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ABSTRACT

PRIVACY-PRESERVING RECOMMENDATION SYSTEM USING
FEDERATED LEARNING

by
Rahul Basu

Federated Learning is a form of distributed learning which leverages edge devices for

training. It aims to preserve privacy by communicating users’ learning parameters and

gradient updates to the global server during the training while keeping the actual data

on the users’ devices. The training on global server is performed on these parameters

instead of user data directly while fine tuning of the model can be done on client’s

devices locally. However, federated learning is not without its shortcomings and in this

thesis, we present an overview of the learning paradigm and propose a new federated

recommender system framework that utilizes homomorphic encryption. This results

in a slight decrease in accuracy metrics but leads to greatly increased user-privacy.

We also show that performing computations on encrypted gradients barely affects the

recommendation performance while ensuring a more secure means of communicating

user gradients to and from the global server.
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CHAPTER 1

INTRODUCTION

1.1 Motivation for Federated Learning

Machine Learning is an alternate path to finding solution to problems which stands

in stark contrast to the traditional philosophy of algorithmic programming, wherein

rules and parameters are fed in and a result is presented as an output. In

Machine Learning, results and parameters are fed in and the rules are deduced.

This serves as the foundation for solving previously unsolvable problems such as

handwriting recognition, analyzing large amounts of audio recordings consisting of

high-dimensional data which is almost impossible to inspect manually. Machine

Learning can help find the patterns instead which would help with interpreting audio

signals [47].

For many years now, this new programming paradigm has been applied to a

large number of fields and resulted in revolutionary technologies. It has been hailed

as “the new electricity” and is set to change the world as we know it to the point

where it has been theorized that future generations might look back and wonder how

we lived without AI being an integral part of our everyday lives. Speech recognition,

recommender systems, natural language processing and computer vision are based

on data-driven learning systems. In fact machine learning based algorithms (usually

deep reinforcement learners) have been able to beat the best of humanity at their

own games [100]. Most of the state-of-the-art today is based on learning systems that

requires data [66] [6].

Ideas and techniques that weren’t as successful before and which resulted in the

AI Winter [52] have re-emerged and turned out extremely successful. For instance,

back-propagation, a concept from the 1970s [44] [72] serves as the backbone for Deep
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Learning. There are many factors which contributed to this, of course. Usage of

optimizers like Adam [60] have greatly reduced the amount of tuning necessary for

Gradient Descent to work, for instance. Another reason is definitely the increase in

computational resources freely available as well as the highest end computing power

known to mankind. The processors in our smart wristwatches are more powerful

than the processor that was used to first send human beings to the moon. Most

importantly though, the explosion of data is what primarily contributed to this and

allowed deep learning to unleash its true potential.

With more data, machine learning algorithms had a much larger sample space

to decide what data was truly important and find patterns that were interesting.

[45] makes a case for how having more data would make for better machine learning

models. The predominant way of using machine learning nowadays involves collecting

all this data in a data center. The model is then trained on powerful servers. However,

this data collection process is often privacy-invasive. Many users do not want to

share private data with companies, making it difficult to use machine learning in

some situations, for instance when medical data is involved. Even when privacy is

not a concern, having to collect data can be infeasible. For example, self-driving cars

generate too much data to be able to send all of it to a server

Federated Learning is a newer paradigm in which the data is not collected and

instead the parts that require access to the data are moved to the users’ devices and

never leave it. The model is collaboratively trained using locally available data and

only the parameters are sent back to the server to make improvements to the global

model. Federated learning approaches can lead to better models as a result because

of the potentially larger amount of data being available.
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1.2 A Brief History of Federated Learning

1.2.1 Seminal Work

Federated Learning as a concept was introduced in [77] which proposed an alternative

to training on a single data center. It leaves the training data distributed on the

mobile devices, and learns a shared model by aggregating locally-computed updates

in a decentralized manner. Their method is based on iterative model averaging and

conducts an extensive empirical evaluation to demonstrate that the approach is robust

to the unbalanced and non-IID data distributions.

It was also used in the same year in [78] to train large recurrent language models

with guarantees of user-level differential privacy. This paper also described how user

privacy would be preserved in the ‘large step’ update of the federated averaging

algorithm [77] and serves as another seminal paper in the field of Federated Learning.

1.2.2 Optimization Algorithms

Federated Learning algorithms have to account for the fact that communication with

edge devices takes place over unreliable networks with very limited upload speeds.

Since communication in federated learning is much more expensive than computation,

it is crucial to minimize communication. It is also a kind of distributed learning [89],

with the differences being that the assumptions of data being spread evenly across

clients, being independent and identically distributed (i.i.d) samples from the overall

distribution, and about the number of clients being much smaller than the average

number of locally available training examples per client cannot be made.

That said, optimizations that apply to distributed learning are pertinent here as

well. The first relevant optimization in this regard comes before [77] and is outlined

in [62] where the focus lay in communication efficiency. The algorithm proposed

here showed encouraging results and paved the path for future work on this topic.

This was taken forward by [64] in which they proposed two ways of reducing up-link
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communication costs, namely structured updates which directly learns an update

from a restricted space parametrized using a smaller number of variables, e.g. either

low-rank or a random mask; and sketched updates, where a full model update is

learned and then compressed using a combination of quantization, random rotations,

and sub-sampling before sending it to the server. Another recent work [75] reduces

communication overload by identifying irrelevant updates and precludes them from

being uploaded to the global model which according to their research reduces the

communication footprint by 13.97 times.

In [96], the authors suggest that Multi-Task Learning is naturally geared

towards handling the statistical challenges of a federated learning setting, which

are to collect data in a non-IID manner across the network with the data on every

node being generated by a distinct distribution. They propose a new system-aware

optimization method called MOCHA, which achieves significant speed-ups compared

to its alternatives as demonstrated on real world federated datasets. Another paper

that got published in December of the same year, [41] focuses primarily on differential

attacks on data privacy that the optimization algorithms are vulnerable to, which

could originate from any party contributing during federated optimization. In such

an attack, a client’s contribution during training and information about their data

set is revealed through analyzing the distributed model. They tackle this problem

and propose an algorithm for client sided differential privacy preserving federated

optimization. The aim is to hide clients’ contributions during training, balancing the

trade-off between privacy loss and model performance. This is yet another addition

to the advances made in preserving privacy outlined in [78] and the paper on Secure

Aggregation [14].

A scalable production system was recently provided by [13] in the domain of

mobile devices which was based on Tensorflow. A fairly comprehensive analysis

on three Federated Learning algorithms; Federated Averaging (FedAvg), Federated
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Stochastic Variance Reduced Gradient, and CO-OP can be found in [85] and it shows

that Federated Averaging performs the best regardless of the partitioning of the data.

However, Federated Averaging is not without its flaws. [93] casts aspersions on

our understanding of Federated Averaging particularly when considering data hetero-

geneity across devices in terms of sample sizes and underlying data distributions. It

therefore suggests an improved version of it, FedProx, that can be understood and

analyzed with more veracity. Another paper [70] also states that Federated Averaging

lacks theoretical guarantees and goes on to conduct experiments that indicate that

the heterogeneity of data slows down convergence.

Federated Learning has been combined with Reinforcement Learning to make

Federated Reinforcement Learning in the past by [112] and [73]. Recent efforts to

this end were also seen at the latest IEEE INFOCOM.

1.2.3 Adversarial Work

Quite a bit of work has been done in the field of machine learning in the past on

data poisoning [12], [92], [80], [103], [53], [61], [18]. Adversaries posing as honest

clients can send erroneous updates that maliciously influence the properties of the

trained model. This is a process known as model poisoning. In Federated Learning,

[5] presents a new model poisoning strategy based on model replacement where the

attacker can cause the global model to incorrectly reach a 100% accuracy.

Another recent work is by [11] which explores the threat of model poisoning

attacks instead of data poisoning attacks on federated learning initiated by a single,

non-colluding malicious agent. Number of strategies to carry out this attack are

explored, starting with simple boosting of the malicious agent’s update to overcome

the effects of other agents’ updates. To increase attack stealth, they have an

alternating minimization strategy, which also optimizes for the training loss and the

adversarial objective. Results indicate that even a highly constrained adversary can
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carry out model poisoning attacks while simultaneously maintaining stealth, thus

highlighting the vulnerability of the federated learning setting and the need to develop

effective defense strategies.

In the presence of sybils [27], where an attacker assumes a large number of

fake identities to derail the algorithm, the attack is even worse. A strategy has

been suggested in [37] called FoolsGold, in which a defense that is especially effective

against sybils identifies the intruders based on the diversity of client updates in the

distributed learning process.

1.2.4 State-of-the-art

NeurIPS 2019 saw some interesting papers that were presented in this topic. [88] tries

to augment the process of collaborative model-building. Each participating party

has an independent set of labeled training examples that they wish to keep private

that is drawn from a party-specific domain distribution. These users collaborate

to build a general model for the task but maintain private, domain-adapted expert

models. The final predictor is a weighted average of the outputs from the general

and private models which they claim improves model accuracy for all users. [71]

claims to improve Federated Learning by adding the functionality of learning local

representations on each client device and makes a case for why this makes for a better

Federated Averaging algorithm, which they call LG-FedAvg.

[105] states that the current way of performing Federated Averaging in multiple

steps results in gradient biases and proposes an unbiased gradient aggregation

algorithm. [101] aims to speed up the process of Decentralized Stochastic Gradient

Descent with MATCHA (Matching Decomposition Sampling), which is a decen-

tralized SGD. This is yet another effort at reducing communication delay. Another

research work that’s focused on improving the performance of SGD is [59] by providing

values of the optimal step size and the optimal number of local iterations.
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Another interesting paper that NeurIPS 2019 saw, [42] uses active learning to

perform a selection on clients with a probability conditioned on the current model

and data to maximize the efficiency instead of selecting clients uniformly at random.

Meanwhile, [16] provides a framework to ensure that advancements in Federated

Learning adhere to certain realistic benchmarks with the help of a means of evaluation

and a set of reference implementations.

1.3 Federated Learning as a Process

In this section we give a brief overview of how Federated Learning works in practice.

As in supervised learning, we have

Inputs: x1, x2, x3, x4.....xn

Outputs: y1, y2, y3, y4....yn

Data is typically sampled from some underlying distribution that is not known

to us. The objective of supervised learning algorithms is to find a function that maps

from the given inputs to outputs sampled from this distribution. To do this, we decide

on the form of the function and then optimize the variable parts of it. This could

mean fixing the function to be linear and then finding the best possible coefficients.

Because only some example data is available, the goal is to find a function that maps

well from the example inputs to the outputs under the constraint that it also needs

to work as well for new data sampled from the same distribution.

For another paradigm of Machine Learning, Unsupervised Learning, the outputs

might be missing and the performance of the algorithm is measured differently [7].

Parts of the function which are variable and can be optimized during the learning

process are called parameters or weights. Values that need to be set before the training

begins are called hyperparameters.

In Federated Learning, the explicit requirement is that users do not have to

share their data. The data points (n) are partitioned across the computers of k
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users. Users can have varying numbers of data points and ni denotes how many

examples the i-th client has access to. Most machine learning algorithms work in an

iterative process where they repeatedly look at example data. They start off with an

initial solution and then continually try to improve it. In each iteration, the model

is evaluated using the training data and then updated. Each update is meant to

improve the model’s performance on the training data a little bit.

Federated Learning functions by training on local devices which is the only

instance when the data is directly being interacted with. The updates from this

training are sent to the server. In some use cases of dealing with large amounts of

data, it might also be cheaper to send parametric updates rather than the actual data

so this is a benefit for privacy as well as communication cost.

While the edge devices usually have lower computing power than servers in a

data center, there is also less data on them. By having a lot of users, the computations

that need to be performed are vastly distributed. There is not much work to do on

the end device of each individual. Conventional machine learning can be seen as a

centralized system where all the work is performed on one server. In the process

described so far, responsibilities are moved from the server to the clients. This is

not a fully decentralized system because the server still runs a part of the algorithm.

Instead, a federation of clients takes over a significant amount of work but there is

still one central entity, a server, coordinating everything. Hence the name, federated

learning.

Before the server starts the learning process, it needs to initialize the model.

Theoretically, this can be done randomly but it makes more sense to initialize them

with sensible values. If some data is already available on the server, it can be used to

pre-train the model. In other cases, there might be a known configuration of model

parameters that already leads to acceptable results. Having a good first model gives

the training process a head-start and can reduce the time it takes until convergence.

8



The steps are as follows:

• At the beginning of an iteration, a subset of K clients are randomly selected by

the server. They receive a copy of the current model parameters θ and use their

locally available training data to compute an update. The update of the i− th

client is denoted by Hi

• The updates are then sent back to the server.

• The server waits until it has received all updates and then combines them into

one final update.

• A new iteration begins after every model update

• In each iteration only K users are queried for updates. While requesting updates

from all users would lead to more stable model improvements, it would also be

extremely expensive to do because there can be millions of users. Only querying

a subset of them makes it more feasible to efficiently run many iterations.

• Repeat training process until convergence

1.3.1 Comparisons to Distributed Learning

This process of Federated Learning that was outlined in the previous section can be

likened to a distributed learning process in a data center. Federated Learning is more

similar to a MapReduce Process [24] where computation is done in a separate and

parallel manner and then combined.

There are key differences among Federated Learning and the other techniques,

though, which can be outlined as follows:

• Volume: Typically, millions of users would be performing model updates as

compared to the thousands of nodes in data centers

9



Figure 1.1 Training process in federated learning (courtesy: Google AI Blog)

• Unbalanced Data: Every user might have different number of parameters

• Unpredictable and unknown data distributions: Assumptions about

underlying data distributions cannot be made about the users data.

• Communication Issues: Updates are sent irregularly and the scale of the

communication grows proportionally with the size of the model. Compression

techniques need to be employed which does not adversely affect model

performance.

1.4 Use Case of Interest in Federated Learning

When the data is too private to be transferred to a server, Federated Learning is a

good choice. This is often the case in situations where users implicitly generate a lot

of data, just by interacting with their device. In the best case, they also label the

data in this process.

An example for such an application is recommending suggestions for the next

word users might want to type on a mobile phone, a functionality offered by most
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virtual keyboards. Recurrent Neural Networks [21] are the go-to choice for an

application like this, typically. They try to predict the next word that is going to be

typed by analyzing the previously typed words. Such a model could be trained on

any language corpus, for example on text from Wikipedia. However, the language

used on Wikipedia differs from the one used by people in daily life. For this reason,

directly training on the text typed by users would lead to better results.

Conventional methods cannot be used to do this since the data is extremely

private. It should not be sent to a server and should not even be stored unnecessarily

for a longer time. Federated Learning can, however, be used to train on this data

because it does not compromise the data. People generate data points by typing on

their devices and label these themselves as soon as they type the next word. The

model can improve itself on the fly. While a user is typing, the model tries to predict

the next word. As soon as the user finished typing the word, the correct label is

available and the model can use this information to compute an update to improve

itself. The data used to generate the update is directly discarded afterwards. This

way, a high-quality model can still be trained, without making any sacrifice on privacy.

Naturally, recommender system shines as a great use-case for federated learning and

that is what we will be focusing on in the later chapters.

1.5 Pertinent Related Work

The work in this thesis lies in the confluence of three major fields - federated learning,

recommender systems and cryptography, specifically homomorphic encryption. In

this section, we take a look at the related works that also combine elements of this

research.
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1.5.1 Federated Learning and Recommender Systems

[17] incorporates meta learning, a machine learning paradigm where a top-level (or

meta-level) artificial intelligence optimizes a bottom-level artificial intelligence, into a

federated learning framework. The model is distributed and trained on the clients and

the server maintains a shared model by aggregated updated models from the clients.

They use this framework for making recommendations for edge device users. They

build upon [33] and propose FedMeta. One of their experiments is on an industrial

recommendation task and they outperform stand-alone models as well as models

trained by a typical federated learning approach.

[1] was the first paper in the space of federated collaborative filtering, which our

this work is inspired by. They utilize deep learning models to train a collaborative

filtering recommendation system that models the interactions between a user and

a set of items. The item factor vectors are updated on the server and distributed

to each client and local user updates take place on client devices. They use an

alternating least squares as well as gradient descent to perform model updates along

with Adaptive Moment Estimation (Adam) for their Federated Collaborative Filter.

The test is conducted on MovieLens’ 25 million movie dataset.

[54] is a federated collaborative filtering system that cites [33], [84] and [1]

as influences and proposes a system that is related to [84], but unlike the Reptile

meta-learning algorithm, their approach does not require the edge devices to run

sequentially and update the central parameters in turns, or communicate with each

other. Instead each device communicates with the parameter server independent of

each other the training takes place in parallel for every device. In [34] presents a

matrix factorization technique for taking into consideration multi-view structure of

the data.
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1.5.2 Federated Learning and Homomorphic Encryption

[49] introduces the concept of vertical federated learning, where data is split by

features and only one data provider knows the target variable. They utilize concepts

of additively homomorphic encryption [81] for security from an honest-but-curious

adversary and perform entity resolution. [20] provides a tree boosting system in

the context of federated learning that is lossless and privacy preserving. They use

homomorphic encryption extensively and provide a mathematical proof of security.

[99] tries to introduce a method that combines secure multiparty computation

and differential privacy in a bid to create a hybrid approach to privacy-preserving

federated learning. This aims at reducing the shortcomings of both the approaches,

achieves a high level of accuracy and is a scalable approach to combat inference

threats. They claim that the use of homomorphic encryption in their scheme

greatly increases the accuracy. [38] also utilizes homomorphic encryption in their

system that introduces a secure federated transfer learning. In addition, [102] also

discusses protecting against user level privacy leakage using homomorphic encryption

techniques.

1.5.3 Homomorphic Encryption and Recommender Systems

[30] and [107] were among the first to introduce the frameworks to combine additively

homomorphic encryption [81] and recommender systems to create a privacy enhanced

recommender systems and proposed systems in which service providers learns no

information on any user’s preferences. This was suggested for a centralized system

and the idea was to generate recommendations by processing them under encryption.

A more efficient way of doing this was introduced in [32] by the same authors two years

later. The same year they also released a paper that performed content-based filtering

in a secure manner using homomorphic encryption [31]. More recently [58] used

homomoprhic encryption for a privacy preserving healthcare recommender system
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that uses collaborative filtering and [4] also proposes a privacy preserving user-based

recommender system
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CHAPTER 2

BACKGROUND

2.1 Estimates, Bias and Variance

It is often better to compute estimates rather than exact values. Estimation Theory

[26] provides adequate formalism for the same. An estimator is any decision rule or a

function that estimates a value based on certain observations, random or otherwise.

There are several ways to measure the quality of an estimator:

bias[X̃] = E[X̃]−X (2.1)

If the bias of an estimator is 0, it is called an unbiased estimator. This typically

means that the estimator is generally correct on average. If one samples for long

enough from the estimator, the average converges to the true value X. This is due to

the law of large numbers.

If an estimator is unbiased, its individual estimates can still be far off from the

true value. While the mean of many sampled estimates eventually converges to the

true expected value, this can take a long time, meaning the estimator is inefficient.

To quantify how consistently an estimator is close to the true value, another statistic

is required. Commonly, the variance of the estimator is considered here. It is defined

as the mean squared distance between the estimate and the value to be estimated.

V ar[X̃] = E[X̃ −X]2 (2.2)

A lot of different things can be analyzed using estimators. For example,

statistical models can be seen as estimators. They use observations, or data, to

make predictions. These predictions are generally not perfect because randomness is
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involved and only a limited amount of information is available. Thus, it makes sense

to analyze statistical models in terms of bias and variance. A very usual problem

when building models is balancing underfitting and overfitting. If the training data

is just memorized, the model does not generalize well to new data, which is called

overfitting. The flip side of the issue is when it the estimated curve barely matches

the pattern in the training data, which is referred to as underfitting.

This family of problems is known as bias-variance tradeoff. If the model has

a high bias, its predictions are off, which corresponds to underfitting. If overfitting

occurred, that is, the data is matched too well, the estimates have a high variance. By

resampling the data that the model was built on, different estimates are generated

because the model is now based on different random noise. Optimizing both bias

and variance is usually unrealistic for statistical models, so a balance (or a trade-off)

needs to be reached. Depending on how the estimators are used, different qualities

are given more importance over others.

2.2 Gradient Descent

Machine learning can be considered an optimization problem. In supervised learning,

a loss function quantifies how close a prediction f(xi) of a model is to the correct

answer yi. The parameters of the model should be chosen to minimize the loss.

Generally this is done by optimizing them for the training data while also validating

the model on otherwise unused data. The parameters with the best performance on

the validation data are selected in the end. The loss for a prediction function f is

given by:

L =
1

n

n∑
1

loss(f(xi), yi) (2.3)

The Squared Error function serves as a popular choice for the loss function:
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loss(a, y) = (a− y)2 (2.4)

There are many algorithms centered around minimizing loss. A huge part of

machine learning is based on a conceptually simple method called gradient descent.

It is an iterative algorithm where the model parameters are repeatedly moved into a

direction where they work a little bit better.

The model is initialized with an arbitrary set of parameters and then the

iterative optimization process begins. In each iteration, the partial derivatives of

the loss with respect to the model parameters are computed. To be able to do

this, gradient descent requires the prediction function f and the loss function to be

differentiable. An important property of the vector of partial derivatives is that it

points into the direction of steepest ascent. Because the loss should be minimized,

the parameters are updated into the opposite direction. Since the vector of partial

derivatives only points to the next optimum but does tell us how far to go, a scaling

factor η (eta), called the learning rate, is also applied.

Each parameter θi is then repeatedly updated using this idea:

θi ←− θi − η ∗
∂L

∂θi
(2.5)

In each iteration, all parameters are updated at the same time using this

formula. The parameters are repeatedly improved, getting closer a local optimum.

Once a local optimum is reached, the gradient becomes 0 and no more updates are

performed. In practice, the learning rate needs to be tuned well to make sure that

the updates do not jump over an optimum.
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Figure 2.1 A 3D rendition of gradient descent (courtesy: HackerNoon)

2.2.1 Stochastic Gradient Descent

A simplification of the partial derivatives notation can be done by using the gradient

operator ∇. This can be used by assigning the operator ∇ as the vector of all partial

derivatives as follows:

∇iL =
∂L

∂θi
(2.6)

To actually calculate the gradient∇ of the loss, one can make use of the linearity

of the gradient operator:

∇L = ∇ 1

n

n∑
i

loss(f(xi), yi) (2.7)

=
1

n

n∑
i

∇loss(f(xi), yi) (2.8)

n is typically a very large value which makes for some unnecessarily laborious

and resource-intensive calculations. For the purposes of saving time, a part of the

data can be used to estimate the gradient. In stochastic gradient descent (SGD), a
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single data point x and label y are sampled uniformly from the training set. The true

gradient ∇L is estimated using:

∇L̃ = ∇loss(f(x), y) (2.9)

It can be proven that the SGD estimate ∇L̃ is an unbiased estimator of ∇L

[98]

The computations for Stochastic Gradient Descent can be performed very

quickly but still give us an unbiased estimate of the true gradient. This property is

the reason why optima can be found using this algorithm. While individual estimates

are off, the randomness averages out over iterations and the parameters still move

into a sensible direction overall. Since iterations are much cheaper, more of them can

be performed. The framework utlized in this thesis uses a lot of Stochastic Gradient

descent for this purpose.

2.3 Mini-Batch Gradient Descent

Individual estimates can have a large variance, leading to noisy and jumpy updates.

An improvement over the Stochastic Gradient Descent is the mini-batch gradient

descent. Instead of just sampling one data point, small samples of k data points

are sampled. The estimated gradient is an average of all k single estimates. Each

of these individual estimators is unbiased. Thus, their average also has to be an

unbiased estimator. In contrast to SGD however, there is much less variance, because

more data is used to compute the estimate. Most gradient computations can be

formulated using linear algebra operations which are highly parallelizable using GPUs.

With appropriate hardware there is no significant performance penalty for using 1 ¡

k ¡¡ n data points to compute the estimate. Because the variance is much smaller

compared to SGD, mini-batch gradient descent typically has the best convergence rate
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in practice. Gradient descent can only guarantee the convergence to local optima.

Gradient descent can also get stuck in saddle points and plateaus.

Plateaus commonly occur when the gradient is dominated by one dimension,

in which case updates mostly slide along this one dimension. If there is little

improvement of the loss in this dimension, then the algorithm gets stuck on a plateau.

A saddle point has less requirements than an optimum. While the gradient is 0 in all

directions, it does not mean that there is no better point in the close neighborhood.

2.4 Big Data Challenges

Rich sources of data are found in the mobile devices we use everyday, be it phones,

tablets, or automotive vehicles. These devices are equipped with a plethora of

different sensors capable of producing vast amounts of data each day. For example,

a moderately sized fleet of 1000 test vehicles is estimated to be able to produce data

in the order of terabytes each day [55] and Hitachi claims that a modern internet

connected vehicle produces data in excess of 25 GB/hour. This data abundant setting

is often referred to as big data.

Big data analytics holds promise for more accurate validation and testing

models, as well as improving consumer experience. The SGD algorithm requires

that all training examples are available on the machine that trains the ANN. This

centralised approach has limitations in a big data setting, where data is generated in

huge volume and with great velocity. Notably, if data is generated on edge devices,

then wireless data transfer over cellular networks becomes the principal bottleneck,

which suggests that transferring all generated data is infeasible in practice. In

addition, if attempted we would quickly exhaust the consumers’ data plans in the case

of phones. Besides the challenge of data transfer, simply storing such vast amounts

of data centrally will quickly become a problem in itself. Besides the technical
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challenges posed by big data, collecting and storing large amounts of data centrally

is problematic from a privacy perspective.

The General Data Protection Regulation (GDPR) recently came into effect in

the EU, which has several implications for how personal data can be collected and

processed. Data regarding, for instance, driving patterns is indeed personal if it can

be connected to an individual in any way. GDPR has principles for purpose and

storage limitation as well as data minimization. Personal data can only be processed

with explicit consent for specific, known purposes (purpose limitation), and only the

minimal amount of data required to fulfil those purposes may be collected (data

minimisation). Moreover, data should be removed once its purpose has been fulfilled

(storage limitation). Performing big data analytics on consumer data while respecting

data privacy laws is therefore not a straightforward process.

2.5 Optimization Problem Formulation

The optimization community has seen an explosion of interest in solving problems

with finitesum structure in recent years. In general, the objective is formulated as

min
w∈Rd

P (w) (2.10)

where

P (w) =
1

n

n∑
i=1

fi(w) (2.11)

The main source of motivation are problems arising in machine learning,

typically in linear or logistic regressions and support vector machines.

More complicated non-convex problems arise in the context of neural networks,

where rather than via the linear-in-the-features mapping, the network makes

predictions through a non-convex function of the feature vector xi . However, the

resulting loss can still be written as fi(w), and gradients can be computed efficiently
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using backpropagation. The amount of data that businesses, governments and

academic projects collect is rapidly increasing. Solving the optimization problem in

practice is often impossible on a single node, as merely storing the whole dataset

on a single node becomes infeasible. This necessitates the use of a distributed

computational framework, in which the training data describing the problem is stored

in a distributed fashion across a number of interconnected nodes and the optimization

problem is solved collectively by the cluster of nodes. One can use any network of

nodes to simulate a single powerful node, on which one can run any algorithm. The

practical issue is that the time it takes to communicate between a processor and

memory on the same node is normally many orders of magnitude smaller than the

time needed for two nodes to communicate; similar conclusions hold for the energy

required [94].

Further, in order to take advantage of parallel computing power on each

node, it is necessary to subdivide the problem into sub-problems suitable for

independent/parallel computation. State-of-the-art optimization algorithms are

typically inherently sequential. Moreover, they usually rely on performing a large

number of very fast iterations. The problem stems from the fact that if one needs to

perform a round of communication after each iteration, practical performance drops

down dramatically, as the round of communication is much more time-consuming than

a single iteration of the algorithm. These considerations have lead to the development

of novel algorithms specialized for distributed optimization.

2.6 Distributed Optimization

When the number of training examples becomes too large to store on one computer,

which is the case in a big data context, we have to distribute the computation to

multiple computers. Distributing the data and computational burden to multiple

computers leads us to reformulate the loss function. Assume there are K clients to
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which data and computation are distributed. Each client then holds a part Pk of all

training examples, and computes Fk(w), which is the average loss on client k. If the

number of training examples held by client k is denoted by nk = |Pk|, then we can

rewrite the objective function as a weighted sum over all Fk(w):

f(w) =
n∑
i

nk
n
Fk(w) (2.12)

However, existing approaches focus mainly on the case of data centre optimi-

sation where computation rather than communication is the primary bottleneck.

Distributed data centre optimisation typically requires control over the data distri-

bution since these approaches rely on balanced, i.e. equal nk for all k, and IID data

assumptions. These assumptions are too strong when we want to perform learning

tasks on a heterogeneous ecosystem of edge devices.

When we speak about solving the optimization problem in a distributed setting,

we refer to the case when the data describing the functions fi are not stored on any

single storage device. This can include setting where one’s data just don’t fit into a

single RAM/computer/node, but two is enough. This also covers the case where data

are distributed across several data centers around the world, and across many nodes

in those data centers. The point is that in the system, there is no single processing

unit that would have direct access to all the data. Thus, the distributed setting does

not include single processor parallelism. Compared with local computation on any

single node, the cost of communication between nodes is much higher in terms of

both speed and energy consumption, introducing new computational challenges, not

only for optimization procedures. The communication efficient algorithms provide us

with much more flexible tools for designing overall optimization procedure, which can

make the algorithms inherently adaptive to differences in computing resources and

architectures.
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This setting creates unique challenges. Distributed optimization algorithms

typically require a small number (1–4) of communication rounds per iteration. By a

communication round we typically understand a single MapReduce operation [24],

implemented efficiently for iterative procedures, such as optimization algorithms.

Spark [106] has been established as a popular open source framework for implementing

distributed iterative algorithms, and includes several of the algorithms mentioned

in this section. Recent decade has seen an explosion of interest in distributed

optimization, greatly motivated by rapid increase of data availability in machine

learning applications. Much of the recent effort was focused on creating new

optimization algorithms, by building variants of popular algorithms suitable for

running on a single processor. A relatively common feature of many of these efforts

is that the computation overhead in the case of synchronous algorithms, and the

difficulty of analysing asynchronous algorithms without restrictive assumptions. By

computation overhead we mean that if optimization program runs in a compute-

communicate-update cycle, the update part cannot start until all nodes finish their

computation. This causes some of the nodes to be idle, while remaining nodes

finish their part of computation which is clearly an inefficient use of computational

resources. This pattern often diminishes or completely reverts potential speed-ups

from distributed computation. In the asynchronous setting in general, an update

can be applied to a parameter vector, followed by computation done based on a

now-outdated version of that parameter vector. Formally grasping this pattern,

while keeping the setting realistic is often quite challenging. As a result, this is

an open area of research, and optimal choice of algorithm in any particular case

is often heavily dependent on the problem size, details in its structure, computing

architecture available, and above all, expertise of the practitioner. This general issue

is best exhibited with numerous attempts at parallelizing the Stochastic Gradient

Descent and its variants.

24



CHAPTER 3

BUILDING BLOCKS OF FEDERATED LEARNING

3.1 Federated Optimization

Federated Learning can be optimized in many ways, for instance, a mechanism for

dealing with when the servers are idle. This is a case in distributed systems that

is unique to federated learning. Communication efficiency and reducing the number

of communication rounds is also what Federated Optimization deals with and can

be viewed as an extension of Distributed Optimization. One of the most important

works that has been done in this field is [62].

3.2 Distributed Training Data

The Federated Learning protocol described earlier implements an adapted form of

mini-batch gradient descent. To estimate the full update more efficiently, only some

data points are used in each iteration. But since the data points are partitioned across

users, they are not sampled completely independently of each other anymore.

Consider a simplified protocol where in each iteration only a single user is

sampled. The ith user is selected with a probability of ni

n
. Their jth data point

and label are denoted by xij and yij respectively. The full update proposed by the

ith user is then given by

Hi =
n∑
j=1

1

ni
∇loss(f(xij), yij) (3.1)

Even though the data is arbitrarily distributed among users, an unbiased

estimate can still be computed. The final estimate in that case is an average of

the individual estimates, weighted by the number of data points that the clients

used. While the distribution of the training data has no influence on the bias of the

25



estimator, it can have a huge effect on the variance. If it can be controlled where the

data is located, it is easy to ensure that all users produce similar estimates. In that

case, the variance of the estimator is low and convergence can be reached quickly.

In Federated Learning, however, such control over the data is not possible and

the variance can be large. As an extreme example, consider a situation where users

only have two kinds of data points, which are extremely different from each other. If

the location of training data can be changed, like in a data center, each computing

node can have a similar number of both data points. In Federated Learning, it is

possible that users either only have the first kind of data points or only the second.

In that case, the two kinds of users will produce very different gradient estimates,

leading to a larger variance.

3.3 Algorithms for Federated Optimization

This section discusses algorithms made keeping distributed optimization in mind

and finally discussed a technique that combined them that is used for Federated

Optimization. There are two seemingly unrelated algorithms, one for distributed

optimization and another for communication efficiency that are discussed, and their

connection forms the bulk of [63]’s research. The algorithms are the Stochastic

Variance Reduced Gradient (SVRG) [56] a stochastic method with explicit variance

reduction, and the Distributed Approximate Newton (DANE) [95] for distributed

optimization. The descriptions are followed by their connection which gives rise to

Federated SVRG (FSVRG).

Certain properties one would hope to find in an algorithm for the non-IID,

unbalanced, and massively-distributed setting are worth considering here. These are

• If the algorithm is initialized to the optimal solution, it stays there.

• If all the data is on a single node, the algorithm should converge in O(1) rounds

of communication.
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• If each feature occurs on a single node, so the problems are fully decomposable

(each machine is essentially learning a disjoint block of parameters), then the

algorithm should converge in O(1) rounds of communication)

• If each node contains an identical dataset, then the algorithm should converge

in O(1) rounds of communication.

For convex problems, convergence has the usual technical meaning of finding

a solution sufficiently close to the global minimum, but these properties also make

sense for non-convex problems where convergence can be read as “finds a solution of

sufficient quality”.

In these statements, O(1) round is ideally exactly one round of communication.

The first property is valuable in any optimization setting. The second and third

properties are extreme cases of a federated optimization setting (non-IID, unbalanced,

and sparse), whereas the fourth property is an extreme case of a classic distributed

optimization setting (large amounts of IID data per machine), and therefore is not

relevant for consideration in a federated optimization setting.

Here is what SVRG (Stochastic Variance Reduce Gradient) looks like algorith-

mically:

Algorithm 1 Stochastic Variance Reduced Gradient

1: parameters: m = #stochastic steps per epoch, η = step length

2: for s = 0, 1, 2... do

3: Compute and store ∇P (wt) = 1
n

∑n
i=1∇fi(wt) . A full pass through data

4: w = wt

5: for t = 1 to m do

6: Pick i ∈ 1, 2, . . . , n, uniformly at random

7: w = w − η(∇fi(w)−∇fi(wt) +∇P (wt)) . Stochastic Update

8: wt+1 = w
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The update is done according to the rule:

wt = wt−1 − η(∇fi(w)−∇fi(wt) +∇P (wt)) (3.2)

The algorithm runs in two nested loops. In the outer loop, it computes gradient

of the entire function P (Line 3). This makes a full pass through data which is

usually an expensive task one tries to avoid unless necessary. This is followed by an

inner loop, where fast stochastic updates are performed. m is typically set to be a

small multiple (1–5) of n. Although the theoretically optimal choice for m is a small

multiple of a condition number, this is often of the same order as n in practice. The

central idea of the algorithm is to avoid using the stochastic gradients to estimate the

entire gradient ∇P (w) directly.

in the stochastic update in Line 7, the algorithm evaluates two stochastic

gradients,∇fi(w) and∇fi(wt). These gradients are used to estimate the change of the

gradient of the entire function between points w t and w, namely ∇P (w)−∇P (wt).

Using this estimate together with ∇P (wt) pre-computed in the outer loop, yields an

unbiased estimate of ∇P (w). Apart from being an unbiased estimate, it could be

intuitively clear that if w and w t are close to each other, the variance of the estimate

∇fi(w)−∇fi(wt) should be small, resulting in estimate of∇P (w) with small variance.

As the inner iterate w goes further, variance grows, and the algorithm starts a new

outer loop to compute new full gradient ∇P (wt+1) and reset the variance.

The DANE (Distributed Approximate Newton) algorithm [95] is a distributed

Newton-type method aimed improving communication efficiency where in each

iteration there are two rounds of communication. It was proposed to exactly solve

a general subproblem available locally, before averaging their solutions. The method

relies on similarity of Hessians of local objectives, representing their iterations as an

average of inexact Newton steps.
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These algorithms led [63] to write Federated SVRG, the algorithm for which is

as follows:

Algorithm 2 Federated SVRG

1: parameters: h = stepsize, PKk=1, diagonal matrices A, Sk ∈ Rd x d

2: for s = 0, 1, 2... do . Iterations

3: Compute ∇f(wt) = 1
n

∑n
i=1∇fi(wt) . Distributed Loop

4: for k = 1 to K do

5: Initialize” wk = wt and hk = h/nk

6: Let ink
t be random permuation of Pk

7: for t = 1 to nk do

8: wk = wk − hk(Sk[∇fitwk −∇fitwt] +∇f(wt))

9: wt = wt + A
∑K

k=1
nk

n
(wk − wt

This was the first implementation of an algorithm keeping Federated Optimization

in mind and was further expanded upon by [69].

3.4 Compression

3.4.1 Communication Cost

A naive implementation of the previously introduced Federated Learning protocol

scales badly when used with more complex models. This is because the protocol

requires a lot of communication between clients and the server. In each iteration,

sampled clients download a copy of the current model and upload updates for all its

parameters. This has the effect that the amount of required communication grows

proportionally with the size of the model. In the past few years, models have become

much larger, with neural networks consisting of more and more layers. It is not

uncommon anymore to use neural networks with millions of parameters. Overviews

of models have shown that the number of parameters, and with them the total

computational cost, of the largest models has doubled every three to four months.
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This differentiates the techniques in this section from standard compression

techniques. Compressing the entire model for downloads is a another very different

problem, where the goal is to keep the predictions as stable as possible [46]. This

can however significantly decrease the quality of the model, and might thus not

always be an option. From a theoretical perspective, we would like to reduce the

communication requirements for uploads by more than a constant factor. This will

ensure that updates can still be transmitted efficiently , even if the bandwidth of

network connections does not increase as quickly as the size of common models in

the future. From a practical standpoint, this is not entirely necessary. Decreasing

the size of uploads by an order of magnitude makes uploads as efficient as downloads.

Since compressing the model itself for downloads might not be desirable, a constant

compression factor for uploads can already be sufficient.

3.4.2 Structured and Sketched Updates

A good way to represent very large data sets is as a matrix. For instance, if there are n

data points, and each data points has d attributes, then this can be thought of an nxd

matrix A with n rows and d columns. While matrix approximation and decomposition

has been studied in numerical linear algebra for many decades, these methods often

require more space and time than is feasible for very large scale settings, and also

often worry about more precision than is required. The last decade has witnessed an

explosion of work in matrix sketching where a more sparse input matrix is efficiently

approximated with a more compact matrix (or product of a few matrices) so that

the resultant matrix preserves most of the properties of the input up to a guaranteed

approximation ratio.

Individual compression can be very lossy in nature. While it is not possible to

completely get rid of an error without switching to lossless compression algorithms,

we still want to ensure that the compressed update leads to a good model in the
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immediate future. Structured update techniques enforce a certain form on the update

that allows for a more efficient representation. The fact that the update must have a

structure is considered during the optimization process itself and by doing this, the

optimizer can find updates that follow the enforced structure but still minimize the

loss. In other words, we can find a locally optimal update that can be encoded

efficiently, since it has the predefined structure. In this process, the theoretical

guarantees of unbiased estimators are lost, and the methods are only motivated on a

heuristic level.

A structured update method allows us to change the optimization process itself.

To this end, we perform several steps of SGD based on the sparse updates. After the

updates of the first step were computed, they are applied locally and new sparse

updates are computed. Only the weights chosen by the mask are updated in all

these steps. Another method for enforcing a structure on the updates in a way that

allows for an efficient encoding is based on matrix decomposition. Instead of directly

sending a matrix H, we find two matrices A and B that can be used to approximate

H. Concisely, the update matrix can be factorized using A and B:

H = A ∗B (3.3)

Sketched update methods in Federated Learning first learn the full update

and then compress it. Unbiased estimators can be used to efficiently approximate

some values. This concept can also be applied to the compression of updates. As

mentioned previously, sketched update methods want the compressed update H to be

an unbiased estimator of the true update H. This means that the compressed update

is the true update on average, even though it can be encoded much more efficiently.

This way we can still compute an unbiased estimate of the true gradient, just like
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when only working with a subset of clients in each iteration. These methods also give

us a theoretical justification of why they work.

In the sparse mask compression method for sketched updates, each client is

only allowed to update a certain set of weights in every iteration. This idea can

be extended into a structured update technique. If a client can only update certain

weights, then it could take this information into account during the optimization

process. Instead of computing a normal weight update and then making it sparse

afterwards, updates should only be computed for the specific weights selected by the

sparse mask. To implement this, the other weights are marked as constants in the

computational graph. When computing the updates like this in one SGD step, the

results are not as different compared to the ones obtained in the sketched method

because in the process of computing partial derivatives, all the other weights are

treated as constants.

3.5 Privacy

A primary motivator for introducing Federated Learning were privacy concerns with

the way machine learning is conventionally done. Federated Learning is a major

improvement in this regard since the data does not leave the users’ devices anymore.

However, it still remains to be discussed if it is possible to reconstruct data based on

the updates that are sent to the server. Since neural networks are universal function

approximators, they are able to approximate a function that acts as a look-up table

to all the data [23].

Neural networks with too many neurons typically memorize parts of the training

data instead of learning more general pattern [43]. We have to assume that an

adversary could intercept all messages and read the model weights. This adversarial

actor could analyze the weights to figure out information about individuals. Weights

of neural networks have the reputation of being incredibly hard to analyze [39]. There
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has been some work in this area - [36] for instance, analyzed the weights of a facial

recognition model. They were able to reconstruct some of the faces that were used in

the training of the model. While all of this remains incredibly difficult to do and there

have been few successful such attempts, they show that attack vectors to Federated

Learning do exist. More work on this was also done recently by [2], [111] and [82]

who all were able to successfully infer data about clients based on model weights.

When looking at the techniques introduced so far, we are not able to quantify

how difficult it really is to figure anything out about the data of individuals.

Historically, there have been many cases where people tried to data make data

anonymous to ensure the privacy of individuals but without formal guarantees, this

anonymization often looked solid has been broken later on. One of these cases

was related to the Netflix Prize [67]. Netflix published a dataset that contained

information about users and which movies they liked. The dataset was meant to be

used in a competition to improve the Netflix recommender system. Obvious personal

identifiers, such as names and user IDs, were removed from this dataset. Many users

however also published their movie reviews on IMDb. By joining the Netflix and

IMDb datasets, researchers were able to deanonymize parts of the Netflix dataset

[83].

A similar case occurred in the 1990s, when a government agency in Massachusetts

published a dataset about hospital visits of its employees [8]. This dataset was meant

for research purposes. Personal identifiers such as names and social security numbers

were removed yet again, however, the dataset was still deanonymized in parts by

joining it with a voter roll dataset. Datasets with information about people registered

for voting can be bought legally in the US. Since both datasets shared some fields, it

was possible to join them. Among those whose details were compromised was governor

William Weld, whose data was possible to extract by cross-referencing gender and date

of birth with the postal code of his address.

33



This showed that personal attributes make it surprisingly easy to identify

people. In the US, 87% of people can be uniquely identified by gender, birth date and

postal code alone. When the data was published, steps for anonymization were taken.

However, no formal guarantees regarding privacy could be made. Formalization is

desirable when it comes to privacy. While Federated Learning looks like it is much

better for privacy, formal guarantees are needed which are robust enough to hold even

if the attacker has unexpected access to information.

3.5.1 Differential Privacy

Most recommender systems use Differential Privacy [28] for privacy preservation.

Differential Privacy is a mathematical field that uses a stochastic framework [29].

It allows us to quantify how much certain algorithms respect privacy. We do not

consider algorithms to be either privacy-preserving or to be bad for privacy. Instead,

the objective is to describe how difficult it is to gather information regarding the

individuals concerned. For example, one might want to compute the mean value

across many users without knowing the exact values of individuals. In the case of

machine learning, we want to fit a model without knowing details about the data

of individuals. To describe this formally, two datasets D1 and D2 are considered.

These datasets are identical except for one row of data which is missing in one of

them. A statistical query Q is then executed on both datasets. This query could, for

example, compute the mean or fit a statistical model. It usually involves randomness.

Even for queries that are not random by default, such as computing the mean, adding

randomness helps to improve privacy guarantees.

A query Q is considered to be differentially private if for all adjacent datasets

D1, D2 and for every possible subset R of results of the query, the following formula

holds:
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P [Q(D1) ∈ R] ≤ eε ∗ P [Q(D2) ∈ R] (3.4)

In other words, adding a new data point to a dataset must not substantially

change the result of the query. The formula is expressed using probabilities to account

for the randomness in Q. If we guess the results of the query to be in a set of possible

values R, then adding one data point should not change the probability of being

correct by more than e. If this is not the case, then adding the new data point

is bad for privacy because it is noticeable whether the data point was used by the

query or not. The value is called the level of Differential Privacy. The definition

above captures what we intuitively understand as privacy. The point is to make it

very hard to extrapolate whether an individual contributed data, and much less so

what their data looks like. To make algorithms fit into the framework of Differential

Privacy, randomization strategies are used where instead of having users report their

true data, they only share a version with random noise was added on top. In the case

of discrete data where it is hard to add a little bit of noise, users could lie with some

given probability. By doing this, the entity collecting the data cannot make confident

conclusions about individuals anymore. However, it is possible to estimate the overall

random noise well when enough users are surveyed.

P [Q(D1) ∈ R] ≤ eε ∗ P [Q(D2) ∈ R] + δ (3.5)

An additional δ is added to the previous definition, which allowed for a

probability δ of directly breaking Differential Privacy. We want to keep both σ and

δ small to ensure good privacy. To show that an algorithm conforms to some form of

Differential Privacy, the concept of sensitivity is often used.
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The sensitivity S(Q) of a query Q describes by how much the result can differ

if the query is executed on two adjacent datasets:

S(Q) = maxD1,D2 ||Q(D1)−Q(D2)||2 (3.6)

where ||.|| is the L2 norm. Sensitivity should ideally be bounded by a constant

or at the very least, be low.

We perform an analysis of differential privacy later in the thesis.

3.5.2 Encryption Techniques

No discussion about preserving privacy is complete without mentioning the work on

encryption that has been carried out by computer scientists and network experts and

it has been a field that has been relevant for as long as communication in the face of

adversarial units has been around. Today, a lot of popular encryption techniques fall

under the category of asymmetric encryption in which a public key is used to encrypt

data but only someone with its specific matching private key is able to decrypt it.

We would like to introduce the encryption technique that we have used in this

work, a method called homomorphic encryption [40]. Most encryption techniques

being employed today are virtually impregnable, but require decryption to be used for

any practical computational purposes. Homomorphic encryption is a technique that

allows for computation on encryted data. The data can be accessed and processed

while still in its encrypted form. A good example of performing computation on

homomorphic encryption, according to its inventor, Gentry, would be that of a glove

box. The analogy presented was that the operators using the glove box can operate

on the materials inside the lock without ever having direct access to the raw materials

inside it.
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In [17], Chen discusses the computational performance when using homomorphic

encryption. They find that while either fully or partially homomorphic encryption is

computationally expensive, it can be implemented in a way on a large scale to not

have a great deal of effect regarding performance.

A technique like this naturally lends itself as a perfect opportunity for use in

machine learning and indeed Federated Learning as well [49]. Its use in this thesis

will be explored in a latter chapter.

3.6 Categories of Federated Learning

[104] provides a very helpful categorization of federated learning along with a

comprehensive collection of all the work that identifies as such. Here is a brief overview

of the definitions.

3.6.1 Horizontal Federated Learning

This is the case for the scenarios in which datasets occupy the same feature space

but have a different space for samples. In other words, when the person/organization

carrying out the federated learning requires the same features from different groups

of users. For instance in mobile keyboard prediction where the user base is different

depending on regions but the features needed are similar.

3.6.2 Vertical Federated Learning

The scenario for datasets occupying the same sample space but having a different

feature space. To put it in simpler terms, when an organization requires different

features from the same group of users. For example, two separate companies operating

in the same geographical region.
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3.6.3 Federated Transfer Learning

Federated Transfer Learning is the case in which the datasets occupy different feature

space as well as different sample spaces. An example provided by [104] for this is that

suppose there are two banks operating in two different countries that speak different

languages. They are likely to share only a very limited set of features and have vastly

different user bases. In this case, transfer learning techniques prove conducive to

using Federated Learning.
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CHAPTER 4

RECOMMENDER SYSTEMS OVERVIEW

Recommender Systems, as defined by [91] are software tools and techniques providing

suggestions for items to be of use to a consumer. These suggestions are a convenience

tool that may be used by the consumer for making decisions. A recommender system

normally focuses on a specific type of item (e.g., CDs, or news) and accordingly

its design, its graphical user interface, and the core recommendation technique used

to generate the recommendations are all customized to provide useful and effective

suggestions for that specific type of item. Most popular and important use cases

include but are not limited to - product recommendations, movie or TV show

recommendations, article recommendations and the list goes on. Facebook [57] uses

a rotational hybrid approach to recommender systems which yields a very accurate

result, some of which feels spooky to a lot of users. We take a look at what the

traditional approaches are in this section and expound on those approaches to see

how they can be utilized in a federated context in the next section.

4.1 Collaborative Filtering

Tapestry [90] was instance recommender systems being used in practice for recom-

mending documents from newsgroups. Its authors also introduced the term

collaborative filtering to help users with the large volume of documents. Collaborative

filtering systems make recommendations based on historic users’ preference for items.

The preference can be presented as a user-item matrix. Here is an example of a matrix

describing the preference of 4 users on 5 items, where a12 is the user 1’s preference

on item 2.
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Figure 4.1 Collaborative filtering,



a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann


For practical settings, this user-item matrix is very large and has missing

preference values for users, and the goal of collaborative filtering and by extension,

recommender systems is to fill these missing values in accurately.

Nearest neighbour [9] algorithm is the first approach to collaborative filtering

and it is based on the similarity between pairs of items or users. For this purpose,

cosine similarity is used:

similarity(a, b) = cos(a, b) =
a · b

||a|| ∗ ||b||
(4.1)

There can be user based as well as item based collaborative filtering. If the

preference matrix is represented by item vectors and the user matrix by user vectors,

they would be
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U1

U2

U3

...

Un


[
I1 I2 I3 . . . In

]

The similarity between U1 and U2 is calculated as cos (U1,U2). The missing

values in the preference matrix are commonly filled with zeros. For Ui, we can

recommend the items liked by Ui’s most similar users (user-to-user) or the most

similar items of Ui’s liked items (item-to-item).

For user-based collaborative filtering, one can have an n x m matrix of ratings,

with user Ui, where i = (1, ...n) and item Ij, where j = (1, ...m). Now we want to

predict the rating rij for the case in which the target user i did not watch or rate an

item j. The process is to calculate the similarities between target user i and all other

users. We do this by selecting the top x similar users, and take the weighted average

of ratings from these x users with similarities as weights.

rij =

∑
k Similarities(Ui, Uk)rkj

total ratings
(4.2)

While different people may have different baselines when giving ratings, some

people tend to give high scores generally, some are pretty strict even though they are

satisfied with items. To avoid this bias, we can subtract each user’s average rating of

all items when computing weighted average, and add it back for target user, shown

as below
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rij = r̄i +

∑
k Similarities(Ui, Uk)(rkj − r̄k)

total ratings
(4.3)

Similarly, for Item-based Collaborative Filtering, we say two items are similar

when they received similar ratings from a same user. We then make predictions for

a target user on an item by calculating weighted average of ratings on most x similar

items from this user. One key advantage of Item-based CF is the stability which is

that the ratings on a given item will not change significantly over a given period of

time. There are quite a few limitations for Collaborative Filtering, however. It does

not handle sparsity well in a neighborhood, not is it it computationally efficient for

larger number of users and products.

To tackle the sparsity problem, one can use Matrix Factorization [65], a method

that decomposes the original sparse matrix to low-dimensional matrices with latent

factors/features and less sparsity.

Let pu and qi denote the latent vector for user u and item i, respectively. Matrix

Factorization estimates an interaction yui as the inner product of pu and qi

ŷui = f(u, i|pu, qi) = pTu qi =
K∑
k=1

pukqik (4.4)

An intuitive explanation for why we need low-dimensional matrices is as follows:

Suppose a user gives good ratings to movies Star Wars, The Matrix and Primer. This

suggests that the user might like Sci-Fi movies and there may be many more Sci-Fi

movies that this user would prefer. Latent features are expressed by higher-level

attributes, and Sci-Fi category is one of the latent features in this case. What matrix

factorization eventually gives us is how much a user is aligned with a set of latent

features, and how much a movie fits into this set of latent features. The advantage

of it over standard nearest neighborhood is that even though two users haven’t rated
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any same movies, it’s still possible to find the similarity between them if they share

the similar underlying tastes. More of Matrix Factorization will be discussed at a

later chapter in this thesis.

4.2 Content-Based Filtering

A intuitive overview for content-based filtering is as follows

Figure 4.2 Content-based filtering.

The idea here indicates that if a user spent a considerable amount of time

reading a document, he/she might be interested in documents of a similar nature.

This can be extended to preferences for movies or music (by genre), or items in a

shopping cart to name a few. Content based filtering is famous with text documents,

articles and things of a similar nature.

A pseudo-code for recommending products or contents to the user in content

based filtering could be the following -

Algorithm 3 Content-Based Filtering

1: Identify factors influencing the user’s decision

2: Represent all items in terms of said factors

3: Make a tuple to store the strength of each contributing factor

4: Create user profiles and history based on the identifying factors and corresponding

strengths

5: Make recommendations
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This method shares the weakness of being computationally expensive and time

consuming with the collaborative filtering method. In addition, unique identifying

factors might need to be discovered and handpicked manually for a better accuracy

which becomes infeasible for larger amounts of data.

It is for these reasons that a hybrid approach is often preferred which uses

information from both user-item interactions and users/items’ characteristics. The

collaborative filtering information is included in a feature indicating whether an item

is similar to the ones a user already prefers, and the content information includes

whether the specific characteristics of the item match.

4.3 Personalized Recommendations

Model personalization is particularly useful for recommender systems. Because

preferences between users differ a lot, incorporating additional user-specific context

can boost performance [10] and by customizing the models to a small extent. A naive

approach to personalization uses completely independent models which are trained for

each user on his/her own device. For many reasons, this is not a preferred approach

because it’s time and resource intensive. In addition, there simply isn’t enough data

on every single user to train their own models well enough.

For Federated Learning systems, this comes naturally since we are already

training on the user’s computer. For the sake of privacy, the customized model is not

shared with the server. Data leakage in the collaborative training can be controlled

using differential privacy. To define the goals of personalization, consider the overall

loss across all clients. If the client has customized the model, the loss is computed

using that model. Otherwise, the global model is used. The loss should be smaller

when using individually personalized models compared to using the central one and

the overall quality of the global model should not deteriorate. New users will be able
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to use this global model, this handling the cold start problem in machine learning

and recommender systems [68].

Personalization is a new research area of Federated Learning that was proposed

by [79]. MOCHA proposed by [97] can achieve personalization by learning separate

but related models for each device while leveraging a shared representation via multi-

task learning. This method can theoretically guarantee convergence but is limited in

its ability to scale up to a larger network and is also limited to convex objectives.

Another approach [22] is based on the star topology as a Bayesian network and

performs variational inference during learning. This method is able to handle non-

convex models but is also expensive to generalize to large federated networks. [109]

explore transfer learning for personalization by running FedAvg after training a global

model centrally on some shared proxy data.

4.4 Transfer Learning

One key problem which still remains is that of the cold start problem [68]. This

is the case when a new user with no historical information needs to be given

recommendations. The first family of methods in dealing with the cold start problem

in recommender systems and machine learning is Transfer Learning, which is a

common machine learning strategy for training models in situations where little data

is available for the exact problem that needs to be solved [87] but a lot of data available

by contrast for a more general version of the problem. For example, training a model

to recognize a particular product in a shop’s shelf, with its own SKU and other labels.

If there are not many training images of this exact product available, it can be hard

to fit a good model. However, a lot of training data exists for more general object

detection tasks, such as the ImageNet dataset [25]. Transfer Learning tries to make

use of the larger dataset to be able to solve the actual problem of fitting a model on

the small dataset.
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This is usually a two step process: first it is trained on a larger more generalized

dataset, and in the second step, it is trained on the smaller and more specific dataset.

This allows the training to start from a much better initial point. The intuition for

this lies in how humans learn. When we learn to recognize a new object, we do

not start from scratch but can learn more quickly because we already know how to

recognize certain shapes and edges. Sometimes, only parts of the model are fine-tuned

[86].

Transfer Learning has been used successfully in many parts of modern computer

vision [86]. Natural language processing has also increasingly been making use of

Transfer Learning. By first learning on a large corpus of general text, it becomes

easier to work with inputs that represent words. Models for machine translation

or text summarization are based on this idea. This idea can also be applied to

Federated Learning. Training on the data of all users is the equivalent of training on

the large, more generalized dataset here. This data is used as a good starting point

for personalizing models locally.

As an analogue, Federated Learning is also a two step process where the global

training takes place and then the individual users fine tune their models locally. Here,

Transfer Learning techniques, such as freezing layers, are used. This technique can

solve the general personalization problem, outlined in the previous section. Because

the local training starts with an already well-trained model, it is easier to get a good

custom model with little data and it also takes care of the cold start problem because

new users start by using the central model, which was trained by a lot of users.

However, the global model runs the risk of getting dated because as soon as users

start fine-tuning their local model, collaborative training isn’t possible anymore.
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4.5 Learning to Rank Methods

An emerging topic that is useful for our purposes in this thesis is a technique from

Informational Retrieval Systems called Learning to Rank (LTR) methods [74]. It is a

technique for applying Supervised Learning to solve Ranking Problems [35]. The basic

concept is that parameters are tuned automatically and the systems builds ranking

models through the usage of hand labelled training data. It solves the ranking problem

on a list of items and the aim of Learning to Rank is to devise an optimal ordering

of those items, for example, search engine ranking.

It is usually achieved by posing it as a pairwise classification or regression

problem, where one analyzes pairs of items at a time and decides the optimal ordering

for that pair of items which is then used for the final ranking for all the results.

4.6 Deep Learning Based Methods

GPUs have made neural network based methods feasible today and as a result, a lot

of emerging techniques have been centered around them. A comprehensive account of

these can be found at [108]. The most famous recommender systems that use neural

networks are [19] and [50].

4.6.1 Wide and Deep Learning for Recommender Systems

Wide and Deep Learning for Recommender Systems [19] leverages the usage of

jointly trained wide linear models and deep neural networks to combine the benefits

of memorization and generalization for recommender systems. Joint training of a

Wide and Deep Model is done by backpropagating the gradients from the output to

both the wide and deep part of the model simultaneously using mini-batch stochastic

optimization. They tested this method by using the algorithm in [76], with different

optimizers for the wide and deep parts of the network. The use case they chose was

for recommending apps on Google’s Play Store. Their choice of metrics was user
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acquisition for the app that used the recommender system, a success was measured

by whether the app was installed upon recommendation. Their training set consisted

of 500 billion examples, and they use a warm-start method to avoid starting the

process of batch training from scratch. Once the model is trained, they load it into

the servers which have access to app candidates and user features which they use for

ranking purposes and display it in the order of the corresponding ranks.

Their deep system showed an online acquisition gain of 2.9% with respect to

the control and their wide and deep system showed an online acquisition gain of 3.9%

which suggests that there are benefits to combining memorization and generalization

in recommender systems.

4.6.2 Neural Collaborative Filtering

In [50] the idea was to replace the inner product on the latent features between the

users and items with a neural architecture that could learn functions from the data.

They use multi-layer perceptron to introduce non-linearities and learn the user-item

interaction function. They do this by adopting a multi-layer representation to model

the user-item interaction. Each layer of the network can be used to discover certain

latent structure of the user-item interactions. The final output layer is the predicted

score and training is performed by minimizing the loss between this score and its

target value. It outperformed the state of the art [51] in 2016.

4.7 Federated Recommendation Systems

It has been approximated that about 1.7 megabytes of data is generated every

second for each person on earth. Unsurprisingly, the amount of data points available

today on each individual is astounding and preserving privacy is quickly becoming of

paramount importance, especially in machine learning algorithms like recommender

systems. Recommender systems are becoming increasingly ubiquitous and because
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Federated Learning is inherently protective of privacy, using it for recommender

systems potentially paves the way for their usage in domains previously unexplored

due to data privacy concerns, like healthcare. In addition, it will also be able to

leverage better and more relevant information to build more accurate models.

Building on the recommender systems we’ve already taken a look at in the

previous sections, some work has been done on Federated Recommender Systems

thanks to the ever increasing processing power and storage capacity on users’ edge

devices. One of the most important works and the current state-of-the-art in

Federated Recommendation is [1], which can be briefly explained in steps as follows:

• The vectors of all the items are first updated on the global server and then

distributed to each of the edge devices.

• Local training for user’s item vectors is done on each device.

• Local gradients for each item vector is calculated. These local vectors are then

back-propagated to the global server where the aggregation is done and the item

vectors are updated

Some other work in this area is rather domain specific like this article by [110]

which builds a privacy-preserving distributed online social recommender system with

support for big data analytics. There is also content-based filtering in the form of

a Federated Meta-Learning algorithm [17], which is a slightly different and a faster

version of Federated Learning. In this paradigm, the model on each device is trained

on a subsection of the training dataset to update the model parameters called a

support set. The gradient is then computed on a different set called the query set. It’s

a complex method and a simplification in the form of an algorithm called REPTILE

was proposed by [84] which instead of using separate support and query sets, and

instead use a simple split validation that is sampled from a dataset of tasks. They
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use the training set to train their algorithm, and using that they create an agent that

has good average performance on the test set.
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CHAPTER 5

PRIVACY IN RECOMMENDER SYSTEMS

As mentioned ealier in the thesis, differential privacy is utilized to make recommender

systems privacy-preserving, and a differentially private recommender system that

utilizes Alternating Least Squares and Stochastic Gradient Descent Solvers typically

looks like Figure 5.1

Figure 5.1 Differentially private recommender system

We’ve spoken about stochastic gradient descent earlier in the thesis. To

introduce Alternate Least Squares (ALS), consider two variables X and Y. Alternate

least squares fixes variable X and treats it as a constant and then the objective is a

convex function of Y and then it fixes Y and optimizes X. This process is repeated

until convergence. This is also the main solver for federated collaborative filtering

which was given by [1].

Moving forward, a primary aim for decentralized algorithms is that they should

be lossless in nature in comparison to their centralized counterparts and a hope for

Federated Learning is that the data stays on the device with its contents being secure.

However, the framework in Fig 5.2 relies on the users sending gradient information via

plain text to the server and as such, for frameworks that communicate unencrypted

gradients, it is possible to reverse-engineer sensitive individual rating data using
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gradient information or even a part of the leaked gradient information, as we spoke

about in an earlier discussion. Work has been done in the past by [36] who were able

to reconstruct some of the faces that were used in the training of the model, and also

by [2], [111] and [82] who all were able to successfully infer data about clients in some

way based on model weights.

To this end, a solution is to use homomorphic encryption [40]. Applying

homomorphic encryption to an machine learning model that relies on communication

between two entities in the framework can be done according to the Fig. 5.2

Figure 5.2 Model training using homomorphic encryption

It can be summarized as follows - public keys are exchanged between two

parties, partial predictors are computed and the errors are encrypted and sent. These

encrypted errors are used to calculate encrypted gradients. They are finally decrypted

on the client side via the private key and used for updating the local model. The

cycle then continues. It falls under the category of horizontal federated learning since

it focuses on item-based federated recommendation and there is a large overlap of the

items of the two rating matrices.

52



CHAPTER 6

IMPLEMENTATION METHODOLOGY AND RESULTS

6.1 Problem Statement

The objective of this thesis is to make a privacy-preserving federated recommender

system that only utilizes parameters and gradients for training purposes in lieu of user

data. With this, we address the problem of privacy in most existing recommender

systems that perform training on data in a centralized manner. Additionally, we

identify a potential problem in an existing federated recommender system framework

which is that of gradient leakage whereby a malicious server might be able to infer

sensitive user information based on even the gradients being sent from the devices

[36], [2] [111]. We solve this by utilizing homomorphic encryption [40] to encrypt the

gradients sent from user devices to the parameter server and perform computations on

the server while keeping gradients encrypted. The hope is for the federated algorithms

to have a more secure model even if it compromises slightly on certain prediction

accuracy metrics.

6.2 Privacy Analysis

Availability of secure data is a very persistent problem in data science. One of the

ways in which this challenge can potentially be overcome is if we are able to work

with and answer questions using data that we cannot see. There are two approaches

to solving this problem - to protect the data before it enters the model, which is

differential privacy, or to build protection into the model, which is the Federated

Learning approach. This section does a comparison of the two approaches.
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6.2.1 Privacy from Differential Privacy Techniques

To reformulate an equation that was used in chapter 3; from a differential privacy

standpoint, privacy is defined as follows - assume there is a dataset Dn. Dn−1

represents the dataset Dn with one row removed. For a predicted value f(Dn), we

would like f(Dn−1) to be as similar to f(Dn) as possible. In other words, if the

probability distributions P (f(Dn)) and P (f(Dn−1)) were related by a factor eε such

that

P (f(Dn))

P (f(Dn−1))
≤ ε (6.1)

We would like ε to be as low as possible. In this scenario, perfect privacy would

be defined as ε = 0. There are many strategies to make the data private and the one

I used here is to add random noise as it keeps the distribution roughly the same while

keeping it relatively private. The accuracy has been plotted against different values

for ε on the iris dataset and the results are as follows

Figure 6.1 Privacy - accuracy tradeoff for differential privacy (trial 1)
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Running the test again yields a different curve because of a different distribution

of pseudo-random noise, but it still follows the pattern of accuracy of predictions

getting better with an increasing ε value, suggesting that barring some occasional

discrepancies attributed to the circumstantial nature of the trial, privacy would need

to be compromised upon for increasingly better predictions.

Figure 6.2 Privacy - accuracy tradeoff for differential privacy (trial 2)

There is a lot of work currently being done on Differential Privacy because of

this, and the state-of-the-art in Differential Privacy focuses on combining it with other

machine learning techniques to increase privacy and reduce user costs.

6.2.2 Privacy from Federated Learning Techniques

Federated Learning however does not try to change the data itself but instead

focuses on training an algorithm across multiple different datasets without sharing

information between the datasets themselves and sharing only training parameters

with the server.

We use the OpenMind project PySyft (https://github.com/OpenMined/PySyft)

that implements Federated Learning by creating toy version of the process. We create
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two virtual workers and give them their own datasets for local training purposes.

They will iterate through their datasets independently and separately and share the

model weights with the global model which performs an averaging step in the server.

After this, it trains until a predefined number of epochs is reached. Training is done

using Stochastic Gradient Descent as the optimizer. Once the final global model

has converged, the predictions from that model are then tested against new unseen

local data that PySyft provides for the clients. We define a loss function using sum

of squared errors which simply makes note of the difference between the predicted

results and ground truth.

Figure 6.3 Loss performance for federated learning toy problem

Because this was implemented using a toy dataset set up in PySyft, we notice

the workers start getting fairly accurate results over the course of only 3 epochs.

While this is not going to be the case for any real world federated learning datasets,

it demonstrates that this training paradigm is capable of convergence using training

parameters instead of the data for training purposes. It also does not need for altering

the dataset by adding noise to it, unlike Differential Privacy.
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6.2.3 Gradient Leakage

Some papers have recently proven that gradient leakage occurs when gradient

information in a client-server system is sent from the client to the server in plaintext.

Low rank singular value decomposition like the one we perform can prevent the server

from directly knowing raw preference data, but this is not sufficient. Various studies

cited previously such as [111] and [2] show that we can obtain the private training

set from the publicly shared gradients. The leaking only takes few gradient steps

to process and is capable of obtaining the original training set. [82] also shows that

gradient updates leak unintended information about participants’ training data and

develop passive and active inference attacks to exploit this leakage. This is an issue

that we intend to address moving forward in the thesis by encrypting users’ gradients

and allowing the server to perform updates on the ciphertext instead of an averaged

set of plaintext gradients.

6.3 Dataset

We use one of the benchmark MovieLens datasets which has a set of 100,836 ratings

and 3683 tag applications made by 610 users across 9724 movies. It was collected

in the late 1990s by the GroupLens research team at the University of Minnesota.

We only take in consideration user who have rated at least 20 movies. User IDs are

used for denoting the MovieLens users who were selected at random for inclusion

with anonymized IDs. They are consistent between ratings.csv and tags.csv (i.e.,

the same id refers to the same user across the two files). Other fields include

MovieID, timestamp, which represent seconds since midnight Coordinated Universal

Time (UTC) of January 1, 1970; and tags which are metadata collected about the

movies.

To federate the dataset, it is split on a user-level with each user having their own

datasets and preference information including ratings of the respective MovieIDs.
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6.4 Data Preparation

The process of transforming the centralized unarranged dataset into a form which

contains all the users with their respective datasets with their own train-test split is

as follows:

• Initialize a dictionary of movieIDs, with the key as the ID and the value as the

number of times it has been rated.

• Sort this in a descending order by the number of ratings.

• From this sorted list, select only the number of movies that will be used for

training and testing purposes (to be pre-specified).

• Generated separate movie ID and user ID lists.

• Initialize a rating dictionary for the user ID list and associate each user ID with

their rating details as their key respective value pairs.

• This forms their personalized dataset for each user ID which they will perform

the train-test split on.

• Set a threshold for minimum number of ratings per user.

• Include the remaining users in the form of a sorted list.

• Perform a 70-30 split on each of the users’ data.

• Update user ID list.

• There now exists a train-test split across each user who has rated a minimum

number of movies.

Results of this data preparation phase which involved creating a train-test split

for every user participating is as follows,
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• Number of movies: 9724

• Number of users who rated at least 20 movies: 610

• Number of training ratings: 99006

• Number of test ratings: 1830

6.5 Baseline Assumptions

We make the following assumptions regarding the framework:

• The users are not adversarial in nature and do not provide malicious ratings

which would severely affect performance. They have been assumed to maintain

a certain level of consistency regarding their preferences which may or may not

be practically applicable to the real world scenario.

• Federated learning has a lot of modules and requires a lot of independent devices

to function. However, owing to the fact that the program is, in fact, running

multiple instances of clients which are meant to functionally represent these

multiple devices, work on communication efficiency techniques mentioned earlier

in the background was out of the scope of this thesis. Communication instead

takes place through function calls. In real life, this process would involve a lot

more modules including web-sockets and network sockets.

• Federated averaging was performed using PySyft’s existing API for the same and

works to aggregate the gradients with a sufficient level of anonymity, including

invoking normalization techniques for dealing with unusually large gradients

that might expose a user.

• Secure Federated Aggregation using homomorphic encryption has a theoretical

security guarantee [15] and we take their claim at face value.
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6.6 Methodology Overview

As previously mentioned, the model will be conducting a federated collaborative

filtering through matrix decomposition with the added security of homomorphic

encryption. The intuition behind this is based on decentralized matrix factorization

where each user profile is updated locally and the recommendation profiles of items

are aggregated and updated by the server. The item recommendation gradients are

encrypted by homomorphic encryption and the parameter server then aggregates

these gradients.

We first implement the case of a regular collaborative filtering system using

single value decomposition, which is a matrix factorization method. Collaborative

filtering relies on user similarity and the baseline assumption being made is that

users that are similar to each other in terms of movies they have previously rated,

will be similar in the movies they will be rating in the future. This way, we’re making

filtering decisions for individual users based on the preferences and judgements of

other users. If there are n users and m items, and each user rated a subset of m, M

= n x m would be the matrix denoting user-item rating pairs and |M | would be the

total number of ratings. User-profile and item-profile matrices are denoted by U and

V respectively where U is the user profile matrix which consists of the left singular

vectors with n users and d concepts for movie, giving it a dimension of n x d. V is

the movie profile matrix consisting of the right singular vectors with m movies and d

concepts, making it a m x d dimension matrix. d can be any number between 1 and

the smaller number among n and m.

The movies and users are mapped into a 3D space where they are represented

by points on it. The axes of this latent subspace are called factors. Through this

mapping, we find low dimensional representations of users and movies such that the

users that like these movies are closer to each other in this latent subspace.
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Figure 6.4 The matrix decomposition

Typically, a user only interacts with a small subset of the total number of movies,

and the resulting matrix is therefore largely of a sparse nature. These matrices are

used to predict user i’s rating for item j, which is < ui, vj >. This can be posed as

an optimization problem:

min
U,V

=
1

|M |
(ri,j− < ui, vj >)2 + λ||U ||2 + µ||V ||2 (6.2)

where λ and µ are small positive values used for regularization purposes.

We solve this optimization problem by minimizing the loss function using

Stochastic Gradient Descent with the following update steps:

uti = ut−1i − η ∗ (−2 ∗ vj ∗ (ri,j− < ui, vj >) + 2 ∗ λui (6.3)

vtj = vt−1j − η ∗ (−2 ∗ ui ∗ (ri,j− < ui, vj >) + 2 ∗ λvj (6.4)

Then we build a federated scenario where rating information is stored on user’s

local devices and the model is trained on joint data and the iterative updating of

gradients is split in two parts that are performed on the client side and server side.

The stochastic gradient descent for user-profile matrix U , (6.3) is performed on each
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user’s device (the local update) while the stochastic gradient descent for item-profile

matrix V , (6.4) is performed on the parameter server (the global update). The

separation of these processes and the resulting decomposition of the matrix prevents

the server from directly having raw data available to it. The diagram below shows

how the federated collaborative filtering done through this matrix decomposition has

been set up.

Figure 6.5 Federated collaborative filtering

The latent factors of items are sent from the server to the users to download,

following which the users begin their local computation of gradients. These gradients

are then sent back to the server for the next global updation of item factors.

We then enrich this algorithm with encryption whereby gradients are commu-

nicated safely in the manner defined by Fig 6.6 and operated on using partially

homomorphic encryption. This addresses the problem of gradient leakage. To

implement homomorphic encryption, we used Python’s Paillier encryption protocol

(https://github.com/data61/python-paillier) with their recommended library gmpy2
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being used to accelerate the encryption process. The diagram for this combined

process is as follows:

Figure 6.6 Federated collaborative filtering with encryption

6.7 Comparing the Gradient Update Calculations

Even though our aim is to utilize the same method for updating gradients across

the frameworks, the implementations of the gradient update calculations are subject

to their specific setups. The regular collaborative filtering version is done using the

python library surprise (surpriselib.com) and the algorithm used was SVD, a matrix

factorization method which solves the equations (6.4) and (6.3) on the same device.

User and item factors are randomly initialized according to a normal distribution

and has a learning rate of 0.005, with the regularization terms set to 0.02. These

hyperparameters gave it the best RMSE values for that algorithm.
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The federated collaborative filtering method solves the the equation (6.4) on

the server and (6.3) on the user’s edge device which is used for fine tuning with the

user’s data. The user profile is calculated for every single user and the gradients are

averaged with the federated averaging algorithm on the server. The item profile is

calculated once every epoch on the server after federated aggregation. The accuracy

performance for this recommendation, and therefore the loss values varies every time

because of its nature of randomized averaging of user gradients. Not directly training

on the data evidently results in a slight loss of performance metrics compared to the

performance of surprise’s implementation but is much safer as the preference data

never leaves the user’s device, which in this implementation has been represented by

lists that contain training and testing data for every user. The item vector update is

given as follows:

Vti = Vt−1i −Gradienti (6.5)

where Vti represents the item vector that will be downloaded by user i and

Gradienti represents user i’s gradient.

The federated collaborative filtering method with homomorphic encryption

works much in the same way as the method stated previously above, with the

additional feature of the gradients that get transmitted to the server being encrypted

the server performing the item vector update on the ciphertext using the following:

Ct+1V = CtV − CG (6.6)

where CtV represents the ciphertext of the item vector and CG represents the

aggregated version of the ciphertext of the gradient received from the users. Thanks

to the implementation of partially homomorphic encryption afforded by the python

64



library python-paillier, this does not result in a loss of performance, and the accuracy

metric for this is very similar to the unencrypted version.

The computations for both the federated frameworks have a learning rate of

0.001 and regularization penalties of 0.01 as they produced the best results among

the trials that were run.

6.8 Accuracy Analysis

An accuracy analysis was done based on results that were obtained from similar

loss functions for a more legitimate comparison. The loss metric used to train the

federated and secure federated model was a regularized least squares loss.

Figure 6.7 Prediction results (centralized model)

Figure 6.8 Prediction results (federated model)
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The centralized collaborative filtering that is performed using SVD from the

surprise Python library produces the best results, but comes at a cost of user privacy

and training directly on user data. The best attainable root mean square value from

the full user so far based on fine tuning the learning rate is presented below. The loss

curve and RMSE value obtained from the model trained by the encrypted federated

framework is almost identical to their unencrypted counterpart with a difference in

value in the order of approximately +− 0.001.
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Table 6.1 Accuracy Analysis

RMSE RMSE (from federated) RMSE (from secure federated)

0.9455 1.13412 1.13534

If we observe the loss curves for the federated model with encryption and the

federated model without encryption, it shows that the performance is nearly at par.

Figure 6.9 Loss performance for the unencrypted and encrypted models

This implies that the encryption does not affect algorithm performance with

respect to outputs to a noticeable degree in terms of recommendation performance.
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6.9 Computation Analysis

With the encrypted version of the federated recommender system framework, a

caveat is the much larger training and testing time it takes because of the nature of

calculations being performed by the system which are computationally and spatially

expensive. However, we have found that the brunt of this computation is borne by

the server and not the users, thus keeping the framework very much in line with the

goals of federated learning which state that it respects the computational resources

of the users.

Figure 6.10 Analysis of computation time
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6.10 Convergence Analysis

We start by analyzing the loss performance on a partial dataset, using number of

items = 500 and changing the number of users doing the training. This shows that

the performance of federated collaborative filtering algorithm increases greatly by

increasing the number of users.

Figure 6.11 Loss comparison for 500 items
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We then keep the number of users constant at a 100, and compare performance

on the usage of 500 and 1000 movies to demonstrate that increasing just the number

of items results in a better performance and a lower starting loss.

Figure 6.12 Loss comparison for 100 users vs variable items
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Figure 6.13 Subset vs full database

Finally, we plot the loss performance of a subset of the database with 100 users

and 1000 items in the training and testing of the system, with the full database

consisting of 610 users and 9724 movies (items). The loss curve starts at a much

lower value and we notice it learning at a much faster pace per epoch as compared

to training on the subset.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis has been an interdisciplinary effort which explores Federated Learning,

recommender Systems and cryptography. We started by giving an overview of

Federated Learning and exploring the most pertinent works in the field as of early

2020, which is important to note because of the pace at which this very new domain is

expanding. It then touches upon recommender systems and different cases of privacy

that were the foundations of the novel work that was done here. We implement a

case of collaborative filtering in the context of federated learning based on ideas set

forth in [1], create a dataset that is conducive to federated learning, utilize matrix

decomposition techniques to implement the algorithm then expand on it by taking

cues from [2] and other researchers involved in differential privacy and cryptography

who suggested that decomposition of matrices was not a sufficient means of hiding

user gradients. This creates a new framework that suggests a possible solution to

the problem of gradient leakage, which involved encrypting gradients and performing

calculations on the encrypted gradients without them ever being decrypted by the

server. Security of the aggregation protocol utilizing homomorphic encryption also

happens to have [15]’s theoretical guarantee.

The results show that the federated version of the algorithm that uses encrypted

gradients performs almost as well as its unencrypted counterpart, thus proving that

partially homomorphic encryption is a viable tool that can be used to implement

privacy in matrix decomposition based collaborative filtering methods without

compromising much on accuracy as compared to its version that communicates

gradients using plaintext to the server. The result suggests that given enough

computational resources, it would perform just the same on the larger MovieLens
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dataset consisting of 25 million entries. Because the algorithm does not pertain to

specific dataset, as long as there is a representation of a sparse matrix M that can

be decomposed into its constituent factors, it can be used for almost any dataset

with the appropriate pre-processing steps and and the data can be split to train in

a federated manner. An example of another such application would be a restaurant

recommender based on [3]’s Yelp dataset using Natural Language Processing and

techniques. It would take user inputs based on the kind of food they are looking

for and run it through the algorithm that parsed through the reviews, using it as a

corpus and finally outputting suggestions. It is easy to imagine this process being

made much more accurate with the local updates and improvements being made

on the user’s device, much like what Google did with its implementation of mobile

keyboard prediction which is currently being used in GBoard [48]. Similarly another

potential use case is a better and a privacy-preserving music recommender system for

streaming purposes which would be a more secure version of what Spotify or Pandora

currently have.

An assumption that was made here was that the users participating in the

recommendation are not malicious and that dishonest users in the data and will not

attempt to train their own devices with bad recommendations or vote in a manner

that will not help them. A case can be explored in the future where a certain level

of dishonesty can be assumed to be present in the dataset and we can look into

techniques for dealing with them to create a more robust version of this framework.
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complexity for local sgd. arXiv preprint arXiv:1909.04746, 2019.

[60] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

78



[61] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence
functions. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1885–1894. JMLR. org, 2017.
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