92 research outputs found

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments

    Design and Analysis of Medium Access Control Protocols for Broadband Wireless Networks

    Get PDF
    The next-generation wireless networks are expected to integrate diverse network architectures and various wireless access technologies to provide a robust solution for ubiquitous broadband wireless access, such as wireless local area networks (WLANs), Ultra-Wideband (UWB), and millimeter-wave (mmWave) based wireless personal area networks (WPANs), etc. To enhance the spectral efficiency and link reliability, smart antenna systems have been proposed as a promising candidate for future broadband access networks. To effectively exploit the increased capabilities of the emerging wireless networks, the different network characteristics and the underlying physical layer features need to be considered in the medium access control (MAC) design, which plays a critical role in providing efficient and fair resource sharing among multiple users. In this thesis, we comprehensively investigate the MAC design in both single- and multi-hop broadband wireless networks, with and without infrastructure support. We first develop mathematical models to identify the performance bottlenecks and constraints in the design and operation of existing MAC. We then use a cross-layer approach to mitigate the identified bottleneck problems. Finally, by evaluating the performance of the proposed protocols with analytical models and extensive simulations, we determine the optimal protocol parameters to maximize the network performance. In specific, a generic analytical framework is developed for capacity study of an IEEE 802.11 WLAN in support of non-persistent asymmetric traffic flows. The analysis can be applied for effective admission control to guarantee the quality of service (QoS) performance of multimedia applications. As the access point (AP) becomes the bottleneck in an infrastructure based WLAN, we explore the multiple-input multiple-output (MIMO) capability in the future IEEE 802.11n WLANs and propose a MIMO-aware multi-user (MU) MAC. By exploiting the multi-user degree of freedom in a MIMO system to allow the AP to communicate with multiple users in the downlink simultaneously, the proposed MU MAC can minimize the AP-bottleneck effect and significantly improve the network capacity. Other enhanced MAC mechanisms, e.g., frame aggregation and bidirectional transmissions, are also studied. Furthermore, different from a narrowband system where simultaneous transmissions by nearby neighbors collide with each other, wideband system can support multiple concurrent transmissions if the multi-user interference can be properly managed. Taking advantage of the salient features of UWB and mmWave communications, we propose an exclusive region (ER) based MAC protocol to exploit the spatial multiplexing gain of centralized UWB and mmWave based wireless networks. Moreover, instead of studying the asymptotic capacity bounds of arbitrary networks which may be too loose to be useful in realistic networks, we derive the expected capacity or transport capacity of UWB and mmWave based networks with random topology. The analysis reveals the main factors affecting the network (transport) capacity, and how to determine the best protocol parameters to maximize the network capacity. In addition, due to limited transmission range, multi-hop relay is necessary to extend the communication coverage of UWB networks. A simple, scalable, and distributed UWB MAC protocol is crucial for efficiently utilizing the large bandwidth of UWB channels and enabling numerous new applications cost-effectively. To address this issue, we further design a distributed asynchronous ER based MAC for multi-hop UWB networks and derive the optimal ER size towards the maximum network throughput. The proposed MAC can significantly improve both network throughput and fairness performance, while the throughput and fairness are usually treated as a tradeoff in other MAC protocols

    Enabling Dynamic Spectrum Allocation in Cognitive Radio Networks

    Get PDF
    The last decade has witnessed the proliferation of innovative wireless technologies, such asWi-Fi, wireless mesh networks, operating in unlicensed bands. Due to the increasing popularity and the wide deployments of these technologies, the unlicensed bands become overcrowded. The wireless devices operating in these bands interfere with each other and hurt the overall performance. To support fast growths of wireless technologies, more spectrums are required. However, as most "prime" spectrum has been allocated, there is no spectrum available to expand these innovative wireless services. Despite the general perception that there is an actual spectral shortage, the recent measurement results released by the FCC (Federal Communications Commission) show that on average only 5% of the spectrum from 30MHz to 30 GHz is used in the US. This indicates that the inefficient spectrum usage is the root cause of the spectral shortage problem. Therefore, this dissertation is focused on improving spectrum utilization and efficiency in tackling the spectral shortage problem to support ever-growing user demands for wireless applications. This dissertation proposes a novel concept of dynamic spectrum allocation, which adaptively divides available spectrum into non-overlapping frequency segments of different bandwidth considering the number of potentially interfering transmissions and the distribution of traffic load in a local environment. The goals are (1) to maximize spectrum efficiency by increasing parallel transmissions and reducing co-channel interferences, and (2) to improve fairness across a network by balancing spectrum assignments. Since existing radio systems offer very limited flexibility, cognitive radios, which can sense and adapt to radio environments, are exploited to support such a dynamic concept. We explore two directions to improve spectrum efficiency by adopting the proposed dynamic allocation concept. First, we build a cognitive wireless system called KNOWS to exploit unoccupied frequencies in the licensed TV bands. KNOWS is a hardware-software platform that includes new radio hardware, a spectrum-aware MAC (medium access control) protocol and an algorithm for implementing the dynamic spectrum allocation. We show that KNOWS accomplishes a remarkable 200% throughput gain over systems based on fixed allocations in common cases. Second, we enhance Wireless LANs (WLANs), the most popular network setting in unlicensed bands, by proposing a dynamic channelization structure and a scalable MAC design. Through analysis and extensive simulations, we show that the new channelization structure and the scalable MAC design improve not only network capacity but per-client fairness by allocating channels of variable width for access points in a WLAN. As a conclusion, we believe that our proposed concept of dynamic spectrum allocation lays down a solid foundation for building systems to efficiently use the invaluable spectrum resource

    An Introduction to Computer Networks

    Get PDF
    An open textbook for undergraduate and graduate courses on computer networks

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    A New Media Access Control Protocol For VANET: Priority R-ALOHA (PR-ALOHA)

    Get PDF
    More practical applications of Media Access Control (MAC) protocols arise as the world turns increasingly wireless. Low delay, high throughput and reliable communication are essential requirements for standard performance in safety applications (e.g., lane changes warning, pre-crash warning and electronic brake lights). In particular, multi-priority protocols are important in Vehicular Ad Hoc Networks (VANETs), specifically in Inter-Vehicle Communication (IVC) where safety messages are given higher priority and transmitted faster than normal messages. The R-ALOHA protocol is considered one of the few promising protocols for VANETs because it is simple to implement and suitable for medium access control in Ad Hoc wireless networks. However, R-ALOHA lacks the property of prioritizing the different messages. In this dissertation, a new two-level priority MAC protocol called Priority R-ALOHA (PR-ALOHA) is presented to overcome the lack of priority problem in R-ALOHA. The two levels are low priority and high priority where priority is introduced by reserving specific time slots in the frame exclusively for high priority messages. This effectively increases the number of slots that a high priority message may compete for and thus decreases its delay. A two-dimensional Markov model coupled with Monte Carlo simulation is introduced to investigate the dynamic behavior of PR-ALOHA in steady and transient states. Modeling and simulation results of PR-ALOHA show that PR-ALOHA improves the performance of high priority traffic with limited effect on normal network traffic. Then, a dynamic slot allocation algorithm is introduced to PR-ALOH to optimize slot usage. Finally, a mobility model is introduced to emulate the behavior of the vehicles on the road where the performance of the PR-ALOHA with variable parameters, such as the length of the highway, the vehicle transmission range and the number of vehicles on the road have been investigated. Based on the findings of this dissertation, PR-ALOHA combined with dynamic slot allocation and mobility has a potential in applications like IVC where it can prevent car accidents through faster channel access and rapid transfer of warning messages to surrounding vehicles

    SECURITY, PRIVACY AND APPLICATIONS IN VEHICULAR AD HOC NETWORKS

    Get PDF
    With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) enable numerous applications to enhance traffic safety, traffic efficiency, and driving experience. However, VANETs also impose severe security and privacy challenges which need to be thoroughly investigated. In this dissertation, we enhance the security, privacy, and applications of VANETs, by 1) designing application-driven security and privacy solutions for VANETs, and 2) designing appealing VANET applications with proper security and privacy assurance. First, the security and privacy challenges of VANETs with most application significance are identified and thoroughly investigated. With both theoretical novelty and realistic considerations, these security and privacy schemes are especially appealing to VANETs. Specifically, multi-hop communications in VANETs suffer from packet dropping, packet tampering, and communication failures which have not been satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop communications by enhancing the cooperation of neighboring nodes. Message verification, including both content and signature verification, generally is computation-extensive and incurs severe scalability issues to each node. The resource-aware message verification (RAMV) scheme is proposed to ensure resource-aware, secure, and application-friendly message verification in VANETs. On the other hand, to make VANETs acceptable to the privacy-sensitive users, the identity and location privacy of each node should be properly protected. To this end, a joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically support privacy protection and reputation management by reconciling their inherent conflicting requirements. Besides, the privacy implications of short-time certificates are thoroughly investigated in a short-time certificates-based privacy protection (STCP2) scheme, to make privacy protection in VANETs feasible with short-time certificates. Secondly, three novel solutions, namely VANET-based ambient ad dissemination (VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to support the appealing value-added applications based on VANETs. These solutions all follow practical application models, and an incentive-centered architecture is proposed for each solution to balance the conflicting requirements of the involved entities. Besides, the critical security and privacy challenges of these applications are investigated and addressed with novel solutions. Thus, with proper security and privacy assurance, these solutions show great application significance and economic potentials to VANETs. Thus, by enhancing the security, privacy, and applications of VANETs, this dissertation fills the gap between the existing theoretic research and the realistic implementation of VANETs, facilitating the realistic deployment of VANETs

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids
    corecore