11,418 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Multiple Objective Fitness Functions for Cognitive Radio Adaptation

    Get PDF
    This thesis explores genetic algorithm and rule-based optimization techniques used by cognitive radios to make operating parameter decisions. Cognitive radios take advantage of intelligent control methods by using sensed information to determine the optimal set of transmission parameters for a given situation. We have chosen to explore and compare two control methods. A biologically-inspired genetic algorithm (GA) and a rule-based expert system are proposed, analyzed and tested using simulations. We define a common set of eight transmission parameters and six environment parameters used by cognitive radios, and develop a set of preliminary fitness functions that encompass the relationships between a small set of these input and output parameters. Five primary communication objectives are also defined and used in conjunction with the fitness functions to direct the cognitive radio to a solution. These fitness functions are used to implement the two cognitive control methods selected. The hardware resources needed to practically implement each technique are studied. It is observed, through simulations, that several trade offs exist between both the accuracy and speed of the final decision and the size of the parameter sets used to determine the decision. Sensitivity analysis is done on each parameter in order to determine the impact on the decision making process each parameter has on the cognitive engine. This analysis quantifies the usefulness of each parameter

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Update NPS / February 2012

    Get PDF
    NPS Distinguished Professor Releases Two Books on Diverse Subjects; NPS Acquires Two USVs, Unveils New Sea Web Lab; Army's Intellectual Center Commander Visits NP

    Using a Multiobjective Approach to Balance Mission and Network Goals within a Delay Tolerant Network Topology

    Get PDF
    This thesis investigates how to incorporate aspects of an Air Tasking Order (ATO), a Communications Tasking Order (CTO), and a Network Tasking Order (NTO) within a cognitive network framework. This was done in an effort to aid the commander and or network operator by providing automation for battlespace management to improve response time and potential inconsistent problem resolution. In particular, autonomous weapon systems such as unmanned aerial vehicles (UAVs) were the focus of this research This work implemented a simple cognitive process by incorporating aspects of behavior based robotic control principles to solve the multi-objective optimization problem of balancing both network and mission goals. The cognitive process consisted of both a multi-move look ahead component, in which the future outcomes of decisions were estimated, and a subsumption decision making architecture in which these decision-outcome pairs were selected so they co-optimized the dual goals. This was tested within a novel Air force mission scenario consisting of a UAV surveillance mission within a delay tolerant network (DTN) topology. This scenario used a team of small scale UAVs (operating as a team but each running the cognitive process independently) to balance the mission goal of maintaining maximum overall UAV time-on-target and the network goal of minimizing the packet end-to-end delays experienced within the DTN. The testing was accomplished within a MATLAB discrete event simulation. The results indicated that this proposed approach could successfully simultaneously improve both goals as the network goal improved 52% and the mission goal improved by approximately 6%

    Mission-based mobility models for UAV networks

    Get PDF
    Las redes UAV han atraído la atención de los investigadores durante la última década. Las numerosas posibilidades que ofrecen los sistemas single-UAV aumentan considerablemente al usar múltiples UAV. Sin embargo, el gran potencial del sistema multi-UAV viene con un precio: la complejidad de controlar todos los aspectos necesarios para garantizar que los UAVs cumplen la misión que se les ha asignado. Ha habido numerosas investigaciones dedicadas a los sistemas multi-UAV en el campo de la robótica en las cuales se han utilizado grupos de UAVs para diferentes aplicaciones. Sin embargo, los aspectos relacionados con la red que forman estos sistemas han comenzado a reclamar un lugar entre la comunidad de investigación y han hecho que las redes de UAVs se consideren como un nuevo paradigma entre las redes multi-salto. La investigación de redes de UAVs, de manera similar a otras redes multi-salto, se divide principalmente en dos categorías: i) modelos de movilidad que capturan la movilidad de la red, y ii) algoritmos de enrutamiento. Ambas categorías han heredado muchos algoritmos que pertenecían a las redes MANET, que fueron el primer paradigma de redes multi-salto que atrajo la atención de los investigadores. Aunque hay esfuerzos de investigación en curso que proponen soluciones para ambas categorías, el número de modelos de movilidad y algoritmos de enrutamiento específicos para redes UAV es limitado. Además, en el caso de los modelos de movilidad, las soluciones existentes propuestas son simplistas y apenas representan la movilidad real de un equipo de UAVs, los cuales se utilizan principalmente en operaciones orientadas a misiones, en la que cada UAV tiene asignados movimientos específicos. Esta tesis propone dos modelos de movilidad basados en misiones para una red de UAVs que realiza dos operaciones diferentes. El escenario elegido en el que se desarrollan las misiones corresponde con una región en la que ha ocurrido, por ejemplo, un desastre natural. La elección de este tipo de escenario se debe a que en zonas de desastre, la infraestructura de comunicaciones comúnmente está dañada o totalmente destruida. En este tipo de situaciones, una red de UAVs ofrece la posibilidad de desplegar rápidamente una red de comunicaciones. El primer modelo de movilidad, llamado dPSO-U, ha sido diseñado para capturar la movilidad de una red UAV en una misión con dos objetivos principales: i) explorar el área del escenario para descubrir las ubicaciones de los nodos terrestres, y ii) hacer que los UAVs converjan de manera autónoma a los grupos en los que se organizan los nodos terrestres (también conocidos como clusters). El modelo de movilidad dPSO-U se basa en el conocido algoritmo particle swarm optimization (PSO), considerando los UAV como las partículas del algoritmo, y también utilizando el concepto de valores dinámicos para la inercia, el local best y el neighbour best de manera que el modelo de movilidad tenga ambas capacidades: la de exploración y la de convergencia. El segundo modelo, denominado modelo de movilidad Jaccard-based, captura la movilidad de una red UAV que tiene asignada la misión de proporcionar servicios de comunicación inalámbrica en un escenario de mediano tamaño. En este modelo de movilidad se ha utilizado una combinación del virtual forces algorithm (VFA), de la distancia Jaccard entre cada par de UAVs y metaheurísticas como hill climbing y simulated annealing, para cumplir los dos objetivos de la misión: i) maximizar el número de nodos terrestres (víctimas) que se encuentran bajo el área de cobertura inalámbrica de la red UAV, y ii) mantener la red UAV como una red conectada, es decir, evitando las desconexiones entre UAV. Se han realizado simulaciones exhaustivas con herramientas software específicamente desarrolladas para los modelos de movilidad propuestos. También se ha definido un conjunto de métricas para cada modelo de movilidad. Estas métricas se han utilizado para validar la capacidad de los modelos de movilidad propuestos de emular los movimientos de una red UAV en cada misión.UAV networks have attracted the attention of the research community in the last decade. The numerous capabilities of single-UAV systems increase considerably by using multiple UAVs. The great potential of a multi-UAV system comes with a price though: the complexity of controlling all the aspects required to guarantee that the UAV team accomplish the mission that it has been assigned. There have been numerous research works devoted to multi-UAV systems in the field of robotics using UAV teams for different applications. However, the networking aspects of multi-UAV systems started to claim a place among the research community and have made UAV networks to be considered as a new paradigm among the multihop ad hoc networks. UAV networks research, in a similar manner to other multihop ad hoc networks, is mainly divided into two categories: i) mobility models that capture the network mobility, and ii) routing algorithms. Both categories have inherited previous algorithms mechanisms that originally belong to MANETs, being these the first multihop networking paradigm attracting the attention of researchers. Although there are ongoing research efforts proposing solutions for the aforementioned categories, the number of UAV networks-specific mobility models and routing algorithms is limited. In addition, in the case of the mobility models, the existing solutions proposed are simplistic and barely represent the real mobility of a UAV team, which are mainly used in missions-oriented operations. This thesis proposes two mission-based mobility models for a UAV network carrying out two different operations over a disaster-like scenario. The reason for selecting a disaster scenario is because, usually, the common communication infrastructure is malfunctioning or completely destroyed. In these cases, a UAV network allows building a support communication network which is rapidly deployed. The first mobility model, called dPSO-U, has been designed for capturing the mobility of a UAV network in a mission with two main objectives: i) exploring the scenario area for discovering the location of ground nodes, and ii) making the UAVs to autonomously converge to the groups in which the nodes are organized (also referred to as clusters). The dPSO-U mobility model is based on the well-known particle swarm optimization algorithm (PSO), considering the UAVs as the particles of the algorithm, and also using the concept of dynamic inertia, local best and neighbour best weights so the mobility model can have both abilities: exploration and convergence. The second one, called Jaccard-based mobility model, captures the mobility of a UAV network that has been assigned with the mission of providing wireless communication services in a medium-scale scenario. A combination of the virtual forces algorithm (VFA), the Jaccard distance between each pair of UAVs and metaheuristics such as hill climbing or simulated annealing have been used in this mobility model in order to meet the two mission objectives: i) to maximize the number of ground nodes (i.e. victims) under the UAV network wireless coverage area, and ii) to maintain the UAV network as a connected network, i.e. avoiding UAV disconnections. Extensive simulations have been performed with software tools that have been specifically developed for the proposed mobility models. Also, a set of metrics have been defined and measured for each mobility model. These metrics have been used for validating the ability of the proposed mobility models to emulate the movements of a UAV network in each mission

    Wireless Alliance for Testing Experiment and Research (WALTER) Experts Workshop

    Get PDF
    The purpose of the publication is to describe the WALTER experts workshop and related results and findings. The workshop was conducted in Ispra, Varese, Italy from the 2nd to the 3rd of July 2008 at the European Commission JRC facilities. The workshop was organized as part of the FP7 WALTER project, which has the objective of define a networked test bed laboratory to evaluate UltraWideBand (UWB) technology and equipment. The purpose of WALTER workshop was to present and discuss the current regulatory, standardization and research status of UltraWideBand (UWB) technology with special focus on the definition of requirements, methodologies and tools for UWB measurements and testing. The WALTER workshop had the following main objectives: - Identify the main regulatory and standardization challenges for the adoption of UWB in Europe and the world. Support the identification and resolution of conflicting requirements. - Identify the main challenges in the UWB testing and measurements. Describe how the current industrial and research activity could support the resolution of these challenges. - Discuss the future developments like UWB at 60 GHz and innovative interference and mitigation techniques including Detect And Avoid (DAA). A number of international experts in the UltraWideBand field have been invited to participate to this workshop, to encourage bi-directional communication: in one direction to disseminate the information on WALTER project and its activities, in the other direction to collect the input and feedback on the regulatory and standardization work, industrial activity and research studies.JRC.G.6-Sensors, radar technologies and cybersecurit
    • …
    corecore