19,914 research outputs found

    Critical behavior in interdependent spatial spreading processes with distinct characteristic time scales

    Get PDF
    AbstractThe spread of an infectious disease is well approximated by metapopulation networks connected by human mobility flow and upon which an epidemiological model is defined. In order to account for travel restrictions or cancellation we introduce a model with a parameter that explicitly indicates the ratio between the time scales of the intervening processes. We study the critical properties of the epidemic process and its dependence on such a parameter. We find that the critical threshold separating the absorbing state from the active state depends on the scale parameter and exhibits a critical behavior itself: a metacritical point – a critical value in the curve of critical points – reflected in the behavior of the attack rate measured for a wide range of empirical metapopulation systems. Our results have potential policy implications, since they establish a non-trivial critical behavior between temporal scales of reaction (epidemic spread) and diffusion (human mobility) processes

    Impact of spatially constrained sampling of temporal contact networks on the evaluation of the epidemic risk

    Full text link
    The ability to directly record human face-to-face interactions increasingly enables the development of detailed data-driven models for the spread of directly transmitted infectious diseases at the scale of individuals. Complete coverage of the contacts occurring in a population is however generally unattainable, due for instance to limited participation rates or experimental constraints in spatial coverage. Here, we study the impact of spatially constrained sampling on our ability to estimate the epidemic risk in a population using such detailed data-driven models. The epidemic risk is quantified by the epidemic threshold of the susceptible-infectious-recovered-susceptible model for the propagation of communicable diseases, i.e. the critical value of disease transmissibility above which the disease turns endemic. We verify for both synthetic and empirical data of human interactions that the use of incomplete data sets due to spatial sampling leads to the underestimation of the epidemic risk. The bias is however smaller than the one obtained by uniformly sampling the same fraction of contacts: it depends nonlinearly on the fraction of contacts that are recorded and becomes negligible if this fraction is large enough. Moreover, it depends on the interplay between the timescales of population and spreading dynamics.Comment: 21 pages, 7 figure

    Applications of Temporal Graph Metrics to Real-World Networks

    Get PDF
    Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.Comment: 25 page

    Understanding and modeling the small-world phenomenon in dynamic networks

    Get PDF
    The small-world phenomenon first introduced in the context of static graphs consists of graphs with high clustering coefficient and low shortest path length. This is an intrinsic property of many real complex static networks. Recent research has shown that this structure is also observable in dynamic networks but how it emerges remains an open problem. In this paper, we propose a model capable of capturing the small-world behavior observed in various real traces. We then study information diffusion in such small-world networks. Analytical and simulation results with epidemic model show that the small-world structure increases dramatically the information spreading speed in dynamic networks

    On the Dynamics of Human Proximity for Data Diffusion in Ad-Hoc Networks

    Full text link
    We report on a data-driven investigation aimed at understanding the dynamics of message spreading in a real-world dynamical network of human proximity. We use data collected by means of a proximity-sensing network of wearable sensors that we deployed at three different social gatherings, simultaneously involving several hundred individuals. We simulate a message spreading process over the recorded proximity network, focusing on both the topological and the temporal properties. We show that by using an appropriate technique to deal with the temporal heterogeneity of proximity events, a universal statistical pattern emerges for the delivery times of messages, robust across all the data sets. Our results are useful to set constraints for generic processes of data dissemination, as well as to validate established models of human mobility and proximity that are frequently used to simulate realistic behaviors.Comment: A. Panisson et al., On the dynamics of human proximity for data diffusion in ad-hoc networks, Ad Hoc Netw. (2011

    Epidemic processes in complex networks

    Get PDF
    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.Comment: 62 pages, 15 figures, final versio

    A framework for epidemic spreading in multiplex networks of metapopulations

    Get PDF
    We propose a theoretical framework for the study of epidemics in structured metapopulations, with heterogeneous agents, subjected to recurrent mobility patterns. We propose to represent the heterogeneity in the composition of the metapopulations as layers in a multiplex network, where nodes would correspond to geographical areas and layers account for the mobility patterns of agents of the same class. We analyze both the classical Susceptible-Infected-Susceptible and the Susceptible-Infected-Removed epidemic models within this framework, and compare macroscopic and microscopic indicators of the spreading process with extensive Monte Carlo simulations. Our results are in excellent agreement with the simulations. We also derive an exact expression of the epidemic threshold on this general framework revealing a non-trivial dependence on the mobility parameter. Finally, we use this new formalism to address the spread of diseases in real cities, specifically in the city of Medellin, Colombia, whose population is divided into six socio-economic classes, each one identified with a layer in this multiplex formalism.Comment: 13 pages, 11 figure

    Temporal networks of face-to-face human interactions

    Full text link
    The ever increasing adoption of mobile technologies and ubiquitous services allows to sense human behavior at unprecedented levels of details and scale. Wearable sensors are opening up a new window on human mobility and proximity at the finest resolution of face-to-face proximity. As a consequence, empirical data describing social and behavioral networks are acquiring a longitudinal dimension that brings forth new challenges for analysis and modeling. Here we review recent work on the representation and analysis of temporal networks of face-to-face human proximity, based on large-scale datasets collected in the context of the SocioPatterns collaboration. We show that the raw behavioral data can be studied at various levels of coarse-graining, which turn out to be complementary to one another, with each level exposing different features of the underlying system. We briefly review a generative model of temporal contact networks that reproduces some statistical observables. Then, we shift our focus from surface statistical features to dynamical processes on empirical temporal networks. We discuss how simple dynamical processes can be used as probes to expose important features of the interaction patterns, such as burstiness and causal constraints. We show that simulating dynamical processes on empirical temporal networks can unveil differences between datasets that would otherwise look statistically similar. Moreover, we argue that, due to the temporal heterogeneity of human dynamics, in order to investigate the temporal properties of spreading processes it may be necessary to abandon the notion of wall-clock time in favour of an intrinsic notion of time for each individual node, defined in terms of its activity level. We conclude highlighting several open research questions raised by the nature of the data at hand.Comment: Chapter of the book "Temporal Networks", Springer, 2013. Series: Understanding Complex Systems. Holme, Petter; Saram\"aki, Jari (Eds.
    • …
    corecore