210 research outputs found

    Special Topics in Information Technology

    Get PDF
    This open access book presents outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the best theses defended in 2021-22 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Experiential Perspectives on Sound and Music for Virtual Reality Technologies

    Get PDF
    This thesis examines the intersection of sound, music, and virtuality within current and next-generation virtual reality technologies, with a specific focus on exploring the experiential perspectives of users and participants within virtual experiences. The first half of the thesis constructs a new theoretical model for examining intersections of sound and virtual experience. In Chapter 1, a new framework for virtual experience is constructed consisting of three key elements: virtual hardware (e.g., displays, speakers); virtual software (e.g., rules and systems of interaction); and virtual externalities (i.e., physical spaces used for engaging in virtual experiences). Through using and applying this new model, methodical examinations of complex virtual experiences are possible. Chapter 2 examines the second axis of the thesis through constructing an understanding of how sound is designed, implemented, and received within virtual reality. The concept of soundscapes is explored in the context of experiential perspectives, serving as a useful approach for describing received auditory phenomena. Auditory environments are proposed as a new model for exploring how auditory phenomena can be broadcast to audiences. Chapter 3 explores how inauthenticity within sound can impact users in virtual experience and uses authenticity to critically examine challenges surrounding sound in virtual reality. Constructions of authenticity in music performance are used to illustrate how authenticity is constructed within virtual experience. Chapter 4 integrates music into the understanding of auditory phenomena constructed throughout the thesis: music is rarely part of the created world in a virtual experience. Rather, it is typically something which only the audience – as external observers of the created world – can hear. Therefore, music within immersive virtual reality may be challenging as the audience is placed within the created world.The second half of this thesis uses this theoretical model to consider contemporary and future approaches to virtual experiences. Chapter 5 constructs a series of case studies to demonstrate the use of the framework as a trans-medial and intra/inter-contextual tool of analysis. Through use of the framework, varying approaches to implementation of sound and music in virtual reality technologies are considered, which reveals trans-medial commonalities of immersion and engagement with virtual experiences through sound. Chapter 6 examines near-future technologies, including brain-computer interfaces and other full-immersion technologies, to identify key issues in the design and implementation of future virtual experiences and suggest how interdisciplinary collaboration may help to develop solutions to these issues. Chapter 7 considers how the proposed model for virtuality might allow for methodical examination of similar issues within other fields, such as acoustics and architecture, and examines the ethical considerations that may become relevant as virtual technology develops within the 21st Century.This research explores and rationalises theoretical models of virtuality and sound. This permits designers and developers to improve the implementation of sound and music in virtual experiences for the purpose of improving user outcomes.<br/

    Special Topics in Information Technology

    Get PDF
    This open access book presents outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the best theses defended in 2021-22 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    A COLLISION AVOIDANCE SYSTEM FOR AUTONOMOUS UNDERWATER VEHICLES

    Get PDF
    The work in this thesis is concerned with the development of a novel and practical collision avoidance system for autonomous underwater vehicles (AUVs). Synergistically, advanced stochastic motion planning methods, dynamics quantisation approaches, multivariable tracking controller designs, sonar data processing and workspace representation, are combined to enhance significantly the survivability of modern AUVs. The recent proliferation of autonomous AUV deployments for various missions such as seafloor surveying, scientific data gathering and mine hunting has demanded a substantial increase in vehicle autonomy. One matching requirement of such missions is to allow all the AUV to navigate safely in a dynamic and unstructured environment. Therefore, it is vital that a robust and effective collision avoidance system should be forthcoming in order to preserve the structural integrity of the vehicle whilst simultaneously increasing its autonomy. This thesis not only provides a holistic framework but also an arsenal of computational techniques in the design of a collision avoidance system for AUVs. The design of an obstacle avoidance system is first addressed. The core paradigm is the application of the Rapidly-exploring Random Tree (RRT) algorithm and the newly developed version for use as a motion planning tool. Later, this technique is merged with the Manoeuvre Automaton (MA) representation to address the inherent disadvantages of the RRT. A novel multi-node version which can also address time varying final state is suggested. Clearly, the reference trajectory generated by the aforementioned embedded planner must be tracked. Hence, the feasibility of employing the linear quadratic regulator (LQG) and the nonlinear kinematic based state-dependent Ricatti equation (SDRE) controller as trajectory trackers are explored. The obstacle detection module, which comprises of sonar processing and workspace representation submodules, is developed and tested on actual sonar data acquired in a sea-trial via a prototype forward looking sonar (AT500). The sonar processing techniques applied are fundamentally derived from the image processing perspective. Likewise, a novel occupancy grid using nonlinear function is proposed for the workspace representation of the AUV. Results are presented that demonstrate the ability of an AUV to navigate a complex environment. To the author's knowledge, it is the first time the above newly developed methodologies have been applied to an A UV collision avoidance system, and, therefore, it is considered that the work constitutes a contribution of knowledge in this area of work.J&S MARINE LT

    An Online Solution for Localisation, Tracking and Separation of Moving Speech Sources

    Get PDF
    The problem of separating a time varying number of speech sources in a room is difficult to solve. The challenge lies in estimating the number and the location of these speech sources. Furthermore, the tracked speech sources need to be separated. This thesis proposes a solution which utilises the Random Finite Set approach to estimate the number and location of these speech sources and subsequently separate the speech source mixture via time frequency masking

    Calibration of sound source localisation for robots using multiple adaptive filter models of the cerebellum

    Get PDF
    The aim of this research was to investigate the calibration of Sound Source Localisation (SSL) for robots using the adaptive filter model of the cerebellum and how this could be automatically adapted for multiple acoustic environments. The role of the cerebellum has mainly been identified in the context of motor control, and only in recent years has it been recognised that it has a wider role to play in the senses and cognition. The adaptive filter model of the cerebellum has been successfully applied to a number of robotics applications but so far none involving auditory sense. Multiple models frameworks such as MOdular Selection And Identification for Control (MOSAIC) have also been developed in the context of motor control, and this has been the inspiration for adaptation of audio calibration in multiple acoustic environments; again, application of this approach in the area of auditory sense is completely new. The thesis showed that it was possible to calibrate the output of an SSL algorithm using the adaptive filter model of the cerebellum, improving the performance compared to the uncalibrated SSL. Using an adaptation of the MOSAIC framework, and specifically using responsibility estimation, a system was developed that was able to select an appropriate set of cerebellar calibration models and to combine their outputs in proportion to how well each was able to calibrate, to improve the SSL estimate in multiple acoustic contexts, including novel contexts. The thesis also developed a responsibility predictor, also part of the MOSAIC framework, and this improved the robustness of the system to abrupt changes in context which could otherwise have resulted in a large performance error. Responsibility prediction also improved robustness to missing ground truth, which could occur in challenging environments where sensory feedback of ground truth may become impaired, which has not been addressed in the MOSAIC literature, adding to the novelty of the thesis. The utility of the so-called cerebellar chip has been further demonstrated through the development of a responsibility predictor that is based on the adaptive filter model of the cerebellum, rather than the more conventional function fitting neural network used in the literature. Lastly, it was demonstrated that the multiple cerebellar calibration architecture is capable of limited self-organising from a de-novo state, with a predetermined number of models. It was also demonstrated that the responsibility predictor could learn against its model after self-organisation, and to a limited extent, during self-organisation. The thesis addresses an important question of how a robot could improve its ability to listen in multiple, challenging acoustic environments, and recommends future work to develop this ability

    Exploring the application of ultrasonic phased arrays for industrial process analysis

    Get PDF
    This thesis was previously held under moratorium from 25/11/19 to 25/11/21Typical industrial process analysis techniques require an optical path to exist between the measurement sensor and the process to acquire data used to optimise and control an industrial process. Ultrasonic sensing is a well-established method to measure into optically opaque structures and highly focussed images can be generated using multiple element transducer arrays. In this Thesis, such arrays are explored as a real-time imaging tool for industrial process analysis. A novel methodology is proposed to characterise the variation between consecutive ultrasonic data sets deriving from the ultrasonic hardware. The pulse-echo response corresponding to a planar back wall acoustic interface is used to infer the bandwidth, pulse length and sensitivity of each array element. This led to the development of a calibration methodology to enhance the accuracy of experimentally generated ultrasonic images. An algorithm enabling non-invasive through-steel imaging of an industrial process is demonstrated using a simulated data set. Using principal component analysis, signals corresponding to reverberations in the steel vessel wall are identified and deselected from the ultrasonic data set prior to image construction. This facilitates the quantification of process information from the image. An image processing and object tracking algorithm are presented to quantify the bubble size distribution (BSD) and bubble velocity from ultrasonic images. When tested under controlled dynamic conditions, the mean value of the BSD was predicted within 50% at 100 mms-1 and the velocity could be predicted within 30% at 100 mms-1. However, these algorithms were sensitive to the quality of the input image to represent the true bubble shape. The consolidation of these techniques demonstrates successful application of ultrasonic phased array imaging, both invasively and noninvasively, to a dynamic process stream. Key to industrial uptake of the technology are data throughput and processing, which currently limit its applicability to real-time process analysis, and low sensitivity for some non-invasive applications.Typical industrial process analysis techniques require an optical path to exist between the measurement sensor and the process to acquire data used to optimise and control an industrial process. Ultrasonic sensing is a well-established method to measure into optically opaque structures and highly focussed images can be generated using multiple element transducer arrays. In this Thesis, such arrays are explored as a real-time imaging tool for industrial process analysis. A novel methodology is proposed to characterise the variation between consecutive ultrasonic data sets deriving from the ultrasonic hardware. The pulse-echo response corresponding to a planar back wall acoustic interface is used to infer the bandwidth, pulse length and sensitivity of each array element. This led to the development of a calibration methodology to enhance the accuracy of experimentally generated ultrasonic images. An algorithm enabling non-invasive through-steel imaging of an industrial process is demonstrated using a simulated data set. Using principal component analysis, signals corresponding to reverberations in the steel vessel wall are identified and deselected from the ultrasonic data set prior to image construction. This facilitates the quantification of process information from the image. An image processing and object tracking algorithm are presented to quantify the bubble size distribution (BSD) and bubble velocity from ultrasonic images. When tested under controlled dynamic conditions, the mean value of the BSD was predicted within 50% at 100 mms-1 and the velocity could be predicted within 30% at 100 mms-1. However, these algorithms were sensitive to the quality of the input image to represent the true bubble shape. The consolidation of these techniques demonstrates successful application of ultrasonic phased array imaging, both invasively and noninvasively, to a dynamic process stream. Key to industrial uptake of the technology are data throughput and processing, which currently limit its applicability to real-time process analysis, and low sensitivity for some non-invasive applications

    Environment 2.0 : the 9th Biennial Conference on Environmental Psychology, 26-28 September 2011, Eindhoven University of Technology, Eindhoven, The Netherlands

    Get PDF
    On behalf of the Environmental Psychology Division of the German Association of Psychology, the 9th Biennial International Conference on Environmental Psychology is organized by the Human-Technology Interaction (HTI) group of the School of Innovation Sciences of the Eindhoven University of Technology. The HTI group is internationally acclaimed for perception research, and has become established as a major centre of excellence in human-technology interaction research. Bringing together psychological and engineering expertise, its central mission is investigating and optimizing interactions between people, systems, and environments, in the service of a socially and ecologically sustainable society

    Sound Event Localization, Detection, and Tracking by Deep Neural Networks

    Get PDF
    In this thesis, we present novel sound representations and classification methods for the task of sound event localization, detection, and tracking (SELDT). The human auditory system has evolved to localize multiple sound events, recognize and further track their motion individually in an acoustic environment. This ability of humans makes them context-aware and enables them to interact with their surroundings naturally. Developing similar methods for machines will provide an automatic description of social and human activities around them and enable machines to be context-aware similar to humans. Such methods can be employed to assist the hearing impaired to visualize sounds, for robot navigation, and to monitor biodiversity, the home, and cities. A real-life acoustic scene is complex in nature, with multiple sound events that are temporally and spatially overlapping, including stationary and moving events with varying angular velocities. Additionally, each individual sound event class, for example, a car horn can have a lot of variabilities, i.e., different cars have different horns, and within the same model of the car, the duration and the temporal structure of the horn sound is driver dependent. Performing SELDT in such overlapping and dynamic sound scenes while being robust is challenging for machines. Hence we propose to investigate the SELDT task in this thesis and use a data-driven approach using deep neural networks (DNNs). The sound event detection (SED) task requires the detection of onset and offset time for individual sound events and their corresponding labels. In this regard, we propose to use spatial and perceptual features extracted from multichannel audio for SED using two different DNNs, recurrent neural networks (RNNs) and convolutional recurrent neural networks (CRNNs). We show that using multichannel audio features improves the SED performance for overlapping sound events in comparison to traditional single-channel audio features. The proposed novel features and methods produced state-of-the-art performance for the real-life SED task and won the IEEE AASP DCASE challenge consecutively in 2016 and 2017. Sound event localization is the task of spatially locating the position of individual sound events. Traditionally, this has been approached using parametric methods. In this thesis, we propose a CRNN for detecting the azimuth and elevation angles of multiple temporally overlapping sound events. This is the first DNN-based method performing localization in complete azimuth and elevation space. In comparison to parametric methods which require the information of the number of active sources, the proposed method learns this information directly from the input data and estimates their respective spatial locations. Further, the proposed CRNN is shown to be more robust than parametric methods in reverberant scenarios. Finally, the detection and localization tasks are performed jointly using a CRNN. This method additionally tracks the spatial location with time, thus producing the SELDT results. This is the first DNN-based SELDT method and is shown to perform equally with stand-alone baselines for SED, localization, and tracking. The proposed SELDT method is evaluated on nine datasets that represent anechoic and reverberant sound scenes, stationary and moving sources with varying velocities, a different number of overlapping sound events and different microphone array formats. The results show that the SELDT method can track multiple overlapping sound events that are both spatially stationary and moving
    • …
    corecore