3,209 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Robot Protection in the Hazardous Environments

    Get PDF
    Rescue missions for chemical, biological, radiological, nuclear, and explosive (CBRNE) incidents are highly risky and sometimes it is impossible for rescuers to perform, while these accidents vary dramatically in features and protection requirements. The purpose of this chapter is to present several protection approaches for rescue robots in the hazardous conditions. And four types of rescue robots are presented, respectively. First, design factors and challenges of the rescue robots are analyzed and indicated for these accidents. Then the rescue robots with protective modification are presented, respectively, meeting individual hazardous requirements. And finally several tests are conducted to validate the effectiveness of these modified robots. It is clear that these well-designed robots can work efficiently for the CBRNE response activities

    Sensor System for Rescue Robots

    Get PDF
    A majority of rescue worker fatalities are a result of on-scene responses. Existing technologies help assist the first responders in scenarios of no light, and there even exist robots that can navigate radioactive areas. However, none are able to be both quickly deployable and enter hard to reach or unsafe areas in an emergency event such as an earthquake or storm that damages a structure. In this project we created a sensor platform system to augment existing robotic solutions so that rescue workers can search for people in danger while avoiding preventable injury or death and saving time and resources. Our results showed that we were able to map out a 2D map of the room with updates for robot motion on a display while also showing a live thermal image in front of the system. The system is also capable of taking a digital picture from a triggering event and then displaying it on the computer screen. We discovered that data transfer plays a huge role in making different programs like Arduino and Processing interact with each other. Consequently, this needs to be accounted for when improving our project. In particular our project is wired right now but should deliver data wirelessly to be of any practical use. Furthermore, we dipped our feet into SLAM technologies and if our project were to become autonomous, more research into the algorithms would make this autonomy feasible

    A Bibliometric Perspective Survey of IoT controlled AI based Swarm robots

    Get PDF
    Robotics is the ­new-age domain of technology that deals with bringing a collaboration of all disciplines of sciences and engineering to create a mechanical machine that may or may not work entirely independently but definitely focuses on making human lives much easier. It has repeatedly shown its ability to change lives at home and in the industry. As the field of robotics research grows and reaches new worlds, the military is one area where advances can have a significant impact, and the government is aware of this. Military technology has come a long way from the days where soldiers had to walk into traps, putting their own lives in danger for their fellow soldiers, to today, when soldiers have robots walk into the same traps with possibility and result of zero human casualties. High-risk military operations such as mine detection, bomb defusing, fighter pilot aviation, and entering enemy territory without complete knowledge of what is to come are all tasks that can be programmed in a way that makes them accustomed to scenarios like these, either by intensive machine learning algorithms or artificially intelligent robot systems. Military soldiers are human capital; they are not self-driving robots; they are living beings with emotions, fears, and weaknesses, and they will almost always be unreliable as compared to computers and robots. They are easily affected by environmental effects and are vulnerable to external influences. The government\u27s costs for deployed troops, such as training and salaries, are extremely high. As a result, the solution is to build AI robots for defence operations that can sense, collect data by observing surroundings as any human soldier would, and report it back to a workstation where it can be used for strategy building and planning on what the next step should be during a mission, thus making the army better prepared for any kind of trouble that might be on their way. In this paper, the survey and bibliometric analysis of AI-based IoT managed Swarm Robots from the Scopus repository is discussed, which analyses research by area, notable authors, organizations, funding agencies and countries. Statistical analysis of literature published as journals, articles and papers that aids in understanding the global influence of publication is called Bibliometric analysis. This paper is a thorough analysis of 84 research papers as obtained from the Scopus repository on the 3rd of April 2021. GPS Visualizer, Gephi, wordcloud, and ScienceScape are open source softwares used in the visualization review. As previously mentioned, the visualization assists in a quick and easy interpretation of the different viewpoints in a particular study domain pursuit
    • …
    corecore