the blue curves then 
reacquire the respiratory session.   
 
If necessary enable serial output in RPM program itself. View → System Configuration → General 
tab → Advanced. Check “Enable Serial Protocol” and select Format = Extended and COM port = 
COM1. (Password RespGate needed). Restart RPM 1.7 in order to make the change take effect. 

a. If serial still does not work, (in the standard RPM installation, serial protocol options are 
disabled by default)  then: close RPM, - open RPMSetup.ini in the Program 
Files\Varian\RPM 1.7 folder,  under [Misc] section change "Serial" value to 1. [Misc] 
Serial=1 

b. If serial output is still not reappearing even after updating rpmSetup.ini then may need 
to adjust regiustry.  Use regedit change My 
Computer→HKEY_LOCAL_MACHINE→SOFTWARE→Varian Medical Systems→RPM 
Respiratory Gating System→Settings: SerialComm from False to True (enable serial 
protocol) and SerialProtocolNum from 1 to 2 (IAS to extended).   
 

For the Dell desktop setup at Stanford, there is an issue with detecting the LCD screen display in 
order to have a dual-screen setup. It was only possible to clone the screen (same display on both 
screens). However, restarting the computer after connecting the monitor cables fixed the problem. 
 
Another possible issue with having different screens on the dual displays could be the cables to which 
the display monitors are connected. The Dell desktop setup at Stanford has two VGA cables coming 
from the desktop computer. The cable with the white tag attached should be connected to the 
primary monitor. The other cable should be connected to the patient display. When the computer is 
restarted, the initial boot-up screen will be displayed to the primary monitor – make sure that this is 
the operator monitor. 
 

If the Research computer is not receiving data from the serial port, make sure that the “Enable Serial 
Port output” checkbox is set in the RPM configuration screen. 
 
Patient may hear the windows ‘beeps’.  If they exist, turn off in control panel→sounds 
 
If patient has irregular phase, then ball motion will pause.  Either reduce by changing predictive 
filter?  Could also hide ball.   
 
If not using RPM, could have smoothness issues at less than 30 Hz framerate (per Diana’s 
experience).   
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Error message may appear on patient screen.   Patient/therapist should be aware of this.  Check for 
error message programs running in task bar and close. If fails close in windows task manager (ctrl-alt-
delete).     

 
You may need to adjust the resolution of the BREATHE WELL LCD screen 

i. Adjust the resolution to 800x600 before running the BREATHE WELL software. If the 
display settings are changed while the program is running, the waveforms disappear. 

ii. The following steps to change the resolution are specific to the Dell computer system 
used at Stanford: 

a) Right-click on the desktop and select NVidia Control Panel. 
b) On the left-hand navigation panel, select Set up Multiple Displays under the 

Display category. 
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Appendix B: Revision History 
Date Name Reason for Changes Version 

01/07/2009 Siddharth (sgopalan) Updated to reflect new AVFeedback version 1.1 

02/03/2009 Siddharth (sgopalan) Merged with existing AVFeedback guide 1.2 

03/17/2009 Siddharth (sgopalan) Added instructions for the audio patch 1.3 

06/16/2010 Paul Added executive instructions 1.4 

01/27/2011 Taeho Kim Instruction in Sydney 1.5 

7/5/2012 Taeho Kim Instruction for AV biofeedback _v 1.0.8.1 2.0 

10/29/2012 Taeho Kim Breath-hold guidance included 2.1 

17/05/2013 Sean Pollock Mentions of STARR changed to SUAVE 2.1 

21/06/2013 Sean Pollock Resolution info for goggles added.  2.1 

21/10/2013 Sean Pollock Modified for AV v2.0.  
Additional sections added for Display Options 
and DIBH.   

3.0 

02/04/2014 Sean Pollock Modified for SUAVE v2.1.0. 
Display options amended & Offsets description 
added.  
‘Respiratory Analysis & Decision Form’ section 
added.  

3.1 

24/07/2014 Sean Pollock Updated DIBH section for SUAVE v2.1.0.0 3.2 

13/01/2015 Sean Pollock Updated document for Breathe Well v2.3: 
- Footer added to track software and 

document versions 
- Updated interface and workflow details  
- Removed: 
o Section on customizing interface 

(colours, etc) 
o BH & DIBH (re-insert once functionality 

added back in) 

4.0 

04/02/2015 Sean Pollock Updated to include stopwatch function 4.1 

30/06/2015 Sean Pollock Updated for version 2.3.2. which included the 
option to tag saved .rec files with session name 

4.2 

02/12/2015 Sean Pollock Updated for version 2.5.  
New options, additional motion sensor options.  
V2.5 sidebar updated in Figures.  

5.0 
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1. Hardware setup 

1.1. Hardware components 

The provided hardware components for audiovisual (AV) biofeedback are as follows:  

1) 2 × aluminium rods  

2) 2 × rod connectors  

3) 1 × table clamp 

4) 1 × Intel RealSense 

5) 1 × Patient display 

6) 1 × Intel NUC computer 

7) Cabling  

The cabling should already be 

correctly connected to its 

relevant components. The 

NUC computer should already 

be fixed to one of the rods.  
 

Figure 1.  Hardware components in delivery case. 

The assembled hardware setup for the Intel Realsense AV biofeedback setup is shown below in Figure 2.  

  
Figure 2.  AV Biofeedback setup schematic (left) and hardware components (right). N.B. rods shown in Figure 2 are 

made of a different material to those shown in Figure 1. 

Required components for AV biofeedback NOT provided with the delivered package are as follows:  
1) Monitor display with VGA input  

2) Keyboard with USB connector  

3) Mouse with USB connector  

4) Display Port to VGA cable  

5) VGA extension cable 

6) 2 × USB extension cables (1 for mouse, 1 for keyboard) 
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A schematic of all the connected components is shown below in Figure 3. 

 

Figure 3. Schematic of full AV biofeedback system setup from CT/Treatment room to the operator’s room 

Where to connect the cabling to the NUC computer is shown below in Figure 4.  

 
Figure 4. Cables plugged into the NUC computer and their purpose 

375



User guide for Intel RealSense AV Biofeedback setup version 1.1 for software version 2.5 Date: 15/01/2016 

 

1.2. Component assembly 

1. Remove table clamp and rod with NUC computer 

attached (components 1, 2, 3, 6 from Figure  2) 

2. Attached to a table and adjust handles 

(highlighted in figure to the right) such that the 

stand is fixed upright.  

 

3. Attach the Intel RealSense to the remaining rod, 

on the opposite end to the rod connector 

4. Attached the Patient display such that the screen 

is approximately mid-way down this same rod 

 

 

5. Attach the rod with RealSense and Patient display 

to the upright rod such that the RealSense and 

display are facing downwards  

 

6. Ensure any lose caballing is connected to the NUC 

computer in accordance with Figure 4. 

7. Connect a display and keyboard to the NUC 

computer in accordance with Figure 3 and Figure 4 
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2. RealSense software 

Open “Breathing Coach” software from the Desktop:  

On initial Breathing Coach screen click 

“Patient” and select either “New” or 

“Open”. 

 
Figure 5. New or existing (Open) Patient 

options 
 

Figure 6. Breathing Coach Realsense software initial display 

2.1. New or Existing Patient 

If this is the patient’s first use of AV biofeedback, then select “New” under the Patient menu shown in 

Figure 5 and enter the patient’s name or Study ID: 

 
Figure 7. Enter name/Study ID of new patient 

If this is NOT the patient’s first 

use of AV biofeedback, then 

select “Open” under the Patient 

menu shown in Figure 5 and 

select the patient’s name or 

Study ID. This will load this 

patient’s “Breathing Coach” 

options (these options will be 

explained in the next section).   

 
Figure 8. Select name/Study ID of existing patient 
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2.2. Tracking Patient Respiratory Motion 

The “Breathing Coach” software has been optimized for patient use and may not operate optimally with 

a motion phantom. The operational distance of the Intel RealSense depth sensor is 20cm to 120 cm.  

The Breathing Coach software does not require markers. Clicking “Start” will commence the tracking of 

the patient’s respiratory motion. Figure 9 shows the Breathing Coach software under default options 

after clicking “Start”. The respiratory motion of the region being monitored is what is used as the input 

for the audiovisual biofeedback software.  

 

 Figure 9. Left: Optical image with overlaid region of interest, registered torso, and AP, LR, SI vectors. Right: 

Respiratory signal of the region of interest. Bottom: Breathing Coach options.  

Table 1 demonstrates the Breathing Coach options in detail.  

Table 1. Breathing Coach software options 

Default 
options 
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Adjust 
‘Torso 

Distance’ 

 
Move region of interest in superior or inferior direction 

Adjust  
‘Lateral Shift’ 

 
Move region of interest in left or right direction 

Adjust 
‘Scale Factor’ 

 

 
Increase or decrease size of the region of interest 

It shouldn’t be necessary to adjust the Breathing Coach options for most patients, however, for patients 

with sufficiently large or small torsos, it may be necessary to adjust some options.  

Clicking “Save” will save the Breathing Coach options (NOT the respiratory signal, that is done in the 

audiovisual biofeedback software). This is to ensure consistent positioning of the region of interest 

interfractionally.   
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Having the Breathing Coach software and audiovisual biofeedback Breathe Well software running 

simultaneously can slow the sampling-rate of the Breathing Coach software. To maximize the sampling-

rate whilst audiovisual biofeedback is also running, switch from “color” to “depth mode” and disable the 

“Enable color”, “Enable Waveform Plot”, and “Enable 3D Vectors” options. These options are shown in 

Figure 10. 

 

 

Figure 10. 

Disabling 

options to 

maximize 

sampling-rate 

of the 

Breathing 

Coach 

software. 

 

With these options disabled, the respiratory signal of the region of interest will no longer refresh, 

appearing frozen, rest assured, as long as “Start” has been clicked it is tracking the respiratory signal.    

With the motion signal tracking in the Breathing Coach software, open the AV biofeedback software: 

Breathe Well  This will open up the AV biofeedback software on both the operator’s desktop 

and on the patient display:  

Operator Display Patient Display (intentionally blank) 

  
Figure 11.  Screenshot of the initial audiovisual biofeedback display and the initial patient display (intentionally 

blank to begin with) 
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Please refer to document “AVFeedbackUserGuide_v5 Breathe Well” for further 
instructions on how to operate the AV biofeedback Breathe Well software.  

2.3. Stop Session 

AFTER saving the breathing session in the Breathe Well software, stop the session in the Breathing 

Coach software. If the Breathing Coach software is stopped before Breathe Well an error will occur in 

the Breathe Well software.  

2.4. Adjusting the Signal Axis 

Should the magnitude of respiratory signal exceed the limits of the y-axis in the Breathing Coach 

software, it can be adjusted using the scroll-wheel of the mouse. Having the signal going off axis will not 

compromise the signal input to Breathe Well software, but it may be desirable to see it nonetheless.  

 
Figure 12.  Adjusting the displacement y-axis using the mouse scroll wheel 
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Appendix A: Revision History 
Date Name Reason for Changes Version 

04/01/2016 Sean Pollock Version 1 completed 1.0 

15/01/2016 Sean Pollock Additional details for ‘Breaching Coach’ 
software added 
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Appendix VI 
 

Media reports on the audiovisual biofeedback commercialisation 

process 
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Sources of media articles:  
 “SYDNEY GENESIS: BREATHE WELL” 

o http://www.insideenterprise.org/sydney-genesis-breathe-well/ 

 “THIS STARTUP JUST LANDED $400,000 IN SEED FUNDING TO HELP CANCER TREATMENTS”  

o http://www.businessinsider.com.au/this-medtech-startup-just-landed-400000-in-seed-

funding-to-help-cancer-treatments-2015-8 

 “THE NEXT GENERATION OF MEDICAL DEVICE INNOVATORS”  

o http://atp-innovations.com.au/2015/11/next-generation-of-medical-device-innovators/ 
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Sydney Genesis: Breathe Well 

 
 
POSTED BY: MEGAN ENGARD FEBRUARY 18, 2015 
 

Sydney Genesis is the longest running entrepreneurship program at the University of 

Sydney. The program is founded on the idea that when innovative new businesses, 

technology startups, and social entrepreneurs work side by side, a truly unique 

exchange of knowledge and inspiration flourishes. Each year Genesis opens its doors to 

students and alumni from any background who are passionate about their ideas in 

business, technology or social entrepreneurship. Over the course of the program 

participants are encouraged to bring their ideas to life with the assistance of workshops, 

mentoring, networking, funding and prizes.  

Sean Pollock was a participant of the Sydney Genesis program during the first semester 

of 2014 and was one of the 8-10 finalist teams to pitch their ideas before a panel of 

industry experts at the Final Pitch Event in May. He is a current University of Sydney 

student who completed his Masters in Medical Physics in June, 2012 and is now 

working on his PhD in Medicine. Sean and his PhD supervisor Prof. Paul Keall have 

created a start-up company around a medical device at the centre of their research 

called Breathe Well, which provides breathing guidance for cancer patients for better 

quality imaging and radiotherapy. 
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How did you come up with your idea? 

The technology behind Breathe Well was actually developed by my PhD supervisor, 

Paul Keall, while he was working in the United States in 2003. I first became involved 

in the project while working on my masters here at USYD when I received an email 

inviting students to volunteer for an imaging study that was investigating the Breathe 

Well device. That was my first contact with the project and eventually led me to join 

the project as part of my Masters’ research before continuing on with a PhD. The 

business is now run by Paul Keall as the company director, myself as co-founder, two 

software developers and a company secretary. 

What prompted you to get involved with Sydney Genesis? 

Back when we started, my advisor and I were both coming from the research side of 

things. We had a research device and we had spoken to a few colleagues about 

commercialising it, but we had no real business model. We first reached out to ATP 

Innovations about possibly working on the business plan and they directed us to Sydney 

Genesis as a starting point. Genesis was great for us because we hadn’t really thought 

about things from the perspective of customers. We had a research point of view, which 

was simply “We’ve researched it, we have a great product and you should want it, too.”  

Going through the Genesis program really helped us understand the other point of view 

and how to create a business around your buyer’s needs. 

What is your business model? 

We have created two possible revenue streams with Breathe Well. The first comes from 

a larger prototype device we have developed, which would be sold to hospitals. We 

have also developed a smaller, compact version of the device that would go to patients 

to practice on before using the larger device with their doctors. A prototype of the 

smaller tablet sized device is what we used during our Genesis Final Pitch to the panel 

of judges. After doing quite a bit of research into the competitive landscape we have set 

a price of $30,000 for the direct purchase of the device as well as an additional 20% per 

year service charge which covers systems upgrades, maintenance, breakages, etc. 

Existing devices on the market monitor patient breathing but don’t provide feedback to 

the patient, and cost between $40,000 and $50,000. Our first market would most likely 

be Australia, though we have looked at the United States as well. 

What are some of the biggest challenges you’ve faced? 

For us, the biggest challenges were around learning the important business skills that 

were very different to our research mentality. The Genesis workshops were great for 

this because they are run by people who are leaders in their field. To be able to pick 

their brains during the workshop sessions and get their feedback on our ideas was 

incredible. Another challenge for us was to create a more streamlined version for the 
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product we had going in. We wanted to be able to offer this to clinicians, and luckily we 

started with a bit of wiggle room so we were able to make the adjustments we needed. 

Where to now?  

After finishing the Genesis program we applied to work with INCUBATE and we are 

now in their winter program. INCUBATE is a great follow up from Genesis; it is more 

intensive. While Genesis was more of a learning experience, INCUBATE provides 

more of a push to get things done towards regular set milestones. We formed a private 

company at the start of INCUBATE called Respiratory Innovations and are looking at 

recruiting the first patient in one of our largest clinical trials in the next few weeks, so 

things are very exciting at the moment. We are aiming to have our first sale in the next 

twelve months. That time frame allows us time for regulatory approval, clinical trials, 

etc. After Genesis, I am much more aware of the many opportunities on the business 

side of things so there are a lot of possibilities for what I can do next. I’ve been 

involved with Breathe Well for almost three years now, so I’d love to see it taken to the 

next level. 
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This medtech startup just landed 
$400,000 in seed funding to help cancer 
treatments 
ALEX HEBER AUG 14 2015, 2:16 PM   

 

Medtech startup Breathe Well just landed a $400,000 investment from Sydney 

Seed Fund to help develop improved cancer radiotherapy treatments. 

Invented by Paul Keall, a professor in the School of Medicine at the University 

of Sydney, Breathe Well assists cancer patients in breathing predictably during 

a course of radiotherapy. 
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Keall came up with the idea while working in a teaching hospital at Virginia 

Commonwealth University, USA, while focusing his research and clinical 

activities on breathing motion during cancer imaging and radiation. 

One of the key technical challenges during treatment was breathing 

irregularity. 

“We could either develop complex imaging and treatment solutions to 

accommodate irregular breathing, or we could simply develop a system to help 

patients breathe more regularly,” he said. 

“Breathing guidance improves efficiency, image quality and targeting accuracy. 

What this means is that with breathing training more patients can be treated, 

with higher cure rates and a better quality of life.” 

Keall was involved in a study at Stanford University reviewing images from 50 

lung cancer patients. It found significant errors for at least one image series in 

90% (45/50) of the patients. 

“Reducing these errors has benefits to the patient’s health, but also for the 

economy as the costly burden of managing treatment side effects is reduced,” 

he said. 

By providing visual feedback of their breathing patterns, Breathe Well helps 

patients overcome the damaging consequences of irregular breathing. 

“The problem of irregular and unstable breathing motion is widespread across 

the radiology and radiation oncology, affecting some of the most common 

forms of cancer such as lung, breast, and liver cancer. Errors caused by 

respiratory-related motion have been reported to be present in up to 90% of 

medical images used to plan the patient’s radiation treatment,” PhD medical 

candidate Sean Pollock who is also on the team, told Business Insider. 

The startup secured a $588,000 grant from the National Health and Medical 

Research Council earlier this year, allowing it to conduct a series of clinical 
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trials around Australia. It has also applied for several additional grants 

including one from the NSW Health’s Medical Device Fund. 

Keall has also recruited software engineers Kuldeep Makhija and Dr Ricky 

O’Brien, and commercialisation expert Daniel Zafir, who recently joined as 

Managing Director. 

“Apart from ground-breaking Breathe Well technology, we were impressed by 

its remarkable team led by Professor Keall,” Sydney Seed Fund partner 

Benjamin Chong said. 

Pollock says the simplicity of the design is why he joined the startup. 

“Rather than spend millions on a better treatment machine, you can improve 

the accuracy of existing facilities at a fraction of the cost by providing breathing 

guidance to the patient,” he said. 
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THE NEXT GENERATION OF
MEDICAL DEVICE INNOVATORS
  Nov 27, 2015

Health Minister Jillian Skinner tonight congratulated 12 outstanding medical

researchers as they graduated from the 2015 Medical Device Commercialisation

Training Program.

Presenting certificates at a ceremony at ATP Innovations, Eveleigh, Mrs Skinner said

the graduates represent the next generation of medical innovators. 

“These entrepreneurial graduates come from medical, biomedical engineering,

mechatronics and biological science research backgrounds,” Mrs Skinner said. 

“Their research includes a templating system to develop patient-customised implants,

a new method of heart valve repair and a home diagnostics kit for medical testing.”

The Medical Device Commercialisation Training Program (MDCTP) was set up

following a review of the first round of the NSW Government’s Medical Devices Fund.

It aims to address a gap between the skill base in the development of medical device

research and the skills required to commercialise emerging innovative technologies.

As part of the 2015 program, ATP Innovations provided a three-month intensive

training course aimed at early-to-mid-career, post-doctoral and other researchers. 

Mrs Skinner awarded four members of the graduating class with scholarships to

further develop their research: 

· Professor Stephanie Watson, Kleer-i – $50,000 in seed funding for the Kleer-i patch,

a sutureless wound sealing device for cataract surgery; 

· Dr David Yeo, Royal Prince Alfred Hospital – $25,000 in seed funding for Pivot

Sphincterotome, a procedure for the management of bile duct pathology; 

· Dr Dharmica Mistry, BCAL Diagnostics Pty Ltd – $10,000 international engagement

scholarship for higher accuracy breast imaging and screening tests; 
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· Dr Robert Gorkin, University of Wollongong – $10,000 international engagement

scholarship for new condoms utilising an advanced hydrogel material with anti-STI

agents.

“It takes a breadth of skills to get an innovative medical research concept off the

ground and our graduating researchers are now equipped with the skills required to

bring their fantastic ideas into the marketplace,” Mrs Skinner said.

The first group of MDCTP trainees graduated in late 2014. 

For more information visit: http://www.health.nsw.gov.au/ohmr/pages/default.aspx 

Or visit the Medical Device Commercialisation Training Program page at ATP

Innovations and apply: http://atp-innovations.com.au/mdctp/

Medical Device Commercialisation Training Program 2015: Graduates 

Aiden O’Loughlin 

University of Western Sydney 

Stabilyzer: One in three people in Australia die of cardiovascular disease. The

underlying process causing the majority of these deaths is atherosclerosis.

Atherosclerosis is a disease where fatty material is deposited in sections of the wall of

the artery. Deaths occur when local atherosclerotic lesions rupture, stimulating clot

formation, leading to occlusion of the artery. These lesions are termed ‘vulnerable

plaques’. Both heart attacks and strokes can be caused by vulnerable plaques

rupturing. Recent research has shown that vulnerable plaques can be identified prior

to their rupture. The Stabilyzer device provides treatment that will prevent future

heart attacks and strokes with the development of a locally applied treatment to

stabilise these plaques.

Annabelle Chan 

University of Sydney 

Rapid Templating System: The rise in rapid prototyping technologies has presented a

unique opportunity for the creation of custom made implants. However, the logistical

shift from generic high volume production systems to individually customised

implants prevents its widespread usage. The Rapid Templating System aims to form

patient specific implants quickly and effectively. The system involves the production

of a 3D-printed guided mould, based on patient scans, to shape terminally sterilised

generic materials into patient-customised implants. The generation of custom

implants within packaged materials allow implants to be immediately ready for use,
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avoiding treatment delays due to sterilisation post production. This approach has the

capacity to significantly reduce inventory costs for medical device companies, as

abundant implant-size ranges are no longer required to accommodate all patient

cases. Further developments in regenerative medicine may allow further

customisation material properties, allowing the implant to be patient specific

anatomically as well as a biomechanically.

David Yeo 

Royal Prince Alfred Hospital 

Pivot Sphincterotome: Endoscopic retrograde cholangiopancreatography (ERCP) is an

endoscopic procedure that allows access into the biliary system and has

revolutionised the management of bile duct pathology. However, it is a notoriously

difficult procedure to learn and even in experienced hands, this procedure is

associated with complications including pancreatitis, bleeding, perforation and in rare

cases, death. Cannulation of the bile duct remains the most challenging step of the

procedure even with current sphincterotome technology. The Pivot Sphincterotome

has been developed to facilitate easier, faster and ultimately safer biliary access. The

ERCP sphincterotome US market alone is worth approximately $USD150 million and

with an increasingly elderly population requiring less invasive procedures, it is

expected to increase. Developed by an ERCP practitioner, the Pivot Sphincterotome

aims to accommodate the shortcomings of current technology making the ERCP

experience more user-friendly, efficient and safe.

Dharmica Mistry 

BCAL Diagnostics Pty Ltd (BCAL Dx) 

BCAL Diagnostics: To develop and commercialise a novel universal screening test for

the detection of breast cancer that is highly accurate, safe, cost effective, and

available to all women regardless of age, race and geographic location. 

Breast cancer is the most common cancer amongst women, therefore, the

effectiveness of the screening and diagnosis technology used is a high priority. The

current model relies on a woman being physically present at a clinic for breast

imaging which is not always convenient. While the present technologies are currently

state of the art, there is a high cost involved. There are also well known performance

limitations that result in only a small subset of women who are actually eligible for

screening. 

BCAL Diagnostics aims to shift the paradigm in breast cancer screening and diagnosis

by introducing a blood test for detection of the disease. The implication of such a
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technology could revolutionise the way breast cancer is managed by allowing a blood

sample to be taken remote from the site of analysis. This technology will allow access

to more women, anywhere in the world, who could provide a blood sample, at a time

and place convenient to them. Such a test would fit into a woman’s routine health

regime and be incorporated into their personal lifestyle. In addition, with such high

levels of accuracy, this technology would provide greater peace of mind between

annual checks. The BCAL Diagnostics technology could utilise a single blood test on

multiple levels for disease prevention, diagnostic mass screening and post-

intervention.

James Otton 

Liverpool Hospital 

SeCure Beating Heart Repair: Mitral regurgitation is a condition caused by a leaking

heart valve and affects more than four million individuals in the USA. The standard

method of fixing valves is with open heart surgery, a complex operation performed on

cardiopulmonary bypass. The operation is expensive, and recovery time from the

operation is measured in weeks or months. The SeCure Beating mitral heart repair

device enables heart valve repair while the heart is still beating, with no need for

bypass or long anaesthesia time or surgical scars. Patients can recover in hours or

days and the cost of surgery can be dramatically reduced. The heart repair can be

repeated if necessary and conventional surgery can also be performed at a later date.

With the new technology many patients who have been deemed unfit for surgery

could be given lifesaving treatment.

Robert Gorkin

University of Wollongong 

Geldom: Backed by experts at the University of Wollongong and Swinburne University

of Technology, Geldom is helping make condoms more wearable by replacing latex

with better feeling materials called tough hydrogels. These tough hydrogels are

superior to latex and can improve the experience by offering more tissue like

sensation. They also have other revolutionary benefits – no bad odours or tastes, no

latex allergies, inherent self-lubrication, and can even be embedded with anti-

sexually transmissible infections agents or stimulants. These new options have the

potential to dramatically increase condom use. The impact – not only redefining what

safe sex should feel like – but the added social benefits of improved family planning

and disease prevention. This work is geared towards disrupting the $6 billion condom

industry desperate for innovation. This patent pending work has been supported by
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the Bill & Melinda Gates Foundation and has featured on ABC’s Catalyst.

Josef Goding 

University of New South Wales 

CardioFlex: is the next generation of cardiac pacemaker leads. Conventional

pacemaker leads are comprised of a long, coiled metal wire running from the

neurostimulator to the electrode implanted in the heart. These conventional leads are

prone to infection, dislodgement and mechanical failure. They are also incompatible

with MRI because they act as antenna and generate unsafe amounts of heat in the

body under MRI. CardioFlex leads do not use metal wires but are instead fabricated

from conductive elastomers, a novel material being developed at UNSW. Conductive

elastomers allow the CardioFlex lead to be soft, flexible and totally MRI compatible.

This means recipients are less likely to require a surgical lead extraction and they do

not need to worry about their pacemaker interfering with ongoing or future medical

treatments. Other applications of conductive elastomers being investigated include

flexible electrode arrays and nerve cuffs for neural interfacing.

Sandra Ast 

AusSI Systems 

AusSI Systems: This product allows for simple medical testing remotely from home.

The home diagnostics kit consists of a small device attachable to a smartphone and

together with an app, it allows for the analysis of the same urine dipsticks that are

commonly used in the GP’s office. The medical results can then be shared with the GP

online instead of going to the doctor, when unwell or busy. This will assist in a

comprehensive assessment of the patient’s health problem currently not possible via

online consultations. This smartphone diagnostics device also features recording of

the test results over time opening up numerous additional applications, ranging from

personalised healthcare to new testing methods for diseases.As the healthcare sector

is moving towards a digital platform, these internet connected devices will be

essential in the generation of digital medical records as well as the successful

implementation of online medical services.

Sean Pollock 

Respiratory Innovations 

Breathe Well: is an interactive medical device that allows breast cancer patients to

help improve their own cancer treatment, simply by breathing. In breast cancer

radiation therapy, nearby healthy tissues like the heart and lungs are at risk of
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receiving unnecessary, and potentially fatal, radiation damage. Breathe Well shows

patients how to hold their breath to put as much distance possible between the heart

and radiation beam to achieve the most accurate breast radiation treatment possible.

Stephanie Watson 

Save Sight Institute 

Kleer-i: One in twenty cataract surgery wounds leak, causing infection and blindness

to occur. Sutures cause scarring, are time- consuming to apply, require great skill, and

distort vision. In addition to this, patients have poor compliance with postoperative

eye drops. Cataract surgery is the most common operation and has the longest

waiting list in NSW. Eye surgery costs are rising as the population ages. Kleer-i is a

next-generation “patch”, bonded over an eye wound by a low-powered laser. It falls

off once the wound heals. Surgeons will use Kleer-i to rapidly seal eye wounds

without sutures, while simultaneously delivering drugs. Kleer-i will save 25% to 40%

of operating time and promote faster wound healing, reducing vision loss from

scarring, distortion and infection. 

Kleer-i is unique in combining drug delivery with suture-less wound closure. It avoids

the toxic side-effects and high failure rates associated with existing therapies:

sutures, histoacryl glue and fibrin sealant.

Stephen Bradford 

CSIRO/Garvan Institute of Medical Research 

MethylC&Me: Obesity is a growing global health problem with direct costs estimated

at $21 billion annually (Australian Diabetes, Obesity and Lifestyle Study). Current

therapeutic and policy intervention is not working. Evidence suggests that early

directed intervention for individuals with a predisposition to obesity and related co-

morbidities is more effective at maintaining long term positive health outcomes. This

technology measures the levels of specific modifications to a person’s DNA (DNA

methylation marks) that are associated with current or future health status. The core

IP is in panels of such DNA methylation biomarkers that could be used to identify an

individual’s risk and likely trajectory for obesity and Type 2 diabetes mellitus. This

would help direct clinicians, such as endocrinologists and dietitians, in the clinical

management of patients and identify at risk people early – reducing the health

burden of chronic disease.

Yang Chen 

Woolcock Institute 
396



Scintilla Electrostatic Inhaler: Metered dose inhalers (MDI) are a commonly used

device to deliver aerosolise medications for the treatment of pulmonary diseases. The

emitted aerosols from MDI contain millions of fine particles that carry intrinsic charge

that is imparted on them during the atomisation phase. These static charges can

cause variations in particle aerosolisation and dosage. Moreover, the MDI requires

manual actuation force to operate and its efficacy relies on patient’s co-ordination

between actuation and inhalation, which can be difficult for elderly patients with

chronic obstructive pulmonary diseases (COPD). The Electrostatic Metered dose

inhalers (EMDI) is a novel electrostatic metered dose inhaler, which utilises electronic

force and electrostatic charges to generate inhalable aerosol. It will reduce the need

of excipients in the drug formulation to help with the aerosolisation process, and also

minimise the difficulties that can occur when using conventional MDIs. EMDI can

provide more efficient treatment to people with respiratory diseases, especially for

the 65 million patients who currently suffer from COPD around the world.
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Appendix VII 
 

Videos recorded and produced over the course of this thesis 
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Dropbox link to videos:  
https://www.dropbox.com/sh/8ac7ee2aumaehqq/AAC138HtW8jSA618KObiZ2Axa?dl=0 

a) Patient information video

o “AV biofeedback info video.mp4”

b) Medical Device Commercialisation Program 2015 Showcase presentation

o “MDCTP_Sean Pollock.mp4”

YouTube link to videos: 
c) Animated 3 Minute Thesis presentation: produced by 99 Scholars as a part of my runner-up

prize

o https://youtu.be/JmaSVupp2-w

d) Invited keynote Genesis final speech one year after first completing the Genesis program

o https://youtu.be/cIEFy-SUjdg
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