-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Dagstuhl Research Online Publication Server

Multitier Modules

Pascal Weisenburger
Technische Universitdt Darmstadt, Germany
weisenburger@cs.tu-darmstadt.de

Guido Salvaneschi
Technische Universitat Darmstadt, Germany
salvaneschi@cs.tu-darmstadt.de

—— Abstract

Multitier programming languages address the complexity of developing distributed systems abstract-
ing over low level implementation details such as data representation, serialization and network
protocols. Since the functionalities of different peers can be defined in the same compilation unit,
multitier languages do not force developers to modularize software along network boundaries. Unfor-
tunately, combining the code for all tiers into the same compilation unit poses a scalability challenge
or forces developers to resort to traditional modularization abstractions that are agnostic to the
multitier nature of the language.

In this paper, we address this issue with a module system for multitier languages. Our module
system supports encapsulating each (cross-peer) functionality and defining it over abstract peer
types. As a result, we disentangle modularization and distribution and we enable the definition of a
distributed system as a composition of multitier modules, each representing a subsystem. Our case
studies on distributed algorithms, distributed data structures, as well as on the Apache Flink task
distribution system, show that multitier modules allow the definition of reusable (abstract) patterns
of interaction in distributed software and enable separating the modularization and distribution
concerns, properly separating functionalities in distributed systems.

2012 ACM Subject Classification Computing methodologies — Distributed programming languages;
Software and its engineering — Modules / packages

Keywords and phrases Distributed Programming, Multitier Programming, Abstract Peer Types,
Placement Types, Module Systems, Scala

Digital Object Identifier 10.4230/LIPIcs. ECOOP.2019.3

Funding This work has been supported by the German Research Foundation (DFG) within the
Collaborative Research Center (CRC) 1053 MAKI and 1119 CROSSING, by the DFG projects
SA 2918/2-1 and SA 2918/3-1, by the Hessian LOEWE initiative within the Software-Factory 4.0
project, by the German Federal Ministry of Education and Research and by the Hessian Ministry of
Science and the Arts within CRISP, and by the AWS Cloud Credits for Research program.

Acknowledgements We would like to thank Philipp Schulz for the implementation of the first

prototype of this work and all reviewers of this paper for their comments and suggestions.

1 Introduction

Implementing distributed systems is notoriously hard because of a number of issues that
naturally arise in this setting, such as consistency, fault tolerance, concurrency, mismatch
among data formats, as well as mix of languages and execution platforms.

Multitier — or tierless — languages [36, 13, 26, 14, 41] address some of these problems.
In multitier languages, peers (e.g., the client and the server in a Web application) are
written in the same compilation unit. The compiler splits the code into a client unit and
a server unit, adds the necessary communication code, performs the necessary translations
(e.g., translating client code to JavaScript) and generates the deployable components. As

© Pascal Weisenburger and Guido Salvaneschi;

37 licensed under Creative Commons License CC-BY
33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 3; pp. 3:1-3:29

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/222445934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:weisenburger@cs.tu-darmstadt.de
mailto:salvaneschi@cs.tu-darmstadt.de
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

Multitier Modules

a result, developers need to use a single language, are not forced to worry about network
communication, serialization, data formats and conversions and can focus on the application
logic without breaking it down along network boundaries.

Lack of Modularization Abstractions. Scaling multitier code to large applications, however,
is an open problem. Researchers have been focusing on small use cases that primarily aim
to demonstrate the design of their language rather than investigating the development of
complex applications that require sophisticated modularization and composition, or require
abstracting over program locations and architecture. In use cases of limited size, client code
and server code are nicely combined in a single compilation unit, but it is unclear what
happens when one compilation unit is not enough.

As an example of this issue, Figure 1 provides an overview of the task distribution system
in the Apache Flink stream processing framework [9]. It consists of the coordinator of the
Flink instance, the JobManager and one or more TaskManagers, which execute computational
tasks. Figure la shows the JobManager (light orange boxes, left), the TaskManager (dark
violet boxes, right) and their communication (arrows). Every box is a class or an actor
which is confined by network boundaries. Thus, cross-host data flow belonging to the
same (distributed) functionality is scattered over multiple modules. Figure 1b shows an
implementation of the same system in the ScalalLoci multitier language [48] (the figure is
adapted from the same work). The data flow in the system is much more regular, due to the
reorganization of the same code in a single unit, yet all the functionalities of the system are
concentrated in a single large compilation unit with ~ 400 LOC.

Unfortunately, adopting the traditional modularization mechanism supported by the base
language (e.g., a Haskell module for a Haskell-based multitier language) is not sufficient
because such modularization mechanism is not aware of multitier code and it is unclear what
output code is produced after the compiler splits the code.

In summary, simplifying reasoning about distributed applications, abstracting over network
communication and format conversions, and providing a single language to implement
all components, multitier languages have the potential to significantly help programmers
developing distributed systems. However, enabling multitier programming to scale to
large code bases is still a research problem because of the lack of proper modularization
mechanisms. In its current state, multitier programming does effectively defeat the tyranny
of the dominant decomposition [45] for distributed systems, removing the need to modularize
applications according to tiers and network communication. Yet, it does not offer an
alternative modularization solution designed in synergy with multitier abstractions.

Contribution. In this paper, we propose LociMod, a novel multitier module system for
Scalaloci. Multitier modules encapsulate the interaction between distributed components
of (sub)systems, allowing for (1) decoupling modularization from distribution and
(2) defining reusable patterns of interaction that model the functionality of a (dis-
tributed) subsystem and that can be composed to build larger distributed systems. LociMod
supports strong interfaces [22] to achieve encapsulation and information hiding, such that
implementations can be easily exchanged. The main contribution of the work is to make peer
types, which define the placement of a functionality in LociMod, abstract. This design choice
enables the definition of abstract modules, which capture a fragment of a distributed system,
can be further composed with other abstract modules, and can eventually be instantiated for
a concrete software architecture.

P. Weisenburger and G. Salvaneschi

s

JobManager
TaskManager
— Remote Access

(a) Original Flink. (b) Scalaloci reimplementation.

Figure 1 Flink task distribution system in Scalaloci, adapted from [48].

Our case studies on distributed algorithms, distributed data structures, as well as on

the Apache Flink task distribution system, show that LociMod multitier modules allow the
definition of reusable (abstract) patterns of interaction in distributed software and enable
separating the modularization and distribution concerns, properly separating functionalities
in distributed systems. In summary, this paper makes the following contributions:

We present LociMod, a novel module system for multitier languages, featuring multitier
modules, which support strong interfaces and exchangeable implementations.

We show that, thanks to LociMod abstract peer types, the interaction between multitier
abstractions and modularization features results in a number of powerful abstractions
to define and compose distributed systems, including multitier mixin composition and
constrained modules.

We provide an implementation of LociMod as an extension to Scalaloci, a multitier
language embedded into Scala. The implementation supports separate compilation and is
publicly available.!

We evaluate LociMod with case studies, including distributed algorithms, distributed
data structures and the Apache Flink Big Data processing framework, demonstrating
the composition properties of multitier modules and how they can capture (distributed)
functionalities in complex systems.

The paper is structured as follows. Section 2 provides an overview of Scalaloci and the

important features of the Scala type system. Section 3 describes the design of multitier
modules. Section 4 discusses the implementation. Section 5 presents the evaluation. Section 6
discusses the related work. Section 7 concludes.

! http://scala-loci.github.io/

3:3

ECOOP 2019

http://scala-loci.github.io/

3:4

Multitier Modules

2 Background

2.1 Scalaloci

Since LociMod is an extension of Scalaloci [48], we first provide an overview of Scalaloci
to the reader. Scalaloci is a general purpose multitier language for distributed systems —
unlike most multitier languages, which focus on the Web (i.e., client-server architecture) only.
To support generic distributed architectures, ScalaLoci provides language abstractions for
developers to freely define the different components — called peers — of the distributed system
and their architectural relation. Peers are defined as peer types, which allow for specifying the
placement of data and computations at the type level using placement types, enabling static
reasoning about placement. A placement type T on P? represents a value of a traditional type
T which is placed on a peer of peer type P.

Placed Values. Placed values of type T on P are initialized with placed { e } expressions.
For example, the following string is placed on the Master peer:

val name: String on Master = placed { "the one and only master" }

The name value is accessible remotely from other peers. Accessing remote values requires the
asLocal marker, creating a local representation of the remote value by transmitting it over
the network:

val masterName: Future[String] on Worker = placed { name.aslocal }

Accessing name remotely from a Worker peer returns a value of type Future[String]. Futures
— which are part of Scala’s standard library — account for network latency and possible
communication failures by representing a value which may not be available immediately, but
will become available in the future or produce an error.

Remote accessibility of placed values can be regulated: Local placed values denoted by
the type Local[T] on P specify values that can only be accessed locally from the same peer
instance, i.e., remote access via asLocal is not possible:

val realName: Local[String] on Master = placed { "Rumpelstiltskin" }

For a value definition val v: Ton P =placed { e }, the shorthand notation val v=on[P] { e}
can be used, inferring the placement type T on P.

Placed Computations. Like placed values, placed computations are declared to have a
placement type and defined using a placed expression:

def execute(task: Task[T]): T on Worker = placed { task.process() }
Invoking a remote computation is explicit using remote call. If the result of a remote

computation is of interest to the local peer instance, it can be made available locally using
asLocal (as described before):

val result: Future[T] on Master = placed { (remote call execute(new Task()).aslLocal }

2 The Scala compiler treats Ton P and on[T, P] equivalently.

P. Weisenburger and G. Salvaneschi

Architecture Specification. In LociMod, the architectural scheme of the distributed system
is expressed using ties, which specify the kind of relation among peers. Ties are encoded as
structural type refinements specifying the Tie type for peers. Ties to multiple peers are defined

by declaring a compound type (e.g., type Tie <: Single[Master] with Multiple[Worker]).

Remote access is only possible between tied peers.

For instance, an architecture with a single master that offloads computations to a single
worker is defined by a Master peer and a Worker peer (specified through the @peer annotation
on type members):

1 @peer type Master <: { type Tie <: Single[Worker] }
2 @peer type Worker <: { type Tie <: Single[Master] }

Both peers have a single tie to each other, i.e., workers are always connected to a single

master instance and each corresponding master instance always manages a single worker.

A variant of the master—worker model, where a single master instance manages multiple
workers, is modeled by a single tie from worker to master and a multiple tie from master to
worker:

1 @peer type Master <: { type Tie <: Multiple[Worker] }
2 @peer type Worker <: { type Tie <: Single[Master] }

Section 5.1 presents a more systematic categorization of common distributed architectures
and their encoding using peers and ties.

2.2 Scala Abstract Data Types and Path-Dependent Types

The LociMod module system leverages Scala’s type system features, in particular abstract
types and path-dependent types, which we quickly revise. In Scala, traits, classes and objects
(i.e., singleton classes) define type members, which are either abstract (e.g., type SomeType)
or define concrete type aliases (e.g., type SomeType = Int). Abstract type members can define
lower and upper type bounds (e.g., type SomeType >: LowerBound <: UpperBound), which

refine the type while keeping it abstract. Inherited abstract type members can be overridden.

Such mechanism enables specializing the upper bound and generalizing the lower bound. In
Section 3.2, we define the peers of the distributed system as abstract type members. Refining
the upper bound enables specializing a peer as (a subtype of) another peer, enabling peer
composition by combining super peers into a sub peer.

Scala types can be dependent on an path (of objects). For example, in the following code
snippet, both objects a and b inherit the SomeType abstract type member defined in the
Module trait:

1 trait Module { type SomeType }
2 object a extends Module
3 object b extends Module

The path-dependent type a.SomeType refers to a’s SomeType and the path-dependent type

b.SomeType refers to b’s SomeType. The types depend on the objects a or b, respectively.

They are distinct since their paths differ.

For instance, the following example defines a module A with an abstract type member T.

Further, a module B defines an abstract type member U. The module C extends module B
inheriting its abstract type member U. The module C also references an instance a of module

3:5

ECOOP 2019

3:6

Multitier Modules

A. Module C’s U type is overridden and refined as a subtype of the T type defined in the a
instance by specifying that the upper bound of U is the path-dependent type a.T:

1 trait A { type T }

2

3 trait B { type U }

4
trait C extends B {

type U <: a.T

val a: A

¥

0 N o w

In Section 3.2.1, we use this mechanism to declare references to other modules from within
a module and to refer to the peers (defined as abstract type members) in the referenced
modules via their path-dependent types.

3 LociMod Multitier Modules

In this section, we describe the LociMod module system. The goal of this section is twofold.
On the one hand, we present the design of multitier modules. On the other hand, we
demonstrate a number of examples for multitier modules and their composition mechanisms.

We first introduce (concrete) multitier modules and show how they can be composed into
larger applications, using module references — references to other multitier modules. Then
we introduce modules with abstract peer types and show their composition through module
references as well as another composition mechanism, multitier mizing. Next we show how
such composition mechanism enables defining constrained multitier modules.

3.1 Multitier Modules

We embed LociMod into Scala, following the same approach of Scalaloci, which is a Scala
DSL. Scala traits represent modules — adopting Scala’s design that unifies object and module
systems [30]. Traits can contain abstract declarations and concrete definitions for both type
and value members — thus serve as both module definitions and implementations — and Scala
objects can be used to instantiate traits.

Module Definition. In LociMod, multitier modules are defined by a trait with the @multitier
annotation. Multitier modules can define (i) values placed on different peers and (ii) the
peers on which the values are placed — including constraints on the architectural relation
between peers. This approach enables modularization across peers (not necessarily along
peer boundaries) combining the benefits of multitier programming and modular development.
To illustrate, consider an application that allows a user to edit documents offline but also
offers the possibility to backup the data to an online storage:

@multitier trait Editor {
@peer type Client <: { type Tie <: Single[Server] }
@peer type Server <: { type Tie <: Single[Client] }

val backup: FileBackup
}

1
2
3
4
5
6
The Editor specifies a Client (Line 2) and a Server (Line 3). The client should be able to
backup/restore documents to/from the server, e.g., the client can invoke a backup.store
method to backup data. Thus, the module requires an instance of the FileBackup multitier
module (Line 5) providing the backup service. Section 3.2 shows how the Editor and the
FileBackup module can be composed.

P. Weisenburger and G. Salvaneschi

Encapsulation with Multitier Modules. LociMod’s multitier modules encapsulate dis-
tributed (sub)systems with a specified distributed architecture, enabling the creation of
larger distributed applications by composition. The following code shows a possible imple-
mentation for the backup service subsystem using the file system to store backups:

@nultitier trait FileBackup {
@peer type Processor <: { type Tie <: Single[Storage] }
@peer type Storage <: { type Tie <: Single[Processor] }

1

2

3

4

5 def store(id: Long, data: Data): Unit on Processor = placed { remote call write(id, data) }
6 def load(id: Long): Future[Data] on Processor = placed { (remote call read(id)).aslocal }

7
8

private def write(id: Long, data: Data): Unit on Storage = placed {

9 writeToFile(data, s"/storage/$id") }

10 private def read(id: Long): Data on Storage = placed {
11 readFromFile[Data] (s"/storage/$id") }

12}

The multitier FileBackup module specifies a Processor to compress data (of type Data) and
a Storage peer to store and retrieve data associating them to an ID. The store (Line 5) and
load (Line 6) methods can be called on the Processor peer, invoking write (Line 8) and
read (Line 10) remotely on the Storage peer. The implementations of the write and read
methods operate on files.

LociMod multitier modules support standard access modifiers for placed values (e.g.,
private, protected etc.), which are used as a technique to encapsulate module functionality.
In the FileBackup module, the write and the read methods are declared private, so other
modules that use FileBackup cannot directly access them. Overall, the FileBackup module
encapsulates all the functionalities related to the backup service subsystem, including the
communication between Processor and Storage.

As the last example demonstrates, multitier modules enable separating modularization
and distribution concerns, allowing developers to organize applications based on logical
units instead of network boundaries. A multitier module abstracts over potentially multiple
components and the communication between them, specifying distribution by expressing the
placement of a computation on a peer in its type. Both axes are traditionally intertwined by
having to implement a component of the distributed system in a module (e.g., a class, an
actor, etc.) leading to cross-host functionality being scattered over multiple modules.

Multitier Modules as Interfaces and Implementations. To decouple the code that uses
a multitier module from the concrete implementation of such a module, LociMod supports
modules to be used as interfaces and implementations. Multitier modules can be abstract,
i.e., defining only abstract members, acting as module interfaces or they can define concrete
implementations. For example, applications that require a backup service can be developed
against the BackupService module interface, which declares a store and a load method:

1 @nultitier trait BackupService {

2 @peer type Processor <: { type Tie <: Single[Storage] }
3 @peer type Storage <: { type Tie <: Single[Processor] }
4

5 def store(id: Long, data: Data): Unit on Processor

6 def load(id: Long): Future[Data] on Processor

7

LociMod adopts Scala’s inheritance mechanism to express the relation between the multitier
modules used as interfaces and their implementations. The FileBackup module presented

3:7

ECOOP 2019

3:8

Multitier Modules

before is a possible implementation for the BackupService module interface, i.e., we can
redefine FileBackup to let it implement BackupService:

1 @multitier trait FileBackup extends BackupService { ... }

The following example presents a different implementation for the BackupService module
interface using a database backend (instead of a file system) as storage:

@nultitier trait DatabaseBackup extends BackupService {
def store(id: Long, data: Data): Unit on Processor = placed { remote call insert(id, data) }
def load(id: Long): Future[Data] on Processor = placed { (remote call query(id)).aslLocal }

private def insert(id: Long, data: Data): Unit on Storage = placed {
db.run(query[(Long, Data)].insert(lift(id — data))) }
private def query(id: Long): Future[Data] on Storage = placed {
10 db.run(query[(Long, Data)].filter { _._1 == lift(id) }) map { _.head._2 } }
11
}

1
2
3
4
5 private val db: AsyncContext = ...
6
7
8
9

The implementations of the store and of the load methods invoke insert (Line 7) and
query (Line 9) remotely, which insert the backup data into a database and retrieve the data
from a database, respectively.?

Combining Multitier Modules. Thanks to the separation between module interfaces and
module implementations, applications can be developed against the interface, remaining
agnostic to the implementation details of a subsystem encapsulated in a multitier module.
For example, the Editor presented before can be adapted to use a BackupService interface
instead of the concrete FileBackup implementation (Line 5):

@nultitier trait Editor {
@peer type Client <: { type Tie <: Single[Server] }
@peer type Server <: { type Tie <: Single[Client] }

val backup: BackupService

1
2
3
4
5
6}

Finally, a multitier module can be instantiated by instantiating concrete implementations of
the module interfaces it refers to. LociMod relies on the Scala approach of using an object
to instantiate a module, i.e., declaring an object that extends a trait — or mixes together
multiple traits — creates an instance of those traits. For example, the following code creates
an editor instance of the Editor module by providing a concrete DatabaseBackup instance
for the abstract backup value:

1 @multitier object editor extends Editor {
2 @multitier object backup extends DatabaseBackup

3}

The multitier module instance of a @multitier object can be used to run different peers
from (non-multitier) standard Scala code (e.g., the Client and the Server peer), where
every peer instance only contains the values placed on the respective peer. Peer startup is
presented in Section 3.4.

3 The example uses the Quill http://getquill.io query language to access the database

http://getquill.io

P. Weisenburger and G. Salvaneschi

3.2 Abstract Peer Types

In the previous section, we have shown how to encapsulate a subsystem within a multitier
module and how to define a module interface such that multiple implementations are possible.
LociMod modules allow for going further, enabling abstraction over placement using abstract
peer types. Peer types are abstract type members of traits, i.e., they can be overridden in sub
traits, specializing their type. As a consequence, LociMod multitier modules are parametric
on peer types. For example, the BackupService module of the previous section defines an
abstract Processor peer, but the Processor peer does not necessarily need to refer to a
physical peer in the system. Instead, it denotes a logical place. When running the distributed
system, a Client peer, for example, may adopt the Processor role, by specializing the
Client peer to be a Processor peer.

Peer types are used to distinguish places only at the type level, i.e., the placement type
T on P represents a run time value of type T. The peer type P is used to keep track of the
value’s placement, but a value of type P is never constructed at run time. Hence, Ton P is
essentially a “phantom type” [12] due to its parameter P.

The next two sections describe the interaction of abstract peer types with two composition
mechanisms for multitier modules. We already encountered the first mechanism, module
references. The other mechanism, multitier mixing, enables combining multitier modules
directly. In both cases, the peers defined in a module can be specialized with the role of
other modules’ peers.

3.2.1 Peer Type Specialization with Module References

Since peer types are abstract, they can be specialized by narrowing their upper type bound,
augmenting peers with different roles defined by other peers. Peers can subsume the roles
of other peers — similar to subtyping on classes — enabling polymorphic usage of peers.
Programmers can use this feature to augment peer types with roles defined by other peer
types by establishing a subtyping relation between both peers. This mechanism enables
developers to define reusable patterns of interaction among peers that can be specialized
later to any of the existing peers of an application.

For example, the editor application that requires the backup service (Section 3.1) needs
to specialize its Client peer to be a Processor peer and its Server peer to be a Storage
peer for clients to be able to perform backups on the server:

@nultitier trait Editor {

@peer type Client <: backup.Processor { type Tie <: Single[Server] with Single[backup.Storage] }
@peer type Server <: backup.Storage { type Tie <: Single[Client] with Single[backup.Processor] }

W N

val backup: BackupService

o o

We specify the Client peer to be a (subtype of the) backup.Processor peer (Line 2) and the
Server peer to be a (subtype of the) backup.Storage peer (Line 3). Both backup.Processor
and backup.Storage refer to the peer types defined on the BackupService instance referenced
by backup. We can use such module references to refer to (path-dependent) peer types through
a reference to the multitier module.

Since the subtyping relation Server <: backup.Storage specifies that a server is a storage
peer, the backup functionality (i.e., all values and methods placed on the Storage peer) are
also placed on the Server peer. Super peer definitions are locally available on sub peers,

3:9

ECOOP 2019

3:10

Multitier Modules

making peers composable using subtyping. Abstract peer types specify such subtyping
relation by declaring an upper type bound. When augmenting the server with the storage
functionality using subtyping, the Tie type also has to be a subtype of the backup.Storage
peer’s Tie type. This type level encoding of the architectural relations among peers enables
the Scala compiler to check that the combined architecture of the system complies to the
architectural constraints of every subsystem.

Note that, for the current example, one may expect to unify the Server and the Storage
peer, so they refer to the same peer, specifying type equality instead of a subtyping relation:

1 @peer type Server = backup.Storage { type Tie <: Single[Client] }

Since peer types, however, are never instantiated (they are used only as phantom types to keep
track of placement at the type level) we can always keep peer types abstract, only specifying
an upper type bound. Hence, it is sufficient to specialize Server to be a backup.Storage,
keeping the Server peer abstract for potential further specialization.

3.2.2 Peer Type Specialization with Multitier Mixing

The previous section shows how peer types can be specialized when referring to modules
through module references. This section presents a different composition mechanism based
on composing traits — similar to mizin composition [4]. Since LociMod multitier modules can
encapsulate distributed subsystems (Section 3.1), mixing multitier modules enables including
the implementations of different subsystems into a single module.

LociMod separates modules from peers, i.e., mixing modules does not equate to unify the
peers they define. Hence we need a way to coalesce different peers. We use (i) subtyping and
(ii) overriding of abstract types as a mechanism to specify that a peer also comprises the
placed values of (i) the super peers and (ii) the overridden peers, i.e., a peer subsumes the
functionalities of its super peers (Section 3.2.1) and its overridden peers. Since peers are
abstract type members, they can be overridden in sub modules. To demonstrate mixing of
multitier modules we consider the case of two different functionalities.

First, we consider a computing scheme where a master offloads tasks to worker nodes:
@nultitier trait MultipleMasterWorker[T] {

@peer type Master <: { type Tie <: Multiple[Worker] }
@peer type Worker <: { type Tie <: Single[Master] }

oW N R

def run(task: Task[T]): Future[T] on Master = placed {
(remote(selectWorker()) call execute(task)).aslLocal

}
private def execute(task: Task[T]): T on Worker = placed { task.process() }
}

© ® N o w

The example defines a master that has a multiple tie to workers (Line 2) and a worker that has
a single tie to a master (Line 3). The run method has the placed type Future[T] on Master
(Line 5), placing run on the Master peer. Running a task remotely results in a Future [3] to
account for processing time and network delays. The remote call to execute — to be executed
on the worker — (Line 6) starts processing the task (Line 8). The remote result is transferred
back to the master as Future[T] using asLocal (Line 6). A single worker instance in a pool
of workers is selected for processing the task via the selectWorker method (Line 6, the
implementation of selectWorker is omitted, for simplicity).

P. Weisenburger and G. Salvaneschi

Second, we consider the case of monitoring, a functionality that is required in many
distributed applications to react to possible failures [23]. In LociMod, a heartbeat mechanism
can be defined across a Monitored and a Monitor peer in a multitier module:

@nultitier trait Monitoring {
@peer type Monitor <: { type Tie <: Multiple[Monitored] }
@peer type Monitored <: { type Tie <: Single[Monitor] }

oW N

def monitoredTimedOut(monitored: Remote[Monitored]): Unit on Monitor

0 N o o

The module defines the architecture with a single monitor and multiple monitored peers (Line 2
and 3). The monitoredTimedOut method (Line 5) is invoked by Monitoring implementations
whenever a heartbeat was not received from a monitored peer instance for some time. We
leave out the actual implementation of the monitoring logic for brevity.

To add monitoring to an application, such application has to be mixed with the Monitoring
module. Mixing composition brings the members declared in all mixed-in modules into
the local scope of the module that mixes in the other modules, i.e., all peer types of the
mixed-in modules are in scope. However, the peer types of different modules define separate
architectures, which can then be combined by specializing the peers of one module to the
peers of other modules. For example, to add monitoring to the the MultipleMasterWorker
functionality, MultipleMasterWorker needs to be mixed with Monitoring and the Master
and Worker peers need to be overridden to be (subtypes of) Monitor and Monitored peers:

@nultitier trait MonitoredMasterWorker[T] extends MultipleMasterWorker[T] with Monitoring {
@peer type Master <: Monitor { type Tie <: Multiple[Worker] with Multiple[Monitored] }
@peer type Worker <: Monitored { type Tie <: Single[Master] with Single[Monitor] }

W N e

Specializing peers of mixed modules follows the same approach as specializing peers accessible
through module references (Section 3.2.1), i.e., Master <: Monitor specifies that a master is a
monitor peer, augmenting the master with the monitor functionality. Also, for specialization
using peers of mixed-in modules, the compiler checks that the combined architecture of the
system complies to the architectural constraints of every subsystem.

3.2.3 Properties of Abstract Peer Types

LociMod abstract peer types share commonalities with both parametric polymorphism —
considering type parameters as type members [29, 46] — like ML parameterized types [25] or
Java generics [5], as well as subtyping in object-oriented languages. Similar to parametric
polymorphism, abstract peer types allow parametric usage of peer types as shown for the
BackupService module defining a Storage peer parameter. Distinctive from parametric
polymorphism, however, with abstract peer types, peer parameters remain abstract, i.e.,
specializing peers does not unify peer types. Instead, similar to subtyping, specializing peers
establishes an is-a relation.

Placement types T on P support suptyping between peers by being covariant in the type of
the placed value and contravariant in the peer (i.e., the on type is defined as type on[+T, -P]),
which allows values to be used in a context where a value of a super type placed on a sub peer
is expected. This encoding is sound since a subtype can be used where a super type is expected
and values placed on super peers are available on all sub peers. For example, we can extend

3:11

ECOOP 2019

3:12 Multitier Modules

the Editor with a WebClient, which is a special kind of client (i.e., WebClient <: Client,
Line 5) with a Web user interface (Line 8), and a MobileClient (i.e., Line 6):

@multitier trait Editor {
@peer type Server <: { type Tie <: Multiple[Client] }

éﬁéer type Client <: { type Tie <: Single[Server] }
@peer type WebClient <: Client { type Tie <: Single[Server] }
@peer type MobileClient <: Client { type Tie <: Single[Server] }

1
2
3
4
5

val webUI: UI on WebClient
val ui: UI on Client = placed { webUI } // X Error: 'Client’ not a subtype of ‘WebClient’

© W N o

10 }

By using subtyping on peer types, not unifying the types, we are able to distinguish between
the general Client peer, which can have different specializations (e.g., WebClient and Mobile-
Client), i.e., every Web client is a client but not every client is a Web client. By keeping the
types distinguishable, the ui binding (Line 9) is rejected by the compiler since it defines a
value on the Client peer, i.e., the access to webUI inside the placed expression is computed on
the Client peer. However, webUI is not available on Client since it is placed on WebClient
and a client is not necessarily a Web client.

3.3 Constrained Multitier Modules

LociMod multitier modules not only allow abstraction over placement, but also the definition
of constrained multitier modules that refer to other modules. This feature enables expressing
constraints among the modules of a system, such as that one functionality is required to enable
another. In LociMod, Scala’s self-type annotations express such constraints, indicating which
other module is required during mixin composition. To improve decoupling, constraints are
often defined on module interfaces, such that multiple module implementations are possible.

Applications requiring constrained modules include distributed algorithms, discussed in
more detail in the evaluation (Section 5.1). For example, a global locking scheme ensuring
mutual exclusion for a shared resource can be implemented based on a central coordinator.
Choosing a coordinator among connected peers requires a leader election algorithm. The
MutualExclusion module declares a lock (Line 2) and unlock (Line 3) method for regulating
access to a shared resource. MutualExclusion is constrained over LeaderElection since our
locking scheme requires the leader election functionality:

@nultitier trait MutualExclusion { this: LeaderElection =>

def lock(id: T): Boolean on Node

1
2
3 def unlock(id: Id): Unit on Node
4}

Such requirement, expressed as a Scala self-type (Line 1), forces the developer to mix in a
LeaderElection implementation to create instances of the MutualExclusion module.
A leader election algorithm can be defined by the following module interface:

@multitier trait LeaderElection[T] {
@peer type Node

def electlLeader(): Unit on Node
def electedAsLeader(): Unit on Node
}

The module defines an electLeader method (Line 4) to initiate the leader election. The
electedAsLeader method (Line 5) is called by LeaderElection module implementations on
the peer instance that has been elected to be the leader.

P. Weisenburger and G. Salvaneschi

All definitions of the LeaderElection module required by the self-type annotation are
available in the local scope of the MutualExclusion module, which includes peer types and
placed values. A self-type expresses a requirement but not a subtyping relation, i.e., we express
the requirement on LeaderElection in the example as self-type since the MutualExclusion
functionality requires leader election but is not a leader election module itself.

Multiple constraints can be expressed by using a compound type. For example, different
peer instances often need to have unique identifiers to distinguish among them. Assuming
an Id module provides such mechanism, a module which requires both the leader election
and the identification functionality can specify both required modules as compound self-type
this: LeaderElectionwith Id. Such requirement makes the definitions of both the Leader-
Election and the Id module available in the module’s local scope and forces the developer
to mix in implementations for both modules.

Mixin composition is guaranteed by the compiler to conform to the self-type (which is the
essence of the Scala cake pattern). Assuming a YoYo implementation of the LeaderElection
interface which implements the Yo-Yo algorithm [39] (Section 5.1 presents different leader
election implementations), the following code shows how a MutualExclusion instance can
be created by mixing together MutualExclusion and YoYo:

1 @nultitier object mutualExclusion extends MutualExclusion with YoYo

The YoYo implementation of the LeaderElection interface satisfies the MutualExclusion
module’s self-type constraint on the LeaderElection interface. Since mixing together Mutual-
Exclusion and YoYo fulfills all constraints and leaves no values abstract, the module can be
instantiated.

3.4 Peer Startup

In the previous sections, we have shown how LociMod multitier modules are instantiated. To
start up a distributed system, however, we also need to start peers defined in the modules.
Different peer instances are typically started on different hosts and connect with each other
over a network according to the architecture specification. As a consequence, an additional
step is required to start the peers of (already instantiated) modules. For the master—worker
example, the master and the worker peers are started as follows:

@multitier object masterWorker extends MultipleMasterWorker[Int]
object Master extends App {

multitier start new Instance[masterWorker.Master] (
listen[masterWorker.Worker] { TCP(1099) })

[VI

}

object Worker extends App {
multitier start new Instance[masterWorker.Worker] (
connect[masterWorker.Master] { TCP("localhost", 1099) })

O © W N o O

o

We follow the idiomatic way of defining an executable Scala application, where an object
extends App (Line 3 and 8). The object body is executed when the application starts. The
code executed when staring a Scala application is standard (non-multitier) Scala, which,
in our example, uses multitier start Instance[...] to start a peer of an instantiated
multitier module. Line 1 instantiates a MasterWorker module using the MultipleMaster-
Worker implementation. Line 4 starts a Master peer of the module, which uses TCP to
listen for connections from Worker peer instances. Line 9 starts a Worker peer of the module,
which uses TCP to connect to a running Master peer instance.

3:13

ECOOP 2019

3:14

Multitier Modules

4 Implementation

The implementation of LociMod required to modify ~ 5K LOCs of the Scalaloci codebase.
The Scalaloci compilation process entails three main aspects [48]: (1) the type-level encoding
of placement types into the Scala type system, (2) the compile-time macro-driven code
separation of code belonging to different peers and (3) the injection of the communication
code. The implementation of LociMod requires plugging into the steps above to introduce
functionalities for module definition and composition as well as checks for architectural
conformance. Both are discussed hereafter.

We preserve Scala’s separate compilation because our implementation is based on Scala
macros, which expand locally and cannot transform any other code than the annotated trait,
class or object under expansion. Once modules are compiled, they are not recompiled unless
their code or interfaces on which they depend change.

Macro Expansion. To enable distributed functionalities bundled in a multitier module
(Section 3.1) to be executed on different machines (Section 3.4), our implementation separates
multitier modules into peer-specific parts and replaces remote accesses with calls to the
communication runtime, auto-generating the transmission boilerplate code. For the splitting,
we rely on Scala annotation macros [8] (traits and objects are annotated with @multitier),
transforming the type-checked abstract syntax tree* of the module. Placement types,
specifying which values belong to which peer, have no direct semantic equivalent in plain
Scala. The implementation splits multitier code based on placement types, thereby effectively
erasing placement types from the generated code.

Listing 1 provides an intuition of how the macro expansion works, demonstrating module
and peer composition as well as remote access. The LociMod code (Listing 1a) defines a
module A with a peer Peer and a placed value value. Module B mixes in module A (Line 6),
defines a reference to an instance of module A (Line 9), and accesses a remote value through
the reference (Line 13).

In the expanded code (Listing 1b, simplified excerpt), placed values are annotated with
compileTimeOnly (Line 3), which instructs the Scala compiler to issue an error in case
such value is referenced in user code after macro expansion. The code generation creates
Marshallable instances (Line 4) for network transmission of placed values and runtime
identifiers for placed values (Line 5), modules (Line 16) and peers (Line 17) for dispatching
remote accesses. The splitting process generates a <placed values> trait, which contains all
placed values in the same order in which they appear in the multitier module to retain the
initialization order. Values, however, are nulled (Line 9) and only initialized for the peer on
which they are placed. Therefore, the splitting process generates an additional peer trait for
every peer (Line 10), thus splitting multitier code into peer-specific components. Peer traits
also handle local dispatching of remote requests, unmarshalling arguments and marshalling
the return value (Line 14).

The example illustrates our module composition mechanisms. Mixing module A into
module B results in the respective <placed values> and peer traits being mixed in (Line 25
and 34), using Scala mixin composition. For the module reference (Line 22, largely left out
for brevity), both the generated module identifier (Line 22) and the dispatching logic for
remote requests (Line 32) keep the path of the module reference ("module") into account, to

4 Annotation macros are expanded before type-checking but can explicitly invoke the type checker to
obtain typed abstract syntax trees

P. Weisenburger and G. Salvaneschi 3:15

Listing 1 Macro Expansion.

(a) LociMod user code.

@multitier trait A {

@peer type Peer
val value: Int on Peer

@nultitier trait B extends A {

@peer type Peer <: module.Peer { type Tie <: Single[module.Peer] }

@nultitier object module extends A {
val value: Int on Peer = placed { 42 }
}

val localValue: Local[Future[Int]] on Peer = placed { module.value.aslocal }

}

(b) Scala code after LociMod expansion.

trait A {
@peer type Peer
@compileTimeOnly("Remote access must be explicit.") val value: Int on Peer
@arshallableInfo final val $loci$marA0 = Marshallable[Int]
@PlacedValueInfo("value:scala.Int", null, $loci$marA0) final val $loci$val$Aso =
new PlacedValue[Unit, Unit, Future[Unit], Int, Int, Future[Int]](
Value.Signature("value:scala.Int", $loci$sig.path), true, null, $loci$marA0)

trait ‘<placed values>" extends PlacedValues { val value: Int = null.asInstanceOf[Int] }
trait $loci$peer$Peer extends ‘<placed values>' {
def $loci$dispatch(req: MessageBuffer, sig: Value.Signature, ref: Value.Reference) =
if (sig.path.isEmpty) sig.name match {
case $loci$valA0.sig.name =>
Try(value) map { response => $loci$marA0.marshal(response, ref) } ... } else ... }

lazy val $loci$sig = Module.Signature("A")
lazy val $loci$peersigPeer = Peer.Signature("Peer", collection.immutable.Nil, $loci$sig)

}

trait B extends A {
@peer type Peer <: module.Peer { type Tie <: Single[module.Peer] }
object module extends A { lazy val $loci$sig = Module.Signature("B#module", "module") ... }
@compileTimeOnly("...") val remoteValue = null.asInstanceOf[Local[Future[Int]] on Peer]

trait ‘<placed values>" extends PlacedValues with super[A]. <placed values>" {
final lazy val module: B.this.module. <placed values>' = $loci$multitier$module()
val remoteValue: Future[Int] = $loci$exprBs0()
protected[this] def $loci$exprB0(): Future[Int] = null.asInstanceOf[Future[Int]]

def $loci$dispatch(req: MessageBuffer, sig: Value.Signature, ref: Value.Reference) =
if (sig.path.isEmpty) ... else sig.path.head match {
case "module" => module.$loci$dispatch(req, sig.copy(sig.name, sig.path.tail), ref) ... } }

trait $loci$peer$Peer extends ‘<placed values>" with super[A].$loci$peer$Peer {
protected[this] def $loci$multitier$module() = new B.this.module.$loci$peer$Peer { ... }
protected[this] def $loci$exprB0(): Future[Int] = SingleIntAccessor(RemoteValue) (
new RemoteRequest[Int from B.this.module.Peer, Future[Int], Peer, Single, Unit](
(), B.this.module.$loci$valA0, B.this.module.$loci$peersigPeer, ...)).asLocal }

handle remote access to path-dependent modules. The module reference for the peer trait
generated for module B’s Peer (Line 34) is instantiated to the peer trait generated for module
A’s Peer (Line 35), so that values placed on module B’s Peer can access values placed on
module A’s Peer since module B defines Peer <: module.Peer. Since peer types are used to
guide the splitting and define the composition scheme of the synthesized peer traits, peer
types themselves are never instantiated. Hence, they can be abstract.

ECOOP 2019

3:16

Multitier Modules

Like value of module A, localValue of module B is nulled in the <placed values> trait
(Line 27 and 28) and initialized in the generated peer trait (Line 36). Since localValue is
defined local (i.e., not remotely accessible), no Marshallable instance or runtime identifier
is generated for localValue. The remote access module.value.aslLocal is expanded into
a call to the communication backend with the remote value and remote peer identifiers as
arguments (Lines 36-38).

As illustrated by the example, the code generation solely replaces the code of the annotated
trait, class or object and only depends on the super traits and classes and the definitions
in the multitier modules’ body, thus retaining the same support for separate compilation
offered by standard Scala traits, classes and objects.

Correctness Checks. Abstract peer types can be specialized, introducing further constraints
on the architecture in which they are already involved. Our approach ensures that the
architecture of the specialized peers does not violate the architectural constraints of the more
general peers. Specifically, ties defined for a peer also need to be defined when specializing
the peer, i.e., the tie of a peer needs to be a subtype of the ties of all super and overridden
peers. It is, however, possible to refine a tie to make it more specific (i.e., a multiple tie is
the most general from, whereas an optional tie is more specific and a single tie is the most
specific form). For example, when specializing a Server peer with a Multiple[Client] tie
to a WebServer <: Server peer, the WebServer also needs to specify the tie to the Client.
It can specify the type as Multiple[Client] (like its super peer), but it can also specify a
more specific tie, e.g., Single[Client]. Refining ties is sound since, if code placed on a peer
is able to handle any number of connected remote instances (multiple tie), particularly, it
can also handle the case when at most one instance is connected (optional or single tie) —
but not the other way around.

5 Evaluation

The objective of the evaluation is to assess the design goals established in Section 3, answering
the following research questions:

RQ1 Do multitier modules enable defining reusable patterns of interaction in distributed software?
RQ2 Do multitier modules enable separating the modularization and distribution concerns?

For RQ1, we first consider distributed algorithms as a case study. Distributed algorithms
are a suitable case study because — as we explain soon — they depend on each other and on
the underlying architecture. Yet, one wants to keep each algorithm modularized in a way that
algorithms can be freely composed. Second, we show how distributed data structures can
be implemented in LociMod. This case study requires to hide the internal behavior of the data
structure from user code as well as to provide a design that does not depend on the specific
system architecture. For RQ2, we evaluate the applicability of LociMod to existing real-word
software. We reimplemented the task distribution system of the Apache Flink distributed
stream processing framework introduced in Section 1 using multitier modules.

5.1 Distributed Algorithms

We present a case study on a distributed algorithm for mutual exclusion through global
locking to access a shared resource. As global locking requires a leader election algorithm,
we implement different election algorithms as reusable multitier modules. Also, leader

o B S N

17

P. Weisenburger and G. Salvaneschi

Listing 2 Mutual Exclusion.

@nultitier trait MutualExclusion[T] { this: Architecture with LeaderElection[T] =>
private var locked: Option[T] localOn Node = placed { None }
def lock(id: T): Boolean on Node = placed {

if (state == Leader && locked.isEmpty) {
locked = Some(id)
true
b
else
false
}
def unlock(id: Id): Unit on Node = placed {
if(state == Leader & locked == Some(id))
locked = None
}
}

election algorithms assume different distributed architectures, which we represent as multitier
modules, too. The implemented mechanism relies on a central coordinator (Listing 2).
The MutualExclusion module is parameterized over the leader election algorithm using
constrained multitier mixing by specifying a requirement on the LeaderElection interface
(Line 1) abstracting over concrete leader election implementations. LeaderElection provides
the state method (Line 5 and 14) indicating whether the local node is the elected leader.
The MutualExclusion module defines the lock (Line 4) and the unlock (Line 13) methods,
to acquire and release the lock.

System Architectures. The MutualExclusion module (Listing 2) specifies a constraint on
Architecture (Line 1) requiring any distributed architecture for the system abstracting
over a concrete one. Architecture is the base trait for different distributed architectures
expressed as reusable modules. Listing 3 shows the definitions for different architectures
with their iconification on the right. The Architecture module defines the general Node
peer and the constraint that peers of type Node are connected to an arbitrary number of
other Node peers. The P2P module defines a Peer that can connect to arbitrary many other
peers. Thus, the P2P is essentially the general architecture since nodes connecting in a P2P
fashion do not impose any additional architectural constraints. The P2PRegistry module
adds a central registry, to which peers can connect. The MultiClientServer module defines
a client that is always connected to single server, while the server can handle multiple clients
simultaneously. The ClientServer module specifies a server that always handles a single
client instance. For the Ring module, we define a Prev and a Next peer. A RingNode itself is
both a predecessor and a successor. All Node peers have a single tie to their predecessor and
a single tie to their successor.

Leader Election. We present the LeaderElection interface for a generic leader election
algorithm in LociMod. Since leader election differs depending on the network architecture,
the interface defines a self-type constraint on Architecture, abstracting over the concrete
network architecture constraining multitier mixing:

1 @nultitier trait LeaderElection[T] { this: Architecture with Id[T] =>
2 def state: State on Node
3 def electLeader(): Unit on Node
4
5

def electedAsLeader(): Unit on Node
}

3:17

ECOOP 2019

3:18

© W N U AW N =

R e e
A O NRO©O©® OO A WRRO

Multitier Modules

Listing 3 Distributed Architectures.

@nultitier trait Architecture {
@peer type Node <: { type Tie <: Multiple[Node] }

@nultitier trait P2P extends Architecture {
@peer type Peer <: Node { type Tie <: Multiple[Peer] }
}
@multitier trait P2PRegistry extends P2P {
@peer type Registry <: Node { type Tie <: Multiple[Peer] }
@peer type Peer <: Node { type Tie <: Optional[Registry] with Multiple[Peer] }
@nmultitier trait MultiClientServer extends Architecture {

@peer type Server <: Node { type Tie <: Multiple[Client] }
@peer type Client <: Node { type Tie <: Single[Server] with Single[Node] }

@nmultitier trait ClientServer extends MultiClientServer {
@peer type Server <: Node { type Tie <: Single[Client] }
@peer type Client <: Node { type Tie <: Single[Server] with Single[Node] } .”“‘*CD

@multitier trait Ring extends Architecture {
@peer type Node <: { type Tie <: Single[Prev] with Single[Next] }
@peer type Prev <: Node
@peer type Next <: Node
@peer type RingNode <: Prev with Next

Further, the interface abstracts over a mechanism for assigning IDs to nodes implemented by
the Id[T] module, where T is the type of the IDs. The Id module interface defines a local id
value on every node and requires an ordering relation for IDs:

1 @multitier abstract class Id[T: Ordering] { this: Architecture =>

2 val id: Local[T] on Node

3}

The LeaderElection module defines a local variable state that captures the state of each
peer (e.g., Candidate, Leader or Follower). The electLeader method is kept abstract to
be implemented by a concrete implementation of the interface. After a peer instance has
been elected to be the leader, implementations of LeaderElection call electedAsLeader.
We consider three leader election algorithms:

Hirschberg-Sinclair Leader Election. The Hirschberg-Sinclair algorithm [21] implements
leader election for a ring topology. In every algorithm phase, each peer instance sends its
ID to both of its neighbors in the ring. IDs circulate and each node compares the ID with
its own. The peer with the greatest ID becomes the leader. The logic of the algorithm is
encapsulated into the HirschbergSinclair module, w