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Last year Hydrolink published four articles on applications of
Artificial Intelligence (AI) in water management and hydro-
environment problems. The present issue includes four more
articles that illustrate the great potential of AI methods and
techniques to improve the design, performance, and mainte-
nance of water systems.

During the last thirty years we have seen not only significant
developments in the methods and technologies that fall under
the general umbrella of AI, but also a change in the attitudes
of the hydro-environment community towards the use of these
methods and tools. What was initial scepticism about the value
of AI in solving water management and other hydraulic problems,
evolved in few years into full embracement of these methods
and vigorous exploration of their potential by both water ma-
nagers, academics and others. The article by Babovic et al.
chronicles the use of different AI methods and tools by the
IAHR community over the years and provides some thoughts
on the way forward.

Among the tools used in recent years to improve the design,
operation and maintenance of large and complex water systems
are different nature-inspired optimization techniques combined
with other AI methods. These methods have been used to
optimize the layout, configuration and pipe size of drinking
water distribution networks and wastewater collection systems,
as well as to determine the optimal location of water quality
and pressure sensors. One category of such techniques is that
of the evolutionary algorithms, inspired by the concept of
Darwinian evolution. The article of van Thienen et al. discusses
briefly these methods and presents examples of their application
to water systems, including the optimization of the phased
expansion of the water distribution system of the Ottawa in
Canada and optimizing the rehabilitation plan for a water
distribution network in the United Kingdom.

A major problem faced by water utilities is the repair and
maintenance of underground pipe systems. The condition of
these systems is often unknown until there is a problem that
calls for repair action. Manually operated video cameras and
acoustic loggers are used in some cases to assess pipe condi-
tions. The data collected from such devices are interpreted by
specially trained individuals which can be time consuming.
Recent technological developments make it easier to switch
from reactive to proactive maintenance of these systems.
Autonomous robots can significantly facilitate the inspection
of pipe systems and collect data to assess their condition and
operational performance and determine maintenance needs.

Ongoing research explores the use of swarms of micro-robots
designed to work in buried pipe networks autonomously and
cooperatively. The article by Mounce et al. describes the
development of different autonomous inspection platforms
and new AI algorithms to extract useful information from the
large volume of data collected by such mobile systems.

Some utilities have developed digital twins of their water
supply and distribution networks, which can be used to analyze
system behavior, detect anomalies, test new ideas and potential
changes to improve performance. AI and advanced analytics
methods can be used to develop valuable information from
the observation data from many real situations recorded by
the digital twin of the system. For example, Artificial Neural
Networks (ANN) algorithms can be used to characterize and
classify demand patterns and detect anomalies in system
performance. The article by Alzamora et al. discusses the
development of digital twins of water systems and describes
two examples of such systems, for the water distribution
networks of Valencia Metropolitan Area (Spain) and the city
of Eindhoven (Netherlands).

AI methods can also be used to develop empirical understanding
of the performance of complex pipe networks by learning
from the detailed analysis of similar such systems. An article
by Telci describes the use of an ANN to provide a preliminary
estimate of the pipe characteristics of different parts of loading
systems of liquified natural gas facilities, based on learning
from past detailed hydraulic transient analysis studies of
similar systems. Because of space limitations this article will
be included in the print edition of a future issue of Hydrolink,
but it is available online.

The articles published in this issue of Hydrolink clearly show
the great potential of using AI methods to improve the design,
performance, and maintenance of water systems. Although
the water sector is already benefiting from advances in AI and
other Hydroinformatics tools, the adoption of these techniques
is still in an early stage and the case studies in this issue of
Hydrolink are examples from only a small part of the areas
where AI and Hydroinformatics can add value to water manage-
ment. Extended reality, serious games, cloud computing, remote
sensing, to name but a few of these rapidly evolving digital
technologies, provide almost unlimited opportunities for water
specialists. However, knowledge and expertise of water systems
and understanding of the capabilities of digital technologies
will be required for successful applications in the water sector,
thus always requiring a human in the loop.
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Artificial Intelligence (AI) is the area of computer science that focuses on creating intelligent machines
that can perceive their environment and make decisions to optimise against a goal. Two disciplines
frequently mentioned in the context of AI are Machine Learning and Computer Vision. Machine Learning
(ML) aims to provide computers with the ability to learn iteratively, improve predictive models and find
insights from data without being explicitly programmed. Computer Vision relies on a set of AI methods
to train computers to interpret digital images and videos. Examples of computer vision applications
include systems for facial recognition and medical diagnostics.

Artificial Intelligence within IAHR:
Past, present and future
By Vladan Babovic, Dawei Han and Yiheng Chen

Traditionally fields of hydraulics, hydrology and hydro-environment
in general are concerned with natural phenomena described
through deterministic equations derived from our best understan-
ding of conservation laws and other underlying physics, chemistry
and biology. There was a limited interest in the scientific and
communities of practice in early 1990s, even a degree of scepti-
cism about AI. At the time, AI was going through its own formative
phase. On the heel of successes of artificial intelligence over
last two decades, we are experiencing a growing interest and
accelerating adoption by the water community of state-of-the-
art AI techniques originated in computer science.

The aim of this article is to review the evolution of AI in
IAHR, as well as attempt to outline the present state-of-affairs
and future directions. The paper focuses on tangible solutions
that were applied to address specific challenges in hydro-envi-
ronment systems.

Introduction
The debate about the implications of technology on work and
jobs is as old as the industrial era. In early nineteenth century,
English textile workers called the Luddites protested against
the introduction of spinning frames and power looms, fearing
that the machines would leave them without jobs. Since then,
new technological advancements brought with themselves
another wave of concern about a possible displacement of
labour. Seen from such a historical perspective it should not
be too surprising that the IAHR community was initially quite
sceptical about Artificial Intelligence.

Irrespective of the early distrust, the opportunities that
AI brings to the hydro-environment community remain very
significant. Applications of AI are merely in the first 30 years
of a shift in helping humans advance discoveries, leveraging
scientific progress made over the past century via improved
computing power and enhanced datasets. As a result, we are
witnesses of the early successes in practical applications and
barely starting to gain a glimpse into the potential of the
technology to match human intelligence. This is the time to
fully embrace these opportunities. The opportunity is not just
about enhancing capabilities but opening a completely new
chapters and avenues.
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Several white and other papers have been written recently on
the potential and use of AI in the water sector1, 2. The aim of this
article is to profile the evolution of AI and ML within IAHR, capture
the current state-of-affairs in the hydro-environment community
and speculate on future developments.

Earliest AI efforts in hydraulics, hydrology and hydroinformatics
With its origins in computational hydraulics, hydroinformatics 3

was established as a technology born as an integration of nume-
rical modelling with data collection and processing. The field is
broadly defined as the application of communication and infor-
mation technologies to solve water-related problems. Hydroin-
formatics provided an early platform for (at the time) younger
researchers to introduce AI topics in the context of hydraulics
and hydrology. The first conference on Hydroinformatics held
in Delft in 1994 offered early glimpses of applications of neural
networks and evolutionary computation. As a matter of that fact,
at that stage the field was not ready to refer to the work as
being AI at all. Instead, the presented research was referred to
as “adaptive computing methods”4.

It took few additional years before more substantial work
started to appear in peer reviewed literature. A first influential
paper on the application of neural networks in hydrology appeared
in 1996 5, followed a by two papers on evolutionary compu-
tation6, 7 that appeared in the Journal of Hydraulic Research.

There were also some notable applications of AI outside
IAHR-related circles. Simpson et al.8, Savic et al.9, Savic and
Walters 10 among others reported applications of Genetic Algo-
rithms to water supply systems. Hsu et al. 11 and Maier et al. 12

described applications of artificial neural networks on rainfall-
runoff and water quality problems respectively, whereas Duan
and colleagues13 focused their attention on automatic calibration
problems.

Expert systems never really took off in IAHR. Assessment
of the rise and fall of expert systems in the water sector 14 lead
authors to the conclusion that although some expert systems
have been developed for a few specific cases, in general, these
expert systems have proved to be too simplistic or unwieldy,
and a more open, unstructured access to information and know-
ledge is preferred.
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Picking-up momentum
The 3rd International Conference on Hydroinformatics held in
Copenhagen in 1998 was a super-spreader event for a wider
adoption of AI in IAHR circles. This was due to three reasons.

Firstly, one of the keynote speakers at the conference
was David Goldberg, a global authority of Genetic Algorithms.
Goldberg, himself a hydraulic engineer with a PhD degree on
pipeline operations delivered a passionate and engaging address
which eloquently articulated a need for use of more intelligent
algorithms in hydraulics. His own research was largely shaped
under mentorship of his PhD supervisors, hydraulician Benjamin
Wylie and computer scientist John Holland. During the conference,
Goldberg also offered a short course on evolutionary computing.
Secondly, the Journal of Hydroinformatics was launched at the
conference hence providing a publication and communication
platform for less traditional research and applications, including
AI related work. Finally, at the meeting held during the conference,
the IAHR Hydroinformatics Section decided to broaden its base
and it became a join section together with International Water
Association (IWA) and International Association for Hydrological
Sciences (IAHS). By doing so, Hydroinformatics and IAHR more
closely engaged many more researchers and instigated a mo-
mentum and an increase in the critical mass needed to advance
AI applications.

As a consequence, the years that followed witnessed a
growing interested in AI. Significantly a larger group of authors
started to apply data driven techniques to a growing range
or problems. Typical examples include runoff prediction and
downscaling of climate models. Also, interest in the algorithmic
aspects of AI broadened. Authors started exploring and reporting
on the performance of a wider range of machine learning algo-
rithms: Support Vector Machines 15, Fuzzy Logic 16, model tree
induction 17, Chaos Theory 18 are but few examples.

Figure 1 | Barge towing tunnel segments of the Øresund Link under favorable sea conditions based on accurate ANN-based forecasting of surface currents.

First real-world applications–real time forecasting of sea
currents
While the popularity of AI increased among the research commu-
nity and a number of academic contributions grew, it was quite
significant to demonstrate the value of AI to real world applications.
The early years of AI in hydraulics were dominated by Artificial
Neural Networks (ANNs) which have evolved to a popular approxi-
mation and forecasting tool used in a range of problems and
application areas. It should be little surprise, therefore, that the
first real-world application was based on a recurrent ANN to
create a real-time hybrid data assimilation system resulting in
extremely accurate forecasts of sea surface currents.

In the late 1990s, the Danish Hydraulic Institute developed
a solution to support the construction of the Øresund Link
connecting the Danish capital Copenhagen with the City of
Malmø in Sweden 19. The combined roadway and rail line bridge
run nearly 8 km where it then transitions into an underwater
tunnel for the remaining 3.5 km. Due to the material of the
seafloor, a tunnel was not possible. Instead, engineers chose to
sink and connect 20 prefabricated reinforced concrete segments
–the largest in the world at 55,000 tonnes each– and interconnect
them in a trench dug at the seabed. The elements were prefabri-
cated in a special-purpose build facility North of Copenhagen,
sealed shut and using a specially designed barge along with 7
tugboats, were lowered into place at required accuracy of align-
ment of 2.5 cm. The towing operation (Figure 1) for each element
could be conducted within a “window of opportunity” of 36 hours
during which sea surface currents had to be guaranteed to
be less than 0.75 m/s. Despite extremely challenging conditions,
all 20 elements of the Øresund link’s tunnel were successfully
placed at their positions in 17 months. It is alleged that the
accurate ANN-based forecasting of sea surface currents was
one of the key factors in this achievement 2.



Formative years
Perhaps the key obstacle to earlier and broader acceptance of
AI within the larger IAHR community was related to opposition
to the use of models perceived to be “black boxes”. It was often
claimed that such models do not add to scientific knowledge
or improved understanding to the field of hydro-environment.
While it might be true that early applications of AI were primarily
focused on enhancing forecasting abilities and non-linear
approximation of input-output relationships, in the years that
followed there was an increasing trend towards opening up
the black boxes and trying to understand how these models
work and, more importantly, how we can relate them to process
knowledge emerged.

Dibike and collaborators 20 were among early proponents
of the idea, and explored the encapsulation of numerical-hydraulic
models in neural networks. Babovic and Keijzer 21 dedicated
considerable attention to exploration of methods for incorpo-
ration of domain knowledge into machine learning. Among
others Giustolisi22 and Elshorbagy et al.23 reported on a range
of machine techniques generating interpretable equations thus
having the potential to contribute to knowledge discovery in
different hydro-environment disciplines.

In the review of so-called human-competitive results
produced by genetic programming Koza24 highlights the work
of Babovic25 and Baptist et al.26 as examples of machine learning
outcomes that are matching or better than the results produced
by human experts.

Growing Volumes of Data and Accelerating Computing Power
The capabilities of digital devices continue to increase, and
Internet of Things (IoT) sensors provide greater amounts of
information than ever, at lower cost and with greater reliability
than previously possible. The confluence of these two trends
only increases the relevance of AI to IAHR community.

On one side we witness an increase in so-called opportunistic
sensing, lately facilitated by crowdsourcing, social media and
citizen science that enables the general public to observe local
conditions 27. Couple these with Earth Observation (EO) develop-
ments which gather information about planet’s physical, chemical
and biological systems and you get the perfect ingredients
to assess the status of, and changes in, the natural and man-
made environment. In recent years, EO has become more and
more sophisticated with the advancement of remote-sensing
satellites and increasingly high-tech “in-situ” instruments.
Today’s Earth observation instruments include floating buoys
for monitoring ocean currents, temperature and salinity; rainfall
trends and similar. Some recent AI-enabled systems based
on a very large EO data sets coupled with crowd sensed data
are described below.

Water Surface Changes
EO data sets are expected to generate petabytes of data. As
such, they developed a system to monitor changes in surface
water worldwide in order to understand how our planet is chan-
ging as a result of human activities or climate change–and all
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this relying on millions of megapixels and intelligent algorithms
to process the data. The analysis of EO Landsat images made
it possible to assess medium (last 15-30 years) and short-term
(last 1-5 years) large scale changes, which mainly include
erosion and accretion of river banks, large sandbars and islands.
Such automated applications allow fluvial geomorphology
users, to monitor and detect land and water changes over
several decades.

Water Quality Sensing
EO data has been utilised to retrieve water quality information
since 1970s. While most of the remote-sensing-based water
quality monitoring methods focus on optically active parameters
such as turbidity, chlorophylla, Suspended Particulate Matter
(SPM) and Coloured Dissolved Organic Matter (CDOM) recent
AI-enabled method are able to achieve satisfactory estimates
of non-optically active parameters such as Total Phosphorous
(TP), Total Nitrogen (TN), and chemical oxygen demand 28.

Researchers from Nankai University, China, created an
AI system to predict water quality using the EO data in Shenzhen
Bay. The system consists of an AI model and a mobile app
that predicts and visualizes the distribution of chlorophyll,
turbidity, dissolved oxygen and total dissolved solids in an
area of 35 km2. In this case, AI models learn from the ground
measure-ments of water quality and the multispectral remote
sensing data to build regression models. The model follows
a two-step approach: (i) first it corrects the spectrum of the
remote sensing data with the spectrum of the water surface,
and (ii) it predicts the water quality parameters from the co-
rrected spectrum. This approach provides a low-cost solution
to retrieve the areal distribution of water quality over a large
area, which is hardly possible by using the common water
sampling methods.

This technology has also been applied to Lake Ontario,
Lake Huron and Lake Simcoe in Canada, Lake Bolong,
Shenzhen Bay and an anonymous reservoir in China. These
cases demonstrate the synergy of AI and remote sensing
on managing the water environment for lakes, reservoirs,
and coastal areas.

Computer Vision for Opportunistic Rainfall Monitoring
The quantity and quality of precipitation data are crucial in
meteorological and water resource management applications.
Using rain gauges is the classic approach to measuring rainfall.
However, as we enter the age of the Internet of Things in which
“anything may become data” so-called opportunistic sensing
using unconventional data sources offers the promise to enhance
the spatiotemporal representation of existing observation net-
works2. One particular area attracting attention is the estimation
of quantitative and analytical rainfall intensity from video feeds
acquired by smart phones or CCTV surveillance cameras.
Technological advances in image processing and computer
vision enable extraction of diverse features, including identifica-
tion of rain streaks enabling the estimation of the instantaneous
rainfall intensity29. Recent AI and machine learning approaches
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rely on the use of autoencoders, deep learning and convolutional
neural networks to address the problems. Companies such as
WaterView (Italy), the Hydroinformatics Institute (Singapore),
as well as universities (Southern University of Science and
Technology China, Shenzhen) have proposed and implemented
practical approaches to weather hazards in energy, automotive
and smart cities application domains 30.

Where do we go from here?
It is quite obvious from this brief and incomplete review of AI-
related developments in IAHR that significant progress has been
made over the past 25-30 years, and that the IAHR community
has embraced and significantly benefitted from data science.

What are the boundaries and obstacles that need to be
addressed to enable even more significant progress?

Freedom to the data!
An area that needs significant attention is the democratisation
of observations and data. Issues associated with data privacy
on one hand, and the need for openness and data exchange on
the other are essential–particularly within the hydro-environment
community. As highlighted in a recent White Paper 31 IAHR was
founded by 66 hydraulic laboratories, making the science of
measuring and data acquisition entrenched in the origins of the
association. Observations and measurements are fundamental
for scientific progress in general and remain essential for advan-
cing our insights and knowledge. Induction of relationships and
conversion of data to a better understanding of the processes
that generated or produced those data has always been at the
very heart of hydraulics.

These developments open avenues for taking advantage
of big data, an area that is gaining attention in the hydroinformatics
community32. Big data is enabled by the extremely large datasets
that cannot be processed within a tolerable time using traditional
data processing methods. IAHR can benefit from the big data
technology and analytical tools to handle large datasets, from
which creative ideas and new insights could be mined.

Sharing the data as a community would result in not only
more affordable access to quality-assured data but would also
accelerate scientific and technological advances within our
community at large. Perhaps this is a role in which IAHR as an
association should take a pro-active and strong leadership role.
With increasing data availability deep learning is gaining popularity.
Deep learning is a class of machine learning algorithms that
uses multiple layers to progressively extract higher-level features
from raw inputs. For example, in image processing, lower layers
may identify edges, while higher layers may identify the concepts
relevant to a human such as digits or letters or faces. It has
been used to replace the conventional hydrodynamic models
(very slow to run due to complex numerical computations) in
simulating flood inundations and vulnerabilities 33.

Hydro-environment-informed Machine Learning?
As we enter the true digital information era, one of the greatest
challenges facing organisations and individuals is related to

turning the rapidly expanding data stores into accessible, and
actionable knowledge. Without such developments, we risk
missing most of what the data have to offer. The traditional
approach of a human analyst, intimately familiar with a data set,
serving as a conduit between raw data and synthesised knowledge
by producing useful analyses and reports, is breaking down.

What is to be done with all these data? Ignoring whatever
we cannot analyse would be wasteful and unwise. This is
partcularly pronounced in scientific endeavours, where data
represent carefully collected observations about particular
phenomena that are under study. Data science models, although
successful in a number of commercial domains, have had limited
applicability in scientific problems involving complex physical
phenomena. Theory-guided data science is an emerging para-
digm that aims to leverage the wealth of scientific knowledge
for improving the effectiveness of data science models in
enabling scientific discovery.

Theory Guided Machine Learning (TGML) recognises that
applying the AI alone is not the entire story. At least not in
scientific domains, such as hydro-environment! Scientific theories
encourage the acquisition of new data and this data in turn
leads to the generation of new theories. Traditionally, the em-
phasis is on a theory, which demands that appropriate data be
obtained through observation or experiment. In such an approach,
the process is what we may refer to as theory-driven. Especially
when a theory is expressed in mathematical form, theory-driven
discovery may make extensive use of strong methods associated
with mathematics or with the subject matter of the theory itself.
The converse view takes a body of data as its starting point
and searches for a set of generalisations, or a theory, to describe
the data parsimoniously or even to explain it. Usually such a
theory takes the form of a precise mathematical statement
of the relations existing among the data. This would be the
AI (and ML in particular) driven discovery process. The new
data driven, ML-discovered models, combined with the unders-
tanding of the physical processes –the theory– can result
in an improved understanding and novel formulations of phy-
sical laws and an improved predictive capability. Tech giant
Google had launched a flood prediction service using machine
learning to identify areas of land prone to flooding and alert
users before the waters arrive in 2018 for India’s Patna region
with some success https://blog.google/technology/ai/ flood-
forecasts-india-bangladesh/. Realising the limits of machine
learning tools, Google has built a forum to connect computer
data scientists with hydrologists/ hydraulicians to merge ML
and process knowledge to achieve the best results (see
Google Flood Forecasting Meets Machine Learning Workshop,
2019, Tel Aviv https://ai.googleblog.com/2019/03/a-summary
-of-google-flood-forecasting.html.

Some early activities along those lines are starting to take
shape34, 35, but there is a still a long road ahead to realise the
full potential of combining the two approaches: theory-driven,
understanding-rich with state-of-the-art AI- algorithms to
accelerate knowledge discovery in hydro-environment.
Nevertheless, the future is very bright!
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Even though formal optimization techniques have been applied to several types of problems in the water
industry, the vast majority of examples from the literature is based on (meta)heuristics, and in particular
those inspired on nature. Their application has been shown quite successful and has allowed significant
boosts in performance while reducing costs. This article provides an overview of nature-inspired opti-
mization techniques, and briefly discusses a number of case studies in which they have been applied.

Nature-based optimization techniques
and their application in the water industry

By Peter van Thienen, Edward Keedwell, Raziyeh Farmani and Ina Vertommen

There is already a long history of numerical optimization in
the water industry1. Many advances have been made regarding
the solution methods from linear and non-linear programming2

to nature-based optimization techniques, like genetic algorithms,
simulated annealing, particle swarm 3, ant colony and many
others. Besides the optimization methods, the design problems
have evolved from single to multiobjective, and from determi-
nistic to stochastic 2 and robust approaches. For a thorough
overview of the optimal design of water distribution networks
and the applied evolutionary algorithms and metaheuristics,
the reader is referred to 4, 5. The application of the methods
has been shown quite successful and has allowed significant
boosts in performance of many aspects of systems while redu-
cing costs. In this article, we present an overview of nature-
inspired optimization techniques, and briefly discuss a number
of case studies where they have been applied.

Nature-inspired optimization techniques
Nature-based or nature-inspired optimization techniques have
been in existence since the work of Rechenberg and Schwefel

in the early 60s on evolutionary strategies6. Since then, thousands
of approaches have been developed based on a wide variety
of natural systems. A complete taxonomy of these approaches
would be much too large for this article, but generally speaking
these methods fall into the following categories:

• Evolutionary based approaches: 4 where the underlying
iterative process includes perturbation by crossover and/or
random mutation and variously selection and replacement
of individuals. Methods here include evolutionary strategies,
genetic algorithms, multi and many objective evolutionary
algorithms, genetic programming and differential evolution.

• Swarm intelligence based approaches:3 where the underlying
iterative process is based on the movement and interaction
of individual agents working as part of a collective (e.g. a
herd, a flock or a swarm). Methods here include particle
swarm optimization, ant colony optimization, artificial bee
colony and many other approaches based on a diverse
array of organisms including fireflies, wolves, herons, fish
schools and whales.
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• Other approaches: 7 other sets of metaheuristic optimi-
zation methods exist that are perhaps more distantly
related to their natural inspiration but are nonetheless
nature-inspired. Methods such as simulated annealing
(inspired by the cooling of metal), chemical reaction opti-
mization and gravity search are examples of these.
Other methods that have a related mode of operation but
are not naturally inspired in the conventional sense include
methods such as tabu search and many variants of local
search.

Although each of the above approaches is inspired by a different
natural system, it is an open question as to whether they all
represent distinctly separate methods in the exploration of the
search space. However, each method has to balance the trade-
off between exploration and exploitation of the space of possible
solutions, which for most problems in the water industry is
very large indeed. Methods that solely exploit (e.g. hillclimbing)
will find mediocre solutions quickly, whereas those that solely
explore (e.g. random search) will eventually find good solutions,
but over huge timescales. Nature-inspired algorithms typically
embed exploration through the use of a random or probabilistic
operation (e.g. mutation in evolutionary algorithms, probabilistic
path selection in ant colony optimization) and exploitation by
conferring some preference on solutions that perform well at
the optimization task. A further feature that characterizes these
nature-inspired methods is that they are general-purpose
optimization algorithms that can be applied to many different
problems. For most algorithms application to new problems
requires the specification of three elements:

• Representation/encoding: this is the mapping between the
features of the problem being solved and the numeric
decision variables that will be optimized by the algorithm.
Although some representations will be straightforward,
there are often choices to be made that will determine the
efficacy of the search.

• Fitness or objective function(s): provides an assessment
of solution quality in terms of one or more objectives of the
problem being solved. Objectives in water industry network
problems usually include calculations of CAPEX, OPEX,
hydraulic constraints such as pressures, velocities and tank
penalties, the coverage or detection likelihood for sensor
networks, etc.

• Parameter settings: most algorithms have parameter settings
that can affect the efficacy of the algorithm and can vary
on different problems. Common parameter settings include
population sizes, number of iterations, perturbation operator
selections and application rates (evolutionary approaches)
and various momentum, velocity and pheromone evaporation
terms (swarm intelligence). These are usually set by rule
of thumb or through prior experimentation, although adaptive
methods that set these parameters automatically through

 the search are becoming increasingly popular.

The choice of algorithm is often dictated by the number and
complexity of the decision variables and constraints, the
computational complexity of the objective function and the
number of objectives to be optimized. Often the computational
complexity can be the largest factor and if the problem is
particularly time consuming to solve, on the optimization run
may require access to high performance or cloud computing
resources, although many problems can be optimized with
modern desktop equipment.

Nature-inspired optimization algorithms are among the
best-known approaches for discovering good solutions to highly
complex large-scale problems in reasonable time and have the
potential to transform the design and operation of the complex
assets and systems that characterize the water industry. This
is particularly the case when these methods are combined with
other popular AI methods such as machine learning, where the
predictive power of these methods can be coupled with opti-
mization to yield asset and operations upgrade programmes
designed for future system demands. AI is revolutionizing many
sectors and as such, it offers great potential for the water
industry as well.

Applications in the drinking water industry
A wide range of problems exists in the water industry for which
nature-based optimization algorithms can provide valuable solu-
tions. We give a generic overview here and discuss a number
of case studies for different fields of application and/or geogra-
phies in the following paragraphs. For water resource management,
areas of application include model calibration, choosing sampling
locations for monitoring, and risk-based water supply portfolio
planning, the optimization of reservoir operation, and regulation
of the abstraction from different sources for scarcity management.
Water pipe networks, both drinking water distribution and waste-
water collection networks have also been subjected to numerical
optimization in numerous cases. Not only their layout and sizing,
but also their subdivision into functional sections and the optimal
placement of different types of sensors, including water quality
sensors for contami-nation detection and pressure sensors for
leak detection have been explored.

Network design with multiple planning horizons
Climate change, population mobility and urban development
in cities necessitates the planning of major distribution network
upgrades and requires a phased approach where changes to
population and demand increase over time. Work in 2007 8

brought together researchers, consultants and city planners
to develop the water distribution system master plan for the
City of Ottawa. This phased expansion reflected expected
population and demand increases over a 25-year planning
horizon, optimized by using an evolutionary algorithm. When
the work was carried out, the population of Ottawa was about
800,000 which has risen to almost one million at the time of
writing, highlighting the extent of the planned urban growth
and underlining the accuracy of the projections which anticipated
1.07 million by 2021. The city’s demand is fed by two water
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purification plants, Britannia and Lemieux, located along the
Ottawa River, with a combined capacity of 640 Millions of
Liters per Day (MLD) and the East and West Urban Communities
are fed by a 1,200 mm transmission feed. A 1,220 mm main
also feeds the west portion of the South Urban Community
and a 762 mm main feeds a small area on the east side of the
river. There are two major storage reservoirs, one located in
the center of the city and the other in the East Urban Community
with storage capacity of 108 ML and 82 ML respectively. There
are also two smaller reservoirs in the West and South with
storage capacity of 34 ML and 18 ML respectively, and additional
elevated storage in the communities.

As with many evolutionary optimization applications, the
majority of the work was involved in the development of repre-
sentation and objective (fitness) function formulations to enable
the evolutionary algorithm to effectively solve the problem.
The representation establishing the link between the algorithm
and problem, provided the options to introduce new infrastruc-
ture and upgrade existing assets. A key element here was the
introduction of single variables that combined logical sets of
infrastructure upgrades. An example of this is in the introduction
of a new tank; this must be accompanied by the pipework nece-
ssary to connect the tank to the network and so was established
as a single ‘decision’ for the algorithm to take. The introduction
of these variables had the dual effect of increasing the engi-
neering feasibility of the developed solutions and reducing the
search space for the evolutionary algorithm. A single objective

Figure 1 | Layout of proposed pipes for rehabilitation in different clusters for solution with no deficiency.

function minimized costs (CAPEX and OPEX) and hydraulic
penalties under demand scenarios in 2011, 2021 and the final
planning horizon in 2031. The single objective function required
a coefficient to balance the cost and individual hydraulic compo-
nents, which allowed the optimization to be tailored towards
end-user requirements, although it would also suit a multi-
objective approach. Extensive optimization runs were conducted,
and a final 2031 solution was developed at an estimated CAD
402M, including CAD 205M for plant expansions, CAD 110M
for new water mains, CAD 45M for pumping stations and CAD
24M and CAD 17M for reservoir expansions and elevated tanks
respectively. However, the optimization was able to show only
CAD 79M was required to satisfy 2011 demands and a further
CAD 152M was required between 2011 and 2021, demonstrating
the benefit of using multiple planning horizons within the project.

Optimum rehabilitation schemes
The water sector is under growing pressure to deliver service
that satisfies customer expectations and regulatory require-
ments. Urbanization and growing water demand are putting
great stress on ageing or inadequate infrastructure in many
countries. This example9 demonstrates how existing scientific
and engineering knowledge benefited from advances in soft
computing analytics to address deficiencies in a water distri-
bution networks. This network is part of a water distribution
network of a city in the UK. The network has grown over years
from a small network to a system that serves 400,000 customers.
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The network has two reservoirs, 5 connections that import
water from adjacent systems, 1,891 nodes and 2,462 pipes.
The pipes have small to moderate diameter sizes with no major
transmission mains due to the way the system evolved in the
past. The existing network is unable to satisfy the recent growth
and projected future demands with adequate pressure. The
problem was set as a multi-objective optimization problem in
order to generate a set of optimum rehabilitation schemes that
trade-off between capital investment and system performance.
A two-stage methodology was proposed. In the first stage,
using network connectivity and topology, the system was
divided into a number of clusters with stronger internal than
external connectivity. In the second stage, three different
problem setting strategies, for optimal rehabilitation, were
considered including: 1 | rehabilitation of pipes within clusters
2 | rehabilitation of feed pipelines, pipes that connect the clus-
ters with deficiency to other clusters or to the sources, and
3 | rehabilitation of pipes within clusters and feed pipelines.

Using an undirected graph algorithm of the Gephi tool 10,
16 clusters with different degrees of pressure deficiency were
identified for this network. The pipes in the clusters that have
no performance issues and do not participate in water transmi-
ssion to other areas of the network will have no contribution
towards reducing deficiency in the system. Therefore, they
were not considered as candidate pipes for rehabilitation of
the system. A total of 248, 149 and 349 pipes were considered
for rehabilitation (as decision variables) for strategies 1, 2, and
3 respectively. The non-dominated sorting genetic algorithm
II (NSGA-II) was used to generate optimum Pareto-front bet-
ween total cost and number of nodes with pressure deficiency
for different strategies.

The generated results (Figure 1) based on strategy 3 do-
minated the results generated by both strategies 1 and 2. The
results of strategy 2 were also compared with those generated
based on considering i) all the pipes as design variables and ii)
a subset of pipes (567 pipes) based on the engineering judgment
(water company). The optimum Pareto front generated by stra-
tegy 3, again dominated the results generated based on these
two problem settings. The optimum solution with no pressure
deficiency generated by strategy 3, has a total cost of GBP
3.05 million. A solution, with total cost of GBP 4.15 million with
195 nodes with pressure deficiency, was generated independently
by the water company by trial and error. A solution, with a
similar number of deficient nodes, on Pareto-front of strategy
3 has a cost of GBP 1.5 million which is 65% cheaper than the
solution generated manually.

Network design and transition optimization
Different challenges arise when applying optimization techniques
to larger real-world networks: the computational effort involved
in applying numerical optimization techniques to such large
networks and being able to translate practical challenges and
constraints to formal problem formulations with clear objectives,
constraints and decision variables. To tackle the first challenge,
one might think of high-performance computing and problem-

specific variators. Regarding the second one, we have learned
that these types of problems are best solved in an iterative
process between researchers and practitioners, wherein each
result is assessed, and the optimization problem is adjusted
accordingly to the gained insights. This approach leads to
results that are a perfect fit for what water utilities are looking
for and has the added bonus of providing them with new insights
into their own water supply systems.

An optimization tool has been applied to the rehabilitation
of real-life networks in the Netherlands. It uses (modified)
genetic algorithms and NSGAII as optimization methods.
Network rehabilitation is approached as a two-phased problem:
(1) the optimal design of the network (so called blueprint or
master plan) and (2) the optimal transition between the currently
existing network and the blueprint, i.e., the rehabilitation timeline.
The design of the network blueprint considers the minimization
of costs (a function of the diameter and length of the new
pipes), constrained by minimum pressure requirements and
commercially available pipe diameters and materials. For the
rehabilitation timeline both hydraulic (improvement of current
pressure deficiencies) and risk based (reduction of pipe failures,
which are a function of pipe diameter, material and age) objec-
tives have been considered, in combination with a practical
aspect regarding the number of construction sites in each
rehabilitation step. A construction site is a cluster of valve
sections where old pipes are replaced by new ones. Water
utilities prefer to concentrate rehabilitation works in a few sites,
instead of working in a very disperse manner.

This approach was applied to the water distribution network
serving the area of Helmond-Mierlo, with 105,000 inhabitants
in the Netherlands11. The network model has about 12,000 pipes.
Adding to that 32 commercially available pipe diameters, it is
clear how large the solution space for this problem is. By star-
ting the optimization problem from the current pipe diameter
values and using problem specific variators in the GA, it was
possible to effectively explore the solution space.

Figure 2 illustrates the obtained results. The costs for
rebuilding entirely the network currently in the ground would
be EUR 41.1M. At the peak demand conditions (maximum
demand in the past 10 years) the 30 m pressure requirement
is not met at several nodes of the network. The costs of the
optimized blueprint are significantly lower, at EUR 26.4M.
At the same time, the hydraulic performance is significantly
improved: the total pressure deficiency in the network (sum
of all pressures below the required 30 m) is reduced by 97%.
Regarding the rehabilitation timeline two Pareto fronts were
obtained: (1) trade-off between maximization of hydraulic
performance and number of construction sites, and (2) trade-
off between the minimization of pipe failures and the number
of construction sites. Figure 2 (b) illustrates one of the iden-
tified solutions.

Network rehabilitation is an opportunity for re-designing,
an often organically grown network. The achieved results prove
that numerical optimization techniques can be used in this
context. Moreover, the achieved amount of savings allows the
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water utility to rehabilitate their networks at a higher rate. Pro-
actively replacing old and fragile pipes with new ones reduces
the risk of pipe failure and thus, water losses due to leakage.

Moreover, having the initial optimization problem defined
and all relevant data organized, it makes it easy to accommodate
different objectives, constraints, and scenarios. In this way, the
optimization problem can be re-run when new information, such
as changes in urban development or water demand, becomes
available, making it a very flexible approach.

Optimal water quality sensor placement
Both societal events and technological advances have pushed
the development of techniques for online water quality monitoring
in drinking water distribution systems since the beginning
of this century. Their purpose is generally to protect customers
from incidental and/or intentional drinking water contamination.
The number of online monitoring sensors that can be placed

in any system is always constrained by budgetary limitations.
Therefore, methods have been developed to determine optimal
sensor placement 12, 13 within a drinking water distribution network.
Optimality is, however, a matter of definitions and requirements.
The objectives that have been presented in the literature can
be classified roughly into three categories14, aimed at obtaining
information, facilitating utility response, and mitigating the
effects of contamination (Table 1).

Of the three classes of sensor placement optimization
objectives, those that are information-oriented are the simplest
to compute12, requiring only a network model (hydraulics and
material transport). The more complex effect-oriented approach
has been implemented in the Threat Ensemble Vulnerability
Assessment and Sensor Placement Optimization Tool (TEVA-
SPOT)13; here we present some results of its application to a
network model of part of the network of Vitens, the largest
water utility in the Netherlands. Many simulations were performed

Table 1 | Rate of increase of potential energy as a function of the lake trophic state with Po = 395,343 W

Objective class

Examples

(Dis)
advantages

Orientation of optimization strategy towards…

Detection likelihood,
time to first detection,
network/customer coverage

Simple, but several
steps from information
to actual customer
protection

Redundant detection,
identifiability of
contamination source

Close to operational
practice

Population affected, ingested
volume, numbers of people
above does threshold

Objective matches final
objective of utility, but the
latter is complex to compute
and the results show a
strong dependence of utility
response (time)

Information Utility response Effect mitigation

Figure 2 | Optimized solution for (A) pipe diameters to minimize costs while guaranteeing adequate network performance given by different colors, and (B)
rehabilitation timeline that maximizes the reduction of pipe failures with a maximum of 10 rehabilitation sites per year (the colors and numbers indicate the
year in which the pipes should be rehabilitated, pipes with the same color are rehabilitated in the same year).

A | Pipe diameters (in mm) B | Rehabilitation timeline (30 years)
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to study the relationship between the assumed and actual res-
ponse times of the utility (after which water consumption is
assumed to cease), on the one hand, and the performance of
the sensor network (reduction in the number of people affected)
on the other. In all cases, the sensor locations were optimized
using a genetic algorithm. Some results are shown in Figure 3.
Two important observations can be made: Sensors are useless
for event detection if the utility’s response time is too long and
Every additional sensor contributes less to the objective than
its predecessors (the law of diminishing returns).

When the water utility elects to consider only practically suitable
locations for sensor placement, this may have a significant effect
on the network’s performance as shown in a different study
presented in Figure 4 which presents a comparison between
the performance of optimizations (again using a genetic algo-
rithm) for different sets of uniformly distributed nodes used as
potential locations (300, and all 2,700, respectively). In some
cases, the network based on the practical set of potential loca-
tions performs better than one based on a larger number of
uniformly distributed nodes. The practical set may include, by
chance, suitable locations that are absent from the uniformly
distributed sets. The best performance is seen when all network
nodes are considered as candidate locations (grey curve in
Figure 4). But the main conclusion must be that even though
optimizing a sensor network configuration based on practically
available locations results in some performance loss compared
to networks in which sensor placement is not restricted, perfor-
ming an optimization is still worthwhile.

Conclusions
Several decades of development of ideas, methods and applica-
tions have resulted in a myriad of cases which demonstrate the
added value of applying numerical optimization techniques to
water industry problems. Nature-based metaheuristic methods
have been and continue to be particularly popular and successful
because of their ability to deal with the scale and complexity
that are typical in this field of application. Nevertheless, the vast

Figure 3 | Performance of optimized water quality sensor networks as a function
of number of sensors (n) and utility response times. Results from14.

Figure 4 | Water quality sensor network performance for ideal and practically
feasible locations. Results from 14.

majority of system design projects in practice continues to rely
on human designs and expert judgment. This is not to say that
the human factor should be taken out of the equation, rather the
opposite: the application of numerical optimization techniques
taking into account the deep domain knowledge of the water
industry’s experts holds the potential for performance increase
and cost reduction (both monetary and in terms of environmental
impact) in all these projects. The primary gains for the industry
from numerical optimization will come from taking the step to
actually more or less universally applying these methods.

Ongoing development in this area is focused on the develop-
ment of new and faster formulations of algorithms, often through
the combination of one or more techniques and in the development
of methods that can take advantage of modern CPU and GPU
(graphical processing unit architectures). Other areas of develop-
ment are learning optimization (hyperheuristic) methods 15 and
multi-method16 search which combine machine learning and opti-
mization components to create methods that can adapt to new
search space domains on the fly. Real-world applications are being
addressed through the development of many-objective 17 and
human-in-the-loop18 algorithms that aim to consider the large
number of objectives that characterize real world problems and
leverage the domain expertise of experienced staff. In this way,
the people that have always been responsible for the design of
systems and their operation continue to be so, but with a new
and very powerful tool in their toolbox.

We are becoming more aware of the uncertainties that exist
in the models and data that we are applying optimization to. In
addition to this we observe that the world is changing at an ever
quicker pace, and progressing climate change can be expected
to have more changes and con-sequences in store for us for the
rest of the century, both in terms of water availability and demand.
Considering these uncertainties in the present state and future
conditions and requirements (discussed in19), it becomes urgent
to start taking these uncertainties into account in the formulation
of our optimization problems. Academic work on robust and resi-
lient optimization has been presented in the past decades2, 20 this
should become the standard in real world applications as well.



IAHR.org #HydrolinkMagazine | 47

2 |  2021ARTIFICIAL INTELLIGENCEIN DEPTH

Peter van Thienen
Peter van Thienen is a senior researcher and chief information officer of KWR. He holds a PhD in geophysics and has over 10 years
of experience in the water industry. At KWR, Peter works with a number of colleagues on research and development questions with
respect to the drinking water distribution network, from a quantitative and modelling point of view. Examples include the analysis
of flow data for the understanding of the network and the detection of leaks (including the development of the CFPD method); the
numerical optimization of the design of sensor and pipe networks (development of the Contamination Source Toolkit and the Gondwana
platform); and the development of an inspection robot for drinking water pipes.

References

1 | Jared L. Cohon David H. Marks (1975) A review and evaluation of multiobjective
programing techniques. Water Resources Research, Volume 11, Issue 2,
https://doi.org/10.1029/WR011i002p00208

2 |  Lansey, K. E., Duan, N., Mays, L. W., and Tung, Y. K. (1989). Water distribution
system design under demand uncertainty. Journal of Water Resources Planning
and Management, 115(5). doi:10.1061/(ASCE)0733-9496(1989)115:5(630)

3 |  Suribabu, C. R., and Neelakantan, T. R. (2006). Design of water distribution
networks using particle swarm optimization. Urban Water Journal, 3(2), 111-120.
doi:10.1080/15730620600855928

4 |  Maier, H. R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L. S., Cunha, M. C., Reed,
P. M. (2014). Evolutionary algorithms and other metaheuristics in water resources:
Current status, research challenges and future directions. Environmental Modelling
& Software, 62, 271-299. doi: https://doi.org/10.1016/j.envsoft.2014.09.013

5 |  Mala-Jetmarova, H., Sultanova, N., and Savic, D. (2018). Lost in Optimisation
of Water Distribution Systems? A Literature Review of System Design. Water, 10,
307. doi:10.3390/w10030307

6 |  Rechenberg I., Küppers U., Scheel A., Mattheck C., Harzheim L. (1998)
Evolution und Optimierung. Bionik. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-06114-5_14

7 |  Kirkpatrick, S., C.D. Gelatt Jr. and M.P. Vecchi (1983) Optimization by Simulated
Annealing. Science, 13 May 1983, 671-680.

8 |  Rogers et al. (2007) Application of optimization technology to the development
of a water distribution system master plan for the City of Ottawa, American Water
Works Association - AWWA Annual Conference and Exposition, ACE 2007

9 |  K. Muhammed, R. Farmani, K. Behzadian, K. Diao, D. Butler (2017) Optimal
rehabilitation of water distribution systems using a cluster-based technique,
Journal of Water Resources Planning and Management, 143 (7)

10 |  Gephi (2014). Gephi, an open source graph visualization and manipulation
software. https://gephi.org (Jun. 22, 2014)

11 |  Vertommen, I., Laarhoven, K. v., Thienen, P. v., Agudelo-Vera, C., Haaijer, T.,
& Diemel, R. (2018). Optimal Design of and Transition towards Water Distribution
Network Blueprints. Proceedings, 2(11), 584.

12 |  Ostfeld A. et al. 2008 The Battle of the Water Sensor Networks (BWSN):
A Design Challenge for Engineers and Algorithms, Journal of Water Resources
Planning and Management 134(6), 556-568.

13 |  Berry J., Boman E., Riesen L.A., Hart W.E., Phillips C.A., Watson J.P and Murray
R. 2010 User s Manual TEVA-SPOT Toolkit Version 2.4. Office of Research and
Development, USEPA 600/R-08/041B.

14 |  P. van Thienen; B. de Graaf; J. Hoogterp; J. van Summeren; A. Vogelaar (2018)
Bounds on water quality sensor network performance from design choices and
practical considerations. Water Practice and Technology (2018) 13 (2): 328 334.
https://doi.org/10.2166/wpt.2018.044

15 |  Yates, W. B., & Keedwell, E. C. (2020). Offline Learning with a Selection Hyper-
heuristic: An Application to Water Distribution Network Optimisation. Evolutionary
computation, 1-24.

16 |  Raad, D. N., Sinske, A., & Van Vuuren, J. H. (2011). Water distribution systems
design optimisation using metaheuristics and hyperheuristics. ORiON, 27(1).

17 |  Matrosov, E. S., Huskova, I., Kasprzyk, J. R., Harou, J. J., Lambert, C., and Reed,
P. M. (2015). Many-objective optimization and visual analytics reveal key trade-
offs for London s water supply. Journal of Hydrology, 531, 1040-1053.

18 |  Johns, M. B., Mahmoud, H. A., Walker, D. J., Ross, N. D., Keedwell, E. C., and
Savic, D. A. (2019, July). Augmented evolutionary intelligence: combining human
and evolutionary design for water distribution network optimisation. In Proceedings
of the Genetic and Evolutionary Computation Conference (pp. 1214-1222).

19 |  Peter van Thienen and Dragan Savic (2020) The importance of knowing
what we do not know - Uncertainty in planning, designing and modelling of urban
water infrastructure. IWA Digital Water whitepaper, 2020

20 |  Cunha, M., & Sousa, J. (2010). Robust design of water distribution networks
for a proactive risk management. Journal of Water Resources Planning and
Management, 136(2). doi:10.1061/(ASCE)WR.1943-5452.0000029

Ed Keedwell
Ed Keedwell is a Professor of Artificial Intelligence at the University of Exeter and has 20 years of experience in the research and
development of novel optimization techniques for application in the water industry. He is currently Director of Research for Computer
Science and has research interests in optimization (e.g. genetic algorithms, swarm intelligence, hyperheuristics) machine learning and
AI-based simulation and their application to a variety of difficult problems in engineering and bioinformatics that has led to over 150
journal and conference publications. Particular areas of current interest are the optimization of transportation systems, the develop-
ment of sequence-based hyperheuristics and human-in-the-loop optimization methods for applications in engineering.

Raziyeh Farmani
Raziyeh Farmani is an associate professor of Water Engineering and industrial fellow of Royal Academy of Engineering at Centre
for Water Systems, University of Exeter, UK. She is the Chair of IWA’s Intermittent Water Supply Specialist Group and associate editor
of Journal of Hydroinformatics. She specialises in urban water systems modelling, asset management, water resources management,
many-objective optimization, uncertainty and risk assessment, and decision aid. Her research interests cover interdisciplinary field
of Hydroinformatics including Artificial Intelligence, data mining and optimization techniques and their application for real-time control
for smart water systems.

Ina Vertommen
Ina Vertommen is a scientific researcher in the Water Infrastructure team at KWR. She works with her colleagues on the development
of the Gondwana optimization platform and translates water-practice problems, such as the design of network masterplans and sensor
networks (for instance for sectorization or leak detection), into mathematical optimization problems. Ina also researches the impact
of the weather, holidays and vacation periods on water consumption, and has experienced in the detection of leakages and changes
in consumption patterns based on the CFPD method. Moreover, Ina contributes to the monitoring and investigation of trends in lead
in drinking water in the Netherlands.



A digital twin (DT) is a virtual copy (a digital model) of a real system continuously fed with data to mimic
the systems’ past, present and future behaviour. This makes it possible to detect anomalies, test new
ideas and changes in the virtual system and assess how it reacts, minimizing the risks to the real system.
In this sense, the DT can be seen as a playground to explore the effects of different scenarios and to
practice how to best react and operate the physical system under these circumstances. The concept of
DT has been used traditionally in the industry field 1 but it can also be developed and exploited in a city
management context, and in particular in Water Supply and Distribution Networks (WSDN), where it can
be applied to all aspects of the system2.

Digital Twins-A new paradigm for water supply
and distribution networks

By Fernando Martínez Alzamora, Pilar Conejos, Mario Castro-Gama and Ina Vertommen

How DTs help for better management of WSDN
A DT can help to make short and long-term informed decisions
in order to improve water distribution systems management.
In the system design phase, it can be applied to:

• Develop masterplans by simulating the system behaviour
under long-term demand projections and new scenarios.
This allows for new infrastructure to be designed considering
different needs for water, the most appropriate components
to be added or replaced, and test the system resilience as
a whole.

• Planning reengineering projects aimed at saving energy,
integrating new water sources or improving the resilience
of the network.

• Design the future operation of the system and determine
the new infrastructure commissioning stages.

• Develop a sectorization plan for anomaly detection and
gain insight into the performance of the system.

• Determine the best places where to locate the isolation,
washout and purge valves for maintenance of the network
with minimal disturbance to users.

• Plan the progressive implementation of Automatic Meter
Reading (AMR).

For operation and maintenance, a DT can be applied to:

• Achieve a better understanding of the performance of the
whole system.

• Train the operators by familiarizing them with the response
of the system under different failure scenarios.

• Help operators make the best decisions in real time by
simulating the effects of any operation before taking the
action in the real system.

• Optimize the operation of the system, minimizing energy
consumption and maximizing the quality of the service.

• Plan flushing operations to guarantee good water quality.

• Predict the behaviour of the system under short term
demand forecasting.

• Detect anomalies in the system by comparing the observed
values with those expected and simulated by the DT, e.g.,
leaks, valve failures or malfunctioning of other elements.

• Develop emergency response plans, simulating the beha-
viour of the system under emergency conditions.

• Develop an early warning system against possible attacks
or contamination into the network.

• Improve predictive maintenance (i.e., maintenance of compo-
nents before they fail) taking into account the stresses each
component is submitted to and its role in ensuring service.

The components of a DT

Hydraulic model
A detailed and accurate representation of the WSDN, in the
form of a hydraulic model, is the basis of a DT. The model should
include all elements of the system, from pipes, junctions, demand
nodes, reservoirs, pumps, valves and other minor components,
to current water demands. Manually building and keeping such
a hydraulic model up to date is a laborious task.

The availability and maturity of these models vary between
water utilities and around the world. Nowadays, some utilities
have detailed models and in general, these are updated annually,
regarding water demand (average and peak demand) and new
elements in the network. Models are often not updated during
maintenance or repair works. This means that, for instance,
valve statuses in the real system and the model differ.

The purpose of a DT imposes different requirements on
the hydraulic model. For instance, for operation and anomaly
detection (water quality or quantity) the hydraulic models need
to be continuously updated and paired with the physical systems.
In other words, a DT has to include, at every moment, changes
made during maintenance/repair, variations in demands and
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control rules in the operation. To reproduce an isolated segment
during a repair all valves must be included in the model, and
if the emptying time is to be calculated then the discharge and
air release valves must be also included.

Water demand
In addition to the physical elements, to accurately model the
flows in the network it is important to correctly assign the
demands to the nodes of the model, as well as their evolution
over time. Most utilities measure water consumption for the
purpose of billing. It can be measured with different levels of
aggregation and frequency. In some utilities, for instance, con-
sumption is measured directly at service connections, while in
others it is measured through domestic meters. The frequency
can also vary from daily, or monthly to once a year. The DT
must incorporate the greatest amount of information available
in this regard (at least daily, preferably hourly).

Currently, there are WSDN that have digital water meters
to read daily or hourly users’ demands, like in the city of Valencia
(Spain). Incorporating this information into the DT makes it
possible to have a more reliable hydraulic model since demands
are assigned at the house connection level. In addition, demand
patterns can be established depending on the type and number
of users supplied, which is of great help in, for instance, locating
leaks, regulating the system and managing demand in situations
of scarcity.

When information from digital water meters is not available
(which is currently expected to be the case for most water
utilities around the world), it is necessary to find an alternative
way of feeding current demands to a DT, in an accurate and
dynamic way. There are several water demand models available
in the literature. However, the DT requires more than a model
for the average consumption of a typical user, but the actual
water demand in a given area at a given moment in time. Besides
understanding how consumers use water, it is necessary to
know where they are at different moments. External information
to grasp people movement throughout the day, like, for instance,
data from traffic, use of public transport, energy consumption,
and mobile phone data can be used to this end. As an example,
KWR Water Research Institute in the Netherlands followed an
approach wherein mobile phone data is used to capture popula-
tion dynamics and couples this information to the water demand
model SIMDEUM3, 4. SIMDEUM is an end-use model that simu-
lates stochastic residential and non-residential water demand
patterns, based on statistical data on water appliances and
users. In this way, the water demand is dynamically estimated
over time based on the actual number of users present at each
node of the network. This approach offers an additional advan-
tage: SIMDEUM is able to estimate water demand on very short
time steps (up to one second), while smart meters often provide
information only at an hourly or daily basis due to battery res-
trictions. For some applications, such as water quality modelling,
one-hour time steps are too coarse. Hence, even in cases where
smart meters are available, it could be beneficial to combine
both methods by using live measurements to calibrate a

SIMDEUM model and then proceed to use such patterns to
model demand at shorter time steps.

Real-time data
One of the most important characteristics of DTs is their conti-
nuous use of field data to reproduce the real state of the system.
We refer here to those variables that change continuously and
are registered by Supervisory Control And Data Acquisition
(SCADA) systems and sensors in general, such as tank levels,
flow meters, pressures, etc. It must be taken into account that
these signals can be registered and sent at different times.
Connecting them with a DT is therefore not straightforward.
In addition, a data management system is necessary to filter
and replace incorrect information, which can be a challenge 11.

Computerized maintenance management system
(CMMS) services
One of the most outstanding features of DTs is their ability to
manage the maintenance of an industrial product or an insta-
llation, by continuously monitoring its behaviour and evolution
through the measurement of the most relevant variables and
subsequent analysis. Unlike classic predictive maintenance
systems, which are based solely on statistical data analysis, a
DT provides the additional ability to reproduce past, present
and future dynamic behaviour of the system as it is a virtual
replica of the real system continuously updated and calibrated
from a reduced number of measurements. For that, the hydraulic
model must incorporate all the maintenance operations carried
out since they affect the state of its elements. This is possible
if the hydraulic model is linked to the CMMS. In this way, the
maintenance management can be improved with the capability
of incorporating predictive maintenance, based not only on the
expected use of the different components, but its real behaviour
as part of the system.

Additional information sources
A DT has to incorporate also complementary information that
affects its behaviour or decision making, such as topography,
availability and quality of water sources, type of dwellings and
local facilities, types of consumers, electricity tariffs, weather
forecast, and social behaviour, amongst others.

Calibrating a DT
A DT has to behave like the real system, so the calibration of
the hydraulic model is crucial to achieving a reliable DT. There
are different techniques and methodologies for calibrating a
hydraulic model. It is useful to develop an initial pre-calibration
stage, reviewing and correcting all possible errors in the infor-
mation, and only afterwards calibrate the model parameters.
Fortunately, with the DT many scenarios are continuously
available, which allows for frequent calibration of the hydraulic
model, instead of using only for single situations or days, as
it has traditionally been done.

One of the aspects which is commonly challenging for
model calibration is the demand allocation. In cases where smart
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in asset management, maintenance issues, network sectorization,
etc. When simplified models are enough, they can also be deri-
ved from a DT.

Another field in which DTs can play a relevant role is to
exploit the capabilities offered by modern advanced analytics
techniques and Artificial Intelligence (AI) 6. Optimization should
not be confused with them. They are fundamentally based on
the data observation of a large number of real situations and
on learning about the system behavior from these data, which
usually come from field sensors but not limited to them. In its
application to WSDN management, the signals will come from
the SCADA system, from the maintenance management system
or from the remote readings of consumption. But if we have
a well-calibrated DT, the training variables can also be synthe-
sized from the results provided by the DT under certain scenarios,
with the advantage of its low acquisition cost and the high
quality of the data, in contrast to the data taken from the actual
operation of the system. AI uses Machine Learning (ML) algo-
rithms to achieve its purposes. In a first instance, they can be
arranged in supervised, unsupervised, mixed, or reinforced,
being the latter the most promising for future.

In supervised learning, sets of paired values for the input
and output variables are given. The algorithm must be able to
reproduce the outputs from the inputs with the minimum error.
Actually, the classical regression techniques would fall in this
group, but in the last decades other much more powerful me-
thods have been developed to tackle more complex problems
having a high number of input/output variables with strongly
non-linear relationships, such as k-Nearest Neighbors, Logistic
Regression, Support Vector Machines (SVM), Decision Trees
(DT), Random Forest (RF) and particularly Artificial Neural
Networks (ANN), initially developed around the concept of the
Multilayer Perceptron (MLP). In recent years ANN have been
developed greatly with the introduction of new architectures
under the concept of Deep Learning, like the Convolutional
Neural Networks (CNN) and the Recurrent Neural Networks
(RNN), with results as astonishing as facial or speech recognition.

Unsupervised learning instead tries either to group the
set of data (observed or synthetic) into differentiated classes
using cluster analysis techniques, to reduce the size of the pro-
blem, or to discover behavior laws among the data set, in an
attempt in all cases to abstract the information and synthesize
it, which constitutes one of the pillars of the development of
human intelligence. Compared with the classical statistical tech-
niques used for this purpose such as k-Means, Hierarchical
Cluster Analysis (HCA), Expectation Minimization (EM) or Principal
Component Analysis (PCA), the ANNs, and in particular the
architectures associated with Deep Learning such as the Auto-
encoders and the Reinforced Learning (RL), seem very promising.

To finish this brief description of the state of the art of
AI, it should be noted that in any application it is necessary to
differentiate whether the variables managed are continuous or
discrete, if the data set is static or dynamic (real-time systems),
and in the latter case, if the goal of the algorithm is to properly
reproduce the recent past or to forecast the future.

water meters are available, such as in Valencia (Spain), these
data can be used to calibrate the model. Internal pipe diameters
and roughness coefficients are the most relevant parameters
bound to uncertainty. In other countries, such as in the Nether-
lands, the calibration of water distribution network models is
an iterative process of updating of assets, demands and operation
criteria. For most utilities, these updates are scheduled at an
annual or bi-annual basis. Almost all systems in the Netherlands
are operated as a single zone, for that reason most data are
known at the booster stations, and only a few flow meters and
pressure loggers are located within the network. While industrial
and ‘large’ users, such as sports facilities, carwashes and hos-
pitals, are monitored using digital water meters, this is not the
norm at the household level, introducing a serious challenge to
model calibration.

The existence of a large number of valves in the distribution
system poses an additional challenge for modelling. Although
most valve manipulations are registered, it is estimated that at
least 2-3% of the valves are not properly displayed or their
status is changed (i.e., partially opened). This requires a large
amount of effort as these mis-registrations are not easy to de-
tect until additional operations in the surroundings are performed.
Likewise, the presence of numerous regulation elements can
significantly complicate the calibration of the model 5.

DTs, Decision Support Systems and Artificial Intelligence
One of the most important reasons that justify the development
and maintenance of a DT is to use a replica of reality as Decision
Support System (DSS). The concept of DSS has usually been
linked to optimization techniques, aimed at minimizing one or
more objectives, whether technical or economical, by modifying
the values of the decision variables subject to certain restrictions;
sometimes some of these restrictions can be relaxed by being
incorporated as additional objectives. Among the most important
applications of DSS in the field of the WSDN that can be cited
are those used to determine the adjustment parameters in a
calibration process, for optimal sizing of pipes and control
elements, for optimal location of valves and other accessories
to facilitate the network maintenance, for optimal identification
of Demand Metered Areas (DMA’s) in a sectorization plan, for
optimal sensor location to identify leaks or for the early detection
of contaminant intrusion, for optimal operation of the system
to reduce energy consumption or the associated cost, to design
optimal strategies to renew water in stagnant areas or to reduce
the retention time in tanks, to plan preventive maintenance
operations, to plan investments in asset management, etc.
Methods used by optimizers to achieve these goals range from
classical Linear Programing (LP), Mixed-Integer Linear Pro-
gramming (MILP) and Non-linear programming (NLP) to the
most advanced Evolutionary Algorithms (EA), depending on the
nature and complexity of the problem, and the type of variables
involved. For some of these applications a simplified model of
the network may be sufficient, but in others cases it is very
important to take into account each and every one of the
elements that make up the real network as per a DT, for example
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All these techniques have applications to WSDN management,
although most of them are still incipient compared to other
areas such as image recognition, marketing or business. The
first applications have been aimed at characterizing and classi-
fying demand patterns, by differentiating the type of consumers
or the effect of exogenous factors such as the day of the week,
the season or the temperature. Past data and unsupervised
methods are used for this purpose. These patterns could be
used later to detect deviations from the expected values, due
to the occurrence of a leak for example, and to issue the corres-
ponding warnings.

Other applications try to directly predict the demand in
the coming hours, either at consumer or sector level, based on
past and recent data. In contrast to the classic Box-Jenkins
techniques, which assume a linear behavior of the time series,
Recurrent Neural Networks (RNN), and in particular Long Short
Term Memory (LSTM) networks characterized by progressively
reducing the weight of the oldest readings, have provided so
far the best results. The RNN is fed in this case with continuous
and dynamic data to carry out a supervised training.

AI techniques can also be used to detect sudden anomalies,
such as a pipe break, a sensor failure, or a contaminant intrusion
into the network. Supervised methods fed by synthetic data
provided by DT can be used to train convolutional ANNs for
this purpose. However, when the nature of the anomaly is not
anticipated, unsupervised methods would be more appropriate.

Regarding predictive maintenance, the use of AI techniques
can lead also to significant advances to improve WSDN manage-
ment. Supervised training techniques such as Decision Trees
(DT) or Random Forest (RF) have been mainly applied for this
purpose, but using the Gradient Boosting, a variant of RF more
suitable when the number of leaves on the tree is reduced, or
the LSTM already discussed above, are more promising in the
future. The source of data in this case must be real data because
it is very difficult to physically model a fault. In WSDN is common
to have a lack of recorded data concerning faults and mainte-
nance operations, so a greater sensorization is needed in the
future to take full advantage of these techniques. One of the
most important applications along this line would be the capa-
bility to anticipate new leaks.

By considering the power of AI, new applications for im-
proving WSDN management are constantly arising. For example,
AI can be used to fast respond in emergency situations, to
reduce the daily energy consumption, to manage the pressure
in DMAs in order to reduce leaks or to control demand, to
manage DMAs in case of unforeseen incidents, and to detect
incipient leaks by observing the drift of certain signals in a zone.
All these applications require huge data for training the AI
algorithms, but fortunately DTs working upon well calibrated
models can produce such data automatically at low cost, by
subjecting them to multiple randomly generated scenarios. A
training data set can be built just with the results of the simula-
tions or with the outcomes of a subsequent optimization process
looking for the best solution for each scenario, thus combining
optimization with AI techniques. In the future it is possible that,

thanks to the power of Reinforced Learning (RL) algorithms,
ANNs can reach by themselves the optimal solution to each
situation posed thanks to a previous self-training process aid
by DTs, just as AlphaGO Zero learned to play GO on his own,
defeating the world champion in 2017, without the need for a
prior supervised training.

Viewers and User Interface
For a DT to be used by water utilities, it is necessary to build
a user-friendly and intuitive graphical user interface. The inter-
face has to be interactive and fine-tuned to its use (daily ope-
ration or long-term design for instance).

As a DT manages a significant amount of information of
different nature and origin it can be useful to use a combination
of different products and interfaces, such as Application Pro-
gramming Interfaces (APIs), web services, map-based interfaces,
GIS integration, dashboards, and web interfaces.

Applications
In this section, two application cases (at different maturity
levels) are presented to illustrate the possibilities, benefits
and challenges of DTs applied to WSDN. These cases refer
to the DTs of Valencia, Spain and Eindhoven, The Netherlands
(Figure 1).

The DT of Valencia
Today Global Omnium (GO) operates a DT for the water distri-
bution network of Valencia Metropolitan Area. The DT works
upon a hydraulic model connected with the main sources of
the information provided by the physical system. The addition
of advanced analytics like AI starts to exploit the potential of
the DT, particularly to identify demand patterns, to forecast
demands and to detect anomalies in the hydraulic variables.
In a near future much more applications are envisaged.

The first strategic model of the city of Valencia was
created in 1993 in collaboration between GO and the Universitat
Politècnica de València (UPV) and since then, significant pro-
gress has been made. In 2007 the hydraulic model was connec-
ted to SCADA for the first time7 in order to run live simulations
and help the operators make decisions in the Network Control
Center. The AMR implementation in Valencia opened up new
opportunities, so in 2016 GO and UPV began the ambitious
project of building a full DT for the system by connecting the
hydraulic model with all information sources: SCADA, sensors,
GIS, CMMS, AMR, etc. The DT had to be interoperable with
new IT platforms and be scalable to any size of the supply
system. The result was the Digital Twin developed with GoAigua,
a smart water platform by Idrica, a Spanish company that
provides technological services. It is now fully operational and
in use in the Control Room of the water supply system of
Valencia and its metropolitan area. The model is connected
in real time with 600 sensors and replicates the real behaviour
of the network with a 95% accuracy for flows and 98% for
pressures5. It is now a vital tool in support of decision-making
for both daily operations and planning tasks8.
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How the DT is built and maintained: detailed and strategic models
The Valencia DT uses the GoAigua platform to integrate infor-
mation from various sources. From there a set of algorithms
configuring the application GO2HydNet, builds automatically
from scratch and by querying different sources for the required
information, an EPANET-based detailed model for the whole
network or a selected area, which reproduces with accuracy
its behaviour for a certain time period. This detailed model
includes all the pipes, operating elements and auxiliary elements
that affect water flows, and is connected with the SCADA infor-
mation to make live simulations. Hence, it can be used as an
assistant to test and make real-time decisions. Building the
detailed 24-hour model of Valencia, including service connections
with their corresponding consumption pattern when available,
to reach a complete model of 325,000 nodes takes about 1
minute of computation time on a standard PC i7-3.2 GHz (the
time required for data pre-processing is not included). Thus, as
data sources are updated, the model is also updated. However,
depending on the use, a strategic model containing only the
main elements is more useful to have a general view of the
systems’ behaviour. For this reason, the Control Center works

Figure 1 | Characteristics of the WSDN of Valencia and Eindhoven.

Valencia
1,700,000 inhabitants  |  101,300 junctions  |  113,267 pipes  |  46,801 manual valves

Figure 2 | The DT of Valencia WSDN connected in real time with field data.
Real-time data are compared with simulated ones next to each box. The pro-
posed actions can be simulated before carrying them out in the real system.

with a 10,000 nodes strategic model–a simplified model obtai-
ned from the detailed model, and always connected to it. This
strategy makes it possible to perform every operation with either
the detailed or the strategic model, in such a way that, both
models together constitute the DT of Global Omnium (Figure 2).

Use cases
GoAigua’s DT is used in GO for planning, design and management
of the daily operations in the Valencia Metropolitan Area since
it provides a complete overview of the network in real time,
along with informative and actionable dashboards 24/7. Valencia’s
DT provides operational teams with:

• Simulation of past, present and future scenarios under all
kinds of operating conditions.

• On-the-fly analysis of what-if situations for both present
and the future, facilitating support decision-making on the
best time for network maintenance and other operations.

• Anomaly detection: the DT calculates in real time pressures
and flows at all nodes and pipes of the strategic model, pro-
viding a great understanding of the performance of the sys-
tem and allowing the fast detection of incidents (Figure 3).

• Forecast of the network behaviour in the next 24 hours,
 which facilitates the prediction of potential events.

• A playground for training new staff in network operations.

Valencia’s DT is also used for planning tasks such as:

• Development of contingency plans for emergencies.

• Designing the new infrastructure required according to the
network needs.

• Defining, in advance, the operation of the new infrastructure
and determine the network commissioning stages.

• Planning long-term actions, including investments to optimize
Capex and risk levels.

Eindhoven
223,300 inhabitants1  |  29,444 junctions  |  57,194 pipes  |  13,828 manual valves
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Figure 4 | Conceptual design of DT using different data sources in the Netherlands.
Demographics and land use are based on large governmental databases (Kadaster,
CBS). Weather data is available from the meteorological organization (KNMI).
Dynamic population information is obtained using mobile phone data (third-party
vendor). The water demand model is fed with this information using a stochastic
demand simulator (SIMDEUM®), while the hydraulic network model is obtained
from the water utility (Brabant Water). Several scenarios can be simulated based
on this information.

Figure 3 | With 600 measurements (pressures, flows and levels), it is possible to know in real time all flows (right) and pressures (left) of a 10,000 nodes strategic model.

The DT of Eindhoven
Recently KWR took the first steps in building a DT of the WSDN
serving the city of Eindhoven with about 223,300 inhabitants9.
The WSDN, operated by Brabant Water, is fed by a total of five
pumping stations. One of the aspects to consider is that the
topography of the city is reasonably flat. For that reason, this
network is operated as a single pressure management zone.
This means that no sectors, like district or pressure metered
areas, are implemented, and the available flow measurements
regard the total area. The assets registration is in general of
excellent quality and continuously updated by the Brabant Water
operators. The network model is coupled to different data sour-
ces, in particular, data from mobile phones (i.e. how many mobile
phones present in a given area at a given moment in time) are
used to capture population dynamics, and together with weather,
land use and population data (ranging from numbers of inhabi-

tants to household size and composition), which feed the water
demand model SIMDEUM. Maintenance and repair activities,
as well as unplanned events such as leakages, offer additional
relevant information. By linking all the aforementioned data,
the DT was used to model water demand, pressure and flow
in the WSDN of Eindhoven, at three different times in the year:
a regular week, a week with warm temperatures and a week
during the vacation period. From the obtained results it is clear
there is a correlation between the number of users in an area
(estimated with the mobile phones) and the water consumption
measured in the same period.

Moreover, it was possible to model the effects of leakages
and wrongly registered valve statuses on the network perfor-
mance, for both regular, warm and vacation periods, identifying
for instance areas with lower pressures. This information is
valuable for water utilities to help them identify sensitive areas
and to anticipate how to best operate the network when facing
particular conditions.

The conceptual design of the DT (Figure 4) is suitable for
both (near) real-time modelling and scenario analysis. The use
of mobile data as input for consumer demands suggests that
aspects of population dynamics can be integrated into a DT.
However, at the time being, mobile phone data are not (yet)
available on a real-time basis in the Netherlands, making the
proposed approach more suitable for scenario studies. Once
the data of mobile phones can be fetched in a timely manner,
the DT could be used for real-time modelling as well.

The conducted research shows the potential of DTs for
the Dutch drinking water industry. In the Dutch context, DTs
can be developed in the short-term, as water utilities have good
network models, and multiple data sources are already available.
In the upcoming months, the Eindhoven DT will be further deve-
loped to include additional data, such as traffic information, and
to better model non-household water demand. Dutch water uti-
lities want to use DTs to understand the effects of the lockdown
and other governmental measures imposed in control the spread
of Covid 19 in combination with the drought.

1 | For privacy reasons the smallest area for which data is available is the 4-number postcode used in the Netherlands (more detailed postcodes include 4 numbers and 2 letters). If less than 10 mobile phones
are available in the area, the data is not shared. Only the number/amount of mobile phones is shared, data about the mobile phones such as the number/owner is not. Data treatment takes 2 weeks’ time.
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Conclusions
The introduction of DTs in the reality of water utilities requires
a paradigm shift in the way of managing WSDN. The current
capabilities of computers to simulate the behaviour of networks
in real-time is beyond debate, even using a standard PC. The
main challenges lie in sensor deployment of the networks and
the collection and treatment of a large amount of data, ranging
from SCADA signals to consumption data and maintenance
operation. The potential results of this complex effort are consi-
derable in improving the service provided to customers, as has
been shown in the case of the DT of Valencia. While sensor data
is not widely available (the shift towards smart water metering,
for instance, can take years), one can think of alternative data
sources and modelling approaches, such as those used in the

54 | #HydrolinkMagazine IAHR.org

2 |  2021 ARTIFICIAL INTELLIGENCEIN DEPTH

Netherlands taking advantage of mobile phone data in combina-
tion with SIMDEUM to better model water demand. The cost of
mobile phone data is lower than that for large-scale implemen-
tation of digital water metering. However, a complete analysis
of the relationship between mobile phone data and water con-
sumption during different seasons must be performed in order
to reduce the uncertainty of their use within DTs.

The current coronavirus pandemic imposes new short-
term challenges to water utilities as consumers change their
habits. In combination with other factors such as drought and
ageing infrastructure, DTs are a powerful tool to provide insight
into network behaviour under new circumstances and into how
to best operate it in the long and short term. For many operators,
a WSDN is a black box. DTs are a key step in unravelling it.
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Smart water networks are at the forefront of investment plans
for water companies in the developed world as part of a pro-
gression to a circular economy. Technological advancements
allow water companies to gather more information about their
networks and assets than ever before and to connect the sector
to the Internet of Things (IoT). Edge computing will help make
IoT rollouts more integral and core to the way businesses work
in coming years using new sensing approaches including using
in-pipe robotics. Pervasive Robotic Autonomous Systems (RAS)
will facilitate a move from reactive to truly proactive practice,
enabling ongoing and repeat assessment of pipe condition and
operational performance. It is foreseen that robotic inspection
and data collection will add increasing amounts of data to more
traditional data sources. The more intelligence that is captured,
the more that can be learned, understood and predicted about
the network. Extra data provides new opportunities for asset
condition monitoring, performance assessment, maintenance
and event analytics. This article provides background on cutting
edge research which aims to revolutionise buried pipe infrastruc-
ture management with the development of swarms of micro-
robots designed to work in underground pipe networks autono-
mously and cooperatively. New Artificial Intelligence algorithms
are being developed that uniquely incorporate Lagrangian (mobile
sensing) rather than traditional Eulerian (fixed sensing) based
coordinate systems. The resulting big data can be used for pipe
condition assessment and to inform simulation of hydrodynamic
performance of pipe networks, for example identifying pinch
points or spare capacity.

Autonomous robotics
for water and sewer networks

By Stephen R. Mounce, Will J. Shepherd, Joby B. Boxall, Kirill V. Horoshenkov and Jordan H. Boyle

Water utilities operate large, complex pipe networks with often
limited information on system connectivity and asset condition.
The unknown condition, performance, and often even location,
of such buried assets is a significant problem for the companies
that manage large networks of pipes. In the EU, buried water
and wastewater networks have a combined length of approxima-
tely 6.1 million km; the replacement value is an estimated EUR
3.5 trillion 1. While pipe inspection technologies used by these
industries have progressed, the lack of comprehensive knowledge
about the condition of buried pipes results in sporadic, unforeseen
failures. For example, there are 1.5 million road excavations per
year in the UK causing full or partial road closures and a cost
to the UK of at least GBP 5.5 billion per year (GBP 7 billion inclu-
ding dig costs)2. The repairs are conducted in a reactive fashion,
with well-developed and efficient industry protocols. However,
with current industry replacement rates of less than 1% annually3

inferred asset lives are 100-800 years. Without the transformative
step-change in pervasive sensing proposed herein, this situation
will worsen exponentially as infrastructure ages.

Most utilities manage their pipe networks using several
data sources: (i) historical records such as pipe location; (ii) age
and material; (iii) system failure notifications (including surface
leaks, no customer supply, sewage spills, etc.); (iv) and, in the
case of sewers, limited contemporary inspections. Action is
typically only taken reactively once failure occurs and performance
is compromised. Such asset failure is undesirable because it
can cause service disruption or economic loss to the customer,
damage to other infrastructure such as roads plus the potential
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polluting environmental impact of spills and added congestion
when unplanned roadworks are required to repair or replace
the asset.

There are no ‘business as usual’ inspection systems which
measure pipe condition accurately over time at a high spatial
granularity (thus enabling models of degradation). As an example,
currently wastewater networks are generally inspected using
CCTV, requiring a manually operated camera to be passed
through the network. The collected footage is analysed by a
trained engineer. Manual techniques such as listening sticks or
acoustic noise loggers are similarly utilised in drinking water
distribution systems. All these reactive approaches require
human intervention, cause disruption at the surface, particularly
on roads, and are difficult to apply in complex networks.

Internet of Things (IoT) objects and sensors with IP addres-
ses can be connected via the cloud giving rise to the concept
of ‘smartness’ and the development of ‘Smart cities’ and ‘Smart
Water Networks’ (SWaN). Smart water means using technologies
for optimising water resources and waste treatment, monitoring
and controlling water, and providing real-time information to help
water companies and households manage their water better 4.
SWaNs are currently being rolled out on scale5 and autonomous
monitoring systems hold the key to transform our awareness
of inaccessible buried pipe infrastructure. SWaNs have been
described as a layered architecture, beginning with the sensing-
and-control layer through continuous and pervasive data collec-
tion, proactive data management, and ending with the data
fusion-and-analytics layer 6. It seems clear that in the future
the whole water sector is going to be completely penetrated by
Information and Communications Technology (ICT) and IoT-like
technologies. In a decade, tens or even hundreds of petabytes
of data may be routinely available. As these technological capa-
bilities advance, so does the ability to collect information from
remote devices and correlate that information across diverse
systems. An infrastructure that can connect the monitoring and
control systems to an IoT platform allows effective use of the
operational information that the systems hold to help achieve
near-real time situational awareness. Demands for solutions
and tools will become more urgent to meet the aspiration for
intelligent water networks, proactively managed through access
to timely information. While a step change, the spot sensors of
a SWaN can only be installed where there is access to the pipe
network, e.g. manholes and fire hydrants. While frequent in the
networks such features are still only a tiny fraction of the total
systems, and commonly only the performance at these points
can be measured, not the condition of the infrastructure between
these access points. Autonomous pervasive robotics offers the
potential to radically transform this situation by going from spot
sensing (at fixed locations) to pervasive, Lagrangian (mobile)
sensing.

State of the art robotic devices for buried water pipes
A comprehensive review 7 of robots for pipeline inspection
revealed that robots currently available are mainly laboratory
prototypes designed for large diameter pipes, human controlled,

heavy (tens or hundreds of kg) individual devices suitable for
a single short duration intervention. Locomotion is often limited
to wheeled or tracked approaches. Hardly any of these devices
are autonomous.

Autonomous robots appear to have great potential for
inspecting difficult to access water pipe networks 8. A report9

on Robotic Autonomous Systems (RAS) by TWENTY65 (www.
twenty65.ac.uk), a UK collaborative initiative between academic
research institutions and the water industry, sets out the oppor-
tunities for the use of RAS in the Water Industry, specifically
for use in underground infrastructure and more generally in all
operational activities in water. A key opportunity was identified
as “mapping, condition assessment and rehabilitation within
underground pipe assets”. The report confirms that Inspection
Robots are usually multi-sensor platforms that carry a variety
of condition assessment tools inside the pipeline in a single
deployment that also provides live video (CCTV) that can aid
in detecting anomalies within the pipe. These also tend to be
tethered tools which provide condition assessment with limited
spatial and temporal resolution, and require human intervention
and service disruption.

Tethered robotic crawlers suitable for water and waste-
water are available with multiple sensors for condition assess-
ment including laser profiling. There are technologies that
can assess a variety of pipe materials to identify structural
deterioration that could lead to pipe failure. Examples are the
PipeDiver® and Sahara® which are free swimming and tethered
devices, respectively.

An alternative to crawlers is the so called ‘soft’ robot, such
as Lighthouse (https://www.digitaltrends.com/cool-tech/ leaky-
pipe-detecting-robot-james-dyson/) that is a low-cost unit
designed to travel through water pipes hunting for leaks before
they turn into major problems. Lighthouse is inserted into a
water pipe by way of an existing hydrant. It then passively flows
through the pipe, traversing around pipe elbows, discovering
leaks by measuring the suction associated with escaping water.
The device can then be retrieved when it is flushed out of the
pipes through a hydrant, and wirelessly downloads a map of
leaks. Smartball (https://puretechltd.com/technology/smartball-
 leak-detection) is a similar passive untethered approach which
is a ‘dumb’ ball following the current (flow) through water,
wastewater, and oil and gas pipelines that can complete long
inspections in a single deployment. It should be stressed that
such devices are non-autonomous and driven by network flow,
designed for single release and inspection. Positional and condi-
tion data is of poor quality and stored on-board, and since they
are used alone, data coverage is sparse because these devices
must follow the flow and are not able to deviate from this path.
Recovery of such passive devices can be challenging in complex
and uncertain networks.

In the last decade, a number of interesting projects and
initiatives have explored the feasibility of RAS for the water
sector and several of the more promising are now outlined.

Ariel. KWR Watercycle Research Institute and Wetsus, alongside
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Dutch water utilities, developed an initial prototype for an
Autonomous Inspection Robot: Ariel (https://www.kwrwater.nl/
en/actueel/autonomous-inspection-robots-game-changer-
for-asset-management/). Van Thienen et al.10 provided details
on a tethered prototype and its testing, in particular its modular
design as a segmented ‘snake like’ train with modules for pro-
pulsion/vision, centering and battery/electronics. Van Thienen
et al.11 provided further progress with prototypes and the design
of a large pilot scale network for testing and presented a com-
prehensive business case study by way of costs and benefits.
The robot’s further development has resulted in autonomously
operating robots equipped with various sensors which determine
the condition of the pipe with exact positioning (x, y, z coordinates).
Base stations provide locations for up/downloading of route/
inspection data and recharging of batteries. A data ecosystem
framework facilitates the analysis of large volumes of sensor
data. In practice, testing is ongoing, with further development
under the banner of SubMerge b.v.

EU TRACT project. In collaboration with SINTEF and Spanish
and Italian research partners, the project (https://www.sintef.no/
en/latest-news/2014/robot-water-pipe-inspectors/) has develo-
ped a long, torpedo-like and propeller-driven robot equipped
with 64 large ultrasound transducers. This is designed to ope-
rate in branched water and district heating pipe systems in
pipe diameters from 0.1 m, with a range of 150 m. It collects
data which enable the calculation of the thickness of, and levels
of corrosion in, the pipes.

TISCA. In Netherlands, the Technology Foundation STW, toge-
ther with Stichting RIONED, STOWA and Kennis Programma
Urban Drainage (KPUD), have been cooperating since 2016
on the programme Technology Innovation for Sewer Condition
Assessment (TISCA) (https://www.nwo.nl/en/researchprogrammes
/joint-programme-technology-innovation-sewer-condition-
assessment-tisca). Five projects are currently in progress and
of particular interest is FOULC (Fast Over-all scanning of Under-
ground and Linear Constructions). An aquatic drone is being
developed as a sensor platform and data-acquisition system
for sewer systems. Use of a laser scanner, IR camera and turbi-
dity/velocity profiler were investigated, with preliminary laboratory
results reported in 12.

PUB robotics. Singapore’s National Water Agency and NTU,
with co-funding from the National Research Foundation, deve-
loped a mobile robotic platform that can travel in trunk sewers,
which is equipped with CCTV, profiling sonar and laser scanners
for monitoring the sewers13. The initial objective was to design
and develop a sewage inspection robot to inspect concrete
sewage tunnels with internal diameter of 3 m or larger and for
incursions of up to 400 m. An Unmanned Aerial Vehicle (UAV)
system 14 equipped with cameras and sensors has also been
developed and deployed to inspect the Deep Tunnel Sewerage
System. The system is capable of autonomous operation in a
signal-denied environment.

Despite these interesting studies, it is reasonable to question
why products have not in general reached the market to date.
One of the barriers is the difficulty in testing prototypes in
realistic networks (note that 11 tackles this by means of a full
scale network above ground with various network elements).
Other challenges limiting deployment relate to:

• Developing a timely and affordable capability to inspect
and quantify performance of individual assets in large pipe
networks.

• Synthesizing the inspection data to enable planned inter-
vention at an asset level and prevent unforeseen failure
and unplanned repair.

• Ensuring end user requirements are strongly embedded so
that pervasive data can be transformed into knowledge
that is actionable to prevent failures.

• Implementing maintenance based on such additional infor-
mation derived from data i.e. providing capacity to act in
a timely manner.

A future RAS highway for water infrastructure
Significant problems must be addressed and solved to make
buried water pipe infrastructure a robot-friendly RAS highway.
Autonomous robots can cover the whole infrastructure moving
freely whenever required to detect objects, obstacles and
contraventions to the norm, supplying data continuously on an
unprecedented scale and integrating safety into their decision
making including motion control through dynamic motion
planning. High level communications, map generation and
adaptive planning through optimisation of space and time usage,
analysing motion and analysing power usage will all be essential
components to enable adaptive strategies in complex pipe
networks.

Robotic autonomous systems are differentiated from other
machines by their ability to perform physical tasks with little
or no human intervention. They have the potential to enact
a wide range of individual tasks without direct human supervision.
Their work is a combination of the following three sub-tasks:
(i) manipulation and processing; (ii) data gathering and monitoring;
(iii) data sorting and storage. Artificial Intelligence (AI) methods
and tools are essential for success with these tasks because
of the massive volume of data and complexity of the problem
associated with the inspection of buried pipes. AI methods have
already been embraced by many water utilities which use them
to support the planning, operation and maintenance of their
distribution and sewerage networks, improve customer service
and predict demand 15. Robots are widely used in other indus-
trial sectors and the significant development of AI and machine
learning will result in a rapid growth of RAS having a major im-
pact on nearly all market sectors within the next decade. This
economic impact is not just related to an expansion in the market
for robotics technology but also to the deep impact robotics tech-
nology will have on competitiveness and service provision across
all economic sectors. The early signs of this impact are visible
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in manufacturing, utilities, agriculture, transport, logistics, energy
supply and healthcare. In these sectors robotics and autonomous
systems are already deployed in niche applications. There are
numerous drivers for change which are common to numerous
market sectors and these have significant impacts as illustrated
in Figure 1.

As RAS developments continue to progress it is clear that
commercial robots will no longer be largely confined to use
within manufacturing and consumer applications but expand
to environmental and utility applications. In the first instance
this is likely to be centred on mapping and condition/performance
assessment in underground infrastructure. Such application
will ultimately transition to a full “find and fix” solution in the
future which integrates with other city transport and utility
systems.

It is reasonable to expect that most water companies in
the developed world will be using the impact of AI and big data
analytics in the current decade. It should however be noted that
this is unlikely to be the case in many other less economically
developed countries, with a more gradual trickle down of techno-
logy transfer occurring over time. RAS inspection, collection
and condition monitoring will add increasing amounts of data.
It is the data frequency from sensors and geo-distribution of
data points that provide the granularity required to produce
actionable information and knowledge. Further, the transition
from Eulerian (fixed) sensors to Lagrangian (mobile) sensors
opens up both the prospect of repeat sensing for condition
monitoring as well as converting performance data to actionable
information (such as identifying pinch points and spare capacity).
The reliability and information content of low-resolution monito-
ring has been such that its use is typically confined to reactively
demonstrating compliance to regulators and/or to calibrate
idealised single snapshot deterministic network models derived
from generic understanding of processes. High resolution moni-
toring is now sufficiently reliable that it should be integral to
derivation of information from data through the building and
running of site-specific, continually updated predictive models

Figure 1 | Global drivers, sector applications, and potential impacts of RAS 9.

that can be used proactively to make management proactive,
more cost-efficient and effective. These deployments will enable
the shift to much richer detailed water network models such
as digital twins based on real-time pervasive sensing. In relation
to such digital twins, autonomous robots promise a step change
in the data driven construction, calibration and utilisation of
such models.

Vision for autonomous pipe robots
In 2019 the UK government invested in research to develop
pervasive sensing for buried pipes which will be based on auto-
nomous robotic systems 16. The vision for the UK Engineering
and Physical Sciences Research Council (EPSRC) Pipebots
Grant (2019-2024) is of intelligent, robust and resilient buried
pipe systems with the development of autonomous and pervasive
micro-robots which are smart and (almost) failure free 17. Such
systems reduce the service disruption to society by avoiding
unnecessary and unplanned road excavation. Key challenges
that have been identified in the industry are Asset Mapping,
Leakage, Condition Monitoring, Cost-Benefit, Blockages and No
Disruption. Ideas of timescales have been developed for some
of these applications (such as asset mapping) expected to be
feasible at a small scale by 2025, compared to full implementation
of swarms of robots by 2030. The experimental validation and
demonstration proposed is taking place both in the new UK
Collaboratorium for Research on Infrastructure and Cities
(UKCRIC) facilities at Sheffield (Figure 2, https://icair.ac.uk/),
and on carefully selected field sites with support from industry
partners to guarantee the safety of the robotics technology
platform.

Pipebots prototypes
Sprintbot is Pipebot’s first autonomous sewerage inspection
platform which is a result of a 4-week long hardware sprint
exercise conducted in March 2020. Sprintbot is designed like
a ball (Figure 3) allowing it to easily move and turn around
inside a pipe18. As a first prototype, the Sprintbot is designed
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to operate in relatively dry pipes, but future prototypes will be
designed to operate in live sewers. The physical platform is
custom-designed and largely 3D printed. The electronic package
is built around a Raspberry Pi 4 as the primary controller, inter-
faced with an Arduino Nano as a secondary low-level controller.
The sensor payload consists of a camera (Arducam MIPI), Inertial
Measurement Unit (IMU, Arduino Nano 33 BLE Sense), laser
range finders (STMicroelectronics VL53L1X), ultrasonic trans-
ducers (Murata MA40S4R), speaker (Pimoroni 4    COM1601)
and microphones (Adafruit I2S MEMS Microphone Breakout).
These provide data for localisation, autonomous control and
blockage sensing.

Sprintbot has been tested and videoed at the Integrated
Civil and Infrastructure Research Centre (ICAIR) facility at the
University of Sheffield. The Sprintbot is relatively large needing
a minimum pipe diameter of 300 mm to safely operate. However,
this size was a function of using off the shelf electronics for
the short development period. The design also highlighted
the need for the platform to be stable to allow camera images
to be processed. Using experience from the development of
Sprintbot, a new pipe inspection robot has been designed and
is being assembled for testing. The new robot is significantly
smaller than the original with a maximum dimension of 60 mm
(Figure 4). The team is experimenting with the use of whegs
(a hybrid of wheels and legs) for motive traction. The reduced
size of robots means that the internal electronics can rely much
less on off the shelf modules, so custom electronics boards
are being designed and built. Initially twenty of these new robots
will be constructed to allow a variety of tests to be carried out,
including swarm applications, involving the use of a larger
‘Marsupial’ robot for deploying the swarm. An iterative prototyping
approach to design will continue to be employed throughout

Figure 2 | UKCRIC facilities at Sheffield.

the project lifetime. Robots for deployment in pressurised water
supply pipes face a different set of challenges and design of
these will commence soon.

Software integration and AI control
A full software architecture has been produced following the
development of the Sprintbot, by holding a further sprint. This
three week event was run using agile methodologies, specifically
Scrum (https://www.scrum.org/), and brought the Pipebots
themes 16 together daily to ensure smooth communication to
establish intermodule dependencies. The aim was to agree a
flexible software architecture that would allow reconfiguration
of a Pipebot across different variants with different sensing capa-
bilities. This software architecture (see Figure 5) is now available
to the team on the Pipebots Github repository (https://github.com/
pipebots), providing a software skeleton for any Pipebot and
allowing each theme to populate black-box elements with code
developed through their research. This will enable the rapid
development of future use-cases, as interoperability between
modules has been captured within the model. This software
approach helps in the design of control algorithms that can
easily adapt to the robotic and sensor designs that have yet to
be created. An example of such control is that required for self-
assembly Pipebots, in which robots would link together and
cooperate to perform certain tasks such as collaboratively moving
against a strong flow, ascending steep pipes or climbing steps
and obstacles. Ideas for algorithms have been proposed and
simulation models are currently being built for evaluation.

Autonomous navigation
Effective interventions in buried pipes rely on accurate knowledge
of the pipe network itself and on the location of the robot sensors
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within the network. The former is for the operators to have
accurate and up to date information on their assets. The latter
is to ensure that the robot swarm efficiently inspects the whole
network in a timely fashion and to pinpoint faults for interventions.
It is also critical to the success of the distributed (swarm) robotic
sensing that the sensor node positions are known accurately.
Novel algorithms are being developed by researchers for simul-
taneous localisation and mapping (SLAM) and subsequent navi-
gation in feature-sparse pipe networks19. The first major challenge
is to generate accurate 3D maps of pipe networks using 1D and
pseudo-2D movements in feature sparse environments in the
pipes below the ground. The second challenge is to incorporate
prior knowledge (e.g. from geographical information systems)
to enhance SLAM initialisation and performance. The third major
challenge is to combine SLAM information from swarm robots
to produce a real-time fused pipe network map. Researchers
have been determining the feasibility of tuning the parameters
of visual odometry methods to recover the camera position
along the pipe without the use of a tether 19. Simulations with
the water distribution network model EPANET were used to
show that a swarm of autonomous robots could operate without
a centralized controller and benefit from having some degree
of in-pipe communication20. Results indicate that 10-20 robots
with simple ‘ant colony’ style intelligence could be used to auto-
nomously inspect an (approximately) 30 km water distribution
network with a regularity of at least one inspection/month.

Applications
Real world applications, and integration, of the various techno-
logies are being investigated by means of a number of case
studies. Four example challenges are now provided.

Asset mapping. Asset databases for buried pipe networks are
regularly incomplete and uncertain, both in terms of network

Figure 3 | Sprintbot first prototype testing in mock pipe network.

coverage and specific details, such as material and diameter.
This is due to the age of the network, changes in ownership
over time, changes in database technology (e.g. from paper re-
cords to computer), and repairs and replacement of the original
pipes. Overcoming such challenges relies on the development
of pipe network SLAM described above. Research using pose-
graph optimization for localisation of a robot in an underground
water pipe has been demonstrated19. As an alternative to visual
localization methods, four methods of incorporating information
from the measurement of an acoustic spatial field were developed
and designed to be applicable to any spatially varying property
along the robot’s trajectory, such as magnetic or electric fields.
Experimental results in19 showed that the use of acoustic infor-
mation in pose-graph optimization reduces errors by 39% com-
pared to the use of typical pose-graph optimization using land-
mark features only.

Blockage. Blockage of sewers, specifically small diameter laterals
and pipes downstream of combined sewer overflows can result
in flooding and spills from the network. Blockages of smaller
pipes can accumulate rapidly hence the robot swarms would
likely need to be based in a local area in order to visit the small
pipes close to properties that are most prone to blockage.
Existing and emerging technologies monitor water levels in
Combined Sewer Overflows (CSOs) and are widely used in the
UK to monitor spill durations. Robots could react to investigate
alerts from automated analysis of the water level data.

Condition monitoring. The condition of buried pipes is very
difficult to assess, but understanding the condition accurately
is important to maintain or improve service performance and
extend the life of assets at an affordable cost. This is a major
challenge due to the many potential failure modes between
water distribution and drainage, different pipe materials, different
ground conditions, etc. Condition monitoring robots could carry

Figure 4 | Swarm Pipebot prototype concept.
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reactive interventions. This article assesses the state-of-the-art
in the development of autonomous robots for monitoring of
buried pipe networks and describes technologies being developed
by Pipebots 16. This collaboration between four UK universities
and industry aims to revolutionise buried pipe inspection with
the development of autonomous micro-robots designed to work
in complex pipe networks (clean and waste water) to generate
potentially massive amounts of real-time data. Swarms of minia-
turised autonomous robots equipped with novel sensors will be
deployed in buried pipe networks. New algorithms uniquely
incorporating Lagrangian (mobile) rather than traditional Eulerian
(fixed) based coordinate systems are being developed to process
the autonomously collected data to inform condition assessment
and system performance. The outputs from these algorithms
could be directly mapped to the hydrodynamic performance of
single pipes or fed into pipe deterioration models that can predict,
with AI and machine learning support, the remaining service life
of a pipe. Robotic autonomous systems will enable maximising
the capacity of existing infrastructure, detecting deterioration
proactively, increasing safety and reducing downtime of city
infrastructure and generating data to drive better maintenance
and investment models. However, significant problems must be
solved to result in pipes becoming a RAS highway. Technologies
are required for effective robot deployment and recovery, naviga-
ting in often unmapped and uncertain pipe environments and
communicating in order to contextualise the condition and allow
rehabilitation work to be planned. With sufficient technological
and governance progress utilities would be empowered to run
a fully automated inspection, repair and maintenance system
(using find and fix swarming robots). This would radically reduce
the risk of service failure and along with new repair technologies
significantly reduce the cost of individual repairs – releasing
funds to rehabilitate assets over the longer term. The Pipebots
team intends to have a full Pipebots system demonstrated in
a realistic (initially sewerage) network before 2024. Once that
is successful, a thorough certification and compliance process
will be required to ensure that pervasive autonomous Pipebots
will be safe to adopt and deploy in live water and sewer networks
for mapping, sensing and communicating.

out repeat surveys (with frequency based on the known condition
of individual pipes) in order that changes in condition can
be recorded and to inform accurately the predictive condition
modelling. Robots do not need to communicate condition back
to the cloud regularly, the frequency is likely to be determined
by the available data storage, or the frequency with which
it passes a hub that allows communication back to the water
utility. Work has been conducted on the ultrasonic detection of
voids (and water content in soil) as an early indicator of the
onset of failure in plastic water pipes21. The ultrasound technique
is shown to be capable of detecting water filled voids and asses-
sing the soil support, both of which are critical early indicators
of failure (Figure 6). Such solutions are ideal to be deployed on
Pipebots working inside pipes. Work has explored using acoustic
sensing for blockage detection in sewer pipes to characterise
the blockage shapes and sizes22.

Leakage. The leakage from piped water distribution networks is
a key (and enduring) challenge. While water utilities are able to
locate larger leaks the process is time consuming. Locating
smaller leaks, especially in plastic pipes, remains challenging.
Leakage detection robots would continuously trawl the network,
listening and searching for new (or changed) leaks and intrusion.
A main advantage of autonomous robotic technology is that it
will be possible to deploy leak sensors sufficiently close to the
position of each leak to pinpoint it much more accurately and
over a shorter period of time than is currently possible with
Eulerian based leak detectors. Initially these robots could be
deployed for a short period at a local level targeting areas with
high leakage. A challenge for Pipebots is to detect and locate
smaller leaks with reasonable precision (e.g. within centimetres)
and to do this in a timely manner.

Conclusions
Water distribution and wastewater pipe infrastructures are
ageing, resulting in regular failures requiring costly, disruptive,
reactive maintenance. Mobile robots could be used for autono-
mous, persistent monitoring of a buried pipe network, locating
faults and reporting information enabling proactive rather than

Figure 6 | Ultrasonic detection of voids in water pipes 30.Figure 5 | Pipebots software integration diagram.
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Irmgard Flügge-Lotz entered Technical University of Hannover
in 1923 and graduated in engineering thereby specializing in
aeronautics. She received the PhD title in 1929 and derived two
years later the Lotz-Method for calculating the distribution of
pressure in aircraft wings of different shapes. Later, she took
interest in automatic flight control of aircraft, notably of the
discontinuous or the ‘on-off’ type. By 1928, Flügge-Lotz headed
the Department of Theoretical Aerodynamics, of Aerodynamische
Versuchsanstalt AVA, at Göttingen University. She was also a
consultant for Deutsche Versuchsanstalt für Luftfahrt in Berlin-
Adlershorst from 1938-1945. However, she and her husband
Flügge felt themselves increasingly discriminated by the Nazi
regime. In 1948 they emigrated to the USA where Flügge was

Irmgard Flügge-Lotz
1903, Germany–1974, USA

offered a professorship in engineering, whereas his wife got the
first woman full professorship in the Engineering Department
at Stanford University. She extended her work to automatic flight
control and to the guidance of rockets and missiles, earning
herself the description ‘a female Wernher von Braun’.

Flügge-Lotz was awarded the Women Engineers Achievements
Award in 1970, and she was a Fellow of the Institution of Aero-
nautics and Astronautics. She delivered the von Karman Lecture
on Trends in the field of automatic control in the last two decades
in 1972 during the AIAA Annual Meeting in Washington DC. A
Wilhelm Flügge and Irmgard Flügge-Lotz Memorial Award was
installed by the Applied Mechanical Division of Stanford University.
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