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Abstract
The Dependent Object Types (DOT) family of calculi has been proposed as a new theoretic
foundation for Scala and similar languages, unifying functional programming, object oriented
programming and ML-style module systems. Following the recent type soundness proof for
DOT, the present paper aims to establish stronger metatheoretic properties. The main result
is a fully mechanized proof of strong normalization for D<:, a variant of DOT that excludes
recursive functions and recursive types. We further discuss techniques and challenges for adding
recursive types while maintaining strong normalization, and demonstrate that certain variants of
recursive self types can be integrated successfully.
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1 Introduction

The Dependent Object Types (DOT) calculus [8, 47, 7] aims to be a uniform foundation
for modern expressive languages that combine features from traditional object-oriented
languages, functional languages, and ML-style module systems.

After many years of false starts, a recent breakthrough in the study of DOT’s metatheory
established the key property of type soundness [47], which states that any well-typed program
either diverges or evaluates to a (properly typed) value. Thus, type soundness guarantees the
absence of runtime errors, as captured by the slogan “well-typed programs don’t go wrong”.

In this paper, we investigate another key metatheoretic property: strong normalization,
which states that any well-typed program evaluates to a (properly typed) value. Thus,
strong normalization implies type soundness, but in addition to excluding runtime errors,
it excludes the option of divergence: all well-typed programs must terminate. Standard
proof methods for type soundness do not scale to termination results, and hence, more
involved proof techniques are needed. It is also clear that strongly-normalizing languages
cannot be Turing-complete. Hence, some restrictions on the language are necessary to ensure
termination.

∗ This research was supported by NSF through awards 1553471 and 1564207.
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27:2 Towards Strong Normalization for Dependent Object Types (DOT)

A key contribution of this paper is to show that the one important restriction needed in
DOT is to prevent the creation of recursive type values. In particular, we can still include
DOT’s flavor of recursive self types without giving up on strong normalization. This result is
surprising, because adding traditional recursive types to simply-typed λ-calculus or System
F leads to Turing-completeness.

Why does strong normalization matter? It is well known from previous work that type
soundness of Turing-complete DOT versions hinges on the termination of path expressions
p that are used in path-dependent types p.Type. In fact, Scala has documented soundness
bugs related to path expressions such as lazy vals which are not guaranteed to terminate
[47]. Hence, studying termination properties of DOT-like calculi in a formal setting is a
stepping-stone for future type system extensions of DOT, for example towards higher-kinded
types and type lambdas [38].

This paper is structured around its individual contributions:
We review System D<:, its relation to F<: and to DOT and Scala, as well as the previous
type soundness result (Section 2).
We present our strong normalization proof for D<: in full detail. The proof method
follows the standard Girard-Tait approach based on logical relations [31, 54]. The key
challenge in adapting proof techniques from F<: and similar systems lies in the handling
of bounded first-class type values (Section 3).
We scale our proof from D<: towards DOT. We adapt the proof method to include
intersection types, which are used in DOT to model type refinement, and we clarify the
boundary between strongly normalizing and Turing-complete systems, where the key
challenge lies in handling DOT’s recursive self types. We first show that, consistent
with our expectations from similar systems, recursive type values are enough to encode
fixpoint combinators and lead to a Turing-complete language. But surprisingly, with
only non-recursive type values, we can still add recursive self types to the calculus and
maintain strong normalization (Section 4).

Our mechanized Coq proofs are available from:
https://github.com/tiarkrompf/minidot/tree/master/ecoop17

2 Background: System D<:

We base our description on a formal model situated inbetween F<: and full DOT, called
System D<: [9]. Like DOT, D<: has abstract type members and path-dependent type
selections. But in constrast to full DOT, which represents all values as objects with method
and type members, it has separate forms for dependent functions and first-class type values,
and it lacks recursive types.

2.1 Syntax and Typing Rules
System D<: is at its core a system of first-class type objects and path-dependent types.
Type objects can be seen as single-field records containing an abstract type member. Type
selections, or path-dependent types serve to access these abstract type members.

The syntax and typing rules are shown in Figure 2, after reviewing those of System F<: in
Figure 1. The type language includes ⊥ and >, as least and greatest element of the subtyping
relation, first-class abstract types (Type T1..T2), lower-bounded by T1 and upper-bounded
by T2, type selections on a variable x.Type (i.e., path-dependent types), where x is a term
variable bound to a type object, and finally dependent function types (x : T ) → T x. The

https://github.com/tiarkrompf/minidot/tree/master/ecoop17
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Syntax

T ::= X | > | T → T | ∀X <: T.TX
t ::= x | λx : T.t | ΛX <: T.t | t t | t [T ]
Γ ::= ∅ | Γ, x : T | Γ, X <: T

Subtyping Γ ` S <: U

Γ ` T <: >

Γ ` X <: X

Γ 3 X <: U Γ ` U <: T
Γ ` X <: T

Γ ` S2 <: S1 , T1 <: T2

Γ ` (S1 → T1) <: (S2 → T2)

Γ ` S2 <: S1
Γ, X <: S2 ` TX1 <: TX2

Γ ` (∀X <: S1.T
X
1 ) <: (∀X <: S2.T

X
2 )

Γ ` T1 <: T2 Γ ` T2 <: T3

Γ ` T1 <: T3

Type assignment Γ ` t : T

Γ 3 x : T
Γ ` x : T

Γ, x : S ` t : T
Γ ` (λx : S.t) : (S → T )

Γ ` t1 : (S → T ) , t2 : S
Γ ` t1 t2 : T

Γ, X <: S ` t : TX

Γ ` (ΛX <: S.t) : (∀X <: S.TX)

Γ ` t1 : (∀X <: U.TX) , T2 <: U
Γ ` t1[T2] : TT2

Γ ` t : S , S <: T
Γ ` t : T

Figure 1 System F<:: syntax and typing rules. The notation TX denotes that variable X may
occur free in T . Occuring in the same rule, TU denotes T with all occurrences of X replaced with
U . Types are otherwise assumed to be closed with respect to the environment.

notation T x denotes that term variable x may occur free in T . The term language includes
variables x, creation of type objects (Type T ), λ-abstractions λx.t, and applications t1 t2.

The subtyping relation can compare type selections with the bounds of the underlying
abstract types, and compare type objects and dependent functions, respectively. Type
assignment contains fairly standard cases for dependent abstraction and application.

To relate System D<: to Scala, let us take a step back and consider two ways to define a
standard List data type:

class List[E] // parametric, functional style
class List { type E } // modular style, w. type member

The first one is the standard parametric version. The second one defines the element type
E as a type member, which can be referenced using a path-dependent type. To see the
difference in use, here are the two respective signatures of a standard map function:

def map[E,T](xs: List[E])(fn: E => T): List[T] = ...
def map[T] (xs: List)(fn: xs.E => T): List & { type E = T } = ...

Again, the first one is the standard parametric version. The second one uses the path-
dependent type xs.E to denote the element type of the particular list xs passed as argument,

ECOOP 2017



27:4 Towards Strong Normalization for Dependent Object Types (DOT)

Syntax

T ::= ⊥ | > | Type T..T | x.Type | (x : T )→ T x

t ::= x | Type T | λx.t | t t
Γ ::= ∅ | Γ, x : T

Subtyping Γ ` S <: U

Γ ` ⊥ <: T (Sbot) Γ ` T <: > (Stop)

Γ ` T1 <: T2 Γ ` T2 <: T3

Γ ` T1 <: T3
(Strans)

Γ ` x.Type <: x.Type (SselX)

Γ ` x : Type T..>
Γ ` T <: x.Type

(Ssel1)

Γ ` x : Type ⊥..T
Γ ` x.Type <: T

(Ssel2)

Γ ` S2 <: S1 , U1 <: U2

Γ ` Type S1..U1 <: Type S2..U2
(Styp)

Γ ` S2 <: S1
Γ, x : S2 ` Ux1 <: Ux2
Γ ` (x : S1)→ Ux1 <:

(x : S2)→ Ux2

(Sfun)

Type assignment Γ ` t : T

x : T ∈ Γ
Γ ` x : T

(Tvar)

Γ ` Type T : Type T..T (Ttyp)

Γ, x : T1 ` t : T x2
Γ ` λx.t : (x : T1)→ T x2

(Tabs)

Γ ` t : (x : T1)→ T x2 , y : T1

Γ ` t y : T y2
(Tdapp)

Γ ` t1 : (x : T1)→ T2 , t2 : T1

Γ ` t1 t2 : T2
(Tapp)

Γ ` t : T1 , T1 <: T2

Γ ` t : T2
(Tsub)

Figure 2 System D<:: a generalization of F<: with type values and path-dependent types. A
type x.Type refers to the type “within” x (i.e. path dependent type). The notation T x denotes
that variable x may occur free in T . Types are otherwise assumed to be closed with respect to the
environment.

and uses a refined type List & { type E = T } to define the result of map. Such refined
types are included in DOT, but absent in D<:.

It is easy to see how the modular surface syntax directly maps to the formal D<: syntax,
if we express fully abstract types { type E } as (Type ⊥..>) and concrete type aliases
{ type E = T } as (Type T..T ). It is also important to note that the modular style with
first-class type objects can directly encode the functional style, which corresponds to bounded
parametric polymorphism as in System F<:, but with increased expressiveness due to the ⊥
type and potential lower bounds on type variables.
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Runtime Structures
H ::= ∅ | H,x : v Runtime environments
v ::= 〈H,λx.t〉 | 〈H,Type T 〉 Runtime values
r ::= Timeout | Done (Error | Val v) Interpreter results

Definitional Interpreter

(∗ Some Coq data types and auxi l iary functions el ided ∗)
Fixpoint eval (n : nat )(env : venv)( t : tm){ struct n}: option ( option vl ) :=
DO n1 ⇐ FUEL n; (∗ t o t a l i t y : n1<−n−1, TIMEOUT i f n=0 ∗)
match t with

| tvar x ⇒DONE (lookup x env) (∗ variable x ∗)
| ttyp T ⇒DONE (VAL (vty env T)) (∗ type value Type T ⇒ 〈H,Type T 〉 ∗)
| tabs x ey ⇒DONE (VAL (vabs env x ey )) (∗ lambda λx.ey ⇒ 〈H,λx.ey〉 ∗)
| tapp ef ex ⇒ (∗ application ef ex ∗)
DO vf ⇐ eval n1 env ef ;

DO vx ⇐ eval n1 env ex ;
match vf with

| (vabs env2 x ey) ⇒
eval n1 ((x , vx ) : : env2) ey

| _⇒ERROR
end

end .

Figure 3 System D<:: Operational Semantics.

2.2 Operational Semantics

The operational semantics of D<: follows the standard call-by-value λ-calculus evaluation
rules very closely. We can give a formal semantics in many different ways. We follow previous
work [9] in using an environment-based functional evaluator, which serves as a definitional
interpreter in the style of Reynolds [46]. A substitution-free semantics is attractive in the case
of DOT, mainly because term substitution requires additional mechanics in the metatheory
to properly handle type selections: in the surface syntax, [v/x](x.Type) = v.Type is not a
legal type. However, one can freely switch between environment-based and substition-based,
as well as big-step and small-step semantics following the interderivation techniques of Danvy
et al. [20, 21, 2].

Figure 3 shows both the definition of runtime values and the definition of the evaluator.
We opt to show the evaluator in actual Coq code. The only case that is different from
a call-by-value λ-calculus evaluator is the case that evaluates first-class type expressions
Type T to a form of type closure 〈H,Type T 〉.

The other aspect that is worth noting about our evaluator is that it is a total function,
by virtue of inheriting totality from its defining language, Coq. The evaluator takes a fuel
value n and distinguishes explicitly between Timeout, Error, and value results. The FUEL
operation in the first line desugars to a simple non-zero check:

match n with
| z ⇒ TIMEOUT
| S n1 ⇒ ...

end

The fuel value upper-bounds the number of steps the evaluator may take and can thus
serve as induction measure to prove properties about evaluation.

ECOOP 2017



27:6 Towards Strong Normalization for Dependent Object Types (DOT)

2.3 Previous Work: Type Soundness
To prove type soundness for D<:, previous work by Amin and Rompf [9] followed a technique
of Siek [50] and Ernst, Ostermann and Cook [25], which consists in using the numeric fuel
value as induction measure. Similar techniques have recently been proposed by Owens et
al. [43].

I Theorem 1 (Type soundness for D<:). If eval does not time out, it returns a well-typed
value: 1

Γ ` t : T Γ � H eval k H t = Done r
r = Val v H ` v : T

Proof. By induction on the fuel value k. Note that Γ � H means that Γ is well-formed with
H, i.e. the two environments are of the same length and values in H have corresponding
types in Γ. J

The proof has some complications compared to well-documented proofs for F<:, caused by
the fact that lower-bounded type members, may lead to transitivity chains T1 <: x.T <: T2
with a type selection in the middle, whereas in F<:, only upper-bounded type variables
X <: T can occur. These issues are described in detail in previous work [10, 47, 9].

It is important to note that soundness becomes quite a bit more complicated once recursive
types are added in full DOT [47].

2.4 Type Soundness Hinges on Strong Normalization of Paths
The soundness of DOT hinges on the fact that path terms p in type selections p.Type are
strongly normalizing. For this reason, current soundness results only cover type selection on
variables x.Type. Identifying larger terminating fragments of DOT lays the basis for future
extensions towards richer path expressions, and therefore, more general notions of dependent
types.

To see why termination of path expressions is important, it is necessary to realize that one
cannot, in general, enforce “good bounds” for all types occuring in a given program [10]. This
means that for a type (Type T1..T2), we need to accept that we cannot statically guarantee
that T1 <: T2. The reason is that this property is not preserved by intersection types, which
play a key role in DOT to model type refinement. Hence, DOT enforces this property in a
syntactic way, by allowing type values to only contain type aliases (Type T..T ). This means
that we only accept that a type has “good bounds” if it is inhabited. A transitivity chain
T1 <: p.T <: T2 is only safe if evaluation of p terminates with a unique value.

Non-termination of path-expressions or evaluation to non-values (through lazy vals, type
projections, or null values) is a recurring source of soundness bugs in the production Scala
language and compiler [11, 47].

3 Strong Normalization

We present our strong normalization proof for D<: in detail. Instead of assuming eval k H t

in the premise of Theorem 1, we now want to derive ∃ k. eval k H t in the conclusion.

1 In a slight abuse of notation, we will sometimes use inference rule notation in this paper to state lemmas
and theorems. This is just to make the formulas easier to parse and avoid spelling out all ∀/∃ quantifiers.
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I Definition 2 (Strong Normalization). Any well-typed term evaluates to a well-typed value:

Γ ` t : T Γ � H
eval k H t = Done Val v H ` v : T

We have fixed a deterministic call-by-value evaluation strategy, since it is known from
previous work that arbitrary reductions already violate type soundness [9]. In this setting,
strong normalization can be taken as a synonym for termination.2 Under non-deterministic
evaluation strategies, one distinguishes between strong and weak normalization: strong
normalization requires that all possible evaluations of a given term terminate with its normal
form. Weak normalization only requires that every term has a normal form, which can be
reached through some evaluation path.

3.1 The Girard-Tait Proof Method: Starting-Point F<:

The standard approach of proving termination is the method of Girard and Tait [31, 54].
For every type T we define its denotation JT K as the set of values that inhabit T , with
type-specific characterics that carry the key inductive properties of the main proof. The
judgement v : T then becomes v ∈ JT K. Based on these sets of values, we can also define sets
of terms t (paired with runtime environment H):

EJT K = {〈H, t〉 | ∃k, v. eval k H t = Done Val v ∧ v ∈ JT K}

that evaluate to a value of type T in environment H, in a certain number of steps k.
Standard proofs for a variety of type systems such as System F, F<:, and F-bounded can

be found in the literature [28, 39]. As we will see, adapting this proof technique for D<: from
F<: and similar systems is not entirely trivial. The key challenge lies in handling bounded
first-class type values, which are absent in F<:. Nevertheless, it is instructive to look at this
simpler setting first. The syntax and typing rules for F<: are reviewed in Figure 1.

The semantic interpretation of types, J.K, can be defined as:

J>Kρ = {v} i.e. set of all values
JXKρ = ρ(X)
JT1 → T2Kρ = {〈H,λx.t〉 | ∀vx ∈ JT1Kρ. 〈H(x 7→ vx), t〉 ∈ EJT2Kρ}
J∀X <: T1.T

X
2 Kρ = {〈H,ΛX.t〉 | ∀D ⊆ JT1Kρ. 〈H, t〉 ∈ EJTX2 Kρ(X 7→D)}

The definition of J.K is well-founded, since J.K is only used on proper subterms on the
right hand sides, including indirectly through EJ.K. The denotation of J>K is the set of all
values. To handle type variables X, J.K is parameterized over a context ρ which maps names
to sets of values. Note that ρ and H have different types and they are not interchangable.
The definition of JT1 → T2K captures the essential statement of the termination theorem as it
applies to functions: if there is a function argument value of the right type, then evaluation
of the function body will terminate after some number of steps and produce a result value
of the right type. Also note that F<: does not usually have a bottom type ⊥, but one can
naturally define J⊥Kρ = ∅.

Subtyping is inherently tied to a narrowing property for J.Kρ, i.e., the ability to replace
a binding in ρ with a subtype. However we cannot prove this directly, since J.Kρ is used

2 Our use of the term “strong normalization” is consistent with that of McAllester et al. [39], who also
used a (partial) evaluation function in their proof of strong normalization for System F2 and Fω.

ECOOP 2017



27:8 Towards Strong Normalization for Dependent Object Types (DOT)

recursively in a contravariant position for function arguments. Hence, the case for ∀ types
has narrowing “built-in” via ∀D ⊆ JT1Kρ.

To complete the termination proof, a key lemma is needed to model the subsumption
case, and interpret the subtyping relation in a semantic way (� is a consistency relation;
Γ � H ∼ ρ means that Γ(x) = T implies H(x) ∈ ρ(x) ⊆ JT Kρ):

I Lemma 3 (Semantic Widening). If Γ � H ∼ ρ and Γ ` T1 <: T2, then JT1Kρ ⊆ JT2Kρ

Proof. By induction on the subtyping derivation. J

We can interpret Lemma 3 equivalently as a widening or closure property: if v ∈ JT1Kρ
and Γ ` T1 <: T2 then v ∈ JT2Kρ. Additional lemmas about environment extension and
shrinkage (weakening and strenghtening) as well as about type substitution are needed as
well. With these helper lemmas, we can complete the desired theorem:

I Theorem 4 (Strong Normalization for F<:). Any well-typed term evaluates to a well-typed
value:

Γ ` t : T Γ � H ∼ ρ
〈H, t〉 ∈ EJT Kρ

Proof. By induction on the typing derivation. J

In particular, Theorem 4 holds for closed terms, in empty environments Γ and H.
It is worth noting that we assume lenient well-formedness throughout. All free variables

of syntactically valid forms (types or terms) are bound in environments. This assumption is
implicit in all definitions, lemmas and theorems, unless a free variable is explicitly mentioned,
as in T x.

3.2 System D<:: Type Values and Bounds
For D<:, we encounter key difficulties when defining J.K. A first straightforward attempt
inspired by F<: and adapted to path-dependent types might look like this:

J>Kρ = {v}
J⊥Kρ = ∅
JType T1..T2Kρ = {〈H,Type T 〉 | JT1Kρ ⊆ JT2Kρ}
Jx.TypeKρ = ρ(x)
J(x : T1)→ T x2 Kρ = {〈H,λx.t〉 | ∀D ⊆ JT1Kρ. ∀vx ∈ D.
〈H(x 7→ vx), t〉 ∈ EJT x2 Kρ(x 7→D)}

However, this can’t be right: consider the case where we have a function type, and
D = JType L..UK ⊆ JT1K. We add D to the environment ρ, but when it is picked up by some
x.Type, we end up comparing again to the type of the binding JType L..UK, but we need
to compare with the upper bound JUK instead! This behavior is dictated by the (SSel2)
subtyping rule from Figure 2:

Γ ` x : Type ⊥..U
Γ ` x.Type <: U

(Ssel2)

The semantic widening Lemma 3 needs to map this rule to Jx.TypeK ⊆ JUK, and hence
show that for any value, v ∈ ρ(x) implies v ∈ JUK. But unfortunately, we have no way to
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show this, as ρ(x) is mapped to JType ⊥..UK. Attempts to extract the bounds syntactically
from a given type, directly or indirectly, fail at various stages in the proof. To solve this
problem, we extend the definition of JT K to cover not only the type T itself but also its
bounds. We let JT K0 denote the values that inhabit T , JT KU the values that inhabit the
upper bound of T , JT KUU the upper bound of the upper bound, and so on. In the example
above, we can now access JUK0 via ρ(x)U = JType ⊥..UKU. However, this is not quite enough.
Consider the case in the semantic widening Lemma 3 that interprets the (SSel1) subtyping
rule:

Γ ` x : Type L..>
Γ ` L <: x.Type

(Ssel1)

Lemma 3 needs to map this rule to JLK ⊆ Jx.TypeK. Now we would have to show that
v ∈ JLK implies v ∈ ρ(x), so we need to track lower bounds, too. Just like with upper
bounds, we identify JLK0 with ρ(x)L = JType L..>KL. We need an additional property that
ρ(x)L ⊆ ρ(x)U to complete this case of the lemma. The following definitions make all this
more precise:

I Definition 5 (Indexed Value Sets). We index the value sets as JT KB∗, where B∗ is a possibly
empty list of bound selectors B that can be either U (upper bound) or L (lower bound). We
use 0 to denote the empty list explicitly.

I Definition 6 (Polarity of Bound Selectors). Let pos B∗ = true if the number of L in B∗ is
even, false otherwise. We also write B+ to denote a positive sequence of bound specifiers
(pos = true) and B− a negative one (pos = false).

I Definition 7 (Indexed Value Set Inclusion). An indexed value set D1 is smaller or equal
than D2, written D1 v D2, iff

∀B+. DB+
1 ⊆ DB+

2 ∧ ∀B−. DB−
2 ⊆ DB−

1

To add some intuition to this definition, consider the case where T1 <: T2 <: T3 <: T4.
Then Type T2..T3 <: Type T1..T4, based on our subtyping rule. Regard D2 as JType T1..T4K,
and D1 as JType T2..T3K. Then intuitively, D1 v D2, which makes sense when we see that
DU

1 ⊆ DU
2 , and DL

2 ⊆ DL
1, because DU

1 = JT3K and DU
2 = JT4K, and DL

1 = JT2K and DL
2 =

JT1K.

I Definition 8 (Good bounds). An indexed value set D has “good bounds”, written
GoodBounds D, iff for all A∗ such that DA∗ 6= ∅ we have:

∀B+. DA∗LB+ ⊆ DA∗UB+ ∧ ∀B−. DA∗UB− ⊆ DA∗LB−

To add some intuition to this definition, consider DA∗L as D1 and DA∗U as D2. Intuitively,
DA∗L v DA∗U. Then applying definition 7 to D1 and D2 gives us definition 8.

The switching of polarity is necessary to account for contravariance in lower-bound
comparisions, in accordance with the (Styp) subtyping rule. Note that the definition of
“good bounds” is lenient with respect to empty sets, which correspond to uninhabited types.

With these auxiliary definitions at hand, we can define the value type relation J.K for D<::

ECOOP 2017



27:10 Towards Strong Normalization for Dependent Object Types (DOT)

I Definition 9 (Value Type Relation).

J>KB+
ρ = {v}

J>KB−
ρ = ∅

J⊥KB+
ρ = ∅

J⊥KB−
ρ = {v}

JType T1..T2K0
ρ = {〈H,Type T 〉 | JT1Kρ v JT2Kρ}

JType T1..T2KUB∗
ρ = JT2KB∗

ρ

JType T1..T2KLB∗
ρ = JT1KB∗

ρ

Jx.TypeKB∗
ρ = ρ(x)UB∗

J(x : T1)→ T x2 K0
ρ = {〈H,λx.t〉 | ∀D.D v JT1Kρ ∧GoodBounds D ⇒

∀vx ∈ D0. 〈H(x 7→ vx), t〉 ∈ EJT x2 K0
ρ(x7→D)}

J(x : T1)→ T x2 K(B+ 6= 0)
ρ = {v}

J(x : T1)→ T x2 K(B−)
ρ = ∅

EJT KB∗
ρ = {〈H, t〉 | ∃k, v. eval k H t = Done Val v ∧ v ∈ JT KB∗

ρ }

The interpretation of > includes all values, and the upper bound of >, and in fact all
positive deeper bounds are again equal to >. Its negative bounds are not inhabited: they
correspond to the definition of type ⊥. All positive bounds of ⊥ are empty, and thus equal
to ⊥ itself. The lower bound of ⊥, and all other negative bounds, are equal to >. The
interpretation of Type T1..T2 requires the bounds T1 and T2 to be properly ordered, and can
extract the corresponding bound for selectors UB∗ and LB∗. Note that to keep the definition
well-founded, no restrains are given for the relationship between T and T1, T2, and none are
needed. This somewhat surprising scheme works essentially due to a type erasure property
(types are not required to be represented at runtime). We will see an alternative model
in Section 4. Type selections x.T are mapped to the upper bound of the type stored in
the context, in accordance with subtyping rule (Ssel2). Function types are interpreted as
expected for the base type, and have lower bound ⊥ and upper bound >. This is to ensure
that every type has some bounds.

The definition of EJ.K is as before. If within some steps k, a term t evaluates to some
value v in an evironment H, and v belongs to the set of values that inhabits type T with
context ρ (i.e. v ∈ JT K0

ρ), then the pair 〈H, t〉 is a member of the logical relation EJT K0
ρ.

Bound selectors other than 0 are analagous.
We prove a couple of straightforward structural lemmas, which we will use at various

later points:

I Lemma 10 (Weakening/Strengthening). The value type relation is invariant under extending
and shrinking the context:

x /∈ FV (T )
JT KB∗

ρ = JT KB∗
ρ(x 7→D)

Proof. By induction on the size of T . J

I Lemma 11 (Substitution). The value type relation is invariant under substitution of bound
variables that map to equivalent type sets:

ρ(x) = ρ(y)
JT xKB∗

ρ = JT yKB∗
ρ
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Proof. By induction on the size of T . J

I Definition 12 (Consistent Environments). A type environment Γ, a value environment H,
and a value typing context ρ are consistent, written, Γ � H ∼ ρ, iff they contain exactly the
same bindings and the following proposition holds:

Γ(x) = T

H(x) ∈ ρ(x)0 ∧ ρ(x) v JT Kρ ∧ GoodBounds ρ(x)

We also use the notation Γ � ρ when we do not need to refer to a specific value
environment H, but assume that a suitable one exists. The strong similarity between
consistent environments and the definition of J(x : T1)→ T x2 K0

ρ is no coincidence. We need to
maintain this correspondence, so that when the environment is extended with new bindings
for a λx.y term, the consistency of the involved (type, value, and value typing) environments
is retained. We formulate this capability as an auxiliary structural lemma:

I Lemma 13 (Extending Consistent Environments).

Γ � H ∼ ρ v ∈ D0 D v JT Kρ(x 7→D) GoodBounds D
(Γ, x : T ) � (H,x : v) ∼ (ρ, x : D)

Proof. By straightforward case distinction on the target index y. If y = x, i.e. y refers to the
newly added T , v, and D in the three respective environments, then the provided premises
are just right for the goal. If y 6= x, i.e. y refers to older respective entries, then necessary
evidence can be obtained from Γ � H ∼ ρ, with the help of Lemma 10. J

3.3 Good Bounds
We are now ready to prove our first semantically meaningful lemma:

I Lemma 14 (Good Bounds). In a consistent environment, all types have good bounds:

Γ � ρ
GoodBounds JT Kρ

Proof. By induction on T . The cases for >, ⊥, and for function types are solved by
contradiction, since either the type itself or the lower bound in question is not inhabited. The
case for type selections x.Type uses the consistent environment rule, which states that all
value sets D in ρ have the GoodBounds property. Case for type values Type T1..T2 requires a
case distinction on the bound selectors B∗. If B∗ is 0, the result follows immediately from the
definition of J.K. If B∗ is L :: B′∗ or U :: B′∗, the result follows from the inductive hypothesis,
either for the type of the lower bound T1 or the type of the upper bound T2, respectively. J

3.4 Semantic Subtyping
As already discussed in Section 3.1 for F<:, we need a key lemma that provides a semantic
interpretation of the syntactic subtyping relation. This semantic widening or subsumption
lemma for D<: is slightly different from the one for F<: (Lemma 3). First, because it is
defined on indexed value sets and on the corresponding ordering relation v instead of plain
sets and set inclusion ⊆, and therefore needs to take the switch of direction for negative
bounds selectors into account. Second, in D<: the subtyping rules for type selections x.Type,
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(Ssel1) and (Ssel2), depend on the type assignment relation, which again depends on
subtyping via the subsumption rule (Tsub). Hence, we need to prove two statements in a
mutual induction.

I Lemma 15 (Semantic Widening).

Γ � H ∼ ρ Γ ` T1 <: T2

JT1Kρ v JT2Kρ

I Lemma 16 (Inversion of Variable Typing).

Γ � H ∼ ρ Γ ` x : T
H(x) ∈ ρ(x)0 ρ(x) v JT Kρ GoodBounds ρ(x)

Proof. By simultaneous induction on the subtyping and type assignment relations. Cases
(Styp) and (Strans) are solved directly by the inductive hypothesis. Cases (Ssel1) and
(Ssel2) are solved by a combination of the inductive hypothesis for type assignment and
the resulting properties for the value set D. For case (Sfun), the case for the parameter
type is solved by the inductive hypothesis. To use the inductive hypothesis for the result
type, the results for the function argument and the consistent environments premise have
to be extended using Lemma 10 and Lemma 13. The remaining subtyping cases (Sbot),
(Stop), and (SselX), are immediate. Case (Tvar) follows from the consistent environments
property. Case (Tsub) follows by induction on both type assignment and subtyping. J

3.5 Inversion of Function Typing
When we know that a value v is of a function type, we need to be able to extract more
knowledge from this value. In particular, we need to be able to derive that the value is
an actual function closure, and that, given a proper argument value, the evaluation of the
function body will terminate at the correct type. After all, this is the main design of our
value type relationship definition. The inversion lemmas below make this knowledge explicit.

I Lemma 17 (Non-Dependent Function Inversion).

v ∈ J(x : T1)→ T2K0
ρ GoodBounds JT1Kρ

v = 〈H ′, λx.t〉 ∀vx ∈ JT1K0
ρ. 〈H ′(x 7→ vx), t〉 ∈ EJT2K0

ρ

Proof. The main challenge of the proof is to create a value set D, such that D v JT1Kρ ∧
GoodBounds D, even though this D is never referred to by T2. Thankfully we can just
use the identity set (i.e. JT1Kρ) for this case, with the help of the “good bounds” premise.
Strengthening (Lemma 10) shrinks the internal context ρ(x 7→ JT1Kρ) back to ρ, since x is
not free in T2. J

Lemma 17 deals with non-dependent function application in case (Tapp), where the
resulting types do not have any free variables. We also need the next lemma, to deal with
dependent function application in case (Tdapp).

I Lemma 18 (Dependent Function Inversion).

v ∈ J(x : T1)→ T x2 K0
ρ ρ(z) v JT1Kρ GoodBounds ρ(z)

v = 〈H ′, λx.t〉 ∀vx ∈ ρ(z)0. 〈H ′(x 7→ vx), t〉 ∈ EJT z2 K0
ρ
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Proof. Here, ρ already contains a matching value set D at position z. Via substitution
(Lemma 11), we can switch between names x and z as required. The rest of the proof is
straightforward. J

Not all premises needed for Lemma 17 and Lemma 18 are directly available from the
consistent environment premise in Theorem 19, but they can be obtained indirectly. Lemma 16
is used to connect consistent environments with the premises needed for dependent application,
and the good bounds premise for non-dependent application follows from Lemma 14.

3.6 The Main Strong Normalization Proof
Our main strong normalization theorem states that a correctly typed term, under consistent
environment, will always evaluate to a value of the same type.

I Theorem 19 (Strong Normalization for D<:). Any well-typed term evaluates to a well-typed
value:

Γ ` t : T Γ � H ∼ ρ
〈H, t〉 ∈ EJT K0

ρ

Proof. By induction on the typing derivation. Case (Ttyp) is immediate. Case (Tvar)
follows from the consistent environment premise. Case (Tapp) is solved by the inductive
hypothesis, Lemma 17, and using the resulting evidence. The good bounds premise for
Lemma 17 follows from the good bounds Lemma 14 and consistent environments. Case
(Tdapp) is solved by the inductive hypothesis, Lemma 18, and Lemma 16. Both of the two
application cases need extra calculations to sum up a sufficient amout of evaluation fuel k in
the resulting EJ.K evidence. Case (Tabs) uses the environment extension Lemma 13 and
“stores” the inductive hypothesis inside the returned J(x : T1)→ T x2 Kρ evidence, where it can
be picked up by an application case later. Case (Tsub) follows from the inductive hypothesis
and Lemma 15. J

4 Scaling up to DOT

Having proved strong normalization for D<:, we would like to add more language features.
Particular missing features from DOT are supports for records or objects with multiple
members, and recursive types.

4.1 Intersection Types
DOT uses intersection types T1 ∧ T2 to model objects with multiple methods and type
members, such as (Type A = ...) ∧ (Type B = ...). Unfortunately, intersection types are not
readily supported by our proof. To see why, consider first the usual introduction rule for
intersection types

Γ ` t : T1 , Γ ` t : T2

Γ ` t : T1 ∧ T2
(Tand)

and again the definition of J.K for type values:

JType T1..T2K0
ρ = {〈H,Type T 〉 | JT1Kρ v JT2Kρ}
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Since this definition does not relate T to T1 and T2 in any way, we may assign two types
with conflicting bounds to a given value in (Tand), even though each type may have good
bounds individually. Hence, the intersection of two such types will have bad bounds.

The straightforward idea would be to require in the definition of JType T1..T2K0
ρ that T

is inbetween T1 and T2, but unfortunately, this would make J.K no longer well-founded.
It is well known that simply-typed λ-calculus with intersection types corresponds exactly

to the strongly normalizing λ-terms [29]. Hence, we should be able to support them in D<:,
too, without breaking strong normalization. However, additional mechanisms are needed to
carry the evidence that from rule (Ttyp)

Γ ` Type T : Type T..T (Ttyp)

only type aliases can be created, which by definition cannot have conflicting bounds.

4.2 Recursion
DOT also supports recursive functions and recursive self types. In contrast to traditional iso-
or equi-recursive types, the self-reference is a term variable instead of a type variable:

T ::= .. | µ(x : T x)

Recursive Type Values May Diverge

By intention, DOT is a full Turing-complete language. But it is interesting to study the
boundary between strongly normalizing and Turing-complete systems. What is the minimum
required change to achieve Turing-completeness? Consistent with our expectations from
traditional models of recursive types, we demonstrate that recursive type values are enough
to encode diverging computation. If we replace the current introduction rule for type values

Γ ` Type T : Type T..T (Ttyp)

with a recursive one

Γ ` {x => Type T x} : µ(x : Type T x..T x) (TtypRec)

and assume standard syntactic sugar for let bindings, then we can write the following
term:

let x = {x => Type (x.Type → ⊥)} in
let g = λ(f : x.Type). f f in
g g

This term is well-typed and diverges. Hence, we have a counterexample to strong
normalization.

Recursive Self Types Don’t

But surprisingly, with only non-recursive type values via rule (Ttyp), we can still add
recursive self types to the calculus and maintain strong normalization. The full DOT
calculus [47] includes the following introduction and elimination rules:
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(* Only showing the evaluation rule for unpack terms *)
Fixpoint eval(n: nat)(env: venv)(t: tm){struct n}: option (option vl) :=

DO n1 ⇐ FUEL n; (* totality: TIMEOUT if not enough fuel *)
match t with

... (* same as in Figure 2 *)
| tunpack ex x ey ⇒ (* unpack ex as x in ey *)

DO vx ⇐ eval n1 env ex;
eval n1 ((x,vx)::env) ey

end.

Figure 4 Operational Semantics of unpack terms.

Γ ` x : T x

x : µ(z : T z) ∈ Γ
(TvarPack)

x : µ(z : T z) ∈ Γ
Γ ` x : T x

(TvarUnpack)

As well as a subtyping rule for recursive types:

Γ, x : T1 ` T x1 <: T x2
Γ ` µ(x : T1) <: µ(x : T2)

(Srec)

In this paper, we settle for a slightly weaker model, with an explicitly scoped unpack
construct and the following typing rule (Tunpack) instead of (TvarUnpack) above:

Γ ` e1 : µ(z : T z) Γ, x :T x ` e2 : U
Γ ` unpack e1 as x in e2 : U

(Tunpack)

The unpack term is newly introduced. Its operational semantics is that of a standard
let construct, implemented in the definitional interpreter as shown in Figure 4. We will
come back to discuss difficulties in the proof with rule (TvarUnpack) in Section 4.4.

F-Bounded Quantification

Can we still do anything useful with recursive self types if the creation of proper recursive
type values is prohibited? Even in this setting, recursive self types enable a certain degree of
F-bounded quantification [16], as the following example shows.

Using Scala syntax, and assuming that we extend our calculus with support for records
with multiple named members as in DOT, we can define a type of points with cartesian
coordinates:
type Point = { val x: Int; val y: Int }

We further define a type of comparable points:
type CmpPoint = { val x: Int; val y: Int; def cmp(other: Point): Boolean }

Values of type CmpPoint are straightforward to create, and the comparison operation
only needs to look at x and y, which are already present in type Point. Assuming any
standard interpretation of record subtyping, CmpPoint is a subtype of Point. Hence, due
to contravariance, CmpPoint is a subtype of { def cmp(o: CmpPoint): Boolean }. In
other words, CmpPoint values are comparable to each other, but the comparison can only
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treat them as Points—in particular, cmp cannot call cmp on another CmpPoint, which
could potentially lead to cycles.

With recursive self types, we can abstract over types that are comparable to themselves:
type SelfComparable = { m =>

type BoxedType <: { def cmp(other: m.BoxedType): Boolean }
}

This type is legal to define using rule (Ttyp), since there is no recursive reference to
SelfComparable, but we could not create a type value that holds a direct equivalent of
BoxedType. However, we can create a type value that holds CmpPoint, and assign it type
SelfComparable via up cast:
val p = { type BoxedType = CmpPoint }
val m = p: SelfComparable // up-cast

The definition of BoxedType in SelfComparable looks dangerously close to the diverging
case shown above, and it will in fact lead to a form of self application, when a given CmpPoint
is compared to itself. The crucial difference is that BoxedType is lower-bounded by type ⊥,
as opposed to being a type alias in the case above. It cannot be a precise type, because we
explicitly want to widen the argument type of cmp from Point to CmpPoint. Due to this
imprecise lower bound, we cannot assing type m.BoxedType to any value “from the outside”.

Given this abstraction it is straightforward to define functions that operate on self-
comparable data types in a generic way.

4.3 Extended Proof Method
For both intersection types and recursive self types, the required invariants rely in crucial
ways on transporting properties from the creation site of type objects to their use sites – in
particular the fact that only type aliases 〈H,Type T 〉 can be created (with type (Type T..T )),
and that these cannot be recursive.

This was also a key insight in the soundness proof for DOT, but it is not directly reflected
in the termination proof from Section 3, which is based on tracking the GoodBounds property
as part of an environment predicate.

Our revised proof method is based on the idea that we can pair each 〈H,Type T 〉 value
with the semantic interpretation of the type member JT K. So JT K in general is no longer a
set of values, but a set of (v, J.K) pairs. On the first glance, this looks tricky because value
sets become recursive:

J.K = {(v, J.K)}
However we can employ a fairly straightforward indexing scheme to make this definition

well-founded:
J.K0 = {v}
J.Kn+1 = {(v, J.Kn)}

We can now define value sets as the intersection of all finite approximations:

JT K =
⋂
n

JT Kn

As it turns out, we no longer need the previuos L/U bound selectors, and the (Type T1..T2)
case can ensure that the actual type member of an object is inbetween the given bounds.
This also enables support for intersection types.

The value type relation in this model is defined as follows, where D is a value set
J.K and Dn the approximation at a particular index. We write (v,D) ∈ JT Kρ to mean
∀n. (v,Dn) ∈ JT Kn+1

ρ . The environment ρ maps names to non-indexed value sets.
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I Definition 20 (Value Type Relation with ∧ and µ).

JT K0
ρ = {v}

J>Kn+1
ρ = {v,Dn}

J⊥Kn+1
ρ = {}

JType T1..T2Kn+1
ρ = {〈H,Type T 〉 , Dn | JT1Knρ ⊆ Dn ⊆ JT2Knρ}

Jx.TypeKn+1
ρ = ρ(x)n+1

J(x : T1)→ T x2 Kn+1
ρ = {〈H,λx.t〉 , Dn | ∀vx, Dx. (vx, Dx) ∈ JT1Kρ ⇒

〈H(x 7→ vx), t〉 ∈ EJT x2 Kρ(x 7→Dx)}

Jµ(x : T x)Kn+1
ρ = {v,Dn | (v,Dn) ∈ JT xKn+1

ρ(x 7→D)}

JT1 ∧ T2Kn+1
ρ = JT1Kn+1

ρ ∩ JT2Kn+1
ρ

EJT Kρ = {〈H, t〉 | ∃k, v,D. eval k H t = Done Val v ∧ (v,D) ∈ JT Kρ}

Compared to Section 3, the proof structure in this model remains largely identical, with
some simplifications. For example, we no longer need a “good bounds” lemma, and it also
becomes more tractable to integrate the function inversion lemmas into the main proof
(explicit functional inversion lemmas are no longer needed). We list the following definitions
and lemmas/theorems to highlight the main differences to Section 3. The individual proofs
are largely analogous.

I Definition 21 (Consistent Environments Rec). A type environment Γ, a value environment
H, and a value typing context ρ are consistent, written, Γ � H ∼ ρ, iff they contain exactly
the same bindings and the following proposition holds:

Γ(x) = T

(H(x), ρ(x)) ∈ JT Kρ

I Lemma 22 (Extending Consistent Environments Rec).

Γ � H ∼ ρ (v,D) ∈ JT Kρ(x 7→D)

(Γ, x : T ) � (H,x : v) ∼ (ρ, x : D)

I Lemma 23 (Semantic Widening Rec).

Γ � H ∼ ρ Γ ` T1 <: T2

JT1Kρ ⊆ JT2Kρ

I Lemma 24 (Inversion of Variable Typing Rec).

Γ � H ∼ ρ Γ ` x : T
(H(x), ρ(x)) ∈ JT Kρ

I Theorem 25 (Strong Normalization Rec). Any well-typed term evaluates to a well-typed
value:

Γ ` t : T Γ � H ∼ ρ
〈H, t〉 ∈ EJT Kρ
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4.4 Limitations on Unpacking Recursive Types
As already mentioned in Section 4.2, our current proof relies on unpacking recursive self
types in explicitly scoped contexts, via rule (Tunpack). The full DOT formalism [47, 9],
however, includes an unpacking rule that is symmetric to the (TvarPack) rule:

x : µ(z : T z) ∈ Γ
Γ ` x : T x

(TvarUnpack)

Note that since the subtyping rules for type selections (Ssel1),(Ssel2) are defined in
terms of variable type assignment Γ ` x : (Type L..U), these may pack and (especially!)
unpack recursive types as well.

Extending our strong normalization proof to include rule (TvarUnpack) has proven
difficult, for the following reason. The given definition of Jµ(x : T x)K contains an implicit
existential on the right hand side, which we can make explicit as follows:

Jµ(x : T x)Kn+1
ρ = {v, d | ∃D. d = Dn ∧ (v,D) ∈ JT xKρ(x 7→D)}

In the (TvarUnpack) case of the main theorem, we have

∀n. (H(x), ρ(x)n) ∈ Jµ(x : T x)Kn+1
ρ

and we need to show
∀n. (H(x), ρ(x)n) ∈ JT xKn+1

ρ .

Equivalently, with H(x) = v and ρ(x) = E we have

∀n. ∃D. En = Dn ∧ ∀k. (v,Dk) ∈ JT yKk+1
ρ(y 7→D)

and we need to show
∀n. (v,En) ∈ JT yKn+1

ρ(y 7→E).

This is problematic, as we may have a different D for each n. Taking a more global view, we
know that this can never actually be the case, as recursive types are only ever assigned by
rule (TvarPack), which uses the same D = ρ(x) for each n. However, the given definition
of J.K is unable to carry forward this piece of evidence, and it seems very hard to impose
a corresponding constraint within the current indexed definition of J.Kn+1 = {(v, J.Kn)}.
Monotonicity properties such as those often used in step-indexed logical relations [4, 3] are
not sufficient. Since we do not have the number of execution steps available as an input, the
function case J(x : T1)→ T x2 K requires access to JT1K at higher indexes than its own, and
therefore precludes establishing any useful upper bound on n.

We leave support for (TvarUnpack) in our mechanized proof as future work, along with
more diverse models of recursive types, which would further increase expresssiveness, while
remaining strongly normalizing. An obvious candidate among those would be, for example,
an extension with strictly positive recursive type values, similar to the model that underlies
inductive definitions in Coq [30].

5 Related Work

Semantic Models

There is a vast body of work on semantics and proof techniques, including Plotkin’s struc-
tural operational semantics [45], Kahn’s Natural Semantics [35], and Reynold’s Definitional
Interpreters [46].
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The use of step counters in natural semantics to distinguish between divergence and
errors goes back to at least Gunter and Rémy’s partial proof semantics [32] and has recently
been advocated in the context of compiler verification [43].

Strong Normalization

The standard proof method for strong normalization is based on logical relations and goes
back to Girard and Tait [31, 54]. Strong normalization proofs for F<: and related calculi we
presented by McAllester et al. [39] and by Ghelli [28]. Step-indexed logical relations extend
the general proof method to turing complete languages. While they cannot, of course, be used
to derive termination results in this case, this method can be used to show type soundness
and other properties in the presence of recursive types, mutable state, and other relevant
language features [12, 3, 5]. Terminating calculi that include recursion facilities have been
studied for example by Stump et al. [53]. Their work on termination casts provides a type
and effect system for termination. A possibly diverging term t can be cast to terminating
type, if there is evidence for Terminates t, which is a primitive type form. Casinghino et al.
[17] combine proofs and programs in a dependently typed language, where the logical subset
is proven to be strongly normalizing via plain Girard-Tait logical relations, and step-indexed
logical relations are used in the computational fragment to enable full recursion.

Subtyping and Dependent Types

Subtyping has been combined with logically consistent (and thus strongly normalizing)
dependent type systems, albeit without polymorphism [13], motivated by applications in the
context of logical frameworks. Pure subtype systems [34] unify not only types and terms,
but also type assignment and subtyping. Being still fairly recent work, the metatheory of
such pure subtype systems does not appear to be fully developed yet. In the context of
intersection types, it is well known that the typable terms in simply-typed λ-calculus with
intersection types are exactly the strongly normalizing λ-terms. A rather elegant proof is
due to Ghilezan [29].

Recursive Self Types

System S by Fu and Stump [26] also considers a form of self-types and strong normalization.
The motivation is to establish lambda encodings as a practical foundation for datatypes,
i.e., enable type theories without primitive datatypes such as those in Coq and Agda. In
particular, the self-type construct in System S is used to support dependent elimination with
lambda encodings, including induction principles. Strong normalization was established by
erasure to a version of System Fω with positive recursive types.

Comparing System S with self types in DOT, it appears that rules (selfGen) and
(selfInst) in System S are analogous to (TvarPack) and (TvarUnpack) in DOT. Our
(Tunpack) rule introduces an additional unpack term construct, which appears less elegent.
The key difference with System S seems to be that their rules deal with arbitrary terms,
while the rules in DOT only deal with variables. Thus, the self-types in System S appear to
be more general, but on the other hand System S has no notion of subtyping.

CDLE (the Calculus of Dependent Lambda Eliminations) [52] is a continuation of this
idea and goal, and added lifting types to the calculus in order to support large eliminations.
The key proven results for CDLE are type soundness and logical consistency, i.e., that no
terms can inhabit contradictory types (false). The CDLE calculus has been implemented
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as a system called Cedille. Cedille is implemented in Agda, however with Agda’s positivity
checker turned off to allow for higher-order encodings.

Scala Foundations

Much work has been done on grounding Scala’s type system in theory. Early efforts included
νObj [42], Featherweight Scala [19] and Scalina [40].

None of them lead to mechanized metatheoretical results, especially soundness. DOT [8]
was proposed as a simpler and more foundational core calculus, focusing on path-dependent
types but disregarding classes, mixin linearization and similar questions. The original DOT
formulation [8] had actual preservation issues.

The µDOT calculus [10] is the first calculus in the line with a mechanized soundness
result.

Soundness for full DOT has been established more recently [47, 7], and recent work [9]
has connected DOT with well-studied calculi such as F<: through D<: and related systems.
The various DOT results are described in full detail in Amin’s PhD thesis [6].

ML Module Systems

1ML [48] unifies the ML module and core languages through an elaboration to System Fω
based on earlier such work [49]. Compared to DOT and D<:, the formalism treats recursive
modules in a less general way and it only models fully abstract vs fully concrete types, not
bounded abstract types.

In good ML tradition, 1ML supports Hindler-Milner style type inference, with only
small restrictions. Path-dependent types in ML modules go back at least to SML [37], with
foundational work on translucent signatures by Harper and Lillibridge [33] and Leroy [36].
MixML [22] drops the stratification requirement and enables modules as first-class values.

Related Languages

Other calculi related to DOT’s path-dependent types include the family polymorphism of
Ernst [23], Virtual Classes [25, 24, 41, 27], and ownership type systems like Tribe [18, 15].

Like System D<:, pure type systems [14] unify term and type abstraction. Extensions of
System F<: related to DOT include intersection types and bounded polymorphism [44] and
higher-order subtyping [51, 1].

6 Conclusions

Following the recent type soundness proof for DOT, the present paper establishes stronger
metatheoretic properties. The main result is a fully mechanized proof of strong normalization
for D<:, a variant of DOT that excludes recursive functions and recursive types. We further
showed that certain variants of DOT’s recursive self types can be integrated successfully
while keeping the calculus strongly normalizing. This result is surprising, as traditional
recursive types are known to make a language Turing-complete.
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A Mechanization in Coq

We outline the correspondence between the formalism on paper and its implementation in
Coq (https://github.com/tiarkrompf/minidot/tree/master/ecoop17).

The Coq package contains the following source files:
dsubsup_total.v – Strong normalization proof forD<:, closely matches the presentation
in Section 3
dsubsup_total_rec.v – Strong normalization proof for D<: with recursive self types
and intersection, Section 4

A.1 Model

A.1.1 Syntax (Figure 2)

ty S, T, U ::= Type
TTop > top type
TBot ⊥ bottom type
TMem S U Type : S..U type member
TAll S U (x : S) : Ux (dependent) function type
TSel X x.Type type selection
TBind T {z ⇒ T z} recursive self type
TAnd T T T ∧ T intersection type

tm t, u ::= Term
tvar x x variable reference
ttyp T Type T type value
tabs T t λx : T.t function abstraction
tapp t t t t function invocation

For representing variabe names in relation to an environment, we use a reverse de Bruijin
convention, so that the name is invariant under environment extension. An environment is
a list of right-hand sides (types, values, ...). The older the binding, the more to the right,
the smaller its number. The name is uniquely determined by the position in the list as the
length of the tail (see indexr function in the artifact).

In addition, for types, we use a locally-nameless de Bruijin convention for variables under
dependent types so that it’s easy to substitute binders without variable capture. A variable
x bound in T x by a dependent function type (x : S)→ T x (or type abstraction for D<:) is
represented by (TVarB i) where i is the de Brujin level, i.e., the number of other binders in
scope in between a bound variable occurrence and its binder.
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A.1.2 Type System Judgements
stp Γ S U Γ ` S <: U Subtyping
has_type Γ t T Γ ` t : T Typing
val_type H v T H ` v : T Runtime Value Typing

As we mention in Section 3, we omit routine well-formedness checks from the rules on paper
for readability. In Coq, these correspond to closed conditions, which ensure that all the
variables in a type are well-bound for the given environment and binding structure. The
relation closed k |j| |H| T ensures that T is well-bound in a context H, abstract environment
J and under at most ≤ k binders.

A.2 Strong Normalization Proofs for Plain D<: (Section 3)
A.2.1 Figures and Definitions

(Figure 2, System D<:) — file dsubsup_total.v (tm, ty, stp)
(Definition 5, Indexed Value Sets) — file dsubsup_total.v (bound, sel)
(Definition 6, Polarity of Bound Selectors) — file dsubsup_total.v (pos)
(Definition 7, Indexed Value Set Inclusion) — file dsubsup_total.v (vtsub)
(Definition 8, Good bounds) — file dsubsup_total.v (good_bounds)
(Definition 9, Value Type Relation) — file dsubsup_total.v (val_type)
(Definition 12, Consistent Environments) — file dsubsup_total.v (R_env)

A.2.2 Lemmas
(Lemma 10, Weakening/Strengthening) corresponds to
Lemma valtp_extend(H) and Lemma valtp_shrink(M,H).
(Lemma 11, Substitution) corresponds to Lemma vtp_subst(1,2,3).
(Lemma 13, Extending Consistent Environments) corresponds to Lemma wf_env_extend(0).
(Lemma 14, Good Bounds) corresponds to Lemma valtp_bounds.
(Lemma 15, Semantic Widening) corresponds to Lemma valtp_widen.
(Lemma 16, Inversion of Variable Typing) corresponds to Lemma invert_var.
(Lemma 17, Non-Dependent Function Inversion) corresponds to Lemma invert_abs.
(Lemma 18, Dependent Function Inversion) corresponds to Lemma invert_dabs.

A.2.3 Theorems
(Theorem 19, Strong Normalization for D<:) corresponds to Theorem full_total_safety.

A.3 Intersection and Recursive Types (Section 4)
The core lemmas and definitions are analogous to the ones in Section 3 as shown above. The
definition of value sets as the intersection of all finite approximations

JT K =
⋂
n

JT Kn

translates to Coq as follows, extending our definition of value sets as characteristic func-
tions (vl -> Prop) to accommodate the indexing scheme. We use universal quantification
(∀n) to represent unbounded intersection:
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Fixpoint vset n :=
match n with

| 0 => vl -> Prop
| S n => vl -> vset n -> Prop

end.
Definition vseta := forall n, vset n.

Note that val_type n in the Coq file corresponds to J.Kn+1 in the text. Lemma
valtp_to_vseta adjusts the index back.
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