682 research outputs found

    Personalized question-based cybersecurity recommendation systems

    Full text link
    En ces temps de pandémie Covid19, une énorme quantité de l’activité humaine est modifiée pour se faire à distance, notamment par des moyens électroniques. Cela rend plusieurs personnes et services vulnérables aux cyberattaques, d’où le besoin d’une éducation généralisée ou du moins accessible sur la cybersécurité. De nombreux efforts sont entrepris par les chercheurs, le gouvernement et les entreprises pour protéger et assurer la sécurité des individus contre les pirates et les cybercriminels. En raison du rôle important joué par les systèmes de recommandation dans la vie quotidienne de l'utilisateur, il est intéressant de voir comment nous pouvons combiner les systèmes de cybersécurité et de recommandation en tant que solutions alternatives pour aider les utilisateurs à comprendre les cyberattaques auxquelles ils peuvent être confrontés. Les systèmes de recommandation sont couramment utilisés par le commerce électronique, les réseaux sociaux et les plateformes de voyage, et ils sont basés sur des techniques de systèmes de recommandation traditionnels. Au vu des faits mentionnés ci-dessus, et le besoin de protéger les internautes, il devient important de fournir un système personnalisé, qui permet de partager les problèmes, d'interagir avec un système et de trouver des recommandations. Pour cela, ce travail propose « Cyberhelper », un système de recommandation de cybersécurité personnalisé basé sur des questions pour la sensibilisation à la cybersécurité. De plus, la plateforme proposée est équipée d'un algorithme hybride associé à trois différents algorithmes basés sur la connaissance, les utilisateurs et le contenu qui garantit une recommandation personnalisée optimale en fonction du modèle utilisateur et du contexte. Les résultats expérimentaux montrent que la précision obtenue en appliquant l'algorithme proposé est bien supérieure à la précision obtenue en utilisant d'autres mécanismes de système de recommandation traditionnels. Les résultats suggèrent également qu'en adoptant l'approche proposée, chaque utilisateur peut avoir une expérience utilisateur unique, ce qui peut l'aider à comprendre l'environnement de cybersécurité.With the proliferation of the virtual universe and the multitude of services provided by the World Wide Web, a major concern arises: Security and privacy have never been more in jeopardy. Nowadays, with the Covid 19 pandemic, the world faces a new reality that pushed the majority of the workforce to telecommute. This thereby creates new vulnerabilities for cyber attackers to exploit. It’s important now more than ever, to educate and offer guidance towards good cybersecurity hygiene. In this context, a major effort has been dedicated by researchers, governments, and businesses alike to protect people online against hackers and cybercriminals. With a focus on strengthening the weakest link in the cybersecurity chain which is the human being, educational and awareness-raising tools have been put to use. However, most researchers focus on the “one size fits all” solutions which do not focus on the intricacies of individuals. This work aims to overcome that by contributing a personalized question-based recommender system. Named “Cyberhelper”, this work benefits from an existing mature body of research on recommender system algorithms along with recent research on non-user-specific question-based recommenders. The reported proof of concept holds potential for future work in adapting Cyberhelper as an everyday assistant for different types of users and different contexts

    How Fraudster Detection Contributes to Robust Recommendation

    Full text link
    The adversarial robustness of recommendation systems under node injection attacks has received considerable research attention. Recently, a robust recommendation system GraphRfi was proposed, and it was shown that GraphRfi could successfully mitigate the effects of injected fake users in the system. Unfortunately, we demonstrate that GraphRfi is still vulnerable to attacks due to the supervised nature of its fraudster detection component. Specifically, we propose a new attack metaC against GraphRfi, and further analyze why GraphRfi fails under such an attack. Based on the insights we obtained from the vulnerability analysis, we build a new robust recommendation system PDR by re-designing the fraudster detection component. Comprehensive experiments show that our defense approach outperforms other benchmark methods under attacks. Overall, our research demonstrates an effective framework of integrating fraudster detection into recommendation to achieve adversarial robustness

    Privacy-preserving recommendation system using federated learning

    Get PDF
    Federated Learning is a form of distributed learning which leverages edge devices for training. It aims to preserve privacy by communicating users’ learning parameters and gradient updates to the global server during the training while keeping the actual data on the users’ devices. The training on global server is performed on these parameters instead of user data directly while fine tuning of the model can be done on client’s devices locally. However, federated learning is not without its shortcomings and in this thesis, we present an overview of the learning paradigm and propose a new federated recommender system framework that utilizes homomorphic encryption. This results in a slight decrease in accuracy metrics but leads to greatly increased user-privacy. We also show that performing computations on encrypted gradients barely affects the recommendation performance while ensuring a more secure means of communicating user gradients to and from the global server

    Developing Hybrid-Based Recommender System with NaĂŻve Bayes Optimization to Increase Prediction Efficiency

    Get PDF
    Commerce and entertainment world today have shifted to the digital platforms where customer preferences are suggested by recommender systems. Recommendations have been made using a variety of methods such as content-based, collaborative filtering-based or their hybrids. Collaborative systems are common recommenders, which use similar users’ preferences. They however have issues such as data sparsity, cold start problem and lack of scalability. When a small percentage of users express their preferences, data becomes highly sparse, thus affecting quality of recommendations. New users or items with no preferences, forms cold start issues affecting recommendations. High amount of sparse data affects how the user-item matrices are formed thus affecting the overall recommendation results. How to handle data input in the recommender engine while reducing data sparsity and increase its potential to scale up is proposed. This paper proposed development of hybrid model with data optimization using a Naïve Bayes classifier, with an aim of reducing data sparsity problem and a blend of collaborative filtering model and association rule mining-based ensembles, for recommending items with an aim of improving their predictions. Machine learning using python on Jupyter notebook was used to develop the hybrid. The models were tested using MovieLens 100k and 1M datasets. We demonstrate the final recommendations of the hybrid having new top ten highly rated movies with 68% approved recommendations. We confirm new items suggested to the active user(s) while less sparse data was input and an improved scaling up of collaborative filtering model, thus improving model efficacy and better predictions

    A Survey on Popularity Bias in Recommender Systems

    Full text link
    Recommender systems help people find relevant content in a personalized way. One main promise of such systems is that they are able to increase the visibility of items in the long tail, i.e., the lesser-known items in a catalogue. Existing research, however, suggests that in many situations today's recommendation algorithms instead exhibit a popularity bias, meaning that they often focus on rather popular items in their recommendations. Such a bias may not only lead to limited value of the recommendations for consumers and providers in the short run, but it may also cause undesired reinforcement effects over time. In this paper, we discuss the potential reasons for popularity bias and we review existing approaches to detect, quantify and mitigate popularity bias in recommender systems. Our survey therefore includes both an overview of the computational metrics used in the literature as well as a review of the main technical approaches to reduce the bias. We furthermore critically discuss today's literature, where we observe that the research is almost entirely based on computational experiments and on certain assumptions regarding the practical effects of including long-tail items in the recommendations.Comment: Under review, submitted to UMUA

    How to Perform Reproducible Experiments in the ELLIOT Recommendation Framework: Data Processing, Model Selection, and Performance Evaluation

    Full text link
    Recommender Systems have shown to be an efective way to alleviate the over-choice problem and provide accurate and tailored recommendations. However, the impressive number of proposed recommendation algorithms, splitting strategies, evaluation protocols, metrics, and tasks, has made rigorous experimental evaluation particularly challenging. ELLIOT is a comprehensive recommendation framework that aims to run and reproduce an entire experimental pipeline by processing a simple confguration fle. The framework loads, flters, and splits the data considering a vast set of strategies. Then, it optimizes hyperparameters for several recommendation algorithms, selects the best models, compares them with the baselines, computes metrics spanning from accuracy to beyond-accuracy, bias, and fairness, and conducts statistical analysis. The aim is to provide researchers a tool to ease all the experimental evaluation phases (and make them reproducible), from data reading to results collection. ELLIOT is freely available on GitHub at https://github.com/sisinflab/ellio

    Machine Learning Models for Educational Platforms

    Get PDF
    Scaling up education online and onlife is presenting numerous key challenges, such as hardly manageable classes, overwhelming content alternatives, and academic dishonesty while interacting remotely. However, thanks to the wider availability of learning-related data and increasingly higher performance computing, Artificial Intelligence has the potential to turn such challenges into an unparalleled opportunity. One of its sub-fields, namely Machine Learning, is enabling machines to receive data and learn for themselves, without being programmed with rules. Bringing this intelligent support to education at large scale has a number of advantages, such as avoiding manual error-prone tasks and reducing the chance that learners do any misconduct. Planning, collecting, developing, and predicting become essential steps to make it concrete into real-world education. This thesis deals with the design, implementation, and evaluation of Machine Learning models in the context of online educational platforms deployed at large scale. Constructing and assessing the performance of intelligent models is a crucial step towards increasing reliability and convenience of such an educational medium. The contributions result in large data sets and high-performing models that capitalize on Natural Language Processing, Human Behavior Mining, and Machine Perception. The model decisions aim to support stakeholders over the instructional pipeline, specifically on content categorization, content recommendation, learners’ identity verification, and learners’ sentiment analysis. Past research in this field often relied on statistical processes hardly applicable at large scale. Through our studies, we explore opportunities and challenges introduced by Machine Learning for the above goals, a relevant and timely topic in literature. Supported by extensive experiments, our work reveals a clear opportunity in combining human and machine sensing for researchers interested in online education. Our findings illustrate the feasibility of designing and assessing Machine Learning models for categorization, recommendation, authentication, and sentiment prediction in this research area. Our results provide guidelines on model motivation, data collection, model design, and analysis techniques concerning the above applicative scenarios. Researchers can use our findings to improve data collection on educational platforms, to reduce bias in data and models, to increase model effectiveness, and to increase the reliability of their models, among others. We expect that this thesis can support the adoption of Machine Learning models in educational platforms even more, strengthening the role of data as a precious asset. The thesis outputs are publicly available at https://www.mirkomarras.com
    • …
    corecore