16 research outputs found

    Towards Strong Normalization for Dependent Object Types (DOT)

    Get PDF
    The Dependent Object Types (DOT) family of calculi has been proposed as a new theoretic foundation for Scala and similar languages, unifying functional programming, object oriented programming and ML-style module systems. Following the recent type soundness proof for DOT, the present paper aims to establish stronger meta-theoretic properties. The main result is a fully mechanized proof of strong normalization for D_<:, a variant of DOT that excludes recursive functions and recursive types. We further discuss techniques and challenges for adding recursive types while maintaining strong normalization, and demonstrate that certain variants of recursive self types can be integrated successfully

    Non-reformist reform for Haskell Modularity

    Get PDF
    In this thesis, I present Backpack, a new language for building separately-typecheckable packages on top of a weak module system like Haskell’s. The design of Backpack is the first to bring the rich world of type systems to the practical world of packages via mixin modules. It’s inspired by the MixML module calculus of Rossberg and Dreyer but by choosing practicality over expressivity Backpack both simplifies that semantics and supports a flexible notion of applicative instantiation. Moreover, this design is motivated less by foundational concerns and more by the practical concern of integration into Haskell. The result is a new approach to writing modular software at the scale of packages.Modulsysteme wie die in Haskell erlauben nur eine weiche Art der ModularitĂ€t, in dem Modulimplementierungen direkt von anderen Implementierungen abhĂ€ngen und in dieser AbhĂ€ngigkeitsreihenfolge verarbeitet werden mĂŒssen. Modulsysteme wie die in ML andererseits erlauben eine krĂ€ftige Art der ModularitĂ€t, in dem explizite Schnittstellen Vermutungen ĂŒber AbhĂ€ngigkeiten ausdrĂŒcken und jeder Modultyp ĂŒberprĂŒft und unabhĂ€ngig ergrĂŒndet werden kann. In dieser Dissertation prĂ€sentiere ich Backpack, eine neue Sprache zur Entwicklung separattypenĂŒberprĂŒfbarer Pakete ĂŒber einem weichen Modulsystem wie Haskells. Das Design von Backpack ĂŒberfĂŒhrt erstmalig die reichhaltige Welt der Typsysteme in die praktische Welt der Pakete durch Mixin-Module. Es wird von der MixML-Kalkulation von Rossberg und Dreyer angeregt. Backpack vereinfacht allerdings diese Semantik durch die Auswahl von Anwendbarkeit statt ExpressivitĂ€t und fördert eine flexible Art von geeigneter Applicative- Instantiierung. Zudem wird dieses Design weniger von grundlegenden Anliegen als von dem praktischen Anliegen der Eingliederung in Haskell begrĂŒndet. Die Semantik von Backpack wird durch die Ausarbeitung in Mengen von Haskell-Modulen und „binary interface files“ definiert, und zeigt so, wie Backpack InteroperabilitĂ€t mit Haskell erhĂ€lt, wĂ€hrend Backpack es mit Schnittstellen nachrĂŒstet. In meiner Formalisierung Backpacks prĂ€sentiere ich ein neuartiges Typsystem fĂŒr Haskellmodule und ĂŒberprĂŒfe einen entscheidenen Korrektheitssatz, um die Semantik von Backpack zu validieren.Max Planck Institute for Software Systems (MPI-SWS

    Dependent Object Types

    Get PDF
    We propose a new type-theoretic foundation of Scala and languages like it: the Dependent Object Types (DOT) calculus. DOT models Scala’s path-dependent types, abstract type members and its mixture of nominal and structural typing through the use of reïŹnement types. The core formalism makes no attempt to model inheritance and mixin composition. DOT normalizes Scala’s type system by unifying the constructs for type members and by providing classical intersection and union types which simplify greatest lower bound and least upper bound computations. In this paper, we present the DOT calculus, both formally and informally. We also discuss our work-in-progress to prove typesafety of the calculus

    Multitier Modules

    Get PDF
    Multitier programming languages address the complexity of developing distributed systems abstracting over low level implementation details such as data representation, serialization and network protocols. Since the functionalities of different peers can be defined in the same compilation unit, multitier languages do not force developers to modularize software along network boundaries. Unfortunately, combining the code for all tiers into the same compilation unit poses a scalability challenge or forces developers to resort to traditional modularization abstractions that are agnostic to the multitier nature of the language. In this paper, we address this issue with a module system for multitier languages. Our module system supports encapsulating each (cross-peer) functionality and defining it over abstract peer types. As a result, we disentangle modularization and distribution and we enable the definition of a distributed system as a composition of multitier modules, each representing a subsystem. Our case studies on distributed algorithms, distributed data structures, as well as on the Apache Flink task distribution system, show that multitier modules allow the definition of reusable (abstract) patterns of interaction in distributed software and enable separating the modularization and distribution concerns, properly separating functionalities in distributed systems

    The Essence of Dependent Object Types

    Get PDF
    Focusing on path-dependent types, the paper develops foundations for Scala from first principles. Starting from a simple calculus D-<: of dependent functions, it adds records, intersections and recursion to arrive at DOT, a calculus for dependent object types. The paper shows an encoding of System F with subtyping in D-<: and demonstrates the expressiveness of DOT by modeling a range of Scala constructs in it

    Type soundness proofs with definitional interpreters

    Get PDF
    While type soundness proofs are taught in every graduate PL class, the gap between realistic languages and what is accessible to formal proofs is large. In the case of Scala, it has been shown that its formal model, the Dependent Object Types (DOT) calculus, cannot simultaneously support key metatheoretic properties such as environment narrowing and subtyping transitivity, which are usually required for a type soundness proof. Moreover, Scala and many other realistic languages lack a general substitution property. The first contribution of this paper is to demonstrate how type soundness proofs for advanced, polymorphic, type systems can be carried out with an operational semantics based on high-level, definitional interpreters, implemented in Coq. We present the first mechanized soundness proofs in this style for System F<: and several extensions, including mutable references. Our proofs use only straightforward induction, which is significant, as the combination of big-step semantics, mutable references, and polymorphism is commonly believed to require coinductive proof techniques. The second main contribution of this paper is to show how DOT-like calculi emerge from straightforward generalizations of the operational aspects of F<:, exposing a rich design space of calculi with path-dependent types in between System F and DOT, which we dub the System D Square. By working directly on the target language, definitional interpreters can focus the design space and expose the invariants that actually matter at runtime. Looking at such runtime invariants is an exciting new avenue for type system design.This research was supported by NSF through awards 1553471 and 1564207

    Design and Implementation of Family Polymorphism for Interactive Theorem Proving

    Get PDF
    With the growing practice of mechanizing language metatheories, it has become ever more pressing that interactive theorem provers make it easy to write reusable, extensible code and proofs. This thesis presents a novel language design geared towards extensible metatheory mechanization in a proof assistant. The new design achieves reuse and extensibility via a form of family polymorphism, an object-oriented idea, that allows code and proofs to be polymorphic to their enclosing families. Our development addresses technical challenges that arise from the underlying language of a proof assistant being simultaneously functional, dependently typed, a logic, and an interactive tool. Our results include (1) a prototypical implementation of the language design as a Coq plugin, (2) a dependent type theory capturing the essence of the language mechanism and its consistency and canonicity results, and (3) case studies showing how the new expressiveness naturally addresses real programming challenges in metatheory mechanization

    Aura: Programming with Authorization and Audit

    Get PDF
    Standard programming models do not provide direct ways of managing secret or untrusted data. This is a problem because programmers must use ad hoc methods to ensure that secrets are not leaked and, conversely, that tainted data is not used to make critical decisions. This dissertation advocates integrating cryptography and language-based analyses in order to build programming environments for declarative information security, in which high-level specifications of confidentiality and integrity constraints are automatically enforced in hostile execution environments. This dissertation describes Aura, a family of programing languages which integrate functional programming, access control via authorization logic, automatic audit logging, and confidentially via encryption. Aura\u27s programming model marries an expressive, principled way to specify security policies with a practical policy-enforcement methodology that is well suited for auditing access grants and protecting secrets. Aura security policies are expressed as propositions in an authorization logic. Such logics are suitable for discussing delegation, permission, and other security-relevant concepts. Aura\u27s (dependent) type system cleanly integrates standard data types, like integers, with proofs of authorization-logic propositions; this lets programs manipulate authorization proofs just like ordinary values. In addition, security-relevant implementation details---like the creation of audit trails or the cryptographic representation of language constructs---can be handled automatically with little or no programmer intervention
    corecore