747 research outputs found

    Impact‐based forecasting for pluvial floods

    Get PDF
    Pluvial floods in urban areas are caused by local, fast storm events with very high rainfall rates, which lead to inundation of streets and buildings before the storm water reaches a watercourse. An increase in frequency and intensity of heavy rainfall events and an ongoing urbanization may further increase the risk of pluvial flooding in many urban areas. Currently, warnings for pluvial floods are mostly limited to information on rainfall intensities and durations over larger areas, which is often not detailed enough to effectively protect people and goods. We present a proof-of-concept for an impact-based forecasting system for pluvial floods. Using a model chain consisting of a rainfall forecast, an inundation, a contaminant transport and a damage model, we are able to provide predictions for the expected rainfall, the inundated areas, spreading of potential contamination and the expected damage to residential buildings. We use a neural network-based inundation model, which significantly reduces the computation time of the model chain. To demonstrate the feasibility, we perform a hindcast of a recent pluvial flood event in an urban area in Germany. The required spatio-temporal accuracy of rainfall forecasts is still a major challenge, but our results show that reliable impact-based warnings can be forecasts are available up to 5 min before the peak of an extreme rainfall event. Based on our results, we discuss how the outputs of the impact-based forecast could be used to disseminate impact-based early warnings

    Determining flooded areas using crowd sensing data and weather radar precipitation : a case study in Brazil

    Get PDF
    Crowd sensing data (also known as crowdsourcing) are of great significance to support flood risk management. With the growing volume of available data in the past few years, researchers have used in situ sensor data to filter and prioritize volunteers’ information. Nevertheless, stationary, in situ sensors are only capable of monitoring a limited region, and this could hamper proper decision-making. This study investigates the use of weather radar precipitation to support the processing of crowd sensing data with the goal of improving situation awareness in a disaster and early warnings (e.g., floods). Results from a case study carried out in the city of São Paulo, Brazil, demonstrate that weather radar data are able to validate flooded areas identified from clusters of crowd sensing data. In this manner, crowd sensing and weather radar data together can not only help engage citizens, but also generate high-quality data at finer spatial and temporal resolutions to improve the decision-making related to weather-related disaster events

    Application of Artificial Intelligence Approaches in the Flood Management Process for Assessing Blockage at Cross-Drainage Hydraulic Structures

    Get PDF
    Floods are the most recurrent, widespread and damaging natural disasters, and are ex-pected to become further devastating because of global warming. Blockage of cross-drainage hydraulic structures (e.g., culverts, bridges) by flood-borne debris is an influen-tial factor which usually results in reducing hydraulic capacity, diverting the flows, dam-aging structures and downstream scouring. Australia is among the countries adversely impacted by blockage issues (e.g., 1998 floods in Wollongong, 2007 floods in Newcas-tle). In this context, Wollongong City Council (WCC), under the Australian Rainfall and Runoff (ARR), investigated the impact of blockage on floods and proposed guidelines to consider blockage in the design process for the first time. However, existing WCC guide-lines are based on various assumptions (i.e., visual inspections as representative of hy-draulic behaviour, post-flood blockage as representative of peak floods, blockage remains constant during the whole flooding event), that are not supported by scientific research while also being criticised by hydraulic design engineers. This suggests the need to per-form detailed investigations of blockage from both visual and hydraulic perspectives, in order to develop quantifiable relationships and incorporate blockage into design guide-lines of hydraulic structures. However, because of the complex nature of blockage as a process and the lack of blockage-related data from actual floods, conventional numerical modelling-based approaches have not achieved much success. The research in this thesis applies artificial intelligence (AI) approaches to assess the blockage at cross-drainage hydraulic structures, motivated by recent success achieved by AI in addressing complex real-world problems (e.g., scour depth estimation and flood inundation monitoring). The research has been carried out in three phases: (a) litera-ture review, (b) hydraulic blockage assessment, and (c) visual blockage assessment. The first phase investigates the use of computer vision in the flood management domain and provides context for blockage. The second phase investigates hydraulic blockage using lab scale experiments and the implementation of multiple machine learning approaches on datasets collected from lab experiments (i.e., Hydraulics-Lab Dataset (HD), Visual Hydraulics-Lab Dataset (VHD)). The artificial neural network (ANN) and end-to-end deep learning approaches reported top performers among the implemented approaches and demonstrated the potential of learning-based approaches in addressing blockage is-sues. The third phase assesses visual blockage at culverts using deep learning classifi-cation, detection and segmentation approaches for two types of visual assessments (i.e., blockage status classification, percentage visual blockage estimation). Firstly, a range of existing convolutional neural network (CNN) image classification models are imple-mented and compared using visual datasets (i.e., Images of Culvert Openings and Block-age (ICOB), VHD, Synthetic Images of Culverts (SIC)), with the aim to automate the process of manual visual blockage classification of culverts. The Neural Architecture Search Network (NASNet) model achieved best classification results among those im-plemented. Furthermore, the study identified background noise and simplified labelling criteria as two contributing factors in degraded performance of existing CNN models for blockage classification. To address the background clutter issue, a detection-classification pipeline is proposed and achieved improved visual blockage classification performance. The proposed pipeline has been deployed using edge computing hardware for blockage monitoring of actual culverts. The role of synthetic data (i.e., SIC) on the performance of culvert opening detection is also investigated. Secondly, an automated segmentation-classification deep learning pipeline is proposed to estimate the percentage of visual blockage at circular culverts to better prioritise culvert maintenance. The AI solutions proposed in this thesis are integrated into a blockage assessment framework, designed to be deployed through edge computing to monitor, record and assess blockage at cross-drainage hydraulic structures

    A review of the internet of floods : near real-time detection of a flood event and its impact

    Get PDF
    Worldwide, flood events frequently have a dramatic impact on urban societies. Time is key during a flood event in order to evacuate vulnerable people at risk, minimize the socio-economic, ecologic and cultural impact of the event and restore a society from this hazard as quickly as possible. Therefore, detecting a flood in near real-time and assessing the risks relating to these flood events on the fly is of great importance. Therefore, there is a need to search for the optimal way to collect data in order to detect floods in real time. Internet of Things (IoT) is the ideal method to bring together data of sensing equipment or identifying tools with networking and processing capabilities, allow them to communicate with one another and with other devices and services over the Internet to accomplish the detection of floods in near real-time. The main objective of this paper is to report on the current state of research on the IoT in the domain of flood detection. Current trends in IoT are identified, and academic literature is examined. The integration of IoT would greatly enhance disaster management and, therefore, will be of greater importance into the future

    A critical review for the application of Cutting-edge Digital Visualisation Technologies for Effective Urban Flood Risk Management

    Get PDF
    Cutting-edge digital visualisation tools (CDVT) are playing an increasingly important role in improving urban flood risk management. However, there is a paucity of comprehensive research examining their role across all stages of urban flood risk management. To address, this study conducts an integrated critical review to identify the application of CDVT and assess their contribution to the prevention, mitigation, preparation, response, and recovery stages of flood risk management. The results show that virtual reality, augmented reality, and digital twin technologies are the primary CDVT used in urban flood visualisation, with virtual reality being the most frequently used. The focus of urban flood visualisation studies has been primarily on preparation and mitigation stages. However, there is a need to investigate the application of these technologies in the entire urban water cycle. Furthermore, there is potential for greater adoption of digital twin, especially in simulating urban flood inundation and flood evacuation routes. Integrating real-time data, data-driven modeling, and CDVT can significantly improve real-time flood forecasting. This benefits stakeholders and the public by enhancing early warning systems, preparedness, and flood resilience, leading to more effective flood risk management and reduced impacts on communities

    A decision support system for disaster prevention in Urban Areas

    Get PDF
    This paper presents the use of Human Behavior Modeling for Disaster Relief and Emergency Management. The authors propose an innovative MS2G (Modeling, Interoperable Simulation and Serious Game) using Intelligent Agents to reproduce a complex scenario used for Verification, Validation and Accreditation of the approach. The case study is inspired to South Sudan situation and to the necessity to provide accommodations, food, health care services, security and administrative support to a large number of IDPs (Internally Displaced Persons) over a wide area. The simulator includes camp preparation and installation, air dr ops, logistics network creation while the model includes populations, entities and units as well as different equipment (e.g. cargo planes, helicopters, ground units, etc.

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Hydrolink 2021/2. Artificial Intelligence

    Get PDF
    Topic: Artificial Intelligenc

    Flood risk in urban areas: modelling, management and adaptation to climate change. A review

    Get PDF
    [Abstract:] The modelling and management of flood risk in urban areas are increasingly recognized as global challenges. The complexity of these issues is a consequence of the existence of several distinct sources of risk, including not only fluvial, tidal and coastal flooding, but also exposure to urban runoff and local drainage failure, and the various management strategies that can be proposed. The high degree of vulnerability that characterizes such areas is expected to increase in the future due to the effects of climate change, the growth of the population living in cities, and urban densification. An increasing awareness of the socio-economic losses and environmental impact of urban flooding is clearly reflected in the recent expansion of the number of studies related to the modelling and management of urban flooding, sometimes within the framework of adaptation to climate change. The goal of the current paper is to provide a general review of the recent advances in flood-risk modelling and management, while also exploring future perspectives in these fields of research
    corecore