93,266 research outputs found

    Parameter Identification in a Probabilistic Setting

    Get PDF
    Parameter identification problems are formulated in a probabilistic language, where the randomness reflects the uncertainty about the knowledge of the true values. This setting allows conceptually easily to incorporate new information, e.g. through a measurement, by connecting it to Bayes's theorem. The unknown quantity is modelled as a (may be high-dimensional) random variable. Such a description has two constituents, the measurable function and the measure. One group of methods is identified as updating the measure, the other group changes the measurable function. We connect both groups with the relatively recent methods of functional approximation of stochastic problems, and introduce especially in combination with the second group of methods a new procedure which does not need any sampling, hence works completely deterministically. It also seems to be the fastest and more reliable when compared with other methods. We show by example that it also works for highly nonlinear non-smooth problems with non-Gaussian measures.Comment: 29 pages, 16 figure

    Characterization of random stress fields obtained from polycrystalline aggregate calculations using multi-scale stochastic finite elements

    Full text link
    The spatial variability of stress fields resulting from polycrystalline aggregate calculations involving random grain geometry and crystal orientations is investigated. A periodogram-based method is proposed to identify the properties of homogeneous Gaussian random fields (power spectral density and related covariance structure). Based on a set of finite element polycrystalline aggregate calculations the properties of the maximal principal stress field are identified. Two cases are considered, using either a fixed or random grain geometry. The stability of the method w.r.t the number of samples and the load level (up to 3.5 % macroscopic deformation) is investigated

    Gradient-Based Estimation of Uncertain Parameters for Elliptic Partial Differential Equations

    Full text link
    This paper addresses the estimation of uncertain distributed diffusion coefficients in elliptic systems based on noisy measurements of the model output. We formulate the parameter identification problem as an infinite dimensional constrained optimization problem for which we establish existence of minimizers as well as first order necessary conditions. A spectral approximation of the uncertain observations allows us to estimate the infinite dimensional problem by a smooth, albeit high dimensional, deterministic optimization problem, the so-called finite noise problem in the space of functions with bounded mixed derivatives. We prove convergence of finite noise minimizers to the appropriate infinite dimensional ones, and devise a stochastic augmented Lagrangian method for locating these numerically. Lastly, we illustrate our method with three numerical examples

    Bayesian Identification of Elastic Constants in Multi-Directional Laminate from Moir\'e Interferometry Displacement Fields

    Get PDF
    The ply elastic constants needed for classical lamination theory analysis of multi-directional laminates may differ from those obtained from unidirectional laminates because of three dimensional effects. In addition, the unidirectional laminates may not be available for testing. In such cases, full-field displacement measurements offer the potential of identifying several material properties simultaneously. For that, it is desirable to create complex displacement fields that are strongly influenced by all the elastic constants. In this work, we explore the potential of using a laminated plate with an open-hole under traction loading to achieve that and identify all four ply elastic constants (E 1, E 2, 12, G 12) at once. However, the accuracy of the identified properties may not be as good as properties measured from individual tests due to the complexity of the experiment, the relative insensitivity of the measured quantities to some of the properties and the various possible sources of uncertainty. It is thus important to quantify the uncertainty (or confidence) with which these properties are identified. Here, Bayesian identification is used for this purpose, because it can readily model all the uncertainties in the analysis and measurements, and because it provides the full coupled probability distribution of the identified material properties. In addition, it offers the potential to combine properties identified based on substantially different experiments. The full-field measurement is obtained by moir\'e interferometry. For computational efficiency the Bayesian approach was applied to a proper orthogonal decomposition (POD) of the displacement fields. The analysis showed that the four orthotropic elastic constants are determined with quite different confidence levels as well as with significant correlation. Comparison with manufacturing specifications showed substantial difference in one constant, and this conclusion agreed with earlier measurement of that constant by a traditional four-point bending test. It is possible that the POD approach did not take full advantage of the copious data provided by the full field measurements, and for that reason that data is provided for others to use (as on line material attached to the article)

    Cumulative reports and publications through December 31, 1990

    Get PDF
    This document contains a complete list of ICASE reports. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available

    System Identification of Constructed Facilities: Challenges and Opportunities Across Hazards

    Get PDF
    The motivation, success and prevalence of full-scale monitoring of constructed buildings vary considerably across the hazard of concern (earthquakes, strong winds, etc.), due in part to various fiscal and life safety motivators. Yet while the challenges of successful deployment and operation of large-scale monitoring initiatives are significant, they are perhaps dwarfed by the challenges of data management, interrogation and ultimately system identification. Practical constraints on everything from sensor density to the availability of measured input has driven the development of a wide array of system identification and damage detection techniques, which in many cases become hazard-specific. In this study, the authors share their experiences in fullscale monitoring of buildings across hazards and the associated challenges of system identification. The study will conclude with a brief agenda for next generation research in the area of system identification of constructed facilities

    Energy-based trajectory tracking and vibration control for multilink highly flexible manipulators

    Get PDF
    In this paper, a discrete model is adopted, as proposed by Hencky for elastica based on rigid bars and lumped rotational springs, to design the control of a lightweight planar manipulator with multiple highly flexible links. This model is particularly suited to deal with nonlinear equations of motion as those associated with multilink robot arms, because it does not include any simplification due to linearization, as in the assumed modes method. The aim of the control is to track a trajectory of the end effector of the robot arm, without the onset of vibrations. To this end, an energy-based method is proposed. Numerical simulations show the effectiveness of the presented approach
    • 

    corecore