9 research outputs found

    Polynomial Time Algorithms for Multi-Type Branching Processes and Stochastic Context-Free Grammars

    Get PDF
    We show that one can approximate the least fixed point solution for a multivariate system of monotone probabilistic polynomial equations in time polynomial in both the encoding size of the system of equations and in log(1/\epsilon), where \epsilon > 0 is the desired additive error bound of the solution. (The model of computation is the standard Turing machine model.) We use this result to resolve several open problems regarding the computational complexity of computing key quantities associated with some classic and heavily studied stochastic processes, including multi-type branching processes and stochastic context-free grammars

    Diagnosis in Infinite-State Probabilistic Systems

    Get PDF
    In a recent work, we introduced four variants of diagnosability (FA, IA, FF, IF) in (finite) probabilistic systems (pLTS) depending whether one considers (1) finite or infinite runs and (2) faulty or all runs. We studied their relationship and established that the corresponding decision problems are PSPACE-complete. A key ingredient of the decision procedures was a characterisation of diagnosability by the fact that a random run almost surely lies in an open set whose specification only depends on the qualitative behaviour of the pLTS. Here we investigate similar issues for infinite pLTS. We first show that this characterisation still holds for FF-diagnosability but with a G-delta set instead of an open set and also for IF- and IA-diagnosability when pLTS are finitely branching. We also prove that surprisingly FA-diagnosability cannot be characterised in this way even in the finitely branching case. Then we apply our characterisations for a partially observable probabilistic extension of visibly pushdown automata (POpVPA), yielding EXPSPACE procedures for solving diagnosability problems. In addition, we establish some computational lower bounds and show that slight extensions of POpVPA lead to undecidability

    On the Termination Problem for Probabilistic Higher-Order Recursive Programs

    Get PDF
    In the last two decades, there has been much progress on model checking of both probabilistic systems and higher-order programs. In spite of the emergence of higher-order probabilistic programming languages, not much has been done to combine those two approaches. In this paper, we initiate a study on the probabilistic higher-order model checking problem, by giving some first theoretical and experimental results. As a first step towards our goal, we introduce PHORS, a probabilistic extension of higher-order recursion schemes (HORS), as a model of probabilistic higher-order programs. The model of PHORS may alternatively be viewed as a higher-order extension of recursive Markov chains. We then investigate the probabilistic termination problem -- or, equivalently, the probabilistic reachability problem. We prove that almost sure termination of order-2 PHORS is undecidable. We also provide a fixpoint characterization of the termination probability of PHORS, and develop a sound (but possibly incomplete) procedure for approximately computing the termination probability. We have implemented the procedure for order-2 PHORSs, and confirmed that the procedure works well through preliminary experiments that are reported at the end of the article

    Linear-Time Model Checking Branching Processes

    Get PDF
    (Multi-type) branching processes are a natural and well-studied model for generating random infinite trees. Branching processes feature both nondeterministic and probabilistic branching, generalizing both transition systems and Markov chains (but not generally Markov decision processes). We study the complexity of model checking branching processes against linear-time omega-regular specifications: is it the case almost surely that every branch of a tree randomly generated by the branching process satisfies the omega-regular specification? The main result is that for LTL specifications this problem is in PSPACE, subsuming classical results for transition systems and Markov chains, respectively. The underlying general model-checking algorithm is based on the automata-theoretic approach, using unambiguous BĂŒchi automata

    Model Checking of Recursive Probabilistic Systems

    No full text
    corecore