
Multitier Modules
Pascal Weisenburger
Technische Universität Darmstadt, Germany
weisenburger@cs.tu-darmstadt.de

Guido Salvaneschi
Technische Universität Darmstadt, Germany
salvaneschi@cs.tu-darmstadt.de

Abstract
Multitier programming languages address the complexity of developing distributed systems abstract-
ing over low level implementation details such as data representation, serialization and network
protocols. Since the functionalities of different peers can be defined in the same compilation unit,
multitier languages do not force developers to modularize software along network boundaries. Unfor-
tunately, combining the code for all tiers into the same compilation unit poses a scalability challenge
or forces developers to resort to traditional modularization abstractions that are agnostic to the
multitier nature of the language.

In this paper, we address this issue with a module system for multitier languages. Our module
system supports encapsulating each (cross-peer) functionality and defining it over abstract peer
types. As a result, we disentangle modularization and distribution and we enable the definition of a
distributed system as a composition of multitier modules, each representing a subsystem. Our case
studies on distributed algorithms, distributed data structures, as well as on the Apache Flink task
distribution system, show that multitier modules allow the definition of reusable (abstract) patterns
of interaction in distributed software and enable separating the modularization and distribution
concerns, properly separating functionalities in distributed systems.

2012 ACM Subject Classification Computing methodologies → Distributed programming languages;
Software and its engineering → Modules / packages

Keywords and phrases Distributed Programming, Multitier Programming, Abstract Peer Types,
Placement Types, Module Systems, Scala

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.3

Funding This work has been supported by the German Research Foundation (DFG) within the
Collaborative Research Center (CRC) 1053 MAKI and 1119 CROSSING, by the DFG projects
SA 2918/2-1 and SA 2918/3-1, by the Hessian LOEWE initiative within the Software-Factory 4.0
project, by the German Federal Ministry of Education and Research and by the Hessian Ministry of
Science and the Arts within CRISP, and by the AWS Cloud Credits for Research program.

Acknowledgements We would like to thank Philipp Schulz for the implementation of the first
prototype of this work and all reviewers of this paper for their comments and suggestions.

1 Introduction

Implementing distributed systems is notoriously hard because of a number of issues that
naturally arise in this setting, such as consistency, fault tolerance, concurrency, mismatch
among data formats, as well as mix of languages and execution platforms.

Multitier – or tierless – languages [36, 13, 26, 14, 41] address some of these problems.
In multitier languages, peers (e.g., the client and the server in a Web application) are
written in the same compilation unit. The compiler splits the code into a client unit and
a server unit, adds the necessary communication code, performs the necessary translations
(e.g., translating client code to JavaScript) and generates the deployable components. As

© Pascal Weisenburger and Guido Salvaneschi;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 3; pp. 3:1–3:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445934?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:weisenburger@cs.tu-darmstadt.de
mailto:salvaneschi@cs.tu-darmstadt.de
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Multitier Modules

a result, developers need to use a single language, are not forced to worry about network
communication, serialization, data formats and conversions and can focus on the application
logic without breaking it down along network boundaries.

Lack of Modularization Abstractions. Scaling multitier code to large applications, however,
is an open problem. Researchers have been focusing on small use cases that primarily aim
to demonstrate the design of their language rather than investigating the development of
complex applications that require sophisticated modularization and composition, or require
abstracting over program locations and architecture. In use cases of limited size, client code
and server code are nicely combined in a single compilation unit, but it is unclear what
happens when one compilation unit is not enough.

As an example of this issue, Figure 1 provides an overview of the task distribution system
in the Apache Flink stream processing framework [9]. It consists of the coordinator of the
Flink instance, the JobManager and one or more TaskManagers, which execute computational
tasks. Figure 1a shows the JobManager (light orange boxes, left), the TaskManager (dark
violet boxes, right) and their communication (arrows). Every box is a class or an actor
which is confined by network boundaries. Thus, cross-host data flow belonging to the
same (distributed) functionality is scattered over multiple modules. Figure 1b shows an
implementation of the same system in the ScalaLoci multitier language [48] (the figure is
adapted from the same work). The data flow in the system is much more regular, due to the
reorganization of the same code in a single unit, yet all the functionalities of the system are
concentrated in a single large compilation unit with ∼ 400 LOC.

Unfortunately, adopting the traditional modularization mechanism supported by the base
language (e.g., a Haskell module for a Haskell-based multitier language) is not sufficient
because such modularization mechanism is not aware of multitier code and it is unclear what
output code is produced after the compiler splits the code.

In summary, simplifying reasoning about distributed applications, abstracting over network
communication and format conversions, and providing a single language to implement
all components, multitier languages have the potential to significantly help programmers
developing distributed systems. However, enabling multitier programming to scale to
large code bases is still a research problem because of the lack of proper modularization
mechanisms. In its current state, multitier programming does effectively defeat the tyranny
of the dominant decomposition [45] for distributed systems, removing the need to modularize
applications according to tiers and network communication. Yet, it does not offer an
alternative modularization solution designed in synergy with multitier abstractions.

Contribution. In this paper, we propose LociMod, a novel multitier module system for
ScalaLoci. Multitier modules encapsulate the interaction between distributed components
of (sub)systems, allowing for (1) decoupling modularization from distribution and
(2) defining reusable patterns of interaction that model the functionality of a (dis-
tributed) subsystem and that can be composed to build larger distributed systems. LociMod
supports strong interfaces [22] to achieve encapsulation and information hiding, such that
implementations can be easily exchanged. The main contribution of the work is to make peer
types, which define the placement of a functionality in LociMod, abstract. This design choice
enables the definition of abstract modules, which capture a fragment of a distributed system,
can be further composed with other abstract modules, and can eventually be instantiated for
a concrete software architecture.

P. Weisenburger and G. Salvaneschi 3:3

class TaskManagerGateway {def disconnectFromJobManager(instanceId: InstanceID, cause: Exception,mgr: ActorRef) = {mgr ! Disconnect(instanceId, cause)
}
def stopCluster(applicationStatus: ApplicationStatus, message: String,mgr: ActorRef) = {mgr ! StopCluster(applicationStatus, message)
}
def requestStackTrace(mgr: ActorRef) = {(mgr ? SendStackTrace).mapTo[StackTrace]
}
def submitTask(tdd: TaskDeploymentDescriptor, mgr: ActorRef) = {(mgr ? SubmitTask(tdd)).mapTo[Acknowledge]
}
def stopTask(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {(mgr ? StopTask(executionAttemptID)).mapTo[Acknowledge]
}
def cancelTask(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {(mgr ? CancelTask(executionAttemptID).mapTo[Acknowledge]
}
def updatePartitions(executionAttemptID: ExecutionAttemptID,partitionInfos: Iterable[PartitionInfo], mgr: ActorRef) = {(mgr ? UpdateTaskMultiplePartitionInfos(executionAttemptID, partitionInfos))

.mapTo[Acknowledge]
}
def failPartition(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {mgr ! FailIntermediateResultPartitions(executionAttemptID)
}
def notifyCheckpointComplete(executionAttemptID: ExecutionAttemptID,jobId: JobID, checkpointId: long, timestamp: long, mgr: ActorRef) = {mgr ! NotifyCheckpointComplete(jobId, executionAttemptID, checkpointId,

timestamp)}
def triggerCheckpoint(executionAttemptID: ExecutionAttemptID, jobId: JobID,checkpointId: long, timestamp: long, checkpointOptions: CheckpointOptions,mgr: ActorRef) = {mgr ! TriggerCheckpoint(jobId, executionAttemptID, checkpointId, timestamp,

checkpointOptions)}
def requestTaskManagerLog(logTypeRequest: LogTypeRequest, mgr: ActorRef) = {(mgr ? RequestTaskManagerLog(logTypeRequest)).mapTo[BlobKey]
}}

class JobManager extends Actor {def receive = {case ScheduleOrUpdateConsumers(jobId, partitionId) =>
currentJobs.get(jobId) match {case Some((executionGraph, _)) =>try {executionGraph.scheduleOrUpdateConsumers(partitionId)sender ! decorateMessage(Acknowledge.get())

} catch {case e: Exception => sender ! decorateMessage(Failure(
new Exception("Could not schedule or update consumers.", e)))}case None =>log.error(s"Cannot find execution graph for job ID $jobId " +"to schedule or update consumers.")sender ! decorateMessage(Failure(

new IllegalStateException("Cannot find execution graph " +s"for job ID $jobId to schedule or update consumers.")))}
case RequestPartitionProducerState(jobId, intermediateDataSetId, resultPartitionId) =>

currentJobs.get(jobId) match {case Some((executionGraph, _)) =>try {val execution = executionGraph.getRegisteredExecutions.get(resultPartitionId.getProducerId)if (execution != null)sender ! decorateMessage(execution.getState)
else {val intermediateResult = executionGraph.getAllIntermediateResults.get(intermediateDataSetId)if (intermediateResult != null) {val execution = intermediateResult.getPartitionById(resultPartitionId.getPartitionId).getProducer.getCurrentExecutionAttemptif (execution.getAttemptId() == resultPartitionId.getProducerId())sender ! decorateMessage(execution.getState)

else sender ! decorateMessage(Status.Failure(
new PartitionProducerDisposedException(resultPartitionId)))}else sender ! decorateMessage(Status.Failure(

new IllegalArgumentException("Intermediate data set " +s"with ID $intermediateDataSetId not found.")))}} catch {case e: Exception => sender ! decorateMessage(
Status.Failure(new RuntimeException("Failed to look up " +"execution state of producer with ID " +s"${resultPartitionId.getProducerId}.", e)))}case None => sender ! decorateMessage(

Status.Failure(new IllegalArgumentException(s"Job with ID $jobId not found.")))}
case ackMessage: AcknowledgeCheckpoint =>

val jid = ackMessage.getJob()currentJobs.get(jid) match {case Some((graph, _)) =>val checkpointCoordinator = graph.getCheckpointCoordinator()if (checkpointCoordinator != null)future {try if (!checkpointCoordinator.receiveAcknowledgeMessage(ackMessage))log.info("Received message for non-existing checkpoint " +ackMessage.getCheckpointId)catch {case t: Throwable => log.error("Error in CheckpointCoordinator " +s"while processing $ackMessage", t)}}(context.dispatcher)else {log.error(s"Received AcknowledgeCheckpoint message for job $jid with no " +s"CheckpointCoordinator")}case None =>log.error(s"Received AcknowledgeCheckpoint for unavailable job $jid")}
case declineMessage: DeclineCheckpoint =>

val jid = declineMessage.getJob()currentJobs.get(jid) match {case Some((graph, _)) =>val checkpointCoordinator = graph.getCheckpointCoordinator()if (checkpointCoordinator != null) {future {try {checkpointCoordinator.receiveDeclineMessage(declineMessage)}catch {case t: Throwable =>log.error("Error in CheckpointCoordinator " +s"while processing $declineMessage", t)}}(context.dispatcher)}else {log.error("Received DeclineCheckpoint message " +s"for job $jid with no CheckpointCoordinator")}case None =>log.error(s"Received DeclineCheckpoint for unavailable job $jid")}
case msg: NotifyKvStateRegistered =>

currentJobs.get(msg.getJobId) match {case Some((graph, _)) =>try {log.debug(s"Key value state registered for job ${msg.getJobId} " +s"under name ${msg.getRegistrationName}.")graph.getKvStateLocationRegistry.notifyKvStateRegistered(msg.getJobVertexId, msg.getKeyGroupRange, msg.getRegistrationName,msg.getKvStateId, msg.getKvStateServerAddress)} catch {case t: Throwable => log.error(s"Failed to notify KvStateRegistry about registration $msg.")}case None =>log.error(s"Received $msg for unavailable job.")}
case msg: NotifyKvStateUnregistered =>

currentJobs.get(msg.getJobId) match {case Some((graph, _)) =>try graph.getKvStateLocationRegistry.notifyKvStateUnregistered(msg.getJobVertexId, msg.getKeyGroupRange, msg.getRegistrationName)catch {case t: Throwable => log.error(s"Failed to notify KvStateRegistry about registration $msg.")}case None =>log.error(s"Received $msg for unavailable job.")}}}

JobManager
TaskManager
Remote Access

class TaskManager extends Actor {def receive = {case SendStackTrace => sendStackTrace() foreach { message =>
sender ! decorateMessage(message)

}
case Disconnect(instanceIdToDisconnect, cause) =>

if (instanceIdToDisconnect.equals(instanceID)) {handleJobManagerDisconnect("JobManager requested disconnect: " +cause.getMessage())triggerTaskManagerRegistration()} else {log.debug("Received disconnect message for wrong instance id " +instanceIdToDisconnect)}
case StopCluster(applicationStatus, message) =>

log.info(s"Stopping TaskManager with final application status " +s"$applicationStatus and diagnostics: $message")shutdown()
case FatalError(message, cause) =>

killTaskManagerFatal(message, cause)
case RequestTaskManagerLog(requestType) =>

blobService match {case Some(_) =>handleRequestTaskManagerLog(requestType, currentJobManager.get) match {case Left(message) => sender() ! message
case Right(message) => sender() ! message

}case None =>sender() ! akka.actor.Status.Failure(new IOException(
"BlobService not available. Cannot upload TaskManager logs."))}

case UpdateTaskMultiplePartitionInfos(executionID, partitionInfos) =>
sender ! decorateMessage(updateTaskInputPartitions(executionID, partitionInfos))

case FailIntermediateResultPartitions(executionID) =>
log.info(s"Discarding the results produced by task execution $executionID")try {network.getResultPartitionManager.releasePartitionsProducedBy(executionID)} catch {case t: Throwable => killTaskManagerFatal("Fatal leak: Unable to release intermediate result partition data", t)}

case UpdateTaskExecutionState(taskExecutionState: TaskExecutionState) =>
currentJobManager foreach { jobManager =>val futureResponse = (jobManager ?decorateMessage(UpdateTaskExecutionState(taskExecutionState)))(askTimeout)futureResponse.mapTo[Boolean].onComplete {case scala.util.Success(result) =>if (!result) {self ! decorateMessage(FailTask(taskExecutionState.getID,new Exception("Task has been cancelled on the JobManager.")))}case scala.util.Failure(t) =>self ! decorateMessage(FailTask(taskExecutionState.getID,new Exception("Failed to send ExecutionStateChange notification to " +"JobManager", t)))}(context.dispatcher)}

case TaskInFinalState(executionID) =>
unregisterTaskAndNotifyFinalState(executionID)

case SubmitTask(tdd) =>
sender ! decorateMessage(submitTask(tdd))

case StopTask(executionID) =>
val task = runningTasks.get(executionID)if (task != null) {try {task.stopExecution()sender ! decorateMessage(Acknowledge.get())

} catch {case t: Throwable =>sender ! decorateMessage(Status.Failure(t))
}} else {log.debug(s"Cannot find task to stop for execution $executionID)")sender ! decorateMessage(Acknowledge.get())}

case FailTask(executionID, cause) =>
val task = runningTasks.get(executionID)if (task != null) {task.failExternally(cause)} else {log.debug(s"Cannot find task to fail for execution $executionID)")}

case CancelTask(executionID) =>
val task = runningTasks.get(executionID)if (task != null) {task.cancelExecution()sender ! decorateMessage(Acknowledge.get())
} else {log.debug(s"Cannot find task to cancel for execution $executionID)")sender ! decorateMessage(Acknowledge.get())
}

case TriggerCheckpoint(jobId, taskExecutionId, checkpointId, timestamp,
checkpointOptions) =>log.debug(s"Receiver TriggerCheckpoint $checkpointId@$timestamp " +s"for $taskExecutionId.")

val task = runningTasks.get(taskExecutionId)if (task != null) {task.triggerCheckpointBarrier(checkpointId, timestamp, checkpointOptions)} else {log.debug(s"TaskManager received a checkpoint request " +s"for unknown task $taskExecutionId.")}
case NotifyCheckpointComplete(jobId, taskExecutionId, checkpointId, timestamp) =>

log.debug(s"Receiver ConfirmCheckpoint $checkpointId@$timestamp " +s"for $taskExecutionId.")
val task = runningTasks.get(taskExecutionId)if (task != null) {task.notifyCheckpointComplete(checkpointId)} else {log.debug(s"TaskManager received a checkpoint confirmation " +s"for unknown task $taskExecutionId.")}}}

class TaskManagerActionsGateway {def notifyFinalState(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {mgr ! TaskInFinalState(executionAttemptID)
}
def notifyFatalError(message: String, cause: Throwable, mgr: ActorRef) = {mgr ! FatalError(message, cause)
}
def failTask(executionAttemptID: ExecutionAttemptID, cause: Throwable,mgr: ActorRef) = {mgr ! FailTask(executionAttemptID, cause)
}
def updateTaskExecutionState(taskExecutionState: TaskExecutionState,mgr: ActorRef) = {mgr ! UpdateTaskExecutionState(taskExecutionState)
}}

class PartitionProducerStateCheckerGateway {def requestPartitionProducerState(jobId: JobID,intermediateDataSetId: IntermediateDataSetID,resultPartitionId: ResultPartitionID, mgr: ActorRef) = {(mgr ? RequestPartitionProducerState(jobId, intermediateDataSetId,
resultPartitionId)).mapTo[ExecutionState]

}}

class ResultPartitionConsumableNotifierGateway {def notifyPartitionConsumable(jobId: JobID, partitionId: ResultPartitionID,taskActions: TaskActions, mgr: ActorRef) = {(mgr ? ScheduleOrUpdateConsumers(jobId, partitionId)).failed foreach { failure =>
LOG.error("Could not schedule or update consumers at the JobManager.", failure)taskActions.failExternally(new RuntimeException("Could not notify JobManager to schedule or update consumers",failure))}}}

class CheckpointResponderGateway {def acknowledgeCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,checkpointId: long, checkpointMetrics: CheckpointMetrics,checkpointStateHandles: SubtaskState, mgr: ActorRef) = {msg ! AcknowledgeCheckpoint(jobID, executionAttemptID, checkpointId,
checkpointMetrics, checkpointStateHandles)}

def declineCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,checkpointId: long, reason: Throwable, mgr: ActorRef) = {msg ! DeclineCheckpoint(jobID, executionAttemptID, checkpointId, reason)
}}

class KvStateRegistryListenerGateway {def notifyKvStateRegistered(jobId: JobID, jobVertexId: JobVertexID,keyGroupRange: KeyGroupRange, registrationName: String,kvStateId: KvStateID, mgr: ActorRef) = {msg ! NotifyKvStateRegistered(jobId, jobVertexId, keyGroupRange, registrationName,
kvStateId, kvStateServerAddress)}

def notifyKvStateUnregistered(jobId: JobID,jobVertexId: JobVertexID,keyGroupRange: KeyGroupRange,registrationName: String,mgr: ActorRef) = {msg ! NotifyKvStateUnregistered(jobId, jobVertexId, keyGroupRange, registrationName)
}}

(a) Original Flink.

@multitier trait TaskDistributionSystem {@peer type JobManager <: { type Tie <: Multiple[TaskManager] with Single[TaskManager] }@peer type TaskManager <: { type Tie <: Single[JobManager] }def disconnectFromJobManager(instanceId: InstanceID, cause: Exception,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(instanceId, cause) {if (instanceId.equals(instanceID)) {handleJobManagerDisconnect(s"JobManager requested disconnect: " +cause.getMessage())triggerTaskManagerRegistration()} else {log.debug(s"Received disconnect message for wrong instance id " +instanceId)}}

}
def stopCluster(applicationStatus: ApplicationStatus, message: String,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(applicationStatus, message) {log.info(s"Stopping TaskManager with final application status " +s"$applicationStatus and diagnostics: $message")shutdown()}
}
def requestStackTrace(mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(tdd) {sendStackTrace()
}.asLocal.map(_.left.get)}

def submitTask(tdd: TaskDeploymentDescriptor,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(tdd) {submitTask(tdd)
}.asLocal.map(_.left.get)}

def stopTask(executionAttemptID: ExecutionAttemptID,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID) {val task = runningTasks.get(executionAttemptID)if (task != null) {try {task.stopExecution()Left(Acknowledge.get())} catch {case t: Throwable =>Right(Status.Failure(t))}} else {log.debug(s"Cannot find task to stop for execution $executionAttemptID)")Left(Acknowledge.get())}
}.asLocal.map(_.left.get)}

def cancelTask(executionAttemptID: ExecutionAttemptID,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID) {val task = runningTasks.get(executionAttemptID)if (task != null) {task.cancelExecution()Acknowledge.get()} else {log.debug(s"Cannot find task to cancel for execution $executionAttemptID")Acknowledge.get()}
}.asLocal}

def updatePartitions(executionAttemptID: ExecutionAttemptID,partitionInfos: java.lang.Iterable[PartitionInfo],mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID, partitionInfos) {updateTaskInputPartitions(executionAttemptID, partitionInfos)
}.asLocal.map(_.left.get)}

def failPartition(executionAttemptID: ExecutionAttemptID,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID) {log.info(s"Discarding the results produced by task execution $executionID")try {network.getResultPartitionManager.releasePartitionsProducedBy(executionID)} catch {case t: Throwable => killTaskManagerFatal("Fatal leak: Unable to release intermediate result partition data", t)}}

}
def notifyCheckpointComplete(executionAttemptID: ExecutionAttemptID,jobId: JobID, checkpointId: Long, timestamp: Long,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, jobId, checkpointId, timestamp) {log.debug(s"Receiver ConfirmCheckpoint $checkpointId@$timestamp " +s"for $executionAttemptID.")
val task = runningTasks.get(executionAttemptID)if (task != null) {task.notifyCheckpointComplete(checkpointId)} else {log.debug(s"TaskManager received a checkpoint confirmation " +s"for unknown task $taskExecutionId.")}}

}
def triggerCheckpoint(executionAttemptID: ExecutionAttemptID, jobId: JobID,checkpointId: Long, timestamp: Long, checkpointOptions: CheckpointOptions,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, jobId, checkpointId, timestamp,checkpointOptions) {log.debug(s"Receiver TriggerCheckpoint $checkpointId@$timestamp " +s"for $executionAttemptID.")
val task = runningTasks.get(executionAttemptID)if (task != null) {task.triggerCheckpointBarrier(checkpointId, timestamp, checkpointOptions)} else {log.debug(s"TaskManager received a checkpoint request " +s"for unknown task $executionAttemptID.")}}

}
def requestTaskManagerLog(logTypeRequest: LogTypeRequest,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(logTypeRequest) {blobService match {case Some(_) =>handleRequestTaskManagerLog(logTypeRequest, currentJobManager.get)case None =>Right(akka.actor.Status.Failure(new IOException("BlobService not available. Cannot upload TaskManager logs.")))}
}.asLocal.map(_.left.get)}

def notifyFinalState(executionAttemptID: ExecutionAttemptID) =on[TaskManager] {
on[TaskManager].run.capture(executionAttemptID) {unregisterTaskAndNotifyFinalState(executionAttemptID)}

}
def notifyFatalError(message: String, cause: Throwable) = on[TaskManager]

on[TaskManager].run.capture(message, cause) {killTaskManagerFatal(message, cause)}
}
def failTask(executionAttemptID: ExecutionAttemptID,cause: Throwable) = on[TaskManager] {

on[TaskManager].run.capture(executionAttemptID, cause) {val task = runningTasks.get(executionAttemptID)if (task != null) {task.failExternally(cause)} else {log.debug(s"Cannot find task to fail for execution $executionAttemptID)")}}
}
def updateTaskExecutionState(taskExecutionState: TaskExecutionState) = on[TaskManager] {

on[TaskManager].run.capture(taskExecutionState) {currentJobManager foreach { jobManager =>val futureResponse = (jobManager ?decorateMessage(UpdateTaskExecutionState(taskExecutionState)))(askTimeout)futureResponse.mapTo[Boolean].onComplete {case scala.util.Success(result) =>if (!result) {self ! decorateMessage(FailTask(taskExecutionState.getID,new Exception("Task has been cancelled on the JobManager.")))}case scala.util.Failure(t) =>self ! decorateMessage(FailTask(taskExecutionState.getID,new Exception("Failed to send ExecutionStateChange notification " +"to JobManager", t)))}(context.dispatcher)}}
}
def notifyKvStateRegistered(jobId: JobID, jobVertexId: JobVertexID,keyGroupRange: KeyGroupRange, registrationName: String,kvStateId: KvStateID) = on[TaskManager] {

on[JobManager].run.capture(jobId, jobVertexId, keyGroupRange, registrationName,kvStateId, kvStateServerAddress) {currentJobs.get(jobId) match {case Some((graph, _)) =>try {log.debug(s"Key value state registered for job $jobId " +s"under name $registrationName.")graph.getKvStateLocationRegistry.notifyKvStateRegistered(jobVertexId, keyGroupRange, registrationName,kvStateId, kvStateServerAddress)} catch {case t: Throwable => log.error("Failed to notify KvStateRegistry about registration.")}case None =>log.error("Received state registration for unavailable job.")}}
}
def notifyKvStateUnregistered(jobId: JobID, jobVertexId: JobVertexID,keyGroupRange: KeyGroupRange,registrationName: String) = on[TaskManager] {

on[JobManager].run.capture(jobId, jobVertexId, keyGroupRange, registrationName) {currentJobs.get(jobId) match {case Some((graph, _)) =>try graph.getKvStateLocationRegistry.notifyKvStateUnregistered(jobVertexId, keyGroupRange, registrationName)catch {case t: Throwable => log.error(s"Failed to notify KvStateRegistry about registration.")}case None =>log.error("Received state unregistration for unavailable job.")}}
}
def notifyPartitionConsumable(jobId: JobID, partitionId: ResultPartitionID,taskActions: TaskActions) = on[TaskManager] {

on[JobManager].run.capture(jobId, partitionId) {currentJobs.get(jobId) match {case Some((executionGraph, _)) =>try {executionGraph.scheduleOrUpdateConsumers(partitionId)Acknowledge.get()} catch {case e: Exception => Failure(new Exception("Could not schedule or update consumers.", e)))}case None =>log.error(s"Cannot find execution graph for job ID $jobId " +"to schedule or update consumers.")Failure(new IllegalStateException("Cannot find execution graph " +s"for job ID $jobId to schedule or update consumers."))}
}.asLocal.failed foreach { failure =>LOG.error("Could not schedule or update consumers at the JobManager.", failure)

taskActions.failExternally(new RuntimeException("Could not notify JobManager to schedule or update consumers",failure))}
}def acknowledgeCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,checkpointId: Long, checkpointMetrics: CheckpointMetrics,checkpointStateHandles: SubtaskState) = on[TaskManager] {

on[JobManager].run.capture(jobID, executionAttemptID, checkpointId,checkpointMetrics, checkpointStateHandles) {currentJobs.get(jobID) match {case Some((graph, _)) =>val checkpointCoordinator = graph.getCheckpointCoordinator()if (checkpointCoordinator != null)future {try if (!checkpointCoordinator.receiveAcknowledgeMessage(AcknowledgeCheckpoint(jobID, executionAttemptID,checkpointId,checkpointMetrics, checkpointStateHandles)))log.info("Received message for non-existing checkpoint " +checkpointId)catch {case t: Throwable => log.error("Error in CheckpointCoordinator " +"while processing acknowledge message", t)}}(context.dispatcher)else log.error(s"Received AcknowledgeCheckpoint message for job $jobID with no " +"CheckpointCoordinator")case None =>log.error(s"Received AcknowledgeCheckpoint for unavailable job $jobID")}}
}
def declineCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,checkpointId: Long, reason: Throwable) = on[TaskManager] {

on[JobManager].run.capture(jobID, executionAttemptID, checkpointId, reason) {currentJobs.get(jobID) match {case Some((graph, _)) =>val checkpointCoordinator = graph.getCheckpointCoordinator()if (checkpointCoordinator != null) {future {try checkpointCoordinator.receiveDeclineMessage(DeclineCheckpoint(jobID, executionAttemptID, checkpointId, reason))catch {case t: Throwable => log.error("Error in CheckpointCoordinator " +"while processing decline message", t)}}(context.dispatcher)}else log.error("Received DeclineCheckpoint message " +s"for job $jobID with no CheckpointCoordinator")case None =>log.error(s"Received DeclineCheckpoint for unavailable job $jobID")}}
}
def requestPartitionProducerState(jobId: JobID,intermediateDataSetId: IntermediateDataSetID,resultPartitionId: ResultPartitionID) = on[TaskManager] { new FlinkFuture(

on[JobManager].run.capture(jobId, intermediateDataSetId, resultPartitionId) {currentJobs.get(jobId) match {case Some((executionGraph, _)) =>try {val execution = executionGraph.getRegisteredExecutions.get(resultPartitionId.getProducerId)if (execution != null)Left(execution.getState)else {val intermediateResult = executionGraph.getAllIntermediateResults.get(intermediateDataSetId)if (intermediateResult != null) {val execution = intermediateResult.getPartitionById(resultPartitionId.getPartitionId).getProducer.getCurrentExecutionAttemptif (execution.getAttemptId() == resultPartitionId.getProducerId())Left(execution.getState)elseRight(Status.Failure(new PartitionProducerDisposedException(resultPartitionId)))elseRight(Status.Failure(new IllegalArgumentException(s"Intermediate data set with ID $intermediateDataSetId not found.")))}} catch {case e: Exception => Right(Status.Failure(new RuntimeException("Failed to look up " +"execution state of producer with ID " +s"${resultPartitionId.getProducerId}.", e)))}case None => Right(Status.Failure(new IllegalArgumentException(s"Job with ID $jobId not found.")))}
}.asLocal.mapTo[ExecutionState])}

}

(b) ScalaLoci reimplementation.

Figure 1 Flink task distribution system in ScalaLoci, adapted from [48].

Our case studies on distributed algorithms, distributed data structures, as well as on
the Apache Flink task distribution system, show that LociMod multitier modules allow the
definition of reusable (abstract) patterns of interaction in distributed software and enable
separating the modularization and distribution concerns, properly separating functionalities
in distributed systems. In summary, this paper makes the following contributions:

We present LociMod, a novel module system for multitier languages, featuring multitier
modules, which support strong interfaces and exchangeable implementations.
We show that, thanks to LociMod abstract peer types, the interaction between multitier
abstractions and modularization features results in a number of powerful abstractions
to define and compose distributed systems, including multitier mixin composition and
constrained modules.
We provide an implementation of LociMod as an extension to ScalaLoci, a multitier
language embedded into Scala. The implementation supports separate compilation and is
publicly available.1

We evaluate LociMod with case studies, including distributed algorithms, distributed
data structures and the Apache Flink Big Data processing framework, demonstrating
the composition properties of multitier modules and how they can capture (distributed)
functionalities in complex systems.

The paper is structured as follows. Section 2 provides an overview of ScalaLoci and the
important features of the Scala type system. Section 3 describes the design of multitier
modules. Section 4 discusses the implementation. Section 5 presents the evaluation. Section 6
discusses the related work. Section 7 concludes.

1 http://scala-loci.github.io/

ECOOP 2019

http://scala-loci.github.io/

3:4 Multitier Modules

2 Background

2.1 ScalaLoci

Since LociMod is an extension of ScalaLoci [48], we first provide an overview of ScalaLoci
to the reader. ScalaLoci is a general purpose multitier language for distributed systems –
unlike most multitier languages, which focus on the Web (i.e., client-server architecture) only.
To support generic distributed architectures, ScalaLoci provides language abstractions for
developers to freely define the different components – called peers – of the distributed system
and their architectural relation. Peers are defined as peer types, which allow for specifying the
placement of data and computations at the type level using placement types, enabling static
reasoning about placement. A placement type T on P2 represents a value of a traditional type
T which is placed on a peer of peer type P.

Placed Values. Placed values of type T on P are initialized with placed { e } expressions.
For example, the following string is placed on the Master peer:

val name: String on Master = placed { "the one and only master" }

The name value is accessible remotely from other peers. Accessing remote values requires the
asLocal marker, creating a local representation of the remote value by transmitting it over
the network:

val masterName: Future[String] on Worker = placed { name.asLocal }

Accessing name remotely from a Worker peer returns a value of type Future[String]. Futures
– which are part of Scala’s standard library – account for network latency and possible
communication failures by representing a value which may not be available immediately, but
will become available in the future or produce an error.

Remote accessibility of placed values can be regulated: Local placed values denoted by
the type Local[T] on P specify values that can only be accessed locally from the same peer
instance, i.e., remote access via asLocal is not possible:

val realName: Local[String] on Master = placed { "Rumpelstiltskin" }

For a value definition val v: T on P = placed { e }, the shorthand notation val v = on[P] { e }

can be used, inferring the placement type T on P.

Placed Computations. Like placed values, placed computations are declared to have a
placement type and defined using a placed expression:

def execute(task: Task[T]): T on Worker = placed { task.process() }

Invoking a remote computation is explicit using remote call. If the result of a remote
computation is of interest to the local peer instance, it can be made available locally using
asLocal (as described before):

val result: Future[T] on Master = placed { (remote call execute(new Task()).asLocal }

2 The Scala compiler treats T on P and on[T,P] equivalently.

P. Weisenburger and G. Salvaneschi 3:5

Architecture Specification. In LociMod, the architectural scheme of the distributed system
is expressed using ties, which specify the kind of relation among peers. Ties are encoded as
structural type refinements specifying the Tie type for peers. Ties to multiple peers are defined
by declaring a compound type (e.g., type Tie <: Single[Master] with Multiple[Worker]).
Remote access is only possible between tied peers.

For instance, an architecture with a single master that offloads computations to a single
worker is defined by a Master peer and a Worker peer (specified through the @peer annotation
on type members):

1 @peer type Master <: { type Tie <: Single[Worker] }
2 @peer type Worker <: { type Tie <: Single[Master] }

Both peers have a single tie to each other, i.e., workers are always connected to a single
master instance and each corresponding master instance always manages a single worker.
A variant of the master–worker model, where a single master instance manages multiple
workers, is modeled by a single tie from worker to master and a multiple tie from master to
worker:

1 @peer type Master <: { type Tie <: Multiple[Worker] }
2 @peer type Worker <: { type Tie <: Single[Master] }

Section 5.1 presents a more systematic categorization of common distributed architectures
and their encoding using peers and ties.

2.2 Scala Abstract Data Types and Path-Dependent Types

The LociMod module system leverages Scala’s type system features, in particular abstract
types and path-dependent types, which we quickly revise. In Scala, traits, classes and objects
(i.e., singleton classes) define type members, which are either abstract (e.g., type SomeType)
or define concrete type aliases (e.g., type SomeType = Int). Abstract type members can define
lower and upper type bounds (e.g., type SomeType >: LowerBound <: UpperBound), which
refine the type while keeping it abstract. Inherited abstract type members can be overridden.
Such mechanism enables specializing the upper bound and generalizing the lower bound. In
Section 3.2, we define the peers of the distributed system as abstract type members. Refining
the upper bound enables specializing a peer as (a subtype of) another peer, enabling peer
composition by combining super peers into a sub peer.

Scala types can be dependent on an path (of objects). For example, in the following code
snippet, both objects a and b inherit the SomeType abstract type member defined in the
Module trait:

1 trait Module { type SomeType }
2 object a extends Module
3 object b extends Module

The path-dependent type a.SomeType refers to a’s SomeType and the path-dependent type
b.SomeType refers to b’s SomeType. The types depend on the objects a or b, respectively.
They are distinct since their paths differ.

For instance, the following example defines a module A with an abstract type member T.
Further, a module B defines an abstract type member U. The module C extends module B

inheriting its abstract type member U. The module C also references an instance a of module

ECOOP 2019

3:6 Multitier Modules

A. Module C’s U type is overridden and refined as a subtype of the T type defined in the a

instance by specifying that the upper bound of U is the path-dependent type a.T:
1 trait A { type T }
2
3 trait B { type U }
4
5 trait C extends B {
6 type U <: a.T
7 val a: A
8 }

In Section 3.2.1, we use this mechanism to declare references to other modules from within
a module and to refer to the peers (defined as abstract type members) in the referenced
modules via their path-dependent types.

3 LociMod Multitier Modules

In this section, we describe the LociMod module system. The goal of this section is twofold.
On the one hand, we present the design of multitier modules. On the other hand, we
demonstrate a number of examples for multitier modules and their composition mechanisms.

We first introduce (concrete) multitier modules and show how they can be composed into
larger applications, using module references – references to other multitier modules. Then
we introduce modules with abstract peer types and show their composition through module
references as well as another composition mechanism, multitier mixing. Next we show how
such composition mechanism enables defining constrained multitier modules.

3.1 Multitier Modules
We embed LociMod into Scala, following the same approach of ScalaLoci, which is a Scala
DSL. Scala traits represent modules – adopting Scala’s design that unifies object and module
systems [30]. Traits can contain abstract declarations and concrete definitions for both type
and value members – thus serve as both module definitions and implementations – and Scala
objects can be used to instantiate traits.

Module Definition. In LociMod, multitier modules are defined by a trait with the @multitier
annotation. Multitier modules can define (i) values placed on different peers and (ii) the
peers on which the values are placed – including constraints on the architectural relation
between peers. This approach enables modularization across peers (not necessarily along
peer boundaries) combining the benefits of multitier programming and modular development.
To illustrate, consider an application that allows a user to edit documents offline but also
offers the possibility to backup the data to an online storage:

1 @multitier trait Editor {
2 @peer type Client <: { type Tie <: Single[Server] }
3 @peer type Server <: { type Tie <: Single[Client] }
4
5 val backup: FileBackup
6 }

The Editor specifies a Client (Line 2) and a Server (Line 3). The client should be able to
backup/restore documents to/from the server, e.g., the client can invoke a backup.store

method to backup data. Thus, the module requires an instance of the FileBackup multitier
module (Line 5) providing the backup service. Section 3.2 shows how the Editor and the
FileBackup module can be composed.

P. Weisenburger and G. Salvaneschi 3:7

Encapsulation with Multitier Modules. LociMod’s multitier modules encapsulate dis-
tributed (sub)systems with a specified distributed architecture, enabling the creation of
larger distributed applications by composition. The following code shows a possible imple-
mentation for the backup service subsystem using the file system to store backups:

1 @multitier trait FileBackup {
2 @peer type Processor <: { type Tie <: Single[Storage] }
3 @peer type Storage <: { type Tie <: Single[Processor] }
4
5 def store(id: Long, data: Data): Unit on Processor = placed { remote call write(id, data) }
6 def load(id: Long): Future[Data] on Processor = placed { (remote call read(id)).asLocal }
7
8 private def write(id: Long, data: Data): Unit on Storage = placed {
9 writeToFile(data, s"/storage/$id") }

10 private def read(id: Long): Data on Storage = placed {
11 readFromFile[Data](s"/storage/$id") }
12 }

The multitier FileBackup module specifies a Processor to compress data (of type Data) and
a Storage peer to store and retrieve data associating them to an ID. The store (Line 5) and
load (Line 6) methods can be called on the Processor peer, invoking write (Line 8) and
read (Line 10) remotely on the Storage peer. The implementations of the write and read

methods operate on files.
LociMod multitier modules support standard access modifiers for placed values (e.g.,

private, protected etc.), which are used as a technique to encapsulate module functionality.
In the FileBackup module, the write and the read methods are declared private, so other
modules that use FileBackup cannot directly access them. Overall, the FileBackup module
encapsulates all the functionalities related to the backup service subsystem, including the
communication between Processor and Storage.

As the last example demonstrates, multitier modules enable separating modularization
and distribution concerns, allowing developers to organize applications based on logical
units instead of network boundaries. A multitier module abstracts over potentially multiple
components and the communication between them, specifying distribution by expressing the
placement of a computation on a peer in its type. Both axes are traditionally intertwined by
having to implement a component of the distributed system in a module (e.g., a class, an
actor, etc.) leading to cross-host functionality being scattered over multiple modules.

Multitier Modules as Interfaces and Implementations. To decouple the code that uses
a multitier module from the concrete implementation of such a module, LociMod supports
modules to be used as interfaces and implementations. Multitier modules can be abstract,
i.e., defining only abstract members, acting as module interfaces or they can define concrete
implementations. For example, applications that require a backup service can be developed
against the BackupService module interface, which declares a store and a load method:

1 @multitier trait BackupService {
2 @peer type Processor <: { type Tie <: Single[Storage] }
3 @peer type Storage <: { type Tie <: Single[Processor] }
4
5 def store(id: Long, data: Data): Unit on Processor
6 def load(id: Long): Future[Data] on Processor
7 }

LociMod adopts Scala’s inheritance mechanism to express the relation between the multitier
modules used as interfaces and their implementations. The FileBackup module presented

ECOOP 2019

3:8 Multitier Modules

before is a possible implementation for the BackupService module interface, i.e., we can
redefine FileBackup to let it implement BackupService:

1 @multitier trait FileBackup extends BackupService { ... }

The following example presents a different implementation for the BackupService module
interface using a database backend (instead of a file system) as storage:

1 @multitier trait DatabaseBackup extends BackupService {
2 def store(id: Long, data: Data): Unit on Processor = placed { remote call insert(id, data) }
3 def load(id: Long): Future[Data] on Processor = placed { (remote call query(id)).asLocal }
4
5 private val db: AsyncContext = ...
6
7 private def insert(id: Long, data: Data): Unit on Storage = placed {
8 db.run(query[(Long, Data)].insert(lift(id −> data))) }
9 private def query(id: Long): Future[Data] on Storage = placed {

10 db.run(query[(Long, Data)].filter { _._1 == lift(id) }) map { _.head._2 } }
11 }

The implementations of the store and of the load methods invoke insert (Line 7) and
query (Line 9) remotely, which insert the backup data into a database and retrieve the data
from a database, respectively.3

Combining Multitier Modules. Thanks to the separation between module interfaces and
module implementations, applications can be developed against the interface, remaining
agnostic to the implementation details of a subsystem encapsulated in a multitier module.
For example, the Editor presented before can be adapted to use a BackupService interface
instead of the concrete FileBackup implementation (Line 5):

1 @multitier trait Editor {
2 @peer type Client <: { type Tie <: Single[Server] }
3 @peer type Server <: { type Tie <: Single[Client] }
4
5 val backup: BackupService
6 }

Finally, a multitier module can be instantiated by instantiating concrete implementations of
the module interfaces it refers to. LociMod relies on the Scala approach of using an object

to instantiate a module, i.e., declaring an object that extends a trait – or mixes together
multiple traits – creates an instance of those traits. For example, the following code creates
an editor instance of the Editor module by providing a concrete DatabaseBackup instance
for the abstract backup value:

1 @multitier object editor extends Editor {
2 @multitier object backup extends DatabaseBackup
3 }

The multitier module instance of a @multitier object can be used to run different peers
from (non-multitier) standard Scala code (e.g., the Client and the Server peer), where
every peer instance only contains the values placed on the respective peer. Peer startup is
presented in Section 3.4.

3 The example uses the Quill http://getquill.io query language to access the database

http://getquill.io

P. Weisenburger and G. Salvaneschi 3:9

3.2 Abstract Peer Types
In the previous section, we have shown how to encapsulate a subsystem within a multitier
module and how to define a module interface such that multiple implementations are possible.
LociMod modules allow for going further, enabling abstraction over placement using abstract
peer types. Peer types are abstract type members of traits, i.e., they can be overridden in sub
traits, specializing their type. As a consequence, LociMod multitier modules are parametric
on peer types. For example, the BackupService module of the previous section defines an
abstract Processor peer, but the Processor peer does not necessarily need to refer to a
physical peer in the system. Instead, it denotes a logical place. When running the distributed
system, a Client peer, for example, may adopt the Processor role, by specializing the
Client peer to be a Processor peer.

Peer types are used to distinguish places only at the type level, i.e., the placement type
T on P represents a run time value of type T. The peer type P is used to keep track of the
value’s placement, but a value of type P is never constructed at run time. Hence, T on P is
essentially a “phantom type” [12] due to its parameter P.

The next two sections describe the interaction of abstract peer types with two composition
mechanisms for multitier modules. We already encountered the first mechanism, module
references. The other mechanism, multitier mixing, enables combining multitier modules
directly. In both cases, the peers defined in a module can be specialized with the role of
other modules’ peers.

3.2.1 Peer Type Specialization with Module References
Since peer types are abstract, they can be specialized by narrowing their upper type bound,
augmenting peers with different roles defined by other peers. Peers can subsume the roles
of other peers – similar to subtyping on classes – enabling polymorphic usage of peers.
Programmers can use this feature to augment peer types with roles defined by other peer
types by establishing a subtyping relation between both peers. This mechanism enables
developers to define reusable patterns of interaction among peers that can be specialized
later to any of the existing peers of an application.

For example, the editor application that requires the backup service (Section 3.1) needs
to specialize its Client peer to be a Processor peer and its Server peer to be a Storage

peer for clients to be able to perform backups on the server:
1 @multitier trait Editor {
2 @peer type Client <: backup.Processor { type Tie <: Single[Server] with Single[backup.Storage] }
3 @peer type Server <: backup.Storage { type Tie <: Single[Client] with Single[backup.Processor] }
4
5 val backup: BackupService
6 }

We specify the Client peer to be a (subtype of the) backup.Processor peer (Line 2) and the
Server peer to be a (subtype of the) backup.Storage peer (Line 3). Both backup.Processor

and backup.Storage refer to the peer types defined on the BackupService instance referenced
by backup. We can use such module references to refer to (path-dependent) peer types through
a reference to the multitier module.

Since the subtyping relation Server <: backup.Storage specifies that a server is a storage
peer, the backup functionality (i.e., all values and methods placed on the Storage peer) are
also placed on the Server peer. Super peer definitions are locally available on sub peers,

ECOOP 2019

3:10 Multitier Modules

making peers composable using subtyping. Abstract peer types specify such subtyping
relation by declaring an upper type bound. When augmenting the server with the storage
functionality using subtyping, the Tie type also has to be a subtype of the backup.Storage

peer’s Tie type. This type level encoding of the architectural relations among peers enables
the Scala compiler to check that the combined architecture of the system complies to the
architectural constraints of every subsystem.

Note that, for the current example, one may expect to unify the Server and the Storage
peer, so they refer to the same peer, specifying type equality instead of a subtyping relation:

1 @peer type Server = backup.Storage { type Tie <: Single[Client] }

Since peer types, however, are never instantiated (they are used only as phantom types to keep
track of placement at the type level) we can always keep peer types abstract, only specifying
an upper type bound. Hence, it is sufficient to specialize Server to be a backup.Storage,
keeping the Server peer abstract for potential further specialization.

3.2.2 Peer Type Specialization with Multitier Mixing

The previous section shows how peer types can be specialized when referring to modules
through module references. This section presents a different composition mechanism based
on composing traits – similar to mixin composition [4]. Since LociMod multitier modules can
encapsulate distributed subsystems (Section 3.1), mixing multitier modules enables including
the implementations of different subsystems into a single module.

LociMod separates modules from peers, i.e., mixing modules does not equate to unify the
peers they define. Hence we need a way to coalesce different peers. We use (i) subtyping and
(ii) overriding of abstract types as a mechanism to specify that a peer also comprises the
placed values of (i) the super peers and (ii) the overridden peers, i.e., a peer subsumes the
functionalities of its super peers (Section 3.2.1) and its overridden peers. Since peers are
abstract type members, they can be overridden in sub modules. To demonstrate mixing of
multitier modules we consider the case of two different functionalities.

First, we consider a computing scheme where a master offloads tasks to worker nodes:

1 @multitier trait MultipleMasterWorker[T] {
2 @peer type Master <: { type Tie <: Multiple[Worker] }
3 @peer type Worker <: { type Tie <: Single[Master] }
4
5 def run(task: Task[T]): Future[T] on Master = placed {
6 (remote(selectWorker()) call execute(task)).asLocal
7 }
8 private def execute(task: Task[T]): T on Worker = placed { task.process() }
9 }

The example defines a master that has a multiple tie to workers (Line 2) and a worker that has
a single tie to a master (Line 3). The run method has the placed type Future[T] on Master

(Line 5), placing run on the Master peer. Running a task remotely results in a Future [3] to
account for processing time and network delays. The remote call to execute – to be executed
on the worker – (Line 6) starts processing the task (Line 8). The remote result is transferred
back to the master as Future[T] using asLocal (Line 6). A single worker instance in a pool
of workers is selected for processing the task via the selectWorker method (Line 6, the
implementation of selectWorker is omitted, for simplicity).

P. Weisenburger and G. Salvaneschi 3:11

Second, we consider the case of monitoring, a functionality that is required in many
distributed applications to react to possible failures [23]. In LociMod, a heartbeat mechanism
can be defined across a Monitored and a Monitor peer in a multitier module:

1 @multitier trait Monitoring {
2 @peer type Monitor <: { type Tie <: Multiple[Monitored] }
3 @peer type Monitored <: { type Tie <: Single[Monitor] }
4
5 def monitoredTimedOut(monitored: Remote[Monitored]): Unit on Monitor
6
7 ...
8 }

The module defines the architecture with a single monitor and multiple monitored peers (Line 2
and 3). The monitoredTimedOut method (Line 5) is invoked by Monitoring implementations
whenever a heartbeat was not received from a monitored peer instance for some time. We
leave out the actual implementation of the monitoring logic for brevity.

To add monitoring to an application, such application has to be mixed with the Monitoring
module. Mixing composition brings the members declared in all mixed-in modules into
the local scope of the module that mixes in the other modules, i.e., all peer types of the
mixed-in modules are in scope. However, the peer types of different modules define separate
architectures, which can then be combined by specializing the peers of one module to the
peers of other modules. For example, to add monitoring to the the MultipleMasterWorker

functionality, MultipleMasterWorker needs to be mixed with Monitoring and the Master

and Worker peers need to be overridden to be (subtypes of) Monitor and Monitored peers:

1 @multitier trait MonitoredMasterWorker[T] extends MultipleMasterWorker[T] with Monitoring {
2 @peer type Master <: Monitor { type Tie <: Multiple[Worker] with Multiple[Monitored] }
3 @peer type Worker <: Monitored { type Tie <: Single[Master] with Single[Monitor] }
4 }

Specializing peers of mixed modules follows the same approach as specializing peers accessible
through module references (Section 3.2.1), i.e., Master <: Monitor specifies that a master is a
monitor peer, augmenting the master with the monitor functionality. Also, for specialization
using peers of mixed-in modules, the compiler checks that the combined architecture of the
system complies to the architectural constraints of every subsystem.

3.2.3 Properties of Abstract Peer Types

LociMod abstract peer types share commonalities with both parametric polymorphism –
considering type parameters as type members [29, 46] – like ML parameterized types [25] or
Java generics [5], as well as subtyping in object-oriented languages. Similar to parametric
polymorphism, abstract peer types allow parametric usage of peer types as shown for the
BackupService module defining a Storage peer parameter. Distinctive from parametric
polymorphism, however, with abstract peer types, peer parameters remain abstract, i.e.,
specializing peers does not unify peer types. Instead, similar to subtyping, specializing peers
establishes an is-a relation.

Placement types T on P support suptyping between peers by being covariant in the type of
the placed value and contravariant in the peer (i.e., the on type is defined as type on[+T, -P]),
which allows values to be used in a context where a value of a super type placed on a sub peer
is expected. This encoding is sound since a subtype can be used where a super type is expected
and values placed on super peers are available on all sub peers. For example, we can extend

ECOOP 2019

3:12 Multitier Modules

the Editor with a WebClient, which is a special kind of client (i.e., WebClient <: Client,
Line 5) with a Web user interface (Line 8), and a MobileClient (i.e., Line 6):

1 @multitier trait Editor {
2 @peer type Server <: { type Tie <: Multiple[Client] }
3 ...
4 @peer type Client <: { type Tie <: Single[Server] }
5 @peer type WebClient <: Client { type Tie <: Single[Server] }
6 @peer type MobileClient <: Client { type Tie <: Single[Server] }
7
8 val webUI: UI on WebClient
9 val ui: UI on Client = placed { webUI } // 7 Error: `Client̀ not a subtype of `WebClient̀

10 }

By using subtyping on peer types, not unifying the types, we are able to distinguish between
the general Client peer, which can have different specializations (e.g., WebClient and Mobile-

Client), i.e., every Web client is a client but not every client is a Web client. By keeping the
types distinguishable, the ui binding (Line 9) is rejected by the compiler since it defines a
value on the Client peer, i.e., the access to webUI inside the placed expression is computed on
the Client peer. However, webUI is not available on Client since it is placed on WebClient

and a client is not necessarily a Web client.

3.3 Constrained Multitier Modules
LociMod multitier modules not only allow abstraction over placement, but also the definition
of constrained multitier modules that refer to other modules. This feature enables expressing
constraints among the modules of a system, such as that one functionality is required to enable
another. In LociMod, Scala’s self-type annotations express such constraints, indicating which
other module is required during mixin composition. To improve decoupling, constraints are
often defined on module interfaces, such that multiple module implementations are possible.

Applications requiring constrained modules include distributed algorithms, discussed in
more detail in the evaluation (Section 5.1). For example, a global locking scheme ensuring
mutual exclusion for a shared resource can be implemented based on a central coordinator.
Choosing a coordinator among connected peers requires a leader election algorithm. The
MutualExclusion module declares a lock (Line 2) and unlock (Line 3) method for regulating
access to a shared resource. MutualExclusion is constrained over LeaderElection since our
locking scheme requires the leader election functionality:

1 @multitier trait MutualExclusion { this: LeaderElection =>
2 def lock(id: T): Boolean on Node
3 def unlock(id: Id): Unit on Node
4 }

Such requirement, expressed as a Scala self-type (Line 1), forces the developer to mix in a
LeaderElection implementation to create instances of the MutualExclusion module.

A leader election algorithm can be defined by the following module interface:

1 @multitier trait LeaderElection[T] {
2 @peer type Node
3
4 def electLeader(): Unit on Node
5 def electedAsLeader(): Unit on Node
6 }

The module defines an electLeader method (Line 4) to initiate the leader election. The
electedAsLeader method (Line 5) is called by LeaderElection module implementations on
the peer instance that has been elected to be the leader.

P. Weisenburger and G. Salvaneschi 3:13

All definitions of the LeaderElection module required by the self-type annotation are
available in the local scope of the MutualExclusion module, which includes peer types and
placed values. A self-type expresses a requirement but not a subtyping relation, i.e., we express
the requirement on LeaderElection in the example as self-type since the MutualExclusion

functionality requires leader election but is not a leader election module itself.
Multiple constraints can be expressed by using a compound type. For example, different

peer instances often need to have unique identifiers to distinguish among them. Assuming
an Id module provides such mechanism, a module which requires both the leader election
and the identification functionality can specify both required modules as compound self-type
this: LeaderElection with Id . Such requirement makes the definitions of both the Leader-
Election and the Id module available in the module’s local scope and forces the developer
to mix in implementations for both modules.

Mixin composition is guaranteed by the compiler to conform to the self-type (which is the
essence of the Scala cake pattern). Assuming a YoYo implementation of the LeaderElection

interface which implements the Yo-Yo algorithm [39] (Section 5.1 presents different leader
election implementations), the following code shows how a MutualExclusion instance can
be created by mixing together MutualExclusion and YoYo:

1 @multitier object mutualExclusion extends MutualExclusion with YoYo

The YoYo implementation of the LeaderElection interface satisfies the MutualExclusion

module’s self-type constraint on the LeaderElection interface. Since mixing together Mutual-
Exclusion and YoYo fulfills all constraints and leaves no values abstract, the module can be
instantiated.

3.4 Peer Startup
In the previous sections, we have shown how LociMod multitier modules are instantiated. To
start up a distributed system, however, we also need to start peers defined in the modules.
Different peer instances are typically started on different hosts and connect with each other
over a network according to the architecture specification. As a consequence, an additional
step is required to start the peers of (already instantiated) modules. For the master–worker
example, the master and the worker peers are started as follows:

1 @multitier object masterWorker extends MultipleMasterWorker[Int]
2
3 object Master extends App {
4 multitier start new Instance[masterWorker.Master](
5 listen[masterWorker.Worker] { TCP(1099) })
6 }
7
8 object Worker extends App {
9 multitier start new Instance[masterWorker.Worker](

10 connect[masterWorker.Master] { TCP("localhost", 1099) })
11 }

We follow the idiomatic way of defining an executable Scala application, where an object

extends App (Line 3 and 8). The object body is executed when the application starts. The
code executed when staring a Scala application is standard (non-multitier) Scala, which,
in our example, uses multitier start Instance[...] to start a peer of an instantiated
multitier module. Line 1 instantiates a MasterWorker module using the MultipleMaster-

Worker implementation. Line 4 starts a Master peer of the module, which uses TCP to
listen for connections from Worker peer instances. Line 9 starts a Worker peer of the module,
which uses TCP to connect to a running Master peer instance.

ECOOP 2019

3:14 Multitier Modules

4 Implementation

The implementation of LociMod required to modify ∼ 5K LOCs of the ScalaLoci codebase.
The ScalaLoci compilation process entails three main aspects [48]: (1) the type-level encoding
of placement types into the Scala type system, (2) the compile-time macro-driven code
separation of code belonging to different peers and (3) the injection of the communication
code. The implementation of LociMod requires plugging into the steps above to introduce
functionalities for module definition and composition as well as checks for architectural
conformance. Both are discussed hereafter.

We preserve Scala’s separate compilation because our implementation is based on Scala
macros, which expand locally and cannot transform any other code than the annotated trait,
class or object under expansion. Once modules are compiled, they are not recompiled unless
their code or interfaces on which they depend change.

Macro Expansion. To enable distributed functionalities bundled in a multitier module
(Section 3.1) to be executed on different machines (Section 3.4), our implementation separates
multitier modules into peer-specific parts and replaces remote accesses with calls to the
communication runtime, auto-generating the transmission boilerplate code. For the splitting,
we rely on Scala annotation macros [8] (traits and objects are annotated with @multitier),
transforming the type-checked abstract syntax tree4 of the module. Placement types,
specifying which values belong to which peer, have no direct semantic equivalent in plain
Scala. The implementation splits multitier code based on placement types, thereby effectively
erasing placement types from the generated code.

Listing 1 provides an intuition of how the macro expansion works, demonstrating module
and peer composition as well as remote access. The LociMod code (Listing 1a) defines a
module A with a peer Peer and a placed value value. Module B mixes in module A (Line 6),
defines a reference to an instance of module A (Line 9), and accesses a remote value through
the reference (Line 13).

In the expanded code (Listing 1b, simplified excerpt), placed values are annotated with
compileTimeOnly (Line 3), which instructs the Scala compiler to issue an error in case
such value is referenced in user code after macro expansion. The code generation creates
Marshallable instances (Line 4) for network transmission of placed values and runtime
identifiers for placed values (Line 5), modules (Line 16) and peers (Line 17) for dispatching
remote accesses. The splitting process generates a <placed values> trait, which contains all
placed values in the same order in which they appear in the multitier module to retain the
initialization order. Values, however, are nulled (Line 9) and only initialized for the peer on
which they are placed. Therefore, the splitting process generates an additional peer trait for
every peer (Line 10), thus splitting multitier code into peer-specific components. Peer traits
also handle local dispatching of remote requests, unmarshalling arguments and marshalling
the return value (Line 14).

The example illustrates our module composition mechanisms. Mixing module A into
module B results in the respective <placed values> and peer traits being mixed in (Line 25
and 34), using Scala mixin composition. For the module reference (Line 22, largely left out
for brevity), both the generated module identifier (Line 22) and the dispatching logic for
remote requests (Line 32) keep the path of the module reference ("module") into account, to

4 Annotation macros are expanded before type-checking but can explicitly invoke the type checker to
obtain typed abstract syntax trees

P. Weisenburger and G. Salvaneschi 3:15

Listing 1 Macro Expansion.

(a) LociMod user code.

1 @multitier trait A {
2 @peer type Peer
3 val value: Int on Peer
4 }
5
6 @multitier trait B extends A {
7 @peer type Peer <: module.Peer { type Tie <: Single[module.Peer] }
8
9 @multitier object module extends A {

10 val value: Int on Peer = placed { 42 }
11 }
12
13 val localValue: Local[Future[Int]] on Peer = placed { module.value.asLocal }
14 }

(b) Scala code after LociMod expansion.

1 trait A {
2 @peer type Peer
3 @compileTimeOnly("Remote access must be explicit.") val value: Int on Peer
4 @MarshallableInfo final val $loci$marA0 = Marshallable[Int]
5 @PlacedValueInfo("value:scala.Int", null, $loci$marA0) final val $loci$valA0 =
6 new PlacedValue[Unit, Unit, Future[Unit], Int, Int, Future[Int]](
7 Value.Signature("value:scala.Int", $loci$sig.path), true, null, $loci$marA0)
8
9 trait `<placed values>` extends PlacedValues { val value: Int = null.asInstanceOf[Int] }

10 trait $loci$peer$Peer extends `<placed values>` {
11 def $loci$dispatch(req: MessageBuffer, sig: Value.Signature, ref: Value.Reference) =
12 if (sig.path.isEmpty) sig.name match {
13 case $loci$valA0.sig.name =>
14 Try(value) map { response => $loci$marA0.marshal(response, ref) } ... } else ... }
15
16 lazy val $loci$sig = Module.Signature("A")
17 lazy val $loci$peersigPeer = Peer.Signature("Peer", collection.immutable.Nil, $loci$sig)
18 }
19
20 trait B extends A {
21 @peer type Peer <: module.Peer { type Tie <: Single[module.Peer] }
22 object module extends A { lazy val $loci$sig = Module.Signature("B#module", "module") ... }
23 @compileTimeOnly("...") val remoteValue = null.asInstanceOf[Local[Future[Int]] on Peer]
24
25 trait `<placed values>` extends PlacedValues with super[A].`<placed values>` {
26 final lazy val module: B.this.module.`<placed values>` = $loci$multitier$module()
27 val remoteValue: Future[Int] = $loci$exprB0()
28 protected[this] def $loci$exprB0(): Future[Int] = null.asInstanceOf[Future[Int]]
29
30 def $loci$dispatch(req: MessageBuffer, sig: Value.Signature, ref: Value.Reference) =
31 if (sig.path.isEmpty) ... else sig.path.head match {
32 case "module" => module.$loci$dispatch(req, sig.copy(sig.name, sig.path.tail), ref) ... } }
33
34 trait $loci$peer$Peer extends `<placed values>` with super[A].$loci$peer$Peer {
35 protected[this] def $loci$multitier$module() = new B.this.module.$loci$peer$Peer { ... }
36 protected[this] def $loci$exprB0(): Future[Int] = SingleIntAccessor(RemoteValue)(
37 new RemoteRequest[Int from B.this.module.Peer, Future[Int], Peer, Single, Unit](
38 (), B.this.module.$loci$valA0, B.this.module.$loci$peersigPeer, ...)).asLocal }
39 ... }

handle remote access to path-dependent modules. The module reference for the peer trait
generated for module B’s Peer (Line 34) is instantiated to the peer trait generated for module
A’s Peer (Line 35), so that values placed on module B’s Peer can access values placed on
module A’s Peer since module B defines Peer <: module.Peer. Since peer types are used to
guide the splitting and define the composition scheme of the synthesized peer traits, peer
types themselves are never instantiated. Hence, they can be abstract.

ECOOP 2019

3:16 Multitier Modules

Like value of module A, localValue of module B is nulled in the <placed values> trait
(Line 27 and 28) and initialized in the generated peer trait (Line 36). Since localValue is
defined local (i.e., not remotely accessible), no Marshallable instance or runtime identifier
is generated for localValue. The remote access module.value.asLocal is expanded into
a call to the communication backend with the remote value and remote peer identifiers as
arguments (Lines 36–38).

As illustrated by the example, the code generation solely replaces the code of the annotated
trait, class or object and only depends on the super traits and classes and the definitions
in the multitier modules’ body, thus retaining the same support for separate compilation
offered by standard Scala traits, classes and objects.

Correctness Checks. Abstract peer types can be specialized, introducing further constraints
on the architecture in which they are already involved. Our approach ensures that the
architecture of the specialized peers does not violate the architectural constraints of the more
general peers. Specifically, ties defined for a peer also need to be defined when specializing
the peer, i.e., the tie of a peer needs to be a subtype of the ties of all super and overridden
peers. It is, however, possible to refine a tie to make it more specific (i.e., a multiple tie is
the most general from, whereas an optional tie is more specific and a single tie is the most
specific form). For example, when specializing a Server peer with a Multiple[Client] tie
to a WebServer <: Server peer, the WebServer also needs to specify the tie to the Client.
It can specify the type as Multiple[Client] (like its super peer), but it can also specify a
more specific tie, e.g., Single[Client]. Refining ties is sound since, if code placed on a peer
is able to handle any number of connected remote instances (multiple tie), particularly, it
can also handle the case when at most one instance is connected (optional or single tie) –
but not the other way around.

5 Evaluation

The objective of the evaluation is to assess the design goals established in Section 3, answering
the following research questions:
RQ1 Do multitier modules enable defining reusable patterns of interaction in distributed software?
RQ2 Do multitier modules enable separating the modularization and distribution concerns?
For RQ1, we first consider distributed algorithms as a case study. Distributed algorithms
are a suitable case study because – as we explain soon – they depend on each other and on
the underlying architecture. Yet, one wants to keep each algorithm modularized in a way that
algorithms can be freely composed. Second, we show how distributed data structures can
be implemented in LociMod. This case study requires to hide the internal behavior of the data
structure from user code as well as to provide a design that does not depend on the specific
system architecture. For RQ2, we evaluate the applicability of LociMod to existing real-word
software. We reimplemented the task distribution system of the Apache Flink distributed
stream processing framework introduced in Section 1 using multitier modules.

5.1 Distributed Algorithms
We present a case study on a distributed algorithm for mutual exclusion through global
locking to access a shared resource. As global locking requires a leader election algorithm,
we implement different election algorithms as reusable multitier modules. Also, leader

P. Weisenburger and G. Salvaneschi 3:17

Listing 2 Mutual Exclusion.
1 @multitier trait MutualExclusion[T] { this: Architecture with LeaderElection[T] =>
2 private var locked: Option[T] localOn Node = placed { None }
3
4 def lock(id: T): Boolean on Node = placed {
5 if (state == Leader && locked.isEmpty) {
6 locked = Some(id)
7 true
8 }
9 else

10 false
11 }
12
13 def unlock(id: Id): Unit on Node = placed {
14 if(state == Leader && locked == Some(id))
15 locked = None
16 }
17 }

election algorithms assume different distributed architectures, which we represent as multitier
modules, too. The implemented mechanism relies on a central coordinator (Listing 2).
The MutualExclusion module is parameterized over the leader election algorithm using
constrained multitier mixing by specifying a requirement on the LeaderElection interface
(Line 1) abstracting over concrete leader election implementations. LeaderElection provides
the state method (Line 5 and 14) indicating whether the local node is the elected leader.
The MutualExclusion module defines the lock (Line 4) and the unlock (Line 13) methods,
to acquire and release the lock.

System Architectures. The MutualExclusion module (Listing 2) specifies a constraint on
Architecture (Line 1) requiring any distributed architecture for the system abstracting
over a concrete one. Architecture is the base trait for different distributed architectures
expressed as reusable modules. Listing 3 shows the definitions for different architectures
with their iconification on the right. The Architecture module defines the general Node
peer and the constraint that peers of type Node are connected to an arbitrary number of
other Node peers. The P2P module defines a Peer that can connect to arbitrary many other
peers. Thus, the P2P is essentially the general architecture since nodes connecting in a P2P
fashion do not impose any additional architectural constraints. The P2PRegistry module
adds a central registry, to which peers can connect. The MultiClientServer module defines
a client that is always connected to single server, while the server can handle multiple clients
simultaneously. The ClientServer module specifies a server that always handles a single
client instance. For the Ring module, we define a Prev and a Next peer. A RingNode itself is
both a predecessor and a successor. All Node peers have a single tie to their predecessor and
a single tie to their successor.

Leader Election. We present the LeaderElection interface for a generic leader election
algorithm in LociMod. Since leader election differs depending on the network architecture,
the interface defines a self-type constraint on Architecture, abstracting over the concrete
network architecture constraining multitier mixing:

1 @multitier trait LeaderElection[T] { this: Architecture with Id[T] =>
2 def state: State on Node
3 def electLeader(): Unit on Node
4 def electedAsLeader(): Unit on Node
5 }

ECOOP 2019

3:18 Multitier Modules

Listing 3 Distributed Architectures.
1 @multitier trait Architecture {
2 @peer type Node <: { type Tie <: Multiple[Node] }
3 }
4 @multitier trait P2P extends Architecture {
5 @peer type Peer <: Node { type Tie <: Multiple[Peer] }
6 }
7 @multitier trait P2PRegistry extends P2P {
8 @peer type Registry <: Node { type Tie <: Multiple[Peer] }
9 @peer type Peer <: Node { type Tie <: Optional[Registry] with Multiple[Peer] }

10 }
11 @multitier trait MultiClientServer extends Architecture {
12 @peer type Server <: Node { type Tie <: Multiple[Client] }
13 @peer type Client <: Node { type Tie <: Single[Server] with Single[Node] }
14 }
15 @multitier trait ClientServer extends MultiClientServer {
16 @peer type Server <: Node { type Tie <: Single[Client] }
17 @peer type Client <: Node { type Tie <: Single[Server] with Single[Node] }
18 }
19 @multitier trait Ring extends Architecture {
20 @peer type Node <: { type Tie <: Single[Prev] with Single[Next] }
21 @peer type Prev <: Node
22 @peer type Next <: Node
23 @peer type RingNode <: Prev with Next
24 }

Further, the interface abstracts over a mechanism for assigning IDs to nodes implemented by
the Id[T] module, where T is the type of the IDs. The Id module interface defines a local id
value on every node and requires an ordering relation for IDs:

1 @multitier abstract class Id[T: Ordering] { this: Architecture =>
2 val id: Local[T] on Node
3 }

The LeaderElection module defines a local variable state that captures the state of each
peer (e.g., Candidate, Leader or Follower). The electLeader method is kept abstract to
be implemented by a concrete implementation of the interface. After a peer instance has
been elected to be the leader, implementations of LeaderElection call electedAsLeader.
We consider three leader election algorithms:

Hirschberg-Sinclair Leader Election. The Hirschberg-Sinclair algorithm [21] implements
leader election for a ring topology. In every algorithm phase, each peer instance sends its
ID to both of its neighbors in the ring. IDs circulate and each node compares the ID with
its own. The peer with the greatest ID becomes the leader. The logic of the algorithm is
encapsulated into the HirschbergSinclair module, which extends LeaderElection:

1 @multitier trait HirschbergSinclair[T] extends LeaderElection[T] { this: Ring with Id[T] =>
2 def electLeader() = on[Node] { elect(0) }
3 private def elect(phase: Int) = on[Node] { /* ... */ }
4 private def propagate(remoteId: T, hops: Int, direction: Direction) = on[Node] { /* ... */ }
5 }

The module’s self-type encodes that the algorithm is designed for ring networks (Line 1).
When a new leader election is initiated by calling electLeader (Line 2), the elect method
is invoked (Line 3). The propagate method passes the IDs of peer instances along the
ring and compares them with the local ID.

Yo-Yo Leader Election. The Yo-Yo algorithm [39] is a universal leader election protocol,
i.e., it is independent of the network architecture. For this reason, the self-type constraint
of the YoYo implementation is simply Architecture with Id[T]. In the Yo-Yo algorithm,

P. Weisenburger and G. Salvaneschi 3:19

each node exchanges its ID with all neighbors, progressively pruning subgraphs where
there is no lower ID. The node with the lower ID becomes the leader.

Raft Leader Election. The Raft consensus algorithm [32] elects a leader by making use of
randomized timeouts. Once a leader is elected, it maintains its leadership by sending
heartbeat messages to all peer instances. If instances do not receive a heartbeat message
from the current leader for a certain amount of time, they initiate a new election.

Instantiating Global Locking. The following code instantiates a MutualExclusion module
using the Hirschberg-Sinclair leader election algorithm for a ring architecture:

1 @multitier object locking extends
2 MutualExclusion[Int] with HirschbergSinclair[Int] with Ring with RandomIntId

The example mixes in a module implementation for every module over which other modules
are parameterized, i.e., MutualExclusion is parameterized over LeaderElection, which is
instantiated to HirschbergSinclair. HirschbergSinclair requires a Ring architecture and
an Id implementation, which is instantiated to a RandomIntId module (whose implementation
is left out for brevity). The following code, instead, instantiates a MutualExclusion module
using the Yo-Yo leader election algorithm for a P2P architecture:

1 @multitier object locking extends
2 MutualExclusion[Int] with YoYo[Int] with P2P with RandomIntId

Summary. The case study demonstrates how module implementations for concrete archi-
tectures and leader election algorithms can be composed into a module providing global
locking and made reusable. Since modules encapsulate a functionality within a well-defined
interface, leader election algorithms can be easily exchanged. Our approach allows for simply
mixing different cross-peer functionality together without changing any multitier code that
is encapsulated into the modules (RQ1).

5.2 Distributed Data Structures
This section demonstrates how distributed data structures can be implemented in LociMod.
First, we reimplement non-multitier conflict-free replicated data types (CRDTs) as multitier
modules in LociMod. Second, we compare to an existing multitier cache originally implemented
in Eliom [36].

Conflict-Free Replicated Data Types. Conflict-free replicated data types (CRDT) [42, 43]
offer eventual consistency across replicated components for specific data structures, avoiding
conflicting updates by design. With CRDTs, updates to shared data are sent asynchronously
to the replicas and eventually affect all copies. Such eventually consistent model [47] provides
better performance (no synchronization is required) and higher availability (each replica has
a local copy which is ready to use). We reimplemented several CRDTs, publicly available in
Scala5, in LociMod (Table 1).

We discuss the representative case of the GSet. G-Sets (grow-only sets) are sets which
only support adding elements; elements cannot be removed. A merge operation computes
the union of two G-Sets. Listing 4a1 shows the G-Set in Scala. GSet defines a set content
(Line 3) and a method to check if an element is in the set (Line 5). Adding an element

5 http://github.com/lihaoyi/crdt

ECOOP 2019

http://github.com/lihaoyi/crdt

3:20 Multitier Modules

Table 1 Common Conflict-Free Replicated Data Types.

CRDT Description Lines of Code Remote
AccessesScala LociMod

local distrib.
G-Counter Grow-only counter. Only supports incrementing. 14 15 1
PN-Counter Positive-negative counter. Supports incrementing

and decrementing.
13 14 1

LWW-Register Last-write-wins register. Supports reading and
writing a single value.

10 11 1

MV-Register Multi-value register. Supports writing a single
value. Reading may return a set of multiple values
that were written concurrently.

12 13 1

G-Set Grow-only set. Only supports addition. 7 9 1
2P-Set Two-phase set. Supports addition and removal.

Removed elements cannot be added again.
13 17 2

LWW-Element-Set Last-write-wins set. Supports addition and re-
moval. Associates each added and removed ele-
ment to a time stamp.

15 19 2

PN-Set Positive-negative set. Supports addition and re-
moval. Associates a counter to each element, in-
crementing/decrementing the counter upon addi-
tion/removal.

12 16 2

OR-Set Observed-removed set. Supports addition and
removal. Associates a set of added and of removed
(unique) tags to each element. Adding inserts a
new tag to the added tags. Removing moves all
tags associated to an element to the set of removed
tags.

15 18 2

inserts it into the local content set (Line 7). Listing 4b presents a multitier module for a
multitier G-Set. The implementations are largely similar despite that the LociMod version is
distributed and the Scala version is not. The Scala CRDTs are only local. Distributed data
replication has to be implemented by the developer (Listing 4a2).

In the LociMod variant, the peer type of the interacting nodes is abstract, hence it is
valid for any distributed architecture. The LociMod multitier module can be instantiated by
applications for their architecture:

1 @multitier trait EventualConsistencyApp {
2 @peer type Server <: ints.Node with strings.Node {
3 type Tie <: Single[Client] with Single[ints.Node] with Single[strings.Node] }
4 @peer type Client <: ints.Node with strings.Node {
5 type Tie <: Single[Server] with Single[ints.Node] with Single[strings.Node] }
6
7 @multitier object ints extends GSet[Int]
8 @multitier object strings extends GSet[String]
9

10 on[Server] { ints.add(42) }
11 on[Client] { strings.add("forty−two") }
12 }

The example defines a GSet[Int] (Line 7) and a GSet[String] (Line 8) instance. The
Server and a Client peer are also ints.Node and strings.Node peers (Line 2 and 4) and
are tied to other ints.Node and strings.Node peers (Line 3 and 5). Thus, both the server
(Line 10) and the client (Line 11) can use the multitier module references ints and strings

to add elements to both sets, which (eventually) updates the sets on the connected nodes.
The plain Scala version, in contrast, does not offer abstraction over placement.

P. Weisenburger and G. Salvaneschi 3:21

Listing 4 Conflict-Free Replicated Grow-Only Set.

(a) Scala implementation.

(a1) Traditional G-Set implementation.

1 class GSet[T] {
2 val content =
3 mutable.Set.empty[T]
4 def contains(v: T) =
5 content.contains(v)
6 def add(v: T) =
7 content += v
8

9 def merge(other: GSet[T]) =
10 content ++= other.content
11 }

(a2) Example of user code for distribution.

1 trait Host[T] {
2 val set = new GSet[T]
3 def add(v: T) = {
4 set.add(v)
5 send(set.content) }
6 def receive(content: T) =
7 set.merge(content)
8 }

(b) LociMod implementation.

1 @multitier trait GSet[T] extends Architecture {
2 val content = on[Node] {
3 mutable.Set.empty[T] }
4 def contains(v: T) = on[Node] {
5 content.contains(v) }
6 def add(v: T) = on[Node] {
7 content += v
8 remote call merge(content.toSet) }
9 private def merge(content: Set[T]) = on[Node] {

10 this.content ++= content }
11 }

In addition to be more concise, the LociMod version exhibits a better design thanks to the
combination of multitier programming and modules. In plain Scala, the actual replication of
added elements by propagating them to remote nodes is mingled with the user code: The
Scala versions of all CRDTs transfer updated values explicitly to merge them on the replicas,
i.e., merge needs to be public to user code. The Remote Accesses column in Table 1 counts
the methods that mix replication logic and user code.

Listing 4a2 shows the user code adding an element to the local G-Set (Line 4), sending
the content to a remote host (Line 5), receiving the content remotely (Line 6) and merging
it into the remote G-Set (Line 7). In contrast, adding an element to the LociMod GSet

(Listing 4b) directly merges the updated set into all connected remote nodes (Line 8 and 10).
The multitier module implicitly performs remote communication between different peers
(Line 8), encapsulating the remote access to the replicas, i.e., merge is private.

Distributed Caching. We implement a cache that is shared between a client–server archi-
tecture. It is modeled after Eliom’s multitier cache holding the values already computed on
a server [36]. The following code presents the cache using LociMod multitier modules:

1 @multitier trait Cache[K, V] extends MultiClientServer {
2 private val table = on[Node] { mutable.Map.empty[K, V] }
3
4 on[Client] {
5 table.asLocal foreach { serverTable =>
6 table ++= serverTable } }
7
8 def add(key: K, value: V) = on[Node] { table += key −> value }
9 }

The Cache module is implemented for a client–server architecture (Line 1). The table map
(Line 2) is placed on every Node, i.e., on the client and the server peer. The add method
adds an entry to the map (Line 8). As soon as the client instance starts, the client populates
its local map with the content of the server’s map (Line 6).

ECOOP 2019

3:22 Multitier Modules

@multitier trait TaskDistributionSystem extends CheckpointResponder with KvStateRegistryListener with PartitionProducerStateChecker with ResultPartitionConsumableNotifier with TaskManagerGateway with TaskManagerActions

@multitier trait TaskManagerActions {@peer type TaskManager <: { type Tie <: Single[TaskManager] }def notifyFinalState(executionAttemptID: ExecutionAttemptID) =on[TaskManager] {
on[TaskManager].run.capture(executionAttemptID) {unregisterTaskAndNotifyFinalState(executionAttemptID)}

}
def notifyFatalError(message: String, cause: Throwable) = on[TaskManager] {

on[TaskManager].run.capture(message, cause) {killTaskManagerFatal(message, cause)}
}
def failTask(executionAttemptID: ExecutionAttemptID,cause: Throwable) = on[TaskManager] {

on[TaskManager].run.capture(executionAttemptID, cause) {val task = runningTasks.get(executionAttemptID)if (task != null) {task.failExternally(cause)} else {log.debug(s"Cannot find task to fail for execution $executionAttemptID)")}}
}
def updateTaskExecutionState(taskExecutionState: TaskExecutionState) = on[TaskManager] {

on[TaskManager].run.capture(taskExecutionState) {currentJobManager foreach { jobManager =>val futureResponse = (jobManager ?decorateMessage(UpdateTaskExecutionState(taskExecutionState)))(askTimeout)futureResponse.mapTo[Boolean].onComplete {case scala.util.Success(result) =>if (!result) {self ! decorateMessage(FailTask(taskExecutionState.getID,new Exception("Task has been cancelled on the JobManager.")))}case scala.util.Failure(t) =>self ! decorateMessage(FailTask(taskExecutionState.getID,new Exception("Failed to send ExecutionStateChange notification " +"to JobManager", t)))}(context.dispatcher)}}
}

}

@multitier trait CheckpointResponder {@peer type JobManager <: { type Tie <: Multiple[TaskManager] }@peer type TaskManager <: { type Tie <: Single[JobManager] }def acknowledgeCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,checkpointId: Long, checkpointMetrics: CheckpointMetrics,checkpointStateHandles: SubtaskState) = on[TaskManager] {
on[JobManager].run.capture(jobID, executionAttemptID, checkpointId,checkpointMetrics, checkpointStateHandles) {currentJobs.get(jobID) match {case Some((graph, _)) =>val checkpointCoordinator = graph.getCheckpointCoordinator()if (checkpointCoordinator != null)future {try if (!checkpointCoordinator.receiveAcknowledgeMessage(AcknowledgeCheckpoint(jobID, executionAttemptID,checkpointId,checkpointMetrics, checkpointStateHandles)))log.info("Received message for non-existing checkpoint " +checkpointId)catch {case t: Throwable => log.error("Error in CheckpointCoordinator " +"while processing acknowledge message", t)}}(context.dispatcher)else log.error(s"Received AcknowledgeCheckpoint message for job $jobID with no " +"CheckpointCoordinator")case None =>log.error(s"Received AcknowledgeCheckpoint for unavailable job $jobID")}}

}
def declineCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,checkpointId: Long, reason: Throwable) = on[TaskManager] {

on[JobManager].run.capture(jobID, executionAttemptID, checkpointId, reason) {currentJobs.get(jobID) match {case Some((graph, _)) =>val checkpointCoordinator = graph.getCheckpointCoordinator()if (checkpointCoordinator != null)future {try checkpointCoordinator.receiveDeclineMessage(DeclineCheckpoint(jobID, executionAttemptID, checkpointId, reason))catch {case t: Throwable => log.error("Error in CheckpointCoordinator " +"while processing decline message", t)}}(context.dispatcher)else log.error("Received DeclineCheckpoint message " +s"for job $jobID with no CheckpointCoordinator")case None =>log.error(s"Received DeclineCheckpoint for unavailable job $jobID")}}
}

}

@multitier trait TaskManagerGateway {@peer type JobManager <: { type Tie <: Multiple[TaskManager] }@peer type TaskManager <: { type Tie <: Single[JobManager] }def disconnectFromJobManager(instanceId: InstanceID, cause: Exception,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(instanceId, cause) {if (instanceId.equals(instanceID)) {handleJobManagerDisconnect(s"JobManager requested disconnect: " +cause.getMessage())triggerTaskManagerRegistration()} else {log.debug(s"Received disconnect message for wrong instance id " +instanceId)}}

}
def stopCluster(applicationStatus: ApplicationStatus, message: String,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(applicationStatus, message) {log.info(s"Stopping TaskManager with final application status " +s"$applicationStatus and diagnostics: $message")shutdown()}
}
def requestStackTrace(mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(tdd) {sendStackTrace()
}.asLocal.map(_.left.get)}

def submitTask(tdd: TaskDeploymentDescriptor,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(tdd) {submitTask(tdd)
}.asLocal.map(_.left.get)}

def stopTask(executionAttemptID: ExecutionAttemptID,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID) {val task = runningTasks.get(executionAttemptID)if (task != null) {try {task.stopExecution()Left(Acknowledge.get())} catch {case t: Throwable =>Right(Status.Failure(t))}} else {log.debug(s"Cannot find task to stop for execution $executionAttemptID)")Left(Acknowledge.get())}
}.asLocal.map(_.left.get)}

def cancelTask(executionAttemptID: ExecutionAttemptID,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID) {val task = runningTasks.get(executionAttemptID)if (task != null) {task.cancelExecution()Acknowledge.get()} else {log.debug(s"Cannot find task to cancel for execution $executionAttemptID")Acknowledge.get()}
}.asLocal}

def updatePartitions(executionAttemptID: ExecutionAttemptID,partitionInfos: java.lang.Iterable[PartitionInfo],mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID, partitionInfos) {updateTaskInputPartitions(executionAttemptID, partitionInfos)
}.asLocal.map(_.left.get)}

def failPartition(executionAttemptID: ExecutionAttemptID,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID) {log.info(s"Discarding the results produced by task execution $executionID")try {network.getResultPartitionManager.releasePartitionsProducedBy(executionID)} catch {case t: Throwable => killTaskManagerFatal("Fatal leak: Unable to release intermediate result partition data", t)}}

}
def notifyCheckpointComplete(executionAttemptID: ExecutionAttemptID,jobId: JobID, checkpointId: Long, timestamp: Long,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, jobId, checkpointId, timestamp) {log.debug(s"Receiver ConfirmCheckpoint $checkpointId@$timestamp " +s"for $executionAttemptID.")
val task = runningTasks.get(executionAttemptID)if (task != null) {task.notifyCheckpointComplete(checkpointId)} else {log.debug(s"TaskManager received a checkpoint confirmation " +s"for unknown task $taskExecutionId.")}}

}
def triggerCheckpoint(executionAttemptID: ExecutionAttemptID, jobId: JobID,checkpointId: Long, timestamp: Long, checkpointOptions: CheckpointOptions,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, jobId, checkpointId, timestamp,checkpointOptions) {log.debug(s"Receiver TriggerCheckpoint $checkpointId@$timestamp " +s"for $executionAttemptID.")
val task = runningTasks.get(executionAttemptID)if (task != null) {task.triggerCheckpointBarrier(checkpointId, timestamp, checkpointOptions)} else {log.debug(s"TaskManager received a checkpoint request " +s"for unknown task $executionAttemptID.")}}

}
def requestTaskManagerLog(logTypeRequest: LogTypeRequest,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(logTypeRequest) {blobService match {case Some(_) =>handleRequestTaskManagerLog(logTypeRequest, currentJobManager.get)case None =>Right(akka.actor.Status.Failure(new IOException("BlobService not available. Cannot upload TaskManager logs.")))}
}.asLocal.map(_.left.get)}

}

@multitier trait KvStateRegistryListener {@peer type JobManager <: { type Tie <: Multiple[TaskManager] }@peer type TaskManager <: { type Tie <: Single[JobManager] }def notifyKvStateRegistered(jobId: JobID, jobVertexId: JobVertexID,keyGroupRange: KeyGroupRange, registrationName: String,kvStateId: KvStateID) = on[TaskManager] {
on[JobManager].run.capture(jobId, jobVertexId, keyGroupRange, registrationName,kvStateId, kvStateServerAddress) {currentJobs.get(jobId) match {case Some((graph, _)) =>try {log.debug(s"Key value state registered for job $jobId " +s"under name $registrationName.")graph.getKvStateLocationRegistry.notifyKvStateRegistered(jobVertexId, keyGroupRange, registrationName,kvStateId, kvStateServerAddress)} catch {case t: Throwable => log.error("Failed to notify KvStateRegistry about registration.")}case None =>log.error("Received state registration for unavailable job.")}}

}
def notifyKvStateUnregistered(jobId: JobID, jobVertexId: JobVertexID,keyGroupRange: KeyGroupRange,registrationName: String) = on[TaskManager] {

on[JobManager].run.capture(jobId, jobVertexId, keyGroupRange, registrationName) {currentJobs.get(jobId) match {case Some((graph, _)) =>try graph.getKvStateLocationRegistry.notifyKvStateUnregistered(jobVertexId, keyGroupRange, registrationName)catch {case t: Throwable => log.error(s"Failed to notify KvStateRegistry about registration.")}case None =>log.error("Received state unregistration for unavailable job.")}}
}

}

@multitier trait PartitionProducerStateChecker {@peer type JobManager <: { type Tie <: Multiple[TaskManager] }@peer type TaskManager <: { type Tie <: Single[JobManager] }def requestPartitionProducerState(jobId: JobID,intermediateDataSetId: IntermediateDataSetID,resultPartitionId: ResultPartitionID) = on[TaskManager] { new FlinkFuture(
on[JobManager].run.capture(jobId, intermediateDataSetId, resultPartitionId) {currentJobs.get(jobId) match {case Some((executionGraph, _)) =>try {val execution = executionGraph.getRegisteredExecutions.get(resultPartitionId.getProducerId)if (execution != null)Left(execution.getState)else {val intermediateResult = executionGraph.getAllIntermediateResults.get(intermediateDataSetId)if (intermediateResult != null) {val execution = intermediateResult.getPartitionById(resultPartitionId.getPartitionId).getProducer.getCurrentExecutionAttemptif (execution.getAttemptId() == resultPartitionId.getProducerId())Left(execution.getState)else Right(Status.Failure(new PartitionProducerDisposedException(resultPartitionId)))}else Status.Failure(new IllegalArgumentException(s"Intermediate data set with ID $intermediateDataSetId not found."))}} catch {case e: Exception => Right(Status.Failure(new RuntimeException("Failed to look up " +"execution state of producer with ID " +s"${resultPartitionId.getProducerId}.", e)))}case None => Right(Status.Failure(new IllegalArgumentException(s"Job with ID $jobId not found.")))}
}.asLocal.mapTo[ExecutionState])}

}

@multitier trait ResultPartitionConsumableNotifier {@peer type JobManager <: { type Tie <: Multiple[TaskManager] }@peer type TaskManager <: { type Tie <: Single[JobManager] }def notifyPartitionConsumable(jobId: JobID, partitionId: ResultPartitionID,taskActions: TaskActions) = on[TaskManager] {
on[JobManager].run.capture(jobId, partitionId) {currentJobs.get(jobId) match {case Some((executionGraph, _)) =>try {executionGraph.scheduleOrUpdateConsumers(partitionId)Acknowledge.get()} catch {case e: Exception => Failure(new Exception("Could not schedule or update consumers.", e))}case None =>log.error(s"Cannot find execution graph for job ID $jobId " +"to schedule or update consumers.")Failure(new IllegalStateException("Cannot find execution graph " +s"for job ID $jobId to schedule or update consumers."))}
}.asLocal.failed foreach { failure =>LOG.error("Could not schedule or update consumers at the JobManager.", failure)

taskActions.failExternally(new RuntimeException("Could not notify JobManager to schedule or update consumers",failure))}
}}

JobManager TaskManager Remote Access

Figure 2 Example communication in Flink using LociMod multitier modules.

LociMod’s multitier model is more expressive than Eliom’s as it allows the definition of
arbitrary peers through placement types. Placement types enable abstraction over placement,
as opposed to Eliom, which only supports two fixed predefined places (server and client).
LociMod supports Eliom’s client–server model (Line 1) as a special case. Thanks to LociMod’s
abstract peer types, the Cache module can also be used for other architectures. For example,
we can enhance the Peer and Registry peers of a P2P architecture with the roles of the
client and the server of the Cache module by mixing Cache and P2PRegistry and composing
both architectures:

1 @multitier trait P2PCache[K, V] extends Cache[K, V] with P2PRegistry {
2 @peer type Registry <: Server { type Tie <: Multiple[Peer] with Multiple[Client] }
3 @peer type Peer <: Client { type Tie <: Single[Registry] with Single[Server] with Multiple[Peer] }
4 }

Summary. The case studies demonstrate that, thanks to the multitier module system,
distributed data structures can be expressed as reusable modules that can be instantiated
for different architectures encapsulating all functionalities needed for the implementation of
the data structure (RQ1).

5.3 Apache Flink
The task distribution system of the Apache Flink stream processing framework [9], provides
Flink’s core task scheduling and deployment logic. It is based on Akka actors and consists of
six gateways (an API that encapsulates sending and receiving actor messages) amounting to
∼ 500 highly complex Scala LOC. Gateways wrap method arguments into messages, sending
the message and (potentially) receiving a different message carrying a result.

With the current Flink design, however, code fragments that are executed on different
distributed components (i.e., for sending and receiving a message), inevitably belong to
different actors. The functionalities that conceptually belong to a single gateway are scattered
over multiple files in the Flink implementation, breaking modularization. The messages
sent by the actors in every gateway are hard to follow for developers because matching
sending and receiving operations are completely separated in the code. 19 out of the 23 sent
messages are processed in a different compilation unit within another package, hindering the
correlation of messages with the remote computations they trigger.

We reimplemented the task distribution system using multitier modules, to cover the
complete cross-peer functionalities that belong to each gateway. The resulting modules

P. Weisenburger and G. Salvaneschi 3:23

Listing 5 Remote communication in Flink.

(a) Original Flink implementation.

(a1) Message definition.

1 package flink.runtime
2
3 case class SubmitTask(td: TaskDeployment)

(a2) Calling side.

1 package flink.runtime.job
2
3 case class SubmitTask(td: TaskDeployment)
4
5 class TaskManagerGateway {
6 def submitTask(
7 td: TaskDeployment,
8 mgr: ActorRef) =
9 (mgr ? SubmitTask(td))

10 .mapTo[Acknowledge]
11 }

(a3) Responding side.

1 package flink.runtime.task
2
3 class TaskManager extends Actor {
4 // standard Akka message loop
5 def receive = {
6 case SubmitTask(td) =>
7 val task = new Task(td)
8 task.start()
9 sender ! Acknowledge()

10 } }

(b) Refactored LociMod implementation.

1 package flink.runtime.multitier
2
3 @multitier object TaskManagerGateway {
4 @peer type JobManager <: {
5 type Tie <: Multiple[TaskManager] }
6 @peer type TaskManager <: {
7 type Tie <: Single[JobManager] }
8
9 def submitTask(

10 td: TaskDeployment, tm: Remote[TaskManager]) =
11 on[JobManager] {
12 (remote(tm) call startTask(td)).asLocal
13 }
14 def startTask(td: TaskDeployment) =
15 on[TaskManager] {
16 val task = new Task(td)
17 task.start()
18 Acknowledge()
19 }
20 }

are (1) the TaskManagerGateway to control task execution, (2) the TaskManagerActions

to notify of task state changes, (3) the CheckpointResponder to acknowledge checkpoints,
(4) the KvStateRegistryListener to notify key-value store changes, (5) the Partition-

ProducerStateChecker to check of the state of producers and of result partitions and (6) the
ResultPartitionConsumableNotifier to notify of available partitions. Since the different
cross-peer functionalities of the task distribution system are cleanly separated into different
modules, the complete TaskDistributionSystem application is simply the composition of
the modules 1–6 that implement each subsystem:

1 @multitier trait TaskDistributionSystem extends
2 CheckpointResponder with KvStateRegistryListener with PartitionProducerStateChecker with
3 ResultPartitionConsumableNotifier with TaskManagerGateway with TaskManagerActions {
4 @peer type JobManager <: { type Tie <: Multiple[TaskManager] }
5 @peer type TaskManager <: { type Tie <: Single[JobManager] with Single[TaskManager] }
6 }

We mix together the subsystem modules (Line 2 and 3) and specify the architecture of
the complete task distribution system (Line 4 and 5). As all subsystems share the same
architecture, it is not necessary to specify the architecture in the TaskDistributionSystem

module (as we did in the example code). Instead, it suffices to specify the architecture in the
mixed-in modules.

Compared to Figure 1b, which merges the functionalities of all subsystems into a single
compilation unit, the LociMod version using multitier modules encapsulates each functionality
into a separate module. Figure 2 shows the TaskDistributionSystem module (background),

ECOOP 2019

3:24 Multitier Modules

composed by mixing together the subsystem modules (foreground). The multitier modules
contain code for the JobManager and the TaskManager peer. Arrows represent cross-peer
data flow, which is encapsulated within modules and is not split over different modules.
Importantly, even modules that place all computations on the same peer (e.g., the module
containing only dark violet boxes) define remote accesses (arrows), i.e., different instances of
the same peer type (e.g., the dark violet peer) communicate with each other.

It is instructive to look into the details of one of the modules. Listing 5 shows an excerpt
of the – extensively simplified – TaskManagerGateway functionality for Flink (left) and its
reimplementation in LociMod (right) side-by-side, focusing only on a single remote access of a
single gateway. The example concerns the communication between the TaskManagerGateway

used by the JobManager and the TaskManager – specifically, the job manager’s submission
of tasks to task managers. In the actor-based version (Listing 5a), this functionality is
scattered over different modules hindering correlating sent messages (Listing 5a2, Line 9)
with the remote computations they trigger (Listing 5a3, Line 7–9) by pattern-matching
on the received message (Listing 5a3, Line 6). The LociMod version (Listing 5b) uses an
intra-module cross-peer remote call (Line 12), explicitly stating the method for the remote
computation (Line 16–18). Hence, in LociMod, there is no splitting over different actors
as in the Flink version, thus keeping related functionalities inside the same module. The
TaskManagerGateway multitier module contains a functionality that is executed on both the
JobManager and the TaskManager peer. Further, the message loop of the TaskManager actor
of Flink (Listing 5a3), does not only handle the messages belonging to the TaskManager-

Gateway (shown in the code excerpt). The loop also needs to handle messages belonging to
the other gateways – which execute parts of their functionality on the TaskManager – since
modularization is imposed by the remote communication boundaries of an actor.

Summary. In summary, in the case study, the multitier module system enables decoupling
of modularization and distribution as LociMod multitier modules capture cross-network
functionalities expressed by Flink gateways without being constrained to modularization
along network boundaries (RQ2).

6 Related Work

There is a long history of research concerned with proper software modularization mech-
anisms [33]. We organize related work as follows. First we discuss multitier languages.
Second, we present recent advances in module systems. Third, we discuss approaches that
partially combine the two solutions. Finally, we provide an overview of related research areas,
including languages for distributed systems and component-based software development.

Multitier Languages. Multitier languages emerge in the Web context to remove the sepa-
ration between client and server code, either by compiling the client side to JavaScript or
by adopting JavaScript for the server, too. Hop [40] and Hop.js [41] are dynamically typed
languages that follow a traditional client–server communication scheme with asynchronous
callbacks. They do not ensure static guarantees for the behavior of the distributed system.
In Links [14] and Opa [37], functions are annotated to specify either client- or server-side
execution. Both languages also follow the client–server model and feature a static type system.
Links’ server is stateless for scalability reasons – limiting the spectrum of the supported
domains. In StiP.js [34], annotations assign code fragments to the client or the server. Slicing
detects the dependencies between each fragment and the rest of the program. In contrast, in
LociMod, developers specify placement in types, enabling architectural reasoning.

P. Weisenburger and G. Salvaneschi 3:25

Ur/Web [13], a multitier language for the Web, supports the standard ML module system.
By requiring whole-program optimizations to slice the program into client and server parts,
Ur/Web modules do not support separate compilation. The Eliom module system [35, 36] is
also based on ML modules. It supports mixed modules – in Eliom terminology – which can
contain declarations for both the server and the client and are similar to LociMod multitier
modules that can also contain declarations for different peers (Section 3). Like LociMod
modules, Eliom modules feature separate compilation. Due to the restriction to client–server
applications, Eliom lacks language abstractions for architectural specifications and distributed
system with multiple peers. More interestingly, Eliom modules do not support abstract
peer types, hence it is not possible to specify the module functionalities over abstract peers
and use such module to specialize the peers in another application (Section 3.2). For the
same reason module composition does not support combining different architectures. All
approaches above focus on the Web, contrarily to our goal of supporting other architectures.
An exception is ML5 [26], a multitier language for generic software architectures: Possible
worlds, as known from modal logic, address the purpose of placing computations and, similar
to LociMod, are part of the type. ML5, however, does not support architecture specification,
i.e., it does not allow for expressing different architectures in the language and was anyway
applied only to the Web setting so far.

Module Systems. Rossberg and Dreyer design MixML, a module system that supports
higher-order modules and modules as first-class values and combines ML modules’ hierarchical
composition with mixin’s recursive linking of separately compiled components [38]. There
are some commonalities in the way LociMod uses Scala traits as module interfaces – similar
to ML signatures – and objects as module instances – similar to ML structures. Further,
traits also support separate compilation. MixML signatures, like standard ML signatures,
are structural types. In contrast, mixin composition in Scala operates on traits [15], which
are nominal. LociMod, being a Scala embedding, inherits the modularization approach of
using traits from Scala, but decouples it from distribution concerns.

Implicit resolution enables retroactive extensibility in the style of Hakell’s type classes
using the concept pattern [31]. The Genus programming language provides modularization
abstractions that support generic programming and retroactive extension in the OO setting
in a way similar to the concept pattern [49, 50]. Type classes do not support different
instances for the same type and the concept pattern’s encoding for type classes also requires
unambiguous instances (or requires manual disambiguation otherwise). In contrast to Haskell
type classes and similar to Genus, LociMod’s approach to modularization using Scala traits
as modules enables different implementations of the same trait.

Family polymorphism explores definition and composition of module hierarchies. The
J& language supports hierarchical composability for nested classes in a mixin fashion [27,
28]. Nested classes are also supported by Newspeak, a dynamically typed object-oriented
language [6]. Virtual classes [18] enable large-scale program composition through family
polymorphism. Dependent classes [20] generalize virtual classes to multiple dispatching (i.e.,
class constructors are dynamically dispatched and are multimethods). Mixin composition is
supported directly in Scala and it is used in LociMod as a way to compose multitier modules
(Section 3.2.2). Virtual classes can be encoded in Scala [30], opening an interesting research
direction that investigates multitier modules and family polymorphism.

Programming Languages and Calculi for Distributed Systems. Partitioned Global Ad-
dress Space languages (PGAS), such as X10 [17], support high-performance parallel execution.
These languages define a globally shared address space aiming to reduce boundaries among

ECOOP 2019

3:26 Multitier Modules

hosts, similar to multitier languages. In X10, dependent placed types [11] identify processing
locations ensuring that objects do not cross the boundaries of locations. Instead, our approach
abstracts over peer instances (of the same type), to refer uniformly to all similar peers.

Several formal calculi model distributed systems and abstract, to various degrees, over
placement and remote communication. The Ambient calculus [10] models concurrent systems
with both mobile devices and mobile computation. In Ambient, it is possible to define named,
bounded places where computations occur. Ambients can be moved to other places and are
nested to model administrative domains and their access control. The Join calculus [19]
defines processes that communicate by asynchronous message passing over channels in a
way that models an implementation without expensive global consensus. However, we are
not aware of higher level modularization abstractions built on top of the Join calculus.
CPL [7] is a core calculus for combining services in the cloud computing environment. CPL
is event-based and provides combinators that allow safe composition of cloud applications.
Similar to LociMod, such combinators are generic with respect to placement and can be
parameterized and constrained over other combinators. However, in CPL, there is no notion
of architectural specification that can be used to check that multitier module composition
adheres to the desired architecture.

Software Architectures and Component-based Software Development. ArchJava [1] uni-
fies architectural definition and implementation in one language. Multitier modules and ties
are similar to ArchJava components and connections. Also, similar to LociMod, ArchJava
supports connections over a network and gives additional type safety guarantees compared to
pure Java, e.g., that values sent over a network are serializable [2]. Different from LociMod
modules, which can be parametric and can be mixed in, ArchJava’s components can be only
composed through connections.

Architecture description languages (ADL) are DSLs designed to support architecture
evolution. ADLs define components, connectors, architectural invariants and a mapping
of architectural models to an implementation infrastructure [24]. Influenced by ADLs
and object-oriented design, component models [16] provide techniques and technologies
to build software systems starting from units of composition with contractually specified
interfaces and dependencies which can be deployed independently [44]. Component-based
development (CBD) aims at separating different concerns throughout the whole software
system, defining component interfaces for interaction with other components and mechanisms
for composing components, which is similar to LociMod’s approach of separating different
functionalities into modules providing strong interfaces to other modules. The encapsulated
functionalities in LociMod modules, however, can be distributed themselves, whereas CBD in
a distributed setting usually models the different components of the distributed system as
separate components, forcing developers to modularize along network boundaries.

7 Conclusion

Current multitier languages lack abstractions to properly modularize large code bases. In this
paper, we presented LociMod, a multitier module system for ScalaLoci that allows developers
to modularize multitier code, enabling encapsulation and code reuse. Thanks to abstract peer
types, LociMod multitier modules capture abstract patterns of interaction among components
in the system, enabling their composition and the definition of module constraints.

Our evaluation on distributed algorithms, distributed data structures, and the Apache
Flink big data processing framework, shows that the LociMod’s multitier module system is
effective in properly modularizing multitier code.

P. Weisenburger and G. Salvaneschi 3:27

References
1 Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting software

architecture to implementation. In Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02, New York, NY, USA, 2002. ACM.

2 Jonathan Aldrich, Vibha Sazawal, Craig Chambers, and David Notkin. Language Support for
Connector Abstractions. In Proceedings of the 17th European Conference on Object-Oriented
Programming, ECOOP ’03, Berlin, Heidelberg, 2003. Springer.

3 Henry C. Baker, Jr. and Carl Hewitt. The Incremental Garbage Collection of Processes.
SIGPLAN Notices, 12(8), 1977.

4 Gilad Bracha and William Cook. Mixin-based Inheritance. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications / European Conference
on Object-Oriented Programming, OOPSLA/ECOOP ’90, New York, NY, USA, 1990. ACM.

5 Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the Future Safe
for the Past: Adding Genericity to the Java Programming Language. In Proceedings of the
13th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’98, New York, NY, USA, 1998. ACM.

6 Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox, and Eliot
Miranda. Modules As Objects in Newspeak. In Proceedings of the 24th European Conference
on Object-Oriented Programming, ECOOP ’10, Berlin, Heidelberg, 2010. Springer-Verlag.

7 Oliver Bračevac, Sebastian Erdweg, Guido Salvaneschi, and Mira Mezini. CPL: A core language
for cloud computing. In Proceedings of the 15th International Conference on Modularity,
MODULARITY ’16, New York, NY, USA, 2016. ACM.

8 Eugene Burmako. Scala Macros: Let Our Powers Combine!: On How Rich Syntax and Static
Types Work with Metaprogramming. In Proceedings of the 4th Workshop on Scala, SCALA
’13, New York, NY, USA, 2013. ACM.

9 Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache Flink: Stream and batch processing in a single engine. IEEE Data
Engineering Bulletin, 38, 2015.

10 Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1),
2000.

11 Satish Chandra, Vijay Saraswat, Vivek Sarkar, and Rastislav Bodik. Type Inference for
Locality Analysis of Distributed Data Structures. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’08, New York, NY,
USA, 2008. ACM.

12 James Cheney and Ralf Hinze. Phantom Types. Technical report, Cornell University, 2003.
13 Adam Chlipala. Ur/Web: A simple model for programming the web. In Proceedings of the

42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’15, New York, NY, USA, 2015. ACM.

14 Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web programming
without tiers. In Proceedings of the 5th International Conference on Formal Methods for
Components and Objects, FMCO ’06, Berlin, Heidelberg, 2007. Springer-Verlag.

15 Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky. A Core Calculus for
Scala Type Checking. In Proceedings of the 31st International Conference on Mathematical
Foundations of Computer Science, MFCS ’06, Berlin, Heidelberg, 2006. Springer-Verlag.

16 Ivica Crnkovic, Severine Sentilles, Vulgarakis Aneta, and Michel R. V. Chaudron. A Classifica-
tion Framework for Software Component Models. IEEE Transactions on Software Engineering,
37(5), September 2011.

17 Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and Wolfgang De Meuter.
Partitioned Global Address Space Languages. ACM Computing Surveys, 47(4), May 2015.

18 Erik Ernst, Klaus Ostermann, and William R. Cook. A Virtual Class Calculus. In Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’06, New York, NY, USA, 2006. ACM.

ECOOP 2019

3:28 Multitier Modules

19 Cédric Fournet and Georges Gonthier. The Reflexive CHAM and the Join-calculus. In
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’96, New York, NY, USA, 1996. ACM.

20 Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. Dependent Classes. In Proceedings of the
22nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications,
OOPSLA ’07, New York, NY, USA, 2007. ACM.

21 D. S. Hirschberg and J. B. Sinclair. Decentralized Extrema-finding in Circular Configurations
of Processors. Communications of the ACM, 23(11), 1980.

22 Barbara Liskov. Keynote Address – Data Abstraction and Hierarchy. In Addendum to the Pro-
ceedings on Object-Oriented Programming Systems, Languages and Applications (Addendum),
OOPSLA ’87, New York, NY, USA, 1987. ACM.

23 Matthew L. Massie, Brent N. Chun, and David E. Culler. The ganglia distributed monitoring
system: design, implementation, and experience. Parallel Computing, 30(7):817–840, 2004.

24 Nenad Medvidovic, David S. Rosenblum, and Richard N. Taylor. A Language and Environment
for Architecture-based Software Development and Evolution. In Proceedings of the 21st
International Conference on Software Engineering, ICSE ’99, New York, NY, USA, 1999.
ACM.

25 R. Milner, L. Morris, and M. Newey. A Logic for Computable Functions with Reflexive and
Polymorphic Types. In Proceedings of the Conference on Proving and Improving Programs,
Arc-et-Senans, 1975.

26 Tom Murphy, VII., Karl Crary, and Robert Harper. Type-safe Distributed Programming
with ML5. In Proceedings of the 3rd Conference on Trustworthy Global Computing, TGC ’07,
Berlin, Heidelberg, 2008. Springer-Verlag.

27 Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable Extensibility via Nested
Inheritance. In Proceedings of the 19th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’04, New York, NY, USA,
2004. ACM.

28 Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. J&: Nested Intersection for Scalable
Software Composition. In Proceedings of the 21st ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages, and Applications, OOPSLA ’06, New York, NY,
USA, 2006. ACM.

29 Martin Odersky, Guillaume Martres, and Dmitry Petrashko. Implementing Higher-kinded
Types in Dotty. In Proceedings of the 7th ACM SIGPLAN Symposium on Scala, SCALA ’16,
New York, NY, USA, 2016. ACM.

30 Martin Odersky and Matthias Zenger. Scalable Component Abstractions. In Proceedings of
the 20th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’05, New York, NY, USA, 2005. ACM.

31 Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type Classes As Objects and
Implicits. In Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, New York, NY, USA, 2010. ACM.

32 Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus Algorithm. In
Proceedings of the 2014 USENIX Annual Technical Conference, USENIX ATC ’14, Berkeley,
CA, USA, 2014. USENIX Association.

33 D. L. Parnas. On the Criteria to Be Used in Decomposing Systems into Modules. Communi-
cations of the ACM, 15(12), December 1972.

34 Laure Philips, Coen De Roover, Tom Van Cutsem, and Wolfgang De Meuter. Towards Tierless
Web Development Without Tierless Languages. In Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software,
Onward! 2014, New York, NY, USA, 2014. ACM.

35 Gabriel Radanne and Jérôme Vouillon. Tierless Modules, 2017.

P. Weisenburger and G. Salvaneschi 3:29

36 Gabriel Radanne and Jérôme Vouillon. Tierless Web Programming in the Large. In Companion
Proceedings of the The Web Conference 2018, WWW ’18, Republic and Canton of Geneva,
Switzerland, 2018. International World Wide Web Conferences Steering Committee.

37 David Rajchenbach-Teller and Franois-Régis Sinot. Opa: Language support for a sane, safe
and secure web. In Proceedings of the OWASP AppSec Research, 2010.

38 Andreas Rossberg and Derek Dreyer. Mixin’ Up the ML Module System. ACM Transactions
on Programming Languages and Systems, 35(1), April 2013.

39 Nicola Santoro. Design and analysis of distributed algorithms, volume 56. John Wiley & Sons,
2006.

40 Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: A language for programming
the web 2.0. In Companion to the 21th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Companion to OOPSLA ’06, New York,
NY, USA, 2006. ACM.

41 Manuel Serrano and Vincent Prunet. A Glimpse of Hopjs. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP ’16, New York, NY,
USA, 2016. ACM.

42 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study
of Convergent and Commutative Replicated Data Types. Research Report RR-7506, Inria –
Centre Paris-Rocquencourt; INRIA, January 2011.

43 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free Replicated
Data Types. In Proceedings of the 13th International Conference on Stabilization, Safety, and
Security of Distributed Systems, SSS ’11, Berlin, Heidelberg, 2011. Springer-Verlag.

44 Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

45 Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N Degrees of Separation:
Multi-dimensional Separation of Concerns. In Proceedings of the 21st International Conference
on Software Engineering, ICSE ’99, New York, NY, USA, 1999. ACM.

46 Kresten Krab Thorup. Genericity in Java with Virtual Types. In Proceedings of the 11th
European Conference on Object-oriented Programming, ECOOP ’97, Berlin, Heidelberg, 1997.
Springer-Verlag.

47 Werner Vogels. Eventually Consistent. Communications of the ACM, 52(1), January 2009.
48 Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. Distributed System Development

with ScalaLoci. Proceedings of the ACM on Programming Languages, 2(OOPSLA ’18), 2018.
49 Yizhou Zhang, Matthew C. Loring, Guido Salvaneschi, Barbara Liskov, and Andrew C. Myers.

Lightweight, Flexible Object-oriented Generics. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’15, New York, NY,
USA, 2015. ACM.

50 Yizhou Zhang and Andrew C. Myers. Familia: Unifying Interfaces, Type Classes, and Family
Polymorphism. Proceedings of the ACM on Programming Languages, 1(OOPSLA), October
2017.

ECOOP 2019

	Introduction
	Background
	ScalaLoci
	Scala Abstract Data Types and Path-Dependent Types

	LociMod Multitier Modules
	Multitier Modules
	Abstract Peer Types
	Peer Type Specialization with Module References
	Peer Type Specialization with Multitier Mixing
	Properties of Abstract Peer Types

	Constrained Multitier Modules
	Peer Startup

	Implementation
	Evaluation
	Distributed Algorithms
	Distributed Data Structures
	Apache Flink

	Related Work
	Conclusion

