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Abstract

This thesis explores genetic algorithm and rule-based optimization techniques used

by cognitive radios to make operating parameter decisions.Cognitive radios take ad-

vantage of intelligent control methods by using sensed information to determine the

optimal set of transmission parameters for a given situation. We have chosen to explore

and compare two control methods. A biologically-inspired genetic algorithm (GA) and

a rule-based expert system are proposed, analyzed and tested using simulations. We

define a common set of eight transmission parameters and six environment parame-

ters used by cognitive radios, and develop a set of preliminary fitness functions that

encompass the relationships between a small set of these input and output parameters.

Five primary communication objectives are also defined and used in conjunction with

the fitness functions to direct the cognitive radio to a solution. These fitness functions

are used to implement the two cognitive control methods selected. The hardware re-

sources needed to practically implement each technique arestudied. It is observed,

through simulations, that several trade offs exist betweenboth the accuracy and speed

of the final decision and the size of the parameter sets used todetermine the decision.

Sensitivity analysis is done on each parameter in order to determine the impact on the

decision making process each parameter has on the cognitiveengine. This analysis

quantifies the usefulness of each parameter.
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Chapter 1

Introduction

1.1 Research Motivation

Cognitive radio technology is receiving significant attention as an approach to alle-

viate the FCC identified problem of the scarcity of available radio spectrum [1–4]. Cog-

nitive radios take advantage of the reconfigurable attributes of a conventional software-

defined radio (SDR) by using an ”‘intelligent”’ control method to automatically adapt

operating parameters based on learning from previous events and current inputs to the

system. The momentum of research efforts, due in part to the current spectrum scarcity

problem, as well as a Department of Defense initiative [1] todevelop a flexible soft-

ware radio approach for war-fighter communications, has yielded numerous initiatives

and programs by researchers in academia [5] and industry [6]. The resulting plethora

of cognitive radio solutions range from cognitive radio components and radio network

testbeds [5] to complete radio systems [2]. However, there is still no common con-

sensus on how to implement a cognitive radio, most importantly no agreement on the

best method used as the ”‘intelligent”’ control. This research investigates two possible

methods for ”‘intelligent”’ control and derives an analytical relationship between the

radio environment and the radio transmission parameters that drive the control method
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to a solution. From this relationship, sensitivity analysis is performed on the commu-

nication parameters commonly used in wireless communications in order to determine

the performance impact for each parameter.

The initial focus of this thesis is to investigate the question of what technology could

be used to implement a cognitive radio decision making engine. However, before this

question can be examined, several other questions must be answered in order to piece

together a conclusion. In the most general sense, a cognitive radio uses information

about the environment, and determines the best possible setof transmission parameters

to use given some set of service performance objectives. Defining the environmental

inputs used to make accurate decisions has a major impact on the accuracy of the cog-

nitive radio decisions. These measurements are the basis ofthe decisions being made in

the system. Similarly, defining the set of transmission parameters that are controlled by

the cognitive radio also dramatically affects the efficiency of the radio. Using several

references and experience in the communications field, we propose a list of six trans-

mission parameters and six environmental measurements that are used to investigate

the implementation of the cognitive decision methods. The transmission parameters

chosen represent common transmission parameters that spanthe physical, MAC, and

network layers. The environment measurements were selected based upon common

attributes that can be measured and that affect the operation of the radio.

With a properly defined list of transmission parameters and measurement inputs,

a cognitive radio engine uses the relationships between theparameters and measure-

ments to select the optimal set of transmission parameters.However, a function that

represents the relationship between the set of environmentally sensed parameters and

the set of controllable transmission parameters does not yet exist. For example, this

function is needed by the cognitive radio engine to understand that by modifying trans-

mission parameter A, theoretically the environmentally sensed parameters B, C, and D,
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should be affected in a certain way. This requires an analytical relationship to be found

that encompasses both the input and output radio parameters. The solution to this prob-

lem is to create an analytical environment model of the communication environment.

In this work, we derive relationships between the transmission and environmental pa-

rameters and present a function that is used as the adaptive engine for a cognitive radio

implementation. Once the function is defined, determining the appropriate transmission

parameters becomes an optimization problem.

Determining the proper method to solve this optimization problem is the primary

research goal of this dissertation. First, we classify thisoptimization problem as non-

linear because of the nature of the wireless environment. Variables such as the received

power of a signal, noise power, or path loss can vary widely depending on the state

of the current wireless system. Between the many different fading environments and

multipath effects, the measured value of environment variables can change based on

temporal or spatial differences. Several non-linear models exist simply to model the

fading characteristics in an AWGN channel [7].

Several methods exist to solve optimization problems. The complexity of non-

linear and dynamically changing wireless communication environments make using

traditional non-linear programming (NLP) optimization methods problematic with re-

spect to the convergence to a local optimum, or in some situations the inability to find

a feasible solution. Typically, non-linear optimization techniques use some form of a

gradient search technique to move along the slope until the maximum point it reached.

This problem is illustrated in Figure 1.1. To solve this typeof optimization problem, we

propose using techniques from the artificial intelligence (AI) domain. AI methods such

as genetic algorithms and simulated annealing take advantage of random mutations in

order to avoid the local optima problem inherent in gradienttechniques.

AI can be divided into roughly two schools of thought: Conventional AI and Com-

3



local optimum

global optimum

Objective function 
Value

starting point A

starting point B

starting point C

Parameter Set

Figure 1.1 Gradient search technique

putational AI. Conventional AI, also commonly referred to asmachine learning, en-

compasses a wide variety of technologies including,expert systems[8, 9], case-based

learning [10], andreinforcement learning[11]. The machine learning techniques fol-

low the simple process flow illustrated in Figure 1.2. With parameters, sensor data,

and objectives as input to the system, machine learning usesthe objectives and sen-

sor data to determine a possible action. Once this action is applied to the system, a

teacher provides feedback to the machine learning component, providing a quantitative

measurement that represents the effectiveness of the action.

Machine Learning 
Technique

Objectives

Sensor Data

Teacher

Objectives

Reward

Environment

Action

Figure 1.2 Machine Learning Flow
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Machine learning techniques must make an approximation, based upon the environ-

mental measurements, of how well a given action will achievethe goal. This specific

approximation stage will be called thecriteria selectionstage. Within this stage the ac-

tions are given scores based on how well they achieve the goal. Using this knowledge,

the technique either continues to evolve and try to create better actions, or outputs the

current action to be applied to the system. Typically, the function used to determine the

optimality of the output is called theutility functionor fitness function[12]. The opti-

mization world tends to useutility function, while fitness functionis typically used for

genetic algorithms. We will use the termfitness functionin this research which will be

considered analageous toutility function. The inputs to the fitness function include the

set of objectives for the system, the current environmentalparameters or sensor data,

and the possible action to be scored. Translating into radioterms, the parameters be-

come: the intended performance goals for the radio, the measured channel parameters,

and a set of controllable transmission parameters.

We investigate the applicability of a non-linear heuristicapproach using genetic

algorithms as the cognitive radio engine. A wireless transmission environment is a

non-linear environment, especially when the wireless devices are mobile. For exam-

ple, this can be seen from any of the theoretical bit-error-rate models given in [7].

Signal strengths are constantly changing, other wireless nodes are appearing and dis-

appearing randomly, and physical obstacles create multipath effects that can be model

using the Rayleigh distribution [7]. The implicit parallelisms of genetic algorithms

allow it to exploit large numbers of regions in the search space while working on rel-

atively few strings. This parallelism also helps genetic algorithm overcome nonlinear

problems [13]. Genetic algorithms (GAs), like simulated annealing (another popular

non-linear search method), use a random walk method and a mutation probability to

help guide their search and avoid local optima. However, unlike simulated annealing,
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GA’s use a randomly chosen set of models and use binary strings for the representa-

tion of these models. Unlike a random search, such as the ”Monte Carlo” method, the

search used in the GA is not directionless. However, GAs typically do not converge to

the absolute optimum value. The accuracy of the GA decision is directly related to the

number of iterations, or generations, that the GA uses to process the information. Thus,

a secondary research question is: ”What are the optimal number of generations needed

for the GA to provide an acceptable solution?”.

As an alternative to the genetic algorithm, we use the fitnessfunction to explore the

entire possible search space offline. This information is used to create a rule base for an

expert system. To model the wireless environment accurately, several parameters are

needed, each having a wide range of possible values. This creates a large search space

for our problem. The expert system must take into account a large amount of informa-

tion and the memory resources needed to represent every possible environment state

may become an issue. In our work, the total number of possibleenvironments reaches

100 million combinations taking into account all possible scenarios. Representing the

real-word environmental state requires us to approximate the sensed state to a certain

degree of precision, and therefore introduces some error. This error is directly related

to the degree of precision used to create the rules. Thus, we examine the expert system

specific question: ”What are the trade offs between the degreeof precision of the rule

base and the accuracy of the expert system?”.

We foresee both genetic algorithms and expert systems having their advantages and

disadvantages. GAs require little memory. However, they can typically only achieve

near-optimal solutions. Expert systems have the advantageof being able to produce

a solution fast due to the offline generated rules, but typically require a large amount

of memory to be implemented and determining the degree of precision of the rules can

become a problem. This thesis investigates the applicability of these two methods to the

6



cognitive radio engine domain. Each of these methods uses the relationships between

the environmentally sensed parameters and the controllable transmission parameters to

determine the solution, thus deriving this relationship isan important task.

In multiple objective problems, such as the cognitive radioenvironment addressed

in this research, generating fitness functions becomes difficult. In the case of mul-

tiple objectives, where several objectives are often competing, there is not a single

optimal solution, but rather a set of possible solutions. These solutions are optimal

in the sense that no other solutions are superior to them whenall objectives are be-

ing considered equally. This set of possible solutions is known as thePareto-optimal

solution set [14–16]. Although, many different solutions have been proposed to allevi-

ate this problem [14], this disseration focuses on using preference information through

a weighted sum approach [17–20]. Preference information isused to rank the objec-

tives in order of importance. This importance ranking can then be used to single out a

solution that represents the optimal solution for a specificranking of objectives.

A comprehensive study of multiple objective optimization problems for evolution-

ary algorithms (EA) was published by Fonseca and Fleming [14]. This study catego-

rized different approaches in formulating fitness functions, including aggregation meth-

ods, population based non-Pareto approaches, Pareto-based approaches, and methods

using the niched induction technique. Aggregation methodscombine objectives to form

a single fitness function. Formulating this single equationrequires a large amount of

domain knowledge to form complete relationships between the objectives and the pa-

rameters. Pareto-based, non-Pareto based, and the niched techniques have the advan-

tage of being able to solve for a family of solutions if preference information is not

available. However, this work uses preference information, such as objective weights,

to rank objectives by their importance pertaining to the goal state. Consequently, using

an aggregation method creates a single fitness function, instead of a family of equa-

7



tions that would be more difficult to implement and much less tractable of a solution.

The domain knowledge needed to create the aggregate fitness function is sought using

analytical relationships between the parameters and the objectives. However, some pa-

rameters may not have closed form solutions that relate themto the objectives. These

relationships must be found through extensive computer simulations. A goal of this

dissertation is combine these relationships into an aggregate function that can be used

to relate a general set of transmission parameters to a set ofenvironmental parameters

and performance objectives.

Research conducted at Virginia Tech has also developed a genetic algorithm en-

gine for cognitive radios [2, 21]. Their simulation resultsvalidate that their genetic

algorithm implementation does in fact change the transmission parameters to different

settings, based upon a set of objectives. However, more research is needed in the area

of fitness functions, which are not analyzed or presented in their work. The focus of

the research thus far has been showing that the genetic algorithms can converge to a

suitable set of transmission parameters. There has been no mention of the time require-

ments or memory resources needed to perform this task using genetic algorithms. The

work presented in this paper goes beyond just demonstratingthat the genetic algorithm

outputs a selection, but also provides the numerical analysis for the fitness functions

that drive the GA’s and present simulations and analysis showing the practical resource

usage for both genetic algorithms and the alternative expert systems implementation.

1.2 Research Objectives

The primary research question we answer in this dissertation is: What is the best

adaptation technique that can be used to implement a cognitive radio? Before we begin

to answer this question, we explore the characteristics of acognitive engine in order
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to determine what is needed for a cognitive engine to operate. We have identified the

need for a set of common parameters that must be used by the cognitive engine to make

decisions. These parameters represent both, transmissionlevel control parameters and

environmentally sensed parameters. It is important that this list consist of common

parameters so that the cognitive engine analyzed in this work can be related to the ma-

jority of other radios being developed. In addition to needing a list of parameters, radio

operating goals must also be defined. These goals are needed to guide the system to a

specific output, and may change depending upon the wireless environment, operating

scenario, or hardware conditions of the radio.

The ideal cognitive radio observes the wireless environment and make transmission

parameter modifications based upon those observations and the radio operating goals.

Based upon this definition, the implementation of the cognitive engine is an optimiza-

tion technique. The primary research question we address inthis dissertation is now

more specific: What is the best optimization technique or adaptation technique to use

within the cognitive radio engine? A choice must now be made between several possi-

ble techniques. To determine the best technique, we first analyze our problem domain

to find important characteristics that let us weed out possible optimization techniques.

Thus, characterizing our problem domain is an important task in order to answer the

primary research question.

The secondary question that is answered is how each of these parameters impact

the performance of the communication. This analysis is doneusing the fitness function

relationships that we have derived. Using the output of the fitness functions, we can

determine quantitively how the communications is affectedif the cognitive radio system

does not take into affect a certain parameter. For example, acognitive radio that does

not use the signal-to-noise (SNR) ratio will potentially notbe able to make an accurate

decision regarding anything to do with channel performance. However, with other

9



parameters such as coding rate, this may not be as clear. Someparameters may require

a large amount of processing in order for the cognitive radioto use it for decision

making. However, it may turn out that these same parameters have little to no affect

on the communication system and are not needed. This sensitivity analysis can save

cognitive radio system developers time and cost.

We have selected two different techniques that can be used asa cognitive radio en-

gine. After characterizing the problem domain, we can select these two methods and

focus on their specific implementations presented in Chapter4 and Section 4.3. Inde-

pendent of the method chosen, we have derived the analyticalrelationship that relates

all of our parameters in Chapter 5. This relationship is used by the selected methods

for the optimization. This brings us to the second research question that this disser-

tation answers: How can the transmission parameters, environmental measurements

and radio operating goals be related and represented numerically? Once the optimiza-

tion techniques are determined, we turn our focus to how thisrelationship is formed

and represented. Using published equations and simulationresults we can create these

relationships and put them into a form that is usuable by the optimization techniques.

Research Questions and TasksTo summarize the following research questions

and their tasks that this dissertation addresses is presented:

1. What is the best way to implement a cognitive radio engine?

(a) Explore the characteristics and attributes of a cognitive engine to determine

what is needed for operation.

2. What is the best set of transmission parameters and environmentally sensed pa-

rameters that can be used by a cognitive radio engine?

(a) Determine a common list of parameters that the majority of wireless radios

will be using.
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(b) Define a set of radio operating objectives that can be related to the parame-

ters.

3. How can the transmission parameters, environmental parameters and radio oper-

ating parameters be related and represented analytically?

(a) Find published relationships between the defined parameters and radio op-

erating goals.

(b) Gather data using simulations for radio parameters thatcannot be analyti-

cally related to the objectives.

4. How much impact does each parameter have in the decision making process of

the cognitive engine?

(a) Explore the affect on the communication system when not using certain

parameters.

5. What implementation specific trade offs are present for thetwo selected cognitive

methods?

6. What metrics should be used in order to accurately compare different cognitive

methods?

(a) Explore the characteristics and ideal attributes of a cognitive engine to de-

termine what is needed for operation.

1.3 Research Contributions

This research investigates different methods for implementing cognitive radio en-

gines in a multi-carrier wireless environment. We are focusing on answering the ques-

tions of whether AI algorithms such as genetic algorithms orexpert systems can be
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practically used as the cognitive engine. We begin by defining a standard list of input

and output parameters used by the cognitive engine. These parameters represent the

controllable transmission parameters and the environmentally sensed parameters use

to make decisions. There is no solid consensus of which inputand output parameters

should be used when developing a cognitive radio. However, the parameters we choose

to use several parameters that have been commonly defined in multiple publications.

For cognitive radios to make decisions in any implementation, there must be a re-

lationship showing how the environment is affected as the controllable parameters are

modified. We derive this relationship between our defined list of parameters using

commonly published equations and simulations that characterize the parameters. We

present a relationship represented as a scalar fitness function that is used to score how

well a set of transmission parameters affects a specific environment given a set of per-

formance objectives. This fitness function represents the main contribution of this work

and is used to implement two cognitive engines, each using a different AI method. The

GA was selected because of its ability overcome non-linear problems and adapt to the

constantly changing environment with no interaction. The GA is also desirable be-

cause of the relatively small amount of memory needed for theprocessing, but the time

needed to produce the output needs to be explored. Expert systems were also chosen as

an alternative technique to the GA. The expert system produces a decision very quickly,

although the question of how much memory is required to hold the rule base needs to be

explored. However, this function is not restricted to be used by only the methods pre-

sented here. In general, it can be used to determine if a set oftransmission parameters

is well matched to a given wireless environment.

We examine the resource usage of both the GA implementation and the expert sys-

tem implementation, highlighting the trade offs for each method. We show that inter-

esting trade offs exist for the GA implementation between the size of the parameter list
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and the time required to determine a solution. We also show that by decreasing the

discrete range values used to generate the rule base for the expert system, the accuracy

of the decisions is increased. However, this comes at the price of increased memory us-

age. Uncovering these trade offs allows us to discover the proper parameter settings for

each method in order to make practically implementing thesemethods as a cognitive

radio engine a reality.

1.4 Dissertation Organization

The dissertation is organized as follows: In Chapter 2, a brief history of cognitive

methods and the role fitness functions play is presented. A detailed literature survey is

provided that focuses on the origin of cognitive methods, machine learning, and several

popular cognitive methods. Also in Chapter 2, the cognitive radio parameters are in-

troduced, including the transmission parameters, performance objectives, and the envi-

ronmental channel measurements. In Chapter 3, the genetic algorithm-based cognitive

engine is describe in detail. A population adaptation technique used to improve the per-

formance of the GA-based engine is introduced and the simulation results of this engine

are presented. Also in Chapter 3, the rule-based system cognitive engine is describe in

detail. and the simulation results of this engine are presented. Chapter 4 describes the

derivation of the dynamic multi-objective fitness functions. In Chapter 5, simulation

results and the analysis on the simulation performance results are presented. Chapter 5

also contains the sensitivity analysis results detailing how transmission parameters can

affect the optimality of the system if they are not allowed toadapt.

13



Chapter 2

Cognitive Radio Overview

2.1 Cognitive Radio

Cognitive radios have received much attention and funding recently as a proposed

solution to the spectrum scarcity problem identified by the FCC. The problem being

that, although there is a shortage of available frequency bands to license out, the current

licensed bands are severely underused in both a time and space sense [4].

Mitola proposed that cognitive radios solve this problem bysensing the environ-

ment and autonomously adapting to take advantage of the underused spectrum, while

staying clear of the incumbent user’s signals [22]. Mitola proposed that the integration

of machine learning techniques in radio will allow the technical operation of wireless

networks to operate more efficiently. He analyzes the need for a cognitive control sys-

tem that translates the user needs into commands to the underlying radio functions.

In March of 2005, Vanu, Inc. introduced the first (and presently only), FCC-certified

software radio product [23]. The AnyWaveTM Base Station is the first base station

system that fully implements the base transceiver and base station controller entirely in

software, running on a general purpose server and RF front-end. With software-based

signal processing and a standards-based architecture, their base station is also capable
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of becoming the first commercial cognitive radio on the market.

Currently several research efforts exist to explore the abilities that cognitive radios

can provide for both commericial and military use. Open source efforts, such as the

GNU Radio [24] and the Virginia Tech OSSIE program [25], allowfor wide spread

experimentation on software defined radios which in turn provide the ground work for

cognitive radios. In order for these efforts to be expanded to cover cognitive radio re-

search, a connection needs to be made between the SDR community and the artificial

intelligence (AI) community. AI algorithms such as geneticalgorithms, neural net-

works, expert systems, or case-based reasoning systems canbe essentially layers on

top of the SDR system to provide that extra layer of intelligence that defines a cogn-

tive radio. However, simply adding the AI layer is not enoughto develop the radio.

The expertise of a radio engineer needs to be used by the AI architect in order to cre-

ate the complex relationships between the transmission parameters that define how the

cognitive radio engine will operate. This is the primary challenge addressed in this

dissertation.

2.2 Adaptive Parameters

Cognitive radios adapt the available transmission parameters in order to achieve a

specific performance goal. They do this by combining severaladaptation techniques to

form a decision making engine with several dimensions of transmission control. Adap-

tive parameters for wireless systems is not a new research topic. Dynamic power adjust-

ment schemes for wireless systems have been proposed [26, 27]. Adaptive modulation

has also become a popular way to adapt a wireless system to a channel to achieve near-

optimal throughput [28–31]. Even between transmit power and modulation there exists

trade-offs between the system throughput and the system biterror rate (BER) [29].
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Combining these different techniques such as adaptive modulation, dynamic power

adjustment, dynamic spectral allocation, and even adaptive frame length techniques

will provide for efficient communication because all of these advanced techniques are

being used. However, the difficulty arises when a system tries to make use and optimize

all these techniques that share operating parameters. For example, adaptive modulation

is common place even within the IEEE 802.11 wireless networks common to most

households. The adaptive modulation techniques implemented in the PHY layer of the

hardware monitor the signal-to-noise ratio (SNR) of the communications signal and

adjust the power and modulation accordingly in order to achieve the best throughput

while still maintaining a useable bit-error-rate (BER). Research on frame length adap-

tation has also been used to change the value of the framelength in order to achieve a

higher overall throughput in low SNR environments. Individually, these techniques can

optimize performance for their specific goal. By using multiple techniques at the same

time, a single parameter affects different techniques in different ways and a tradeoff is

created. Combining these adaptive techniques is the job of a cognitive engine that can

input the environment scenario and output the adaptable scenario based upon specific

objectives of the system. Figure 2.1 gives a visual representation on how the parameters

interact and are used in a cognitive radio.

2.3 Cognitive Engine Techniques

Several methods are available to implement the cognition engine for a cognitive ra-

dio. As mentioned earlier, in addition to traditional global optimization techniques, a

wide variety of AI technologies including, neural networks, genetic algorithms, case-

based learning, reinforcement learning, fuzzy system, expert systems, and pattern recog-

nition exist that can be used as the control for the transmission parameters in a wireless
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Figure 2.1 Visual representation of cognitive radio knobs and dials

system. Traditional optimization problems typically consist of derived algorithms that

determine the exact optimal parameters for a given problem.Several optimization tech-

niques exist for both linear and non-linear problems.

In addition to the non-linear attribute of the wireless communication environment,

we also must deal with a very dynamic and constantly changingenvironment. The

cognitive system will be periodically sensing the environment, providing a dynamic

and constantly changing the set of inputs to the system. The actual system components

may also be changing periodically, in order to compensate for large changes in the envi-

ronment. With system component changes come changes to the constraints of the prob-

lem. For example, changing from one modulation to another may require a changing in

the possible coding types, or even a change in the maximum transmit power available.

These constraint changes and periodic changes of the input parameters make traditional

optimization techniques not suitable for use in this problem domain. Keeping an up-

dated optimization algorithm current to the dynamic parameters and constraints is not
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possible. Thus, we need a flexible solution that adapts to thedynamic environment. For

this reason, we focus on using AI based techniques.

We have implemented two techniques that can be used as the adapative engines

for cognitive radios. Expert systems are built upon a set of rules that define how the

system operates. All possible environments are represented in the rule database along

with the optimal decision for each environment. This requires an offline analysis of the

problem in order to generate the proper rule set. The advantage of this method is the

speed at which a solution is found. However, the quickness ofthe output comes at the

price of the large database required to represent the rules.We explore the relationship

between the size of the rule base, the correctness of the output, and the time it takes

to determine a solution. This technique was chosen as a benchmark against a machine

learning technique that does not require a complete database all possible scenarios. We

explore the possibility of this complete search space technique being more efficient

then the machine learning technique.

As the primary adaptive engine, we have implemented a machine learning tech-

nique to determine the optimal solution. For our adaptive engine, we needed a machine

learning technique with the following primary characteristics:

• Ability to overcome the local minima in non-linear problems.

• Efficient search with problems containing large search space.

• High amount of system configuration flexibility.

• Low requirement on storage memory usage.

• Little initial setup required to operate.

There are several different surveys of machine learning techniques available [32–

34]. We looked at several different choices as to the selection of the adaptation engine
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technique. The most commonly referenced techniques being neural networks, genetic

algorithms, and symbolic learning techniques such as case-based reasoning systems

and rule-based systems. Each technique has its own advantages and disadvantages and

we need to find the technique that would fit our needs the best.

The ability to overcome the local minima problem is inherentin all the machine

learning techniques we looked at. This problem is primarilypresent in simple gradient

search techniques such as hill climbing. To distinguish between the different techniques

we focus on the ability to work with problems with large search spaces and techniques

that are flexibly and can be reconfigured on the fly with little code changes. Placing a

small amount of focus on the amount of memory usage the technique uses is feasible

otherwise a full search space solution would suit our needs.Ideally our solution will be

implemented on mobile radios with limited processing and memory resources.

Knowledge in neural networks is learned and stored using a network of connected

neurons, weighted synapses, and threshold logic units [33]. Learning algorithms are

used to adjust the weights on the synapses in order to classify unknown samples cor-

rectly. However, the output of the inductive techniques such as neural networks rely

fully on the examples provided during the training phases. These examples may include

user feedback or information collected during a relevant feedback stage. In reality, user

feedback for the situation addressed here may be limited or noisy. Gathering training

examples would require a user to perform tests in the wireless communication area

before the cognitive system would ever be deployed and have the user set the optimal

parameters based upon the measurements collected. This information would be feed

into the neural network in order to train it appropriately. The question of the sample

size used to train the neural network is also an on going research question.

Case based reasoning (CBR) systems observe the environment and alter previous

solutions to similiar environments [35]. The difficulty in CBRsystems is determining

19



the similarity of cases especially in non-linear environments and how to adapt these

case to the current situation. We may observe an environmentand have an existing case

that is similiar but not close. How can we adapt multiple parameters of this case to

better match the current non-linear wireless environment?The effectiveness of CBR

systems rely on the case base. Having a larger case database increases the probability

of a similiar case, thus increasing the probability of a better final solution. However,

holding cases requires storage memory, and in problems withlarge search spaces the

case database is large in order to provide a sufficient amountof similar cases. Similiar

to neural networks, a CBR system needs to being with examples from training. Again,

practically these inital cases can be difficult to produce. CBRsystems are similiar to

rule based systems in that they start with initial cases or rules and make decisions based

on them. However, rule based systems hold every possible combination that is expected

to be seen.

We desire a system that ideally needs no inital setup to operate. Evolutionary tech-

niques posess this characteristic by randomly generating an inital set of solutions and

evolving these solutions over time in order to eventually generate an optimal solu-

tion [12, 13]. Through the use of mutations and solution combinations, evolutionary

techniques are well known for their resilience to convergence at local extrema, un-

like traditional optimization techniques. More specifically, a genetic algorithm was

choosen over a simulated annealing technique which is very similiar to the genetic al-

gorithm [36]. The primary difference being that GAs work with a population of possible

solutions, not just a single point as simulated annealing does. This parallel processing

allows the GA to explore different portions of the search space simultaneously. Genetic

algorithms operate on the original cost functions, not the derivatives of the cost func-

tions like traditional optimization solutions. This provides a higher level of flexibility

when dealing with a highly dynamic environment. For example, changing the com-
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plete operation of the system is achieved by subsituting thefitness function used by the

genetic algorithm out for another, making this technique very flexibly with respect to

code changes in the event of a large change to the environmentmodel. In addition, as

explained in Section 2.3.2, genetic algorithms does not require a database of solutions

to be stored or any type of storage that grows as the system observes more scenarios.

The primary disadvantage of genetic algorithms is the amount of computation needed to

determine a solution. We have selected genetic algortihms as the adaptation technique

to explore because it matches our needs well, and explore theprocessing requirements

needed to implement this technique within a cognitive radioengine.

The following sub-sections provide background information for each of the selected

methods and gives a general overview of how each determines asolution. Sections 6.3.1

and 6.4.1 provide the implementation details for each method.

2.3.1 Expert Systems

An expert system uses non-algorithmic expertise to solve certain problems [8, 9].

Expert systems have a number of primary system components that must interface with

people in various ways. Figure 2.2 shows major components and the individuals who

interact with the system. Theknowledge baseis the representation of the expertise.

Each piece of expertise is typically termed arule, and is represented using an IF THEN

format. For example, one rule in our system may be: IF frequency band of interest

is currently in use THEN alter frequency. The expertise or the rules are created by the

domain expert. The domain expert would say specifically what frequency is the optimal

to use. Typically, as shown in Figure 2.2, a knowledge engineer is used to encode the

experts knowledge into a form that can be used by the expert system. For some projects

the domain expert and the knowledge engineer may be the same person, or in our case

the information produced by the domain expert actually comes from an equation.
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Figure 2.2 Expert System Diagram

The second major component in the system is theworking storage. This component

holds the problem specific information for the problem currently being solved. This

information is typically termed thefacts. For example, a fact may exist that states:

frequency band 5.325 GHz is currently in use. This information can be added anytime

the system is running. In our case, the facts are brought in from sensors on the wireless

system. Information such as the battery life, channel noisefigure, and received signal-

to-noise ratio can all be represented as facts.

The inference engine is also a primary system component in anexpert system. This

component includes the code which combines the informationfrom the working storage

and the knowledge base to find the solution. This component isaccessed by the user

through theuser interface. The user interface is simply the code that controls the dialog

between the user and the system.

Many expert systems are implemented as products called expert systemshells. The

shell is the software that contains the user interface, a format for the rules and facts,

and an inference engine. A commonly used shell is the CLIPS expert system tool [37].
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CLIPS provides a complete environment for the construction of rule based expert sys-

tems. The primary reasons CLIPS is used in this research include: knowledge rep-

resentation, the rule based environment is already implemented, portability, CLIPS is

written in C and runs on several different operating platforms, interactive environment,

and most importantly, full documentation.

Currently the layout of our rule base uses a one layer approach. This means that

the decision is determined after one rule is fired. An exampleof a one layer rule is as

follows: IF sensed parameter THEN set transmission parameters. This approach could

also be implemented as a table lookup method because of it’s one layer simplicity.

Using the table lookup method, the processing time should berelatively faster than

the CLIPS system because it is a simple table lookup instead ofa fully implemented

expert system. However, as this research progresses, the rule base may become more

complex, involving several layers of rule dependencies. Anexample set of two layer

rules is as follows: IF sensed parameter1 THEN set temporaryvariable1, IF sensed

parameter2 THEN set temporary variable2, IF temporary variable1 AND temporary

variable2 THEN set transmission parameters. In addition tothe possible changes in

the future, the primary analysis of the expert system will beon the storage resources

required for it to represent the complete expertise of the system, or equivalently the total

number of rules needed. The total number of rules is equivalent to the total number of

entries used in a table lookup method. Given the primary goalof the analysis and

the possibility of more complex rules in the future, CLIPS wasdetermined to be an

appropriate method to be analyzed as a feasible cognition engine technology.

2.3.2 Evolutionary Algorithms

Evolutionary algorithms, such as genetic algorithms, are biologically inspired search

technique to find the solution to optimization problems. Genetic algorithms originated

23



from the research of Dr. Holland on cellular automata at the University of Michi-

gan [13]. Initially remaining largely theoretical, academic interest started growing in

the mid 1980’s as the power of processors grew to match the needed power required by

GA’s. Currently, GA’s are used to solve difficult scheduling,data fitting, trend spotting

and budgeting problems for several Fortune 500 companies [38]. A primary advantage

of genetic algorithms is the fact that they work on a population of solutions. This way,

the GA population can explore several parts of the solution space in parallel.

Genetic algorithms have been applied to wireless communications research in sev-

eral different aspects. In [39], an algorithm for controlling mobile users transmitter

power and information bit rate cooperatively in CDMA networks is proposed. A sig-

nificant enhancement in signal quality and power level was noticed through several of

their experiments. Genetic algorithms are also invoked in [40] for finding the opti-

mal weight vectors for the minimum BER of multiuser detector (MUD) for multiple-

antenna orthogonal frequency division multiplexing (OFDM) systems. Their results

show that the GA-assisted method provides a lower complexity approach than the tra-

ditional conjugate algorithm (CG) approach in which they used as a comparison. The

processing power made available today allows wireless systems to outperform tradi-

tional gradient methods [40]. It has been shown in [41] that the time required by a GA

to converge is O(nlogn) function evaluations, where n is thepopulation size. With GA’s

being used more frequently as optimization methods for wireless communications, the

assumption that GA’s are computationally infeasible for real-time communication sys-

tems is fading.

The basic idea of genetic algorithms is as follows: the genetic pool of a given pop-

ulation of possible solutions or chromosomes, potentiallycontains the optimal solution

to a given adaptive problem. The optimal solution is not active in the current population

because its genetic combination is split between several other possible solutions. Split-
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ting and combining multiple chromosomes in the population several times can lead to

the optimal solution. To perform this procedure, we must define two things. The first

is the genetic representation of the solutions, and the second is the fitness function to

score the possible solutions. For the genetic representation the standard representation

is an array of bits. We explore the fitness function that will be used by the genetic

algorithm to determine how well the possible solutions are for a given objective.

Single-Point Crossover
Chromosome 1a Chromosome 1b

Chromosome 2a Chromosome 2b

Chromosome 1a Chromosome 2b

Chromosome 2a Chromosome 1b

Two-Point Crossover
Chromosome 1a Chromosome 1b Chromosome 1c

Chromosome 2a Chromosome 2b Chromosome 2c

Chromosome 1a Chromosome 2b Chromosome 1c

Chromosome 2a Chromosome 1b Chromosome 2c

Figure 2.3 Chromosome crossover example

Once the evaluation of the current population is finished, the top ranking pairs of

chromosomes are combined to create a new generation of possible chromosomes. Sev-

eral techniques exist to combine the chromosomes. Figure 2.3 depicts two crossover

techniques that are most commonly used. Theone-point crossoverselects a random

bit position in the chromosome and all data beyond that pointis swapped between the

two parent chromosomes, thus creating two new chromosomes.This research uses the

slightly more complicatedtwo-point crossovertechnique. This method calls for two

points to be selected on the parent chromosomes. Everythingbetween these two points

is swapped between the parents, also creating two new chromosomes.

In addition to creating a new generation through the combination of chromosomes,

mutation is also a possibility. The purpose of mutation is toallow the algorithm to

avoid local minima by allowing the population to randomly mutate and avoid becoming
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to similar. This can prevent the slowing, or the complete halting of evolution. A more

detailed look at the genetic algorithm methodology is presented in Section 4.2. The full

details of the implementation of the genetic algorithm usedin this research, along with

the genetic algorithm parameter settings used are presented in Section 6.3
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Chapter 3

Cognitive Radio Operating Parameters

3.1 Introduction

In developing a cognitive radio control system, several inputs must be defined. The

accuracy of the decisions made by an AI method are based upon the quality and quan-

tity of inputs to the system. More inputs to the system make the radio more informed,

thus allowing the decision making process to generate decisions that are more accurate.

This brings us to the first set of inputs to the system. Environmental parameters are

information about the current wireless environment that are used as inputs to the cogni-

tive system. In order for the cognitive engine to make decisions about a certain output,

the current wireless environment must be modeled internally. This model is created

using environmentally-sensed data received by the system using an external sensor.

Several devices exist to detect characteristics of the wireless environment. The

DARPA XG program has hardware for sensing environment characteristics, including

spectrum usage [42]. This information is useful if the radiois trying to maximize spec-

tral efficiency. Other sensors detect important characteristics such as: the current noise

floor, signal-to-noise ratio (SNR), or determine the BER of thecurrent running con-

figuration. In the following sections, we will propose a listof environmentally-sensed
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parameters that will be used to aide in the decision making process of the cognitive

controller. Section 3.3 covers the selection of the environment variables used in this

dissertation.

Decision variables are also another important input to AI methods. In the cognitive

radio case, these variables represent the transmission parameters that can be controlled

by the system. Once the virtual wireless environment is created, a set of decision vari-

ables is applied to the fitness function and an approximationof how well they meet a

set of operation goals is returned based upon the virtual environment. The end result is

a quantification of how well a sample set of transmission parameters achieves the set

of operation goals. The AI uses this scalar approximation toevolve the system to an

optimal set of transmission parameters.

In addition to the environmental data used to model the wireless channel and the

transmission parameters, performance objectives must also be determined to define

how the system should operate. The objectives of the system are the road map for

determining the fate of the system. They provide the means for the controller to steer

the system to a specific state. For example, one basic objective is to minimize the bit-

error-rate (BER) of the system. This can be done by manipulating the transmission

parameters in a certain way as to provide the lowest possibleBER given the current

environment. This dissertation defines five objectives thatrepresent common wireless

radio goals. Section 3.4 covers the selection process of these five objectives.

The following sections detail the selection process of the decision variables used for

generating the multi-objective fitness functions. Section3.4 also covers the selection

of the multiple objectives that are used to inform the fitnessfunctions of the optimal

direction for scoring.
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3.2 Transmission Parameters

Cognitive radios takes advantage of the control parameters made available by the

underlying software-defined radio system. These control parameters are input to a fit-

ness function along with the environmental parameters and objectives. This fitness

function provides a scalar score that represents how well the control parameters achieve

the given objectives. Generating fitness functions to be used by cognitive radio methods

require defining a specific list of transmission parameters that must be available to the

system. These transmission parameters are equivalent to the control parameters made

available by the software radio components. The termtransmission parameterswill be

used in this dissertation to refer to the list of parameters that are used to control the

individual radio components.

Defining a complete list of transmission parameters and generating a generic fitness

function usable by all radios is not possible. Radios are developed for many different

reasons and depending upon the application of the radio, each will possess a unique list

of parameters. A goal of this dissertation was to define a transmission parameter list

large enough to accommodate a large percentage of software radios.

The transmission parameters selected for this research areparameters that would

commonly be adjusted to adapt to the channel environment. Wehave chosen the eight

parameters based on an extensive literature survey. The parameters we have chosen

have been commonly cited in research literature as as transmission parameters that can

be used by cognitive radios to control communication characteristics [21,43–46].

This work intentionally does not focus on parameters that change on the order of

hours, such as transmission formats (e.g. OFDM or CDMA), encryption (e.g. WEP

or PGP), or error control techniques (e.g. Turbo coding or convolutional coding). As

shown in the results section in Chapter 6, our system can update on the order of 100 ms.
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The complete list of parameters used in this dissertation togenerate a fitness function

is shown in Table 3.1.

Table 3.1 Transmission Parameter List
Parameter Name Description

Transmit Power Raw transmission power

Modulation Type Type of modulation format

Modulation Index Number of symbols for given mod-
ulation scheme

Bandwidth Bandwidth of transmission signal in
Hertz

Channel Coding Rate Specific rate of coding scheme

Frame Size Size of transmission frame in bytes

Time Division Duplexing Percentage of transmit time

Symbol Rate Number of symbols per second

We assume the time scale for modifying the values of these parameters begins at

100 ms, due to our system being able to find a solution in this amount of time. The

value of 100 ms is approximately the fastest the genetic algorithm is able to adapt

the parameters. This means that the genetic algorithm adaptive technique is not well

suited for environments that change at speeds faster than 100 ms because at the time

the solution is generated, the environment will have already changed and need new

settings.

Although the focus of this dissertation is on the transmission-level parameters listed

above and not system-level parameters such as using CDMA or FDMA, those higher

order system parameters may still be passed to the cognitivesystem to allow the filtering

out of several possible parameter values. For example, if the cognitive component is

informed that the system should be using iterative coding and OFDM modulation, this

restricts the modulation type and the channel coding rate possibilities. Chapter 5 goes

into detail about how the parameters are represented withinthe cognitive engine.
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3.3 Environment Measurements

Environmental measurements inform the system of the surrounding environment

characteristics. These characteristics include: internal information about the radio op-

erating state, and external information representing the wireless channel environment.

Both types of information can be used to aide the cognitive controller in making de-

cisions. The environmental variables can be classified intotwo categories. The first

being environment variables that are directly used by the fitness function as primary

parameters to the function. An example of this type of parameter is the noise power of

the channel which is used in the minimize BER objective function. These parameters

directly impact the fitness score of the specific objective. The second class of environ-

ment parameters are trigger parameters. These parameters are monitored by the system,

and decisions about the objective function are made based upon their values. A good

example of this is in regard to the battery life parameter. The system may be monitoring

this parameter while is decreases below a specified threshold. In this case, the system

may alter the weighting on the objective functions so as to provide a higher weighting

on the minimize power consumption objective.

The complete list of environmental parameters used in this dissertation is shown in

Table 3.2:

Table 3.2 Environmentally Sensed Parameter List

Parameter Name Description

Path Loss Amount of signal degradation lost
due to the channel path characteris-
tics.

Noise Power Size in decibels of the noise power.

Battery Life Estimated energy left in batteries.

Power Consumption Power consumption of current con-
figuration.

Spectrum Information Spectrum occupancy information.
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The path loss is the reduction in power density of the signal as it travels through

space. Path loss may be due to effects such as free-space loss, refraction, diffraction,

reflection, and absorption. Path loss can also be influenced by the terrain and envi-

ronment. The noise power parameter informs the system of theapproximate power of

the noise in decibels of the measured power referenced to onemilliwatt (mW). Battery

life and power consumption are both internal parameters. These parameters are used

to determine when the system should place more emphasis on minimizing the power.

The primary external parameter is spectrum occupancy information. This parameter

consists of information from cognitive radios within the local network identifying the

spectral location of other signals in frequency bands of interest. This information is

used to improve the spectral efficiency of the transmission and the spectral occupancy

of the frequency band [47,48].

The trigger parameters represent an important characteristic of cognitive radio sys-

tems. Much research focuses on the active parameters that are used in making trans-

mission parameter decisions, and the objective steering trigger parameters are often

overlooked. This work defines these important parameters and shows how they can be

integrated into cognitive radio systems using objective weights to control the instanta-

neous goals of the communication system.

3.4 Performance Objectives

In a wireless communications environment, there are several desirable objectives

that the radio system may want to achieve. We define five objectives for the fitness

function in order to guide the system to an optimal state. Thefive objectives are given

in Table 3.3.

Minimizing the BER is a common communications goals in todayswireless world.
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Table 3.3 Cognitive Radio Objectives

Objective Name Description

Minimize Bit-Error-Rate Improve the overall BER of the
transmission environment.

Maximize Throughput Increase the overall data throughput
transmitted by the radio.

Minimize Power Consumption Decrease the amount of power con-
sumed by the system.

Minimize Interference Reduce the radios interference con-
tributions.

Maximize Spectral Efficiency Maximize the efficient use of the
frequency spectrum.

This objective represents minimizing the amount of errors in relation to the amount

of bits being sent. In general, this objective represents improving the communications

signal of the radio. Maximizing the throughput deals with the data throughput rate of

the system. Emphasis on this objective improves system throughput. Minimize power

consumption is self explanatory and is used to direct the system to a state of mini-

mal power consumption. Trade-off analysis between minimizing BER, maximizing

throughput, and minimizing power consumption are shown as the preliminary results

in Section 5.4.

The last two objectives focus on the spectral domain of wireless communications.

Minimizing interference encompasses avoiding areas of thespectrum with a high noise

floor, or areas with high possibility of interference being present. Similarly, emphasis

on the maximize spectral efficiency objective would reduce the spectral space used by

the transmitted signal.

In order to direct the system to a specific solution, we must attach preference in-

formation to each objective. Otherwise, simply minimizingboth BER and power will

result in a set of solutions instead of a single solution. This is because minimizing BER

and minimizing power will have different solutions. Thus, the objectives must also con-

tain a quantifiable rank representing the importance of each. This will allow the fitness
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function to characterize the trade-offs between each objective by ranking the objectives

in order of importance. Several approaches exists for determining the preference in-

formation of a set of objectives [14]. We have decided to use aweighted, aggregate

sum approach where each objective receives a weight representing its importance. We

selected this method primarily because of the simplicity ofimplementation within the

genetic algorithm technique and the ability of control thatthis method provides to the

system. This method is detailed in Section 5.3, along with other similar methods and

more detailed reasoning behind its selection.

3.5 Summary

This chapter presented a well-defined list of common parameters for cognitive ra-

dio systems. These parameters included environmentally measured parameters from

sensors within the system, and internal operating information providing measurements

about the internal state of the radio. This information is used in conjunction with the

radio objectives to determine the appropriate transmission parameters to use for com-

munication. Multiple objective problems have difficultieswhen all objectives are trying

to be achieved at once. The primary difficultly being determining the complex relation-

ships and trade-offs between the parameters the the multiple objectives. Determining

a single search direction for the system is also a common difficulty in multiple objec-

tive problems. We defined five performance objectives for a wireless communication in

which several objectives conflict with regards to maximizing their performance. These

conflicts create trade-offs between the transmission parameters to meet a given perfor-

mance constraint. In order to quantify these trade-offs, the objectives must have some

type of preference ranking. The fitness function must also input objective preference

information to solve the problems of parameter conflict.
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Chapter 4

Adaptive Cognitive Radio Engine

Techniques

4.1 Introduction

Genetic algorithms are a class of artificial reasoning whereby the search is per-

formed in a manner similar to genetic evolution. In general,solutions to a problem

set are represented by binary strings. These strings then are allowed to act in a manner

similar to genetic growth; strings which are considered ’good’ split and recombine with

other good strings to form new solutions, while ’poorer’ strings are allowed to ’die’ out

of the solution set. This decision is made by the fitness function which inputs the pa-

rameters and outputs a score based on the specific goals of theradio. Strings undergo a

process called mutation, i.e., a random flipping of bits, to help prevent local minimiza-

tion from occurring. Genetic algorithms are typically usedas a method of problem

optimization [12, 49]. However, given its random nature, fast computation time, and

ability to spontaneously generate unique solutions, genetic algorithms are an appealing

candidate for cognitive radios. Input and output parameters can easily be mapped to

a binary form and the size of the genetic population is customizable to space avail-
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able within any given configuration [12]. Genetic algorithms are used mainly when the

search space is too large to be simply brute force search to determine the optimal pa-

rameter set. In this disseration the binary chromomsomes used in the genetic algorithm

consists of the eight parameters defined in Table 3.1.

As an alternative technique to genetic algorithms, we choose to implement a drasti-

cally different approach to selecting the optimal transmission parameters in a wireless

device. Genetic algorithms rely on the ability to use a smallamount of memory and

large amounts of processing to evolve to a solution. Rule-based systems, in contrast,

use large amounts of memory and a small amount of processing to make decisions.

A rule-based system (RBS) uses a simplistic model based upon a set of if-then

statements to implement an expert system. Expert systems are widely used in many

fields with the primary concept being that the knowledge of anexpert is coded into

the rule set. When the expert system comes across a data set, itshould behave the

same way as the expert who populated the database. We want to explore the feasibility

of using such a RBS in the context of cognitive radio decision making. Rule-based

systems are at a disadvantage when the rule base becomes large because it becomes

hard to manage and the rule base itself may consume too much memory. Rule-based

systems are typically also constrained by discrete values.This can be overcome by

using fuzzy sets and defined ranges for the rules to match on. However, this then

requires a specific range to be determined for each rule. In the following sections,

we explore the implementation of both of these techniques inthe context of cognitive

radios.

36



4.2 Genetic Algorithms

The methodology of a genetic algorithm can be broken up into four seperate stages.

The first stage is the initialization of the population. Initially the population is randomly

generated to form the first generation of possible solutions. The choice of population

size is based loosely on the specific problem we are dealing with, however a common

set of genetic algorithm settings has been defined and used inseveral GA implemen-

tations with slight variations [50, 51]. In our case we use a population size of 100

chromosomes. Traditionally the initial generations is selected at random. However, as

we show in Section 4.2.1, we can take advantage of previous runs and seed the ini-

tial generations in order to achieve better performance when compared to randomly

generated inital populations.

The second stage is the selection stage. During each generation a proportion of the

population is selected to breed a new generation. Individual solutions are ran through a

fitness function that assigns a fitness score to the solution representing its value. Several

selection methods exist, such as tournament selection, stochastic remainder selection

and roulette wheel selection that use the fitness scores to select the solutions that are

too be used to form the next generation of solutions. We choseto use the stochastic

remainder selection method. We chose this method mainly because of its popularity

and the large amount of research associated with it [12, 52, 53]. This method uses

the ratio between the fitness of an individual solution and the average fitness of the

population to determine the probability of the solution moving onto the reproduction

stage.

The third stage is the reproduction stage. In this stage, thenext generation of so-

lutions is generated from the previously selected group of solutions. This process is

completed through genetic operators such ascrossoverandmutation. Crossover is a
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method of combining two possible solutions to create a new solution. Mutation is the

process of randomly mutating a solution, typically randomly flipping a bit in the ge-

netic sequence. Mutation provides the means for the GA to avoid local minima by

preventing the solutions from becoming too similar to each other, which can slow or

even stop evolution. For each new solution in the next generation a pair of solutions

is selected to be the “parents.” One point and two point crossover are two possible ap-

proaches of combining the “parents.” One point crossover selects a random point in

the genetic sequence in which the “parents” swap all data beyond the selected points

Two point crossover is similiar except that two points are selected and all data between

the two points are swapped. Dejong shows in [50] that two point crossover provides a

better mechanism for combining and mixing the chromosomes and produces better re-

sults then the single point crossover technique. Along withthe crossover function, each

new solution has a typically small chance to have a bit mutated. These processes result

in the next generation of solutions. Generally, the averagefitness has increased since

mostly the higher scoring solutions are selected to breed, along with a small proportion

of lesser fit solutions to provide for a more diverse search.

The final stage is the termination stage. The genetic algorithm process detailed pre-

viously continues until a termination condition has been reached. Common termination

conditions include:

• A solution that satifies a minimum criteria is found.

• A fixed number of generations is reached.

• A specified computation time is reached.

• The fitness scores have plateaued such that succesive generations show no im-

provement.
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• Combinations of the above conditions.

In this disseration we have chosen to run the genetic algorithm until a fixed num-

ber of generations is reached. We choose this condition so wedon’t restrict ourselves

to certain time requirements and we wanted to explore the highest value of fitness the

algorithm can reach. In this work we are exploring the different combinations of equa-

tions and settings. Future work may include implementing a stopping condition that

terminates once the fitness is within a certain threshold of the desired fitness value. We

choose not to do this because stopping at a specified fitness won’t allow us to observe

the “best” solution we could possibly find. The same reasons apply for why we chose

not to stop after a specific amount of computation time. A moreefficient approach

would be to stop once the algorithm plateaus, however, in order to compare different

fitness function weights and other methods, we wanted to use astatic number of genera-

tions to provide for a fair comparison between the differentprofiles. Although we have

choosen to stop after a fixed number of generations, the results we present in Chapter 6

show the processing time per generation. Using this time pergeneration we can calcu-

late the time needed to run the genetic algorithm for a shorter number of generations if

needed.

Figure 4.1 shows the general flow for the genetic algorithm process that we imple-

ment in this research.

4.2.1 Population Adaptation Enhancement

In the area of wireless communications optimization, quality-of-service (QoS) re-

quirements may limit the time required to determine a decision. To facilitate these QoS

requirements, typically the GA engine would be required to terminate after a prede-

fined number of generations have been executed, in order to guarantee a decision in a

set amount of time. However, this does not guarantee that theGA has converged to
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Figure 4.2 Fitness convergence for a standard GA implementation

a adequate set of transmission parameters. Our previous work has shown that a stan-

dard GA used in a multi-carrier system using a small number ofparameters requires

a significant amount of time for determining an optimal solution. Figure 4.2 shows

the fitness convergence for a 16 channel GA-based implementation operating in emer-

gency mode (i.e. emphasis on bit-error-rate). This graph provides information about

how quickly the system converges to the optimal decision. For a complex cognitive

radio system with a large number of parameters, using a standard GA-based implemen-

tation becomes infeasible since the time needed to completeone generation increases

as the system complexity increases. We show this to be true inChapter 6 by increasing

the number of channels, thus increasing the size of the chromosome and making the

system more complex.

We modify the initialization stage of the GA algorithm that enables the engine to

take advantage of previous measurements and decisions in order to improve the con-

vergence time of the algorithm. Using the assumption that the wireless channel envi-

ronment changes slowly, we can seed the initial generation of the GA algorithm with
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chromosomes from the final generation of the previous GA cycle. This technique bi-

ases the initial generation to the final decision of the last GA cycle. We show that by

seeding the initial generation we can achieve increased convergence times, thus de-

creasing the amount of processing needed to achieve the sameresults as the standard

GA implementation.

Using information about the problem domain, we can use initial seeding techniques

to improve the operation of a GA algorithm [54]. In a quasi-static wireless channel

environment, we can assume the environment parameters are changing slowly. In this

case, the results from the previous evolutions in the GA can be utilized by seeding a

percentage of the initial generation with chromosomes fromfinal generation of the last

cognition cycle. Doing this will bias the initial generation toward the last decision.

Depending on the amount of environmental variation, this seeding will improve the

convergence rate of the GA algorithm.

In our population adaption technique, the change in environment parameters can

be characterized by a figure of merit called theenvironmental variation factor(EVF),

which is used to determine the amount of seeds to be utilized from the previous cogni-

tion cycle. The EVF represents the amount of variation that has occurred in the envi-

ronment since the last cycle of environmental sensing. The technique can significantly

reduce the number of generations required for the convergence of the cognition cycle

by using the EVF to determine the amount of seeding.

The EVF is defined as the weighted sum of the percentage changes in the environ-

ment parameters, which is the single metric for determiningthe changes in the envi-

ronmental parameters. For example, an EVF of 0.20 tells us that the average variation

over all the environmental parameters was 20%. For our simulations, we restricted the

variation in the environment in such a way that the environment could only worsen with

respect to the fitness. Had we not restricted the EVF in this way, certain scenarios where
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the noise decreased significantly caused uncharacteristicly high fitness scores due to the

BER fitness function being normalized to a BER of 0.5. Using thisinformation about

the variation in the environment, we can select the appropiate amount of population

seeding for the GA algorithm. The assumption is that at low values of EVF, higher

seeding percentages will improve the convergence rate of the GA. This is due to the

fact that a low EVF represents a wireless environment that has only slightly changed.

In this case, the previously determined decision will be a better starting point than a

randomly selected population of decisions. However, in thecase of a large change in

the wireless environment, or a high EVF, the initial population should be more diverse

to enable the algorithm to explore a larger portion of the search space. One common

situation where a high EVF may be detected is in the case of wireless channels ex-

periencing deep fades. In this case, if the seeding percentage is too high, the initial

population not be diverse enough to evolve to the globally optimal decision.

4.3 Rule Based System Framework

This section provides more details into the implementationof the RBS and focuses

on each of the different sections that make up the RBS. As seen inFigure 2.2, a RBS

consists of several different components. We begin with thedomain expert which can

be defined as the fitness function derived in Chapter 5. In orderto for the fitness function

to be used as the expert, we needed to perform a full search space run over all possible

parameters using the fitness function, and find the optimal transmission parameters for

each possible environment.

The environment parameters that are used in the rules consist of the noise power

and path loss of the wireless channel, and the objective weightings of the system. Using

the sensed values of these variables the RBS asserts the rule that provides the optimal
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fitness function. The first step in the development of the RBS system is to create the rule

base for the system. This is done by determining the optimal transmission parameters

for each possible combination of environment variables.

Table 6.2 gives the operating values of the noise power and path loss. Using only

these two parameters we have a total of 100 rules. Factoring in the five objectives

weightings, each ranging range from 0.00 to 1.00, this gives 10 billion possibilities.

However, we recognize that looking at all possible combinations of parameter weight-

ings isn’t needed and instead focus on specific combinationsof weightings that repre-

sent interesting scenarios. The combinations we have choosen are defined in Table 5.7.

We chose these scenarios in such a way that four of the performance objectives would

each have a major emphasis on them. These combinations give the cognitive adaptation

engine a diverse selection of performance objectives to simulate. With only these four

scenarios we have a total of 400 rules that need to be generated in order to implement a

RBS for testing.

A major advantage of the RBS is the ability to generate the rulesoffline when

time is not a key factor. This is a good thing because finding the optimal transmission

parameters for each of the environment scenarios requires acomplete search of all

combinations of transmission parameters to find the combination with the largest fitness

score. For a single objective scenario, there exists approximately 600 million possible

combinations of parameters that need to be search for an optimal value.

We begin this search by implementing the fitness function in MATLAB and veri-

fying the output of the function is identical to that of the fitness function implemented

in the genetic algorithm. To verify this, several debug statements in the GA code were

inserted that outputted actual MATLAB code that could easily be executed immedi-

ately to verify the MATLAB version of the fitness function achieved the same results.

Once it was determined that the fitness functions were identical, the fitness function
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was ran for all possible combinations of transmission parameters. This consisted of 10

for loops, two days of processing and about 6 Gigabytes of memory to hold the large

10 dimensional array for a single performance objective combination.

The large array is indexed by the radio parameters and holds the fitness values for

each combination. Using a few simple MATLAB commands the maximum fitness

value for each environment combination could be found, along with the proper indexes

that represent the actual transmission parameters. From these we create the rules for

the RBS. This processes was automated by a MATLAB function and can be view in

Appendix A.

4.3.1 CLIPS

The inference engine as shown in Figure 2.2, infers the proper rule to be asserted.

We have choosen to use the C Language Integrated Production System (CLIPS) expert

system [37] as the engine. CLIPS dates back to 1985 where it wasdeveloped by NASA

at the Johnson Space Center with the intent of gaining insightand knowledge into the

construction of expert system tools and to lay the groundwork for replacement tools

for the current commericially available tools. Eventually, the CLIPS system’s low cost

and great performance made it the ideal tool the developmentof expert systems and

eventually became available to groups outside of NASA in 1986. Today CLIPS is

widely used in the government, idustry, and acadamia. We have choosen CLIPS due to

the fact that is it written in C and in the future this can allowus to implement the RBS

into existing cognitive engines easily. In addition, CLIPS’s interactive environment

makes it very easy to use and provides a simple interface for me to add rules and facts

manually when debugging or CLIPS is able to read in large databases of rules and facts

created from MATLAB. In the end, the primary reason CLIPS was choosen was the

simple interface, the C implementation, the documentation, and the ability to modify
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the source or integrate with solutions we already have.

We run the CLIPS shell under a linux environment and begin by importing the

rules generated by our MATLAB fitness function. Once these rules are imported, the

database exists within the engine and all that is left is to assert facts about the envi-

ronment. For example, we may assert three facts stating thatthe noise power is -114

dBm, path loss is 80 dBm, and we are operating in the emergency mode, where we

want to focus on minimizing the bit-error-rate of communications. Once these facts are

stated in the system, CLIPS will match the facts to a rule that exists in the database,

and assert another fact that provides the optimal transmission parameters for the given

environment. Our goal is to analysis the implementation issues with the RBS so we did

not integrate the CLIPS system into a standalone program. Ourtests were all ran within

the actual CLIPS shell.
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Chapter 5

Multi-Objective Fitness Functions

5.1 Introduction

This chapter will cover the multi-objective fitness function problem representation

and describe the analytical techniques that will be used to generate the fitness functions.

Section 5.2 provides an overview of multi-objective fitnessfunctions and the challenges

that must be overcome to generate an accurate function. Section 6.2 describes the rep-

resentation of the transmission parameters and the environmentally-sensed parameters.

The description of how the performance objectives are used to determine the search di-

rection of the evolutionary algorithm will be presented in Section 5.3. In Section 5.4, a

detailed description of the analytical techniques that areused to derive the fitness func-

tions is presented along with the fitness functions generated using a subset of decision

variables. The final section presents a summary of the chapter.
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5.2 Multi-Objective Fitness Function

5.2.1 Problem Statement

In general, a multi-objective fitness function problem can be presented as trying to

determine the correct mapping of a set ofm parameters to a set ofN objectives. This

can be seen algebraically as:

~y = 〈 f1(~x), f2(~x), f3(~x), . . . fN(~x)〉 (5.1)

subject to

~x = 〈x1,x2,x3, . . .xm〉 ∈ X

~y = 〈y1,y2,y3, . . .yN〉 ∈Y

wherex is the set of decision variables andX is the parameter space, andy is the set of

objectives withY as the objective space. In the case of a multiple objective evolutionary

algorithm, eachfi(x) represents the fitness function for a single objective. The goal is to

combine them to get a single fitness function,f (x), taking into account all parameters

and objectives.

In real world problems, such as the problem addressed in thisthesis, the objectives

under consideration might conflict with each other. For example, minimizing power

and minimizing BER simultaneously creates a conflict due to the single parameter,

transmit power, affecting each objective in a different way. Determining the optimal

set of decision variables for a single objective, e.g. minimize power, often results in

a non-optimal set with respect to other objectives, e.g. minimize BER and maximize

throughput. The optimal set for multiple objective functions lie on what is known as
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thePareto optimal front[14–16]. This front represents the set of solutions that cannot

be improved upon in any dimension. The solutions on the Pareto front are optimal and

co-exist due to the trade-offs between the multiple objectives. A graphical example of a

Pareto front, using a simple cognitive radio parameter scenario is shown in Figure 5.1.
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Figure 5.1 Pareto Front Trade-off

The x-axis in the figure represents the score of the single objective fitness func-

tion for minimizing BER in the case of several modulation types, while the y-axis is

the score for the single objective fitness function for minimize power. The parameter

x represents the decision variable vectors used as inputs to the fitness functions. In

this case, transmit power and modulation were used as decision variables. For each

curve, as the fitness score for minimize power decreases, thescore for the minimize

BER objective increases. This trade-off represents the coreof the multiple objective

optimization problem. The QPSK curve represents the Paretofront, because no param-

eter set on that curve can be improved upon to gain a better objective score in respect

to both objectives. The other modulation curves represent the dominated solutions to
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the bi-objective optimization problem. The fitness functions used for this example are

derived in Section 5.4.

In this thesis we develop a set of fitness functions using the set of parameters de-

fined earlier, that are used by cognitive radio engines to determine a single optimal

transmission parameter solution. In Figure 5.1, several parameter sets lie on the Pareto

front, however the fitness function must provide a search direction that leads the system

to a single solution. We use a weighted sum optimization approach to give the fitness

function the ability to focus in on a single parameter set. Using weights allow the fit-

ness function to instantly change the global objective of the system. Section 5.3 details

the weighted sum formula and how it applies to our fitness scenario.

Before we go into detail about the objective weighting, we must describe how the

parameters of the cognitive radio are represented as inputsto the fitness function. Thus,

a list of parameters used by the fitness function and their possible ranges are defined in

Section 6.2.

5.3 Fitness Objective Representation

Ideally the fitness function must be able to guide the system to one optimal param-

eter set. A cognitive radio must perform an action based on a single set of parameters,

which should be selected from the Pareto front according to some preference infor-

mation. Preference information, or objective weighting, is used to rank the objectives

in order to help the fitness function guide the evolutionary algorithm to one optimal

solution.

In addition to needing preference information for each objective, the scalarization of

the objective vector is also necessary. Evolutionary algorithms need scalar fitness func-

tions that provide a single scalar value for the given parameter set. In many optimization
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problems, when no global criteria, e.g. goals, for the parameters exist, objectives are

often combined, or aggregated, into a scalar function. Thisaggregation optimization

method has the advantage of providing a single scalar solution for the fitness func-

tion. As a result, this requires no extra interaction with the evolutionary algorithm to

determine the optimality of a given parameter set.

There have been several approaches to the optimization of aggregated functions.

Weighted sum approaches are presented in [17, 18]. The weighted sum approach at-

tempts to minimize the sum of the positively normalized, weighted, single objective

scores. In [55], target vector optimization was developed.Target vector optimization

requires a vector of goal values. The optimization is driventoward the shortest distance

between any candidate solution and the goal vector. Goal programming was also stud-

ied by several authors [56,57]. In goal programming one objective is minimized while

constraining the the remaining objectives to be less than the target values. However,

choosing appropriate goals for the constraints can be difficult. Goal programming has

also be shown to not generate the Pareto front effectively when the number of objectives

is greater than two.

This research proposes to use the weighted sum approach. This methods suits

the cognitive radio scenario well since it provides a convenient process for applying

weights to the objectives and more importantly provides a single scalar value. Using

the weighted sum approach, we define a multiple objective fitness function of the pa-

rameter set solutionx by the following weighted sum ofN objectives:

f (x) =
N

∑
i=1

wi fi(x) (5.2)
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with w1,. . . ,wn satisfy the following constraints:

1≥ w1 ≥ 0 for i = 1,2, . . . ,n (5.3)

w1 +w2 + . . .+wn = 1

When the weighting for each objective is constant, the searchdirection of the evolu-

tionary algorithm is fixed. This is the intended property when trying to find a single

optimal solution for a given environment. However, changing the objective weighting

means the fitness function will immediately start steering the evolutionary algorithm to

a new solution. For example, take the case in which a radio is operating in a minimize

BER mode. In this mode, the fitness function will give higher scores to parameter sets

providing a high transmit power. This is because the weight on the minimize BER

objective is the largest. Suppose that the radio then detects low battery power. At

this instance, it changes the objective weighting to reflectan emphasis on minimizing

power. This is done by reducing the weights on other objectives while at the same time

increasing the weight of the minimize power objective. Oncethe weights change, the

fitness function will instantly start giving higher scores to parameter sets which provide

for lower power transmission. This is the primary attributethat allows the objective

weighting to dictate the goal state of the radio. It also allows for a dynamic system to

instantly switch operating goals by simply modifying the objective weighting vector.

Figure 5.2 shows the previous example. The search directionwa[.] corresponds to a

minimized power weight vector in the 2-D objective space. The search directionwb[.]

corresponds to a minimized BER weight vector in the 2-D objective space. As the

objective space increases, so does the dimension of search space for a solution. We

propose to develop a fitness function using a five dimensionalobjective space.
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Figure 5.2 Search Direction Example

5.4 Parameter Trade-off Analysis

5.4.1 Single Objective Goals

The weighted sum approach allows us to develop a single objective function for

each objective and combine them to create a multiple objective function. To develop

the single objective functions, we must determine the dependence relationship between

each objective and the set of parameters defined in Section 3.2. The complete table of

relationships is displayed in Table 5.1.

Table 5.1 Objective and Parameter Relationships

Objective Name Related Parameters

1 Minimize Bit-Error-Rate P,PL,m,M,B,Rc,S,N

2 Maximize Throughput m,M,B,Rc,L,TDD,Rs

3 Minimize Power Consumption P,M,m,B,Rc,TDD

4 Minimize Interference P,B, fc,TDD

5 Maximize Spectral Efficiency Rs,B,m
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Shown in Table 5.1 are the parameter dependencies for each objective. An impor-

tant task in this research is deriving the relationship between each performance objec-

tive and the parameters. Completing required a complex mathematical analysis of the

closed form solutions of each objective, using the defined parameters and their potential

range of values. In addition to the weighting constraints imposed on the individual func-

tions, each single fitness function score must be normalizedbetween the same range.

Otherwise, if fitness function A outputs scores from ranges [0,1] and fitness function

B outputs scores from [0,x] wherex > 1, then the global fitness function would show

a bias to function B due to the larger output range. The outputs of the functions devel-

oped in this research are all normalized to the range [0,1]. With this output limitation

defined, the following subsections describe the individualfitness functions representing

the performance objectives described in Section 3.4.

5.4.1.1 Minimize Bit-Error-Rate

Table 5.2 Minimize BER Cognitive Radio Parameters

Transmission Parameters Environmental Parameters

Modulation Type Path Loss

Modulation Index Noise Power

Bandwidth Received Signal Strength

Symbol Rate

Transmit Power

One of the most common goals in wireless communications is toget an error free

signal, or to minimize the bit error rate of the transmission. Determining the theoretical

bit error rate depends on several transmission parameters including the transmit power,

modulation type, modulation index, signal power, bandwidth, and noise power.

The most important factor in determining the BER of the systemis the channel type

and modulation in use. Each modulation and channel type combination uses a different
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formula to determine the BER of the system. Another importantfactor in determining

the BER of the system is the ratio of the energy per bit (Eb) to the noise power spectral

density (N0). This ratio essentially is a measure of the amount of energyper bit to the

amount of noise power in the system, or the basis of the signal-to-noise ratio. Each of

the formulas uses theEb/N0 ratio in deriving the BER.

To determine theEb/N0 ratio which we will now denote asγ, we start by using the

received signal power,S. We knowS is equal to the transmitted signal power that is

affected by the path loss. From S, we can get the amount of energy per symbol by using

the symbol rate,S/Rs. This can then be used to get the energy per bit by dividing by

the modulation index or the number of bits in each symbol as shown in Equation (5.4).

Eb =
S

Rs∗m
(W/b) (5.4)

The total noise power spectral density is simply the noise per Hertz and is computed

using Boltzmann’s equation.

N0 = kb∗T (J) (5.5)

N = N0∗B (W ∗Hz) (5.6)

wherekb is Boltzmann’s constant (1.38 x 10−23 J/K),T is the system noise temperature

(290 K),B is the channel bandwidth, andN is the total measured noise power. The final

equation for the value ofγ that the BER functions uses is given by:

Eb

N0
= γ = 10log10

[

S
Rs∗m∗N0

]

= 10log10

[

S
Rs∗m

B
N

]

= 10log10

[

S
N

]

+10log10

[

B
Rs∗m

]

(dB)

(5.7)

The following equations give the BER of QAM, PSK, and FSK, using a gray-coded
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bit assignment and assuming an AWGN channel model.

For a BPSK signal constellation, the probability of a bit error is defined as [7]:

Pbe = Q(
√

γ) (5.8)

Whereas for M-ary PSK, the probability of a bit error is given as [7]:

Pbe =
2

log2(m)
Q
(

√

2∗ log2(m)∗ γ ∗sin
π
m

)

(5.9)

For M-ary QAM, the probability of a bit error is defined as [7]:

Pbe =
4

log2(m)
(1− 1√

m
)Q

(

√

3∗ log2(m)

m−1
γ

)

(5.10)

A more detailed look at the forumlation of the BER functions inAppendix B. We

also show the probability of bit errors in Raleigh fading channels along with several

other modulation types in Appendix A.

The goal is to create a fitness function with a valid output range of between 0 and

1. To do this, we normalized the BER against it’s worst case of 0.5 and took the log

base 10 of the BER value in order to provide a linear scale basedon the exponent of

the BER. Otherwise, higher values of BER would dominate over very small values.

Equation (5.11) provides the final objective function for minimizing BER:

fmin ber = 1− log10(0.5)− log10(Pbe)

log10(0.5)− log10(10−6)
(5.11)

wherePbe represents the probability of a bit error or BER for a given modulation scheme

and a given channel type normalized to the worst possible BER value of 0.5 and divided

over the total possible range of BER values selected. We chose10−6 to be the best case
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BER and all experimental values seen below this value will be rounded up to 10−6.

5.4.1.2 Maximize Throughput

Table 5.3 Maximize Throughput Cognitive Radio Parameters

Transmission Parameters Environmental Parameters

Modulation Type

Modulation Index

Bandwidth

Symbol Rate

Coding Rate

Time Division Duplexing

Frame Length

The throughput definition we use is equivalent to the goodput, or the amount of good

information recieved at the receiver. This is in contrast tothe amount of information

sent by the transmitter. This less complex definition is usedin order to avoid compli-

cated throughput calculations dealing with information bit errors and retransmissions.

In addition, we assume only block coding is being used.

Maximizing throughput is useful in a variety of scenarios. Specifically, multimedia

environments that stream audio and video would place a largeweighting on maximiz-

ing throughput. For this objective, we use a theoretical model to calculate the fitness

score for an ideal transmission environment. Determining the theoretical throughput of

a system depends on the bandwidth in use, coding rate, modulation index, framesize,

and percentage of transmit time. The bit error probability plays the major role in deter-

mining the throughput degradation of the system. To determine the throughput, we use

the probability of a packet error:

Ppe = 1− (1−Pber)
L (5.12)
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The total throughput of the system is affected by the number of packet errors, or

the total data lost in transmission. Also in consideration is the MAC layer parameter

framelength. At high levels of SNR, transmission will be relatively error free with

respect to lower levels of SNR, and large framesizes can be used in order to lessen the

amount of MAC layer overhead being transmitted. At low levels of SNR more frames

will need to be retransmitted as they have a higher chance at failing MAC layer CRC

checks due to a bit error. The larger the framesize that failsthe check, the larger the

throughput that is lost every time a frame is thrown away. Research has shown that by

decreasing the framesize during periods of low SNR, significant throughput savings can

be achieved along with savings in power consumption associated with retransmitting

frames [58]. Equation (5.13) shows the derived equation that gives the relationship

between framesize, bit-error-rate, and good throughput,G:

G = m∗Rs∗
L

L+O+H
∗ (1−Pber)

(L+O) = Rb∗
L

L+O+H
∗ (1−Pber)

(L+O) (5.13)

whereRb represents the raw bit rate of the system in bits per second.H is the MAC

and IP layer overhead at a value of 40 bytes andO represents PHY layers overhead at

52.5 bytes.L represents the framelength size in bytes, andPber is the probability of a

bit error.

In addition to the previous parameters, we also take into account block coding and

the time division duplex parameters. After normalizing we get the final single objective

function:

fmaxthroughput=
L

L+O+H
∗ (1−Pber)

(L+O) ∗Rc∗TDD (5.14)
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5.4.1.3 Minimize Power Consumption

Table 5.4 Minimize Power Consumption Cognitive Radio Parameters

Transmission Parameters Environmental Parameters

Modulation Type

Modulation Index

Bandwidth

Transmit Power

Coding Rate

Time Division Duplexing

Mobile embedded environments may place high weighting on the minimize power

consumption objective. Several factors in a wireless radiocan contribute to the con-

sumption of power, including bandwidth, modulation type, coding rate, time division

duplexing, and the most obvious being transmit power. In general setting these param-

eters high will allow the transmission to become more error free and provide higher

throughput, however more power is consumed. The transmit power and bandwidth

parameters are the obvious choices for parameters that can affect this objective. Equa-

tion (5.15) shows the partial fitness function used for powerconsumption. Increasing

transmit power and increasing bandwidth will increase the fitness score. These param-

eters are normalized to provide a valid fitness score range:

f1 =
(Pmax+Bmax)− (P+B)

Pmax+Bmax
(5.15)

Also affecting the power consumption are parameters such asmodulation and in-

creased symbol rate add to computational complexity and overhead to the transmission

increasing processing and thus increasing power consumption. This power consump-

tion can vary widely over different system specifications. The goal of this work is to

keep the relationships general and not derive an equation for a specific system.

Increasing the modulation index increases the complexity of the system, in turn re-
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quired more processing. Specifically, for M-QAM modulation, higher order M-QAM

and M-PSK increases complexity in a straightforward linearfashion as it does with

spectral efficiency also. One way we recognize that the complexity increases linearly

with the number of bits per symbol because it has been shown that for QAM modula-

tions, it requires an extra 6 dB per bit increase in SNR to achieve the same performance

as the lower modulation index for AWGN performance.

Increasing the symbol rate also creates a linear increase insampling rate, which also

increases the processing required in a linear way. Equations (5.16) and (5.17) show the

general equations that are used to represent the power consumption from increased

computational complexity. Again, normalization is used toprovide valid fitness scores.

f2 =
log2(mmax)− log2(m)

log2(mmax)
(5.16)

f3 =
Rsmax−Rs

Rsmax

(5.17)

Equation (5.18) shows the combined previous equations intothe linear objective

function.

fmin power = 1−
[

α ∗ (Pmax+Bmax)− (P+B)

Pmax+Bmax

+ β ∗ log2(mmax)− log2(m)

log2(mmax)
+λ ∗ Rsmax−Rs

Rsmax

]

(5.18)

whereα,β , andλ represent weighting factors on the different contributions to the ob-

jective function. Each of the sections typically will not contribute the same amount

of power consumption. For example, the amount of power consumed by increasing

the symbol rate by 100% will most likely not be as large as the power consumed by
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increasing the transmit power by 100%. To account for these different scales, we use

weighting factors on each section that can be tweaked based upon the specific imple-

mentations of modules and hardware within the communication device. The selection

of these parameters for our simulation is presented in the cognitive engine simulation

Chapter 6.

5.4.1.4 Minimize Spectral Interference

Table 5.5 Minimize Spectral Interference Cognitive Radio Parameters

Transmission Parameters Environmental Parameters

Bandwidth Frequency Bands

Transmit Power

Time Division Duplexing

Minimizing interference is an important goal in shared frequency bands. For exam-

ple, this goal may be given a high weighting by a secondary spectrum user operating

in a primary users band. In this case the primary user has priority in a specific band of

frequency, however secondary users are allowed to transmitin the band given that they

don’t cause interference to the primary users. Transmission parameters such as transmit

power, bandwidth and time division duplexing are used to determine the approximate

amount of spectral interference that is being caused by transmission. Interference is

caused by overlapping transmissions with other users. Ideally, to calculate the total

interference you would integrate over the spectral bandwidth that your transmitting on,

and find the total power of overlapping transmissions. In this work, we assume uni-

form power transmission over the transmission bandwidth allowing us to derive the

interference equation given by Equation (5.19).

finter f erence= P∗B (5.19)
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More potential exists for interference as the bandwidth increases. In addition, more

power interference is potential as the transmit power of thetransmitter increases. This

can cause increased spectral leakage and also simply more raw power interfering with

another communications system. Equation (5.20) shows the normalized spectral inter-

ference relationship with the addition of the TDD parameter.

fmin inter f erence= 1− (P∗B∗TDD)− (Pmin∗Bmin∗1)

Pmax∗Bmax∗100
(5.20)

5.4.1.5 Maximize Spectral Efficiency

Table 5.6 Maximize Spectral Efficiency Cognitive Radio Parameters

Transmission Parameters Environmental Parameters

Bandwidth

Modulation Index

Symbol Rate

Maximizing spectral efficiency refers to maxmizing the amount of information that

can be transmitted over a given bandwidth. It is a measure of how efficient a given band

of frequency is utilized by the physical layer. This objective relates directly with the

bandwidth and the amount of information being transmitted.The symbol rate and mod-

ulation idex can be used to determine the total amount of information beign transmitted.

In order to maximize the spectral efficiency, the system would need to high amounts

of information across a little amount of bandwidth. Increasing the modulation index is

the primary way of doing this, while keeping the bandwidth constant. Equation (5.21)

shows the normalized relationship between these parameters.

fmax spectrale f f iciency=
m∗Rs

B
mmax∗Rsmax

Bmin

=
m∗Rs∗Bmin

B∗mmax∗Rsmax

(5.21)
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5.4.1.6 Multi-carrier Objective Functions

For a multi-carrier system withN independent subcarriers, the objective functions

are defined as:

fmin ber = 1− log10(0.5)

log10(Pbe)
(5.22)

wherePbe is the average BER overN independant subcarriers.

fmaxt p =

N

∑
i=1

(
Li

Li +O+H
∗ (1−Pberi)

(Li+O) ∗Rci ∗TDDi)

N
(5.23)

For the maximum throughput multi-carrier fitness function in Equation (5.23), each

carrier’s fitness score is summed together and then divided over the total number of

carriers,N, to get the average fitness score over all subcarriers. This forces the sys-

tem to improve the overall system fitness. The same follows for the minimize power

fitness function in Equation (5.25), the minimize interference fitness function in Equa-

tion (5.26), and the maximize spectral efficiency fitness function in Equation (5.27).

fmin power =

[

1−α ∗

N

∑
i=1

(Pmax+Bmax)− (Pi +Bi)

N∗Pmax+Bmax
(5.24)

+ β ∗

N

∑
i=1

log2(mmax)− log2(mi)

N∗ log2(mmax)
+λ ∗

N

∑
i=1

Rsmax−Rsi

N∗Rsmax

]

(5.25)

fmin inter f erence= 1−

N

∑
i=1

((Pi +Bi +TDDi)− (Pmin+Bmin+1))

N∗ (Pmax+Bmax+100)
(5.26)
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fmax spectrale f f iciency=

N

∑
i=1

mi ∗Rsi ∗Bmin

Bi ∗mmax∗Rsmax

N
(5.27)

wherePi is the transmit power on subcarrieri, N is the number of carriers, and

Pmax is the maximum possible transmit power for a single subcarrier. SimilarlyMi is

the modulation index used on subcarrieri andMmax is the maximum modulation index

available, whilePbe is the averaged bit error rate over all channels.

5.4.2 Multiple Objective Goals

The weighted sum approach allows us to combine the single objective functions into

one aggregate multiple objective function. Equation (5.2)shows that each objective

is multiplied by a weightwi and summed together to give a single scalar value for

approximating the value of a parameter set. For the single objective equations, we form

the multiple objective function for multiple carriers given in Equation (5.28). Note that

the single carrier version can be easily derived by settingN = 1.

Multi-carrier:

fmulticarrier = w1∗ ( fmin ber)+w2∗ ( fmaxt p)+w3∗ ( fmin power)

+ w4∗
(

fmin inter f erence
)

+w5∗
(

fmax spectrale f f iciency
)

The weighting values,w1, w2, w3, w4, andw5 determine the search direction for the

evolutionary algorithm and must conform to the constraintsgiven in Equation (5.4). To

help aid in the creation of example simulations we have defined four example weight

vectors representing common scenarios a cognitive may be placed in. Each weight

vector shown in Table 5.7 emphasizes different objectives causing an evolutionary al-

gorithm using this fitness function to evolve toward solutions pertaining to the specific
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objective.

Table 5.7 Example Weighting Scenarios

Scenario Weight Vector [w1,w2,w3,w4,w5]

Low Power Mode (minimize power) [ 0.10, 0.20, 0.45, 0.15, 0.10 ]

Emergency Mode (minimize BER) [ 0.50, 0.10, 0.10, 0.10, 0.20 ]

Dynamic Spectrum Access Mode (minimize interference)[ 0.10, 0.20, 0.10, 0.50, 0.10 ]

Multimedia Mode (maximize throughput) [ 0.15, 0.50, 0.10, 0.15, 0.10 ]

Using the scenario weight vectors and a genetic algorithm engine, we have gen-

erated genetic algorithm convergence results, along with the statistics representing the

average final decision output by the GA. These results are based on the fitness functions

and are presented in Chapter 6. Along with these results are the results of the decisions

made by a rule-based system implemented using the fitness function to generate the rule

base. These two systems are compared and the trade-offs for each system are analyzed

to determine the system that is most feasible in a given situation. The block diagram

in Figure 5.3 shows how the fitness function is used in the genetic algorithm, while

Figure 5.4 shows how the fitness function fits into the implementation of the rule base.

5.5 Summary

This chapter presented the fitness equations for a subset of the parameters and ob-

jectives presented in Chapter 3. The general multiple objective optimization problem

was formulated and we discussed how the problem fits into the cognitive radio wireless

domain. We use weighted sum approach for the formulation of the global fitness func-

tions that aggregated the single objective fitness functions into a weighted sum. This

approach has the advantage of providing a single fitness function that outputs a scalar

value. Section 5.3 introduced the single objective fitness functions that were developed.

These functions are the product of a small subset of parameters and objectives. They
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demonstrate a sample relationship between the parameters and objectives and how the

fitness function is formulated. We then showed that by developing multi-carrier fitness

functions, single carrier systems could be easily acquiredby setting the number of car-

riers to one. The weighting vector used to direct the geneticalgorithm search direction

was introduced along with several example weighting scenarios that represent practical

cognitive radio situations.
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Chapter 6

Cognitive Engine Simulation

6.1 Introduction

This chapter presents the results gathered from the simulations of the cognitive

radio engines defined in previous chapters. We being by reviewing the parameter list

as defined before, and defining the parameter value ranges that we will be using in the

simulations. Most of the parameter values used were choosento be similiar to systems

that would be implemented using the Kansas University AgileRadio (KUAR) hardware

platform [59].

After the parameter values are introducted, the cognitive engine implementations

are described in detail. Most importantly we describe how the fitness functions derived

earlier are implemented within each engine. The following section gives an analysis

on the advantages and disadvantages of each engine. We provide a performance com-

parison between the two methods that emphasize the advantages each engine has in

different hardware situations.

Finally, parameter sensitivity results are provided. These results show how much

impact certain parameters have on the optimality of the decision. This is an important

factor when developing a cognitive engine. Selecting parameters for a cognitive engine
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that have no impact on the decision is a waste of resources andcan actually be harmful

to the decision making process by adding uneccesary complexity. In addition, knowing

which parameters have the largest impact on the decision is also important. If these

parameters are known, more emphasis should be placed on the security and accuracy

of these knobs.

6.2 Cognitive Parameters Representation

Section 3.2 provides a list of transmission parameters compiled to represent com-

mon transmission parameters for cognitive radios. The goalin defining these param-

eters was to select parameters that will be used by a large number of radios. As this

parameter list increases, so does the number of control dimensions of the radio.

Table 6.1 displays a list of seven transmission parameters that we use as inputs to the

fitness function, along with the ranges selected for each parameter. The trade-off anal-

ysis between these preliminary parameters and objectives presented in the next section

will provide important numerical relationships that will be used to develop the prelim-

inary fitness functions. Also shown in Table 6.1 are the symbols for each parameter

which are used in the fitness equations to represent the value.

Table 6.1 Transmission Parameter Values
Parameter Name Symbol Min. Value Max. Value Step Size

Transmit Power P -8 dBm 24 dBm 1 dBm

Modulation Type M N/A N/A N/A

Modulation Index m 2 256 m2

Bandwidth B 2 MHz 32 MHz 1 MHz

Channel Coding Rate Rc N/A N/A N/A

Frame Length L 94 bytes 1504 bytes 10 bytes

Time Division Duplexing T% 25% 100% 25%

Symbol Rate Rs 125 Ksps 1 Msps 125 Ksps

When performing the trade-off analysis, it is important to know the possible ranges
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of the parameters used. The ranges allow us to put constraints on the relationships.

Without constraints, the trade-off analysis would be impossible due to the infinite pa-

rameter space. The ranges chosen were based upon common wireless system speci-

fications present in today’s world, with a focus on the valuesbeing used for the KU

Agile Radio (KUAR) experimental platform [59]. The transmit power,P, ranges from

-8 dBm to 24 dBm. This maximum power was selected because it is approximately the

maximum specified transmit power in the middle UNII band, given a 1 MHz bandwidth.

The maximum and minimum ranges for the modulation types cannot be specified

because they are not numerical values. We have chosen to use quadrature amplitude

modulation (QAM), phase shift keying (PSK), and frequency shift keying (FSK) signal

constellations to represent the modulation parameter values. For each signal constella-

tion, the modulation index or the number of bits per symbol, varies fromk = 1 tok = 8,

giving us a discrete range of 2 to 256 bits per symbol for a specific signal constellation.

The selection of the bandwidth,B, range was selected based more on convenience.

The maximum value of 30 MHz is the same bandwidth used by the KUAR project. Sim-

ilar to modulation type, the channel coding rate is not a continuous numerical value, but

instead represents the ratio of redundant code bits to the total number of bits in a block

of data. We assume only the only possible coding types are block coding and turbo

coding. The link layer parameter, frame length,L, is defined as being variable from 94

bytes to 1504 bytes, which is just above the maximum transmitunit available when us-

ing ethernet. We want to explore the trade-off relationships between this parameter and

all others, along with the impact on both the system throughput and BER objectives.

The third column in Table 6.2 indicates one possible step size which allows us to

calculate the size of the parameter space. Using the values in Table 6.2, the total pa-

rameter space has approximately 75 million combinations. The step sizes are typically

constrained by the resolution of the hardware devices. The values in this disseration
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were chosen to for convenience of implementation and may notrepresent typical hard-

ware resolutions. We explore how changing these values affect the operation of the GA

and the rule-based system.

An important factor in this system is the parameter space of the possible environ-

mental parameters. This parameter space represents the total number of environments

that could possible be seen by the radio. Each of these environments will have an op-

timal transmission parameter setting, and must be represented by a single rule in an

expert system. To determine the size of the parameter space,we must first determine

the number of possible values for each parameter. Practically, the parameters have con-

tinuous ranges and must have a step size defined for each so as to determine the number

of possible values per parameter. The third column in Table 6.2 indicates one possible

step size to determine the number of values.

The SNR range was determined based upon typical values that would be seen when

using a radio such as the KUAR in the given frequency range. The SNR parameter

used in this research is the SNR value at the receiving radio.This information is sent

back to the transmitting radio over a separate control channel. The control channel is

assumed to be perfect and is not in the scope of this research.The SNR can be detected

by measuring both the incoming power of the signal, which contains both the signal

power plus the noise power. Next, the noise power of the channel must be sensed by

measuring the channel when no signal is present. From these two measurements the

SNR can be determined. This can be done by allowing the receiving radio to send out a

beacon to the transmitter on a regular interval indicating that it is going to measure the

noise power. The transmitter will not transmit for a specified period of time in order to

allow the receiving radio to detect the noise power. More information on the measuring

the SNR of a channel can be examined in [60].

As mentioned previously, we use the SNR at the receiver to determine the fitness
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score. In order for the system to adapt properly to dynamic channel attenuation, we

must use both the received SNR and the current transmit powerin order to determine

the channel attenuation and path loss. Our system detects the SNR, determines the

channel attenuation and adapts the current power to the appropriate value.

The power consumption numbers are again drawn from the approximate values

from version 3 of the KUAR. The spatial knowledge is represented as GPS coordinates.

This information can be easily determined through the use ofa GPS receiver built into

the radio.

Table 6.2 Environmentally Sensed Parameter List

Parameter Name Symbol Min. Value Max. Value Step Size

Noise Power N -114 dBm -104 dBm 1 dBm

Path Loss PL 85 dBm 95 dBm 1 dBm

Battery Life BL 0 % 100% 1%

Power Consumption PC 10 W % 46 W 1 W

Spatial Knowledge SK[] N/A N/A N/A

Spectrum Information S[] N/A N/A N/A

For the algorithmic computation we will only be using the noise power and the path

loss components of the environmental variables. The othersare the trigger variables that

allow the cognitive radio to trigger changes in the primary objective of communication.

The following sections present the results of the simulations using the parameters in the

previous tables. After the presentation of the implementations and results, we provide a

analysis of the comparison between the two very different cognitive engine implemen-

tations. We will highlight on the performance tradeoffs each have, and emphasis the

advantages each provides in different operating environments. After the comparisons,

we present parameter sensitivity results that will shed light on the realistic impact each

parameter has on a cognitive radio system.
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6.3 Genetic Algorithm

6.3.1 Genetic Algorithm Implementation

The genetic algorithm used in this work was completely written in C, and compiled

and run on linux systems. The engine was built upon the SimpleGenetic Algorithm

(SGA) code [61] written by researchers at The University of Alabama. As described

before, genetic algorithms have several system parametersthat must be set specifically

for each system. In our genetic algorithm system we choose touse the de facto standard

for most genetic algorithms, the DeJong settings [50]. DeJong has shown that this

combination of parameters work better than many other parameter combinations for

function optimization. However, we make one modification tothe DeJong settings

due to our search space being extraordinarly large. We increase the population size

of each generation from 50 to 200. This change was choosen based upon a crude

population scaling law in [62]. This change allows the system to operate on more

combinations in parallel. Without this change the small population size causes the GA

to work on an extremely small subset of the entire population. This small size prohibits

the GA from being able to have spontaneous evolutions because the small chance of

randomly finding an optimal chromosome. With a larger population, the processing

need is greater however the GA is able to more fully explore the search space, which

is greatly needed with large search spaces such as the one in our problem. Table 6.3

shows the Dejong settings alongside the settings we used forour genetic algorithm

implementation.

To build the chromosomes, we first determined the number of bits that were needed

to represent each parameter. This was found by using the total number of possible val-

ues for each parameter and taking⌈log2⌉ of this value and modifying the parameter

values as needed to conform to this distribution. For example, for the frame size pa-
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Table 6.3 DeJong Genetic Algorithm Settings

Parameter DeJong Ours

Population Size 20 50

Number of Generations 1000 1000

Crossover Type Two Point Two Point

Crossover Rate 0.60 0.60

Mutation Type Bit Flip Bit Flip

Mutation Rate 0.001 0.001

rameter we initially wanted to vary the length of the frame size from 100 bytes to 1500

bytes in 100 byte increments. This gives us 15 total values for this single parameter,

however we need 16 uniformly distributed values. To achievethis, we simply divide

1500 bytes by 16 to get the step value needed to have 16 values.In the frame length

case, 93.75 bytes is the step value, however we round this to 94 bytes and make the

maximum framesize 1504 instead of 1500 to avoid any minimal biasing effects.

In total, the length of each chromosome for a single channel system consists of 31

bits. As the number of channels grows in the system, the size of the chromosomes also

grow. For example, in a 2 channel system, we have 2 independent channels each with

their own set of parameters. So the total length of a 2 channelchromosome will be 62

bits, or two times the 31 bits of a single channel system. Figure 6.1 provides a visual

representation of this increase in chromosome length. Increasing the size of the chro-

mosome adds complexity to the GA system. As the GA results section will show, it

takes longer for systems to converge on an optimal result then they have larger number

of channels. This is because the longer chromosome requiresa larger amount of pro-

cessing time in order to determine the fitness. We have already shown that the amount

of time required grows linearly with the increase in number of channels. This result is

intuitive due to the linear increase in processing needed with the larger chromosome.

The main process begins with the GA engine populating 200 chromosomes with

random bits. These chromosomes are the initial population of the system. However,
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Figure 6.1 Chromosome Length Growth

in the adapted version of the GA system, as we described in Section 4.2.1, we don’t

initalize all the chromosomes randomly. Based upon the change in the environment

since the previous adaptation cycle, we initialize some of the chromosomes with the

chromosomes that we ended with in the previous cycle. This biases the initial genera-

tion to the solution of the previous cycle. Under the assumption that the environment

hasn’t changed much, this biasing can save the GA system processing time and allow

it to converge at a much faster rate. The results for the adaptive GA system are shown

in Section 6.3.2.2

Once this initial population is created, the fitness function is perform on each in-

dividual chromosome and the fitness value for each is stored in memory. The fitness

value not only represents the optimality of the parameters,but also is the means by

which the GA engine determines whether a specific parameter set is selected to move

onto the next stage of evolution. Our system uses the stochastic remainder method to

select which chromosomes are used for the evolution process. In the stochastic remain-

der method, the ratio between a single chromosomes fitness and the average fitness of

the population is used to determine the number of copies of the chromosome which

move on to the evolution process. For example, a chromosome with a fitness to fitness

average ratio of 1.50 would be guaranteed one copy is moved onto evolution, and have

.50 probablity that a second copy would also be moved on.

Once the intermediate population of chromosomes have been selected, they can now

be recombined to create the new population. Random chromosomes are selected to be

combined using the two-point crossover process shown in Figure 2.3. The probability
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two randomly selected pairs go through the crossover process is a specific GA system

variable, in which we use 0.60 as shown in Table 6.3. Once the crossovers are complete,

they will go through the mutation process. The chance for a bit mutation is typically

very small, but it allows the GA to jump outside of the local search space, thus giving

it the ability for spontaneous evolution. In our system we have a 0.1% chance that a bit

will flip for each bit in the chromosomes. Once these operations have been applied to

the new chromosomes, the fitness function assigns new valuesto the chromosomes and

the process is repeated until we hit 1000 generations. The results from our standard GA

simulations are shown in Section 6.3.2.1.

6.3.2 Genetic Algorithm Results

In this section we present the results of the GA simulations.Several simulations

were performed that cover a wide range of environment. Our first goal is to explore

how the GA converges with the large number of parameters usedin the complex fitness

function. We look at convergence results from each of the four performance objective

scenarios that were defined in Table 5.7.

The next result we analyze are the actual parameter settingsthat the GA produces.

These results will vary based on the performance objectives. We look at how each the

performance objective weighting guide the GA to different parameter settings. In ad-

dition to the convergence and parameter settings, we show the amount of time needed

to produce a result. An important aspect of this work is the amount of processing time

needed by the GA in order to produce a valid output. Increasing the complexity of the

system increases the time need to produce a result. We explore the effect that the num-

ber of channels has on the time needed to converge to a result.We also show that this

time is reduced when employing the adaptive techniques described in Section 6.3.2.2.
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6.3.2.1 Non-Adaptive Genetic Algorithm Results

We begin with the minimize power performance objective results. Figure 6.2 shows

a standard fitness convergence graph obtained from the GA system. This figure shows

the best results from varying channels in the system. It can be seen that a system with

a single channel converges much faster then the system with 16 channels. This is due

to the processing time needed to calculate the fitness over a 16 channel system. These

results, as with all of the following results, are averaged over 100 runs with each run

using random environment variables. To highlight the effect of the increasing number

of channels in the system, Table 6.4 shows the optimal generation where the highest

fitness was found for each system. Again, for a single channelsystem, the system is

able to find the best value much earlier than the system with 16channels.
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Figure 6.2 Fitness convergence curves for the minimize power consump-
tion performance objective for systems with varying number of channels.

Figure 6.3 shows the convergence results for the Emergency scenario. In this sce-

nario we have a large emphasis on minimizing the BER of the system in order to provide
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Table 6.4 Power: Number of Channels vs. Optimal Generation

Number of Channels Optimal Generation Optimal Fitness Time per Generations (ms)

1 77 0.981 1.0

4 789 0.904 3.9

8 845 0.886 7.7

16 892 0.831 17.6

a more error free communication geared toward situations where clear communications

is essential. This scenario exhibits the same characteristics as the previous conver-

gence graph. Increasing the number of channels requires a more processing, resulting

in slower convergence rates for a higher number of channels.To get a feel on how the

number of channels affects the fitness convergence, we can see from Figure 6.3 that

a channel with 16 channels causes the fitness to cap the upper limit at approximately

20% lower then the system with a single channel.
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Figure 6.3 Fitness convergence curves for the emergency scenario perfor-
mance objective for systems with varying number of channels.

The following Figure 6.4 and Figure 6.5 also following this convention. For the

multimedia scenario, the 16 channel system decreases the achievable fitness by 26%
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Table 6.5 Emergency: Number of Channels vs. Optimal Generation

Number of Channels Optimal Generation Optimal Fitness Time per Generations (ms)

1 244 0.993 1.1

4 848 0.863 4.1

8 927 0.855 8.5

16 991 0.796 16.7

as compared to the single channel system. The DSA scenario has a cap of only 10%

lower. This is because the DSA scenario is technically a simpler trade off with fewer

parameters that are needed to converge.

0 50 100 150 200 250 300

0.4

0.5

0.6

0.7

0.8

0.9

Generations

F
itn

es
s

 

 
1 Channel
4 Channels
8 Channels
16 Channels

Figure 6.4 Fitness convergence curves for the multimedia scenario perfor-
mance objective for systems with varying number of channels.

An interesting attribute to point how is how the actual performance objective weights

are affecting the convergence results. Typically systems with higher number of chan-

nels have a harder time converging. This is a consistant problem throughout all the

scenarios we have explored. However, some have a harder timethan others. As briefly

discussed earlier, this is because the performance objectives vaary in complexity. This

complexity is defined by both the actual complexity of the algorithm, but also the num-
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Table 6.6 Multimedia: Number of Channels vs. Optimal Generation

Number of Channels Optimal Generation Optimal Fitness Time per Generations (ms)

1 252 0.920 1.1

4 644 0.717 4.3

8 971 0.717 8.5

16 984 0.681 16.7
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Figure 6.5 Fitness convergence curves for the dynamic spectrum access
scenario performance objective for systems with varying number of chan-
nels.

Table 6.7 DSA: Number of Channels vs. Optimal Generation

Number of Channels Optimal Generation Optimal Fitness Time per Generations (ms)

1 163 0.966 1.1

4 897 0.940 4.2

8 953 0.918 9.3

16 932 0.870 16.3
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ber of parameters and tradeoffs the function creates. For example, the emergency sce-

nario deals with the BER of the system. Several parameters affect the BER that are

present in other performance objectives. These tradeoffs make it less clear to the sys-

tem which parameters to use, required more processing and exploration in order to

determine the optimal fitness. Notice that even in these cases, the fitness is always

monotonically increasing, albiet slowly. In contrast scenarios such as the DSA sce-

nario, it is clear how to set the parameters because there arenot as many tradeoffs

between the parameters that affect the spectral interference objective. This results in

the more complex systems with more channels not having such adecrease in the fitness

cap as other scenarios.

The decreasing performance of GAs with more complex systemsis the primary

drawback of using such a system. The following section suggests improvements that

cause the GA to increase the time it takes to converge to the optimal fitness, and also

improves the system performance for systems with higher number of channels. These

improvements are based upon previous information and the amount of channel devia-

tion that has happened since the previous GA cycle.

Another important characteristic of the systme is the time per generation. In a

practical system, in order to optimize performance we wouldwant the cognitive system

to stop after it reaches the generation that gives the highest fitness possible, within a

ceratin threshold. For example, in the minimize power scenario as shown in Table 6.4, a

single channel system would stop after 77 generations. The average time per generation

is 1.0 ms requiring a total of 77 ms for the complete computation. For higher number

of channels, the system has a much harder time converging requiring a larger number

of generations and an even larger time per generation. We seein the DSA scenario

in Table 6.7 that for a 16 channel system the time per generation is 16.7 ms and the

average optimal generation is 984. A total of 16.4 seconds isrequired to come to the
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optimal solution in this scenario.

To put this computation time into perspective we look at the time in a 3G system

such as High-Speed Downlink Packet Access (HSDPA) in UMTS [63]. In this system

each user device transmits an indication of the downlink signal quality, as often as 500

times a second. The base station then decides which users will be sent data on the

next 2 ms frame and how much should be sent. So overall, a HSDPAsystem provides

simple link adaptation results in 2 ms. In respect to the GA system, a traditional link

adaptation system such as the 3G HSDPA system is significantly faster at updating the

parameters and adapting. However, link adaptation is a simple approach to adjusting

parameters similiar to the RBS approach. Typically only the power and modulation are

adjusted using a standard table of parameter values corresponding to specific values of

SNR. The GA system introduces several more parameters that provide more dimensions

of control over the system. Unfortunately this larger dimension of control comes at

a computational resource price. However, in the next section we provide results on

adaptive GA techniques that improve the convergence time ofthe GA, causing it to

require less amount of generations to get to an optimal solution.

6.3.2.2 Adaptive Genetic Algorithm Results

For simulation purposes, we considered following two casesusing the preliminary

fitness functions:

• Emergency Mode (minimize BER)

• Low Power Mode (minimize power)

Figure 6.6 shows the effect on the convergence rate of varying population seed-

ing percentages over a system with a 10% EVF operating in emergency mode. In our

simulation, the EVF represents the percentage change in thenoise power and channel
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Figure 6.6 Fitness convergence in emergency mode with 10% EVF, where
X/Y represents the ratio of the seeding percentage and EVF percentage.

attenuation. The fitness convergence statistics shown represent the average fitness of the

best chromosomes for each generation. The simulation results are averaged over 500

different randomly generated environments for each generation. The standard line rep-

resents the standard GA implementation that is initializedrandomly. The figure shows

that as the seeding percentage increases, the initial fitness of the population increases.

The seeding is giving the GA algorithm a better estimate of where to begin the search

initially, enabling the algorithm to start at an increased initial fitness and converge to a

higher value. As a validation of these fitness scores, Figure6.7 shows the simulatanous

BER convergence with respect to the number of generations. This plot verifies that the

higher fitness scores are providing lower BER.

As the population seeding increases, the algorithm uses more information from

previous cognition cycles to determine a good initial population. Figure 6.7 shows that

a 10% seeding value allows the algorithm to start at a higher initial fitness and converge
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Figure 6.7 BER convergence in emergency mode with 10% EVF, where
X/Y represents the ratio of the seeding percentage and EVF percentage.

to a higher value than the standard GA algorithm. In addition, the proposed population

adaptation technique reaches within 1% of the standard GAs converged value in 70

generations and continues to improve past this value. This is an 480% improvement

in speed over the standard GA implemenation that converges at approximately 337

generations. However, at 50% seeding the GA converges to a lower fitness value than

the standard GA. This is due to the large number of similiar chromosomes being seeded

initially. This lack of diversity causes the algorithm to become stuck within an area

of the search space that is not optimal. This affect becomes more prominent as the

environment becomes more dynamic.

As the EVF increases, the wireless environment is allowed tobecome more dynamic

and as a result of our restriction on the variation of the environment the average noise

level increases. This causes the population seeding technique to become less effective

at higher values, because the information from previous cognitive cycles becomes less

accurate when predicting the new location. Figure 6.8 showsthe convergence statistics
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Figure 6.8 Fitness convergence with 50% EVF in emergency mode, where
X/Y represents the ratio of the seeding percentage and EVF percentage.

with a 50% EVF value. The initial fitness with a 50% EVF is lowerthan the envi-

ronment with only 10% EVF, however it still is initially higher than the standard GA.

However, as the seeding is increased, the convergence rate quickly degrades more than

the 10% EVF case. This effect is also shown in Figure 6.9.

The figures also show the effect of the increased average noise on the fitness scores.

As the EVF increases, the increased average noise causes theaverage fitness scores to

decrease. This is because the BER fitness function must be normalized to a worst case

BER of 0.5 for all values of EVF. This causes environments withlower average noises

to achieve higher fitness scores. Ideally, the BER fitness function would be normalized

to the worst possible BER given the specific environment values. Practically, we can

not quickly determine the specific worst case BER, so we normalize the function to a

BER of 0.5. This causes the range of possible fitness scores to vary according to the

environment values used. However, this effect on the range of fitness scores as seen

by the different standard GA lines in Figure 6.6, Figure 6.8,and Figure 6.9, does not
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Figure 6.9 Fitness convergence with 90% EVF in emergency mode, where
X/Y represents the ratio of the seeding percentage and EVF percentage.

change the fact that the GA is still determining the best possible fitness for the given

environment.

Figure 6.9 shows how a highly dynamic environment is affected by population seed-

ing. With 10% seeding the proposed technique is an improvement over the standard

GA, however, there is less of an improvement in the case of 90%EVF than the lower

EVF situations. In this case, the 10% seeding coverges to within 1% of the standard

GAs converged value in 192 generations, whereas the standard GA in the 90% EVF

case converges in 426 generations. This indicates an improvement of approximately

220% over the standard GA. We can also see from the plot that the 100% seeding case

convergence is much lower relative to the standard GA than the previous plots. This

is because as the environment becomes more dynamic, large amounts of seeding only

cause the algorithm to become stuck further away from the optimal decision, thus caus-

ing a lower average fitness score.
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Figure 6.10 Fitness convergence with 10% EVF in Low Power mode,
whereX/Y represents the ratio of the seeding percentage and EVF percent-
age.

Figure 6.10 shows the simulation results in low power mode with 10% EVF. Low

power mode is defined in a way that changes in the environment do not have such a

big affect on the selection of an optimal decision as they do in emergency mode. This

is because in low power mode, the performance objectives emphasis is on operating

with low power consumption. In our simple case this means lower transmit power

translates to higher fitness, disregarding the current environmental state. For example,

if a cognitive cell phone detects low battery power, the primary performance objective

would switch into low power mode. Figure 6.12 shows the results in low power mode

with 50% EVF, which are similiar to the results with 10% EVF. For this mode, the radio

can take advantage of higher percentage seeding to achieve significantly improvements

in the convergence rate with respect to the standard GA convergence. This work has

been published [64], and selected to be published in a journal associated with that

conference [65]
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Figure 6.11 Power convergence with 10% EVF in Low Power mode,
whereX/Y represents the ratio of the seeding percentage and EVF percent-
age.

6.4 Rule-Based System

6.4.1 Rule-Based System Implementation

The implementation for the RBS consists of the MATLAB generated rules and the

CLIPS expert system shell. Initially the CLIPS shell is ran andthe rules are manually

loaded into the system. At this point, facts are inserted into the system and the expert

system is executed using the ”(run)” command. This activated the inference engine

which matches the facts to the specific rules and asserts the appropiate facts.

For the RBS we are concerned with several issues. Initially, wewanted to look at

the memory usage needed to hold the database of rules. This issue turned out to not be a

problem due to the number of possible external environmentsnot being large. However,

we explored four different weighting scenarios, each holding 36 combinations of envi-

ronments resulting in 4∗36 or 144 rules. If we were to explore all possible weighting
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Figure 6.12 Fitness convergence with 50% EVF in Low Power mode,
whereX/Y represents the ratio of the seeding percentage and EVF percent-
age.

scenarios, we would need a total of 1005 ∗36 rules or 360 trillion rules. This number

could be dramtically cut down by combining like rules which would be very common.

The second issue explored throughout the implementation ofthe RBS system is

the flexibility of the system as compared to the GA system. Having a hard coded set

of rules does not allow the flexibility of parameter changes that the genetic algorithm

has. Currently the GA system inputs a simple text XML file holding all the system

parameters such as the objective weights and which parameters are to be used in the

system. The RBS has no option to select which transmission parameters are to be used.

This requires a completely new rule base to be compiled for any hardware change in

the system. The GA doesn’t require any coding changes if parameters need to be en-

abled or disabled. This is the results of the static nature ofexpert systems that must

be hard coded before run-time. In addition, information about the operating environ-

ment may not be available until the system is needed. For example, gather the proper
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ranges for the environmental parameters can require significant time to collect accurate

measurements. In a battlefield or hostile environment, collecting measurements before

the system can be used may risk lives and cost significant amounts of money. Thus

needed a precompiled database of rules may not always be a realistic resource that can

be created.

Contrast to those disadvantages, in a system that will not be modified the RBS may

be the most efficient engine to use. If it is possible to gatherinformation about the

environment and generate the rule base offline then the lightprocessing and memory

needed for a specialized system implementation can providefor a cognitive engine that

will make quick and optimal transmission parameter decisions. The following section

gives the performance and parameter results gathered when using the RBS to find the

solutions.

6.4.2 Rule-Based System Results

The results for the RBS are essentially the rules created through the use of the

MATLAB code in Appendix A. The RBS implementation brought to light several

important research questions that we analyze along with presenting the results of the

engine. With a RBS, the environment parameters are matched to specific rules that were

created offline and the transmission parameters associatedwith these rules are applied.

When matching against the values of the environment parameters we must be careful

not to create rules containing discrete numbers. In practical systems, the inputs to the

cognitive engine will come from the sensors available to thesystem. We cannot assume

these sensors will provide nice integer numbers. In fact, many sensors pride themselves

in their sensitivity and provide very accurate measurements. With this in mind, the rules

that we create must cover specific ranges of environment variable values. So instead of

matching on a noise power of -112 dBm, we will match on a noise power within the
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range of -111.5 dBm and -112.5 dBm. This implementation requirement results in an

interesting design parameter. How does the range of the parameter in the rule affect the

number of rules needed, and the optimality of the decision.

The ranges we set introduce error in the decision of the RBS. Thetransmission

parameters that each rule specifies to use are based upon the center of the ranges in

our case. Thus, the more deviation from the center value of the environment parameter

value, the further away the decision will be from the actual parameters used to generate

the decision. Our goal is to determine ranges for the parameters that will keep the

number of rules to a minimum while keeping the error of the decision also minimum.

These two goals create a decision. Keeping the number of rules to a minimum requires

larger parameter value ranges, while keeping the error to a minimum requires smaller

parameter value ranges.

Shown below is an example rule that would be created and entered into the CLIPS

system:

(defrule cognitive_rule_13

(and (noise_power ?channel_num ?noise_power&:(>= ?noise_power -115.5))

(noise_power ?channel_num ?noise_power&:(< ?noise_power -114.5))

(and (path_loss ?channel_num ?path_loss&:(>= ?path_loss 86.5))

(path_loss ?channel_num ?path_loss&:(< ?path_loss 87.5))

(scenario ?channel_num power_mode)

=>

(assert (channel ?channel_num 14 2 2 psk 1500 1.00 125000 25)) )

This rule states that if the noise power is less than -114.5 dBmand greater than

-115.5 dBm and the path loss is less than 87.5 dBm and greater than 86.5 dBm and we

are operating in minimize power mode, set the transmission parameters to the following

settings:

• Transmit Power: 14 dBm
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• Bandwidth: 2 MHz

• Modulation: BPSK

• Frame Length: 1500 bytes

• Code Rate: 1

• Symbol Rate: 125 Ksps

• TDD: 25%

For this example we set the bin size to be 1 dBm and the transmission parameter

settings were generated for a system with noise power of -115dBm and path loss of

87 dBm. We load a set of rules similiar to this one into the system using the ”(load*

¡rules¿)” command. At this point the system now waits for ”facts” to be asserted. An

example declaration for a fact that would match the previousrule would be:

(deffacts c2

(noise_power 2 -114.5)

(path_loss 2 87.5)

(scenario 2 power_mode) )

This fact would be asserted into the system, and once the inference system is ran,

using the CLIPS command ”(run)”, a new fact is instantly asserted that states:

(channel 2 14 2 2 psk 1500 1.00 125000 25)

In this example, the system sees an environment that is righton the edge of the

parameters ranges made for the rule that it matched. Although this rule matches the

given environment, the transmission parameters asserted were not generated for this

environment, creating a less than optimal decision. In thisexample we have shown,
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the error between the fitness of the environment for which thetransmission parameters

were created and the environment that was actually seen is only 2%. As we increase

the bin size to 1.5 dB we see an error of 5% and as it reaches 2 dB we get an 8% error

in optimality. However, with the bin size at 2 dB our rule sizeis cut in half. Table 6.8

shows the results of the fitness deviation resulting from increasing the bin size of the

parameters for the difference scenarios.

Table 6.8 Worst Case Fitness for Various Bin Sizes and Scenarios
Bin Size Power Scenario Emergency Scenario Multimedia Scenario DSA Scenario

1.0 dB 0.9785 0.9416 0.9247 0.9414

1.5 dB 0.9475 0.9202 0.8960 0.9201

2.0 dB 0.9224 0.9007 0.8607 0.8998

2.5 dB 0.8994 0.8745 0.7778 0.8647

6.5 Performance Comparison

The initial performance comparison we look at are the fitnessscores. Each systems

fitness varies based upon the specific system parameters thatwe are usign at the time.

For the RBS, with small bin sizes, we achieve a better estimate of the environment giv-

ing us a better average fitness value. As the bin size grows theapproximation becomes

less effective causing the average fitness score to decrease. Similiary, the number of

channels in the GA system affects the overall fitness due to the increasing complex-

ity of higher number of channels. Increasing the number of channels increases the

chromosome size, and causing a larger processing requirement for each generation. A

summary of these results is shown in Table 6.9.

The RBS has the advantage of providing these scores in a channelindependant

environment. No matter how many channels are in use in the system, if the bin size

is 1 dBm and the performance objective uses the minimize powerweights, the worst
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Table 6.9 Cognitive Engine Results Comparison

Scenario GA: Single Channel GA: 16 Channel RBS: 1.0 dBm RBS: 2.5 dBm

Minimize Power 0.973 0.882 0.9785 0.8994

Emergency 0.992 0.793 0.9416 0.8747

DSA 0.966 0.869 0.9414 0.8647

Multimedia 0.920 0.680 0.9247 0.7778

case fitness will achieve 0.9785. This is because each rule isran independantly for

each channel. This is not the case for the GA system where the number of channels

dictates the number of bits in the chromosome. The nature of the GA system requires

the whole chromosome to be processed at once. Thus, systems with higher number

of channels require longer amounts of processing time with respect to systems with

smaller number of parameters. In addition, the 1000 generation stopping criteria places

a cap on the evolution of the genetic algorithms. This results in lower fitness scores for

systems with higher number of parameters.

The adaptive genetic algorithm showing much improvement over the non-adaptive

engine has been shown to converge to a solution in as little as70 generations. In ad-

dition, a GA system can be designed and deployed in almost anyenvironment with

little changes to the system. Using XML configuration files asinputs to the system,

the weights and active parameters can be changed on the fly without any offline or pre-

design computation. In the end, in terms of raw performance the RBS outperforms the

GA due to the amount of processing that can be performed offline.

In terms of practical usage, each system has its place. The RBS thrives in non-

mobile environments such as cell tower applications where the environment is not

changing dramatically enough and the performance objectives are typically always un-

changed. This results in fewer dynamic changes to the systemand the cognition can be

focuses on adapting to the low level channel environment. A GA system would benefit

a very mobile environment such as a handheld battlefield application. If needed the
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user could change the performance objective drastically and the system automatically

changes goals and converges using the new weights. In addition, parameters can be

deactivated dynamically to save resources in a limited resource environment if needed.

For example, a soldier may notice that the battery life is running low and instead of

allowing the cognitive engine to modify the weights and operate in low power mode,

which results in a shorter communication range, the soldiercan deactivate the frame

length and code rate parameters and set them to static values. This change may save

processing and memory usage that may result in longer life for mission critical appli-

cations.

Refering to the previous scenario, the specific parameters that the soldier needs to

deactivate should be choosen wisely. If the soldier deactivates an important parame-

ter, the communication may be severly degraded. To address this, we do a parameter

sensitivity analysis for cognitive radios. This analysis will help users such as a soldier

in a battlefield using a cognitive radio such as ours, to understand which parameters

are sensitive to the current performance objective and which parameters add little to

nothing and are not needed.

6.6 Parameter Sensitivity Analysis

An interesting result of this work is the ease of selecting and deselecting param-

eters that are adaptable. The GA enables an interface that allows users to select the

appropiate parameters for their system. For example, only transmit power and mod-

ulation may be available and adaptable on a simple system, while others may include

frame length and code rate also. With the ability to select and deselect parameters we

can easily do parameter sensitivity analysis that is much needed in the area of cognitive

radios. Much hype has been spoken about the ability of cognitive radios to automat-
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ically adapt parameters to achieve optimal communications. This work analyzes sev-

eral issues with complexity and performance issues specifically with regard to Genetic

Algorithms. These complexity and performance issues are common to all cognitive

engines, not just the GA’s we analyze in this work. The primary question, does the

adaptability that cognitive radio enables really provide aperformance advantage when

it comes to processing time and efficient resource usage.

One research question we use to answer the more abstract question is, how effec-

tive are the parameters that are adaptable? For example, a cognitive radio with an over

abundance of parameters may require extreme amounts of unessecary resource require-

ments, primarily being processing. Identifying the primary parameters that contribute

greatly to the wireless communication will allow developers to ”weed out” unessecary

parameters that do not add anything except processing time to the system. To explore

this, we disable parameters in our system and watch how the fitness is affected when

a parameter is not required to be adaptable. We expect to see the fitness converge to

low fitness values for the important parameters such as transmit power and modulation,

and the fitness converge to similiar values as presented before for parameters that do

not contribute much. We also expect the sensitivity to be greatly affected by the perfor-

mance objective. For example, if a majority of the weight is placed upon maximizing

the spectral efficiency of the communications, then the modulation index, or the num-

ber of bits per symbol will be very sensitive and greatly affect the fitness, while frame

length will have little to no affect.

6.6.1 Power Scenario

We begin our sensitivity analysis with the minimize power performance objective.

The largest impact we expect to see is keep the transmit powerparameter from being

adapted. We set the transmit power parameter to two seperatestatic values of -8 dBm,
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10 dBm and the 20 dBm and observe the affect it has on the fitness. The fitness conver-

gence graph is shown in Figure 6.13 that shows the original fitness graph mapped over

the fitness of the systems that are not able to adapt transmit power.
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Figure 6.13 Minimize Power: Fitness convergence effect when holding
the transmit power parameter static at various values versus being completely
adaptable.

Figure 6.13 shows how the fitness is affected due to the staticnon-adaptability of

the power parameter. With the power adaptable we converge ata fitness near perfect,

or near 1. However, without being able to adapt the power parameter, the fitness con-

verges at 10% lower for a static setting of 10 dBm and 8% lower ata static value at the

maximum of 24 dBm. These results tell us that for this specific performance objective,

the transmit power parameter has significant value on the output of the system. Another

parameter that we expect to have a major affect on the fitness when being held constant

is the time division duplexing parameter,TDD. The value of this parameter tells us how

much time we are transmitting. A low value ofTDD is ideal for low power scenarios,

while higher values correspond to longer transmissions andthus higher power usage.
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Figure 6.14 shows the results of holdingTDD constant at 100% or ”always on”.
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Figure 6.14 Minimize Power:Fitness convergence effect when holding the
TDD parameter static at various values versus being completely adaptable.

The results of the TDD sensitivity on the minimize power scenario is very signifiant.

While setting the TDD to 100% and not allowing the system to adapt it, the fitness can

evolve to only 66% of the adaptable systems fitness value. While TDD is not typically

a primary concern when setting transmission parameters, these results show that this

parameter can significantly affect transmission, primarily because it controls the basic

transmission state of the system. In reality, a communications system will typically

never be transmitting 100% of the time. However these results point out the importance

of allowing the system to adapt to appropiate values.

Finally we look at the result of not adapting the modulation index for the minimize

power scenario. With the emphasis on minimizing the power, holding the modulation

index at a more power consuming modulation will cause the fitness to have a lower up-

per limit. However, the modulation plays a smaller role in the minimize power fitness

score than transmission power and will not affect the score as much. Figure 6.15 shows
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the results of keeping the modulation index static at eight symbols per second. The sys-

tem is only loosing about 5% of optimality which give this parameter a low sensitivity.

Table 6.10 shows a summary of the parameters we have exploredfor the performance

objective with an emphasis on minimizing power.
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Figure 6.15 Minimize Power: Fitness convergence effect when holding
the modulation parameter static at various values versus being completely
adaptable.

Table 6.10 Power Scenario: Parameter Sensitivities
Transmission Parameter Sensitivity

Transmission Power medium

Time Division Duplexing high

Modulation Index medium

6.6.2 Emergency Scenario

Our next scenario places the majority of the weight on minimizing the bit-error-

rate of the transmission. We expect this scenario to be sensitive to transmission power

and modulation parameters. However we also have 20% of the weight on the spectral
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efficiency objective. This objective focuses on the number of bits per symbol or the

modulation index, also emphasizing importance on the modulation index. Figure 6.16

shows the results of keeping the transmission power static at -8 dBm, 7 dBm and 20

dBm.

0 50 100 150 200 250 300

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Adaptive
Static: Power −8 dBm
Static: Power 7 dBm
Static: Power 20 dBm

Figure 6.16 Emergency: Fitness convergence effect when holding the
transmit power parameter static at various values versus being completely
adaptable.

Figure 6.16 shows the wide range of fitness that the transmission power controls

in this objective. At the low power value of -8 dBm, the fitness has an upper limit

46% lower then if it were able to be adaptable. This highly elastic fitness convergence

curve makes the transmission power a highly sensitive parameter. Figure 6.17 gives the

fitness convergence of keeping the modulation index static at both 4,16 and 32 symbols.

Figure 6.17 shows that the modulation index does not affect the system in the same

linear manner as the transmission power. When determining BERthe modulation index

plays an important role in determining the energy per bit of transmission. At higher
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Figure 6.17 Emergency: Fitness convergence effect when holding the
modulation parameter static at various values versus being completely adapt-
able.

modulations the energy per bit is spread thin, causing lowerBER resulting in a low

fitness. We consider this high sensitivity because a large change in fitness results from

changing the modulation index. Figure 6.18 gives the fitnessconvergence of keeping

the symbol rate static at 125000, 500000 and 1000000.

From the symbol rate sensitivity shown in Figure 6.18, we cansee that the adapt-

ability of the symbol rate has little affect on the fitness when the focus is on minimizing

the BER. This result is expected because of the fact that the symbol rate has little affect

on the system BER, and little weight is given to other objectives that use symbol rate.

Table 6.11 shows the summary of the explored parameters and the sensitivities that

they exhibit in the emergency scenario.
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Figure 6.18 Emergency: Fitness convergence effect when holding the
symbol rate parameter static at various values versus being completely adapt-
able.

Table 6.11 Emergency Scenario: Parameter Sensitivities

Transmission Parameter Sensitivity

Transmission Power high

Symbol Rate low

Modulation Index high
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6.6.3 Multimedia Scenario

The third scenario focuses on multimedia applications thatrequire high throughput.

Maximizing the data throughput is the primary focus of this objective, with 50% of the

weight on the maximize throughput objective. We expect thatthe modulation index and

frame length will be the most sensitive parameters in this scenario. Figure 6.19 shows

the results of keeping the transmission power static at -8, 10 and 20 dBm. We again

see from the Figure that certain values of transmission power result in a fitness upper

limit that is 50% lower then the limit that results from a fully adaptable system. This

results again in transmission power being a highly sensitive parameter in the multimedia

scenario.
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Figure 6.19 Multimedia: Fitness convergence effect when holding the
transmit power parameter static at various values versus being completely
adaptable.

Figure 6.20 gives the fitness convergence of keeping the modulation index static at

2, 8 and 32 symbols.

Figure 6.21 gives the fitness convergence of keeping the symbol rate static at 125000,
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Figure 6.20 Multimedia: Fitness convergence effect when holding the
modulation parameter static at various values versus being completely adapt-
able

500000 and 1000000 symbols per second. The fitness deviates over a 0.05 range when

the symbol rate is held constant at the defined values.

Figure 6.22 gives the fitness convergence of keeping the frame length static at 100,

700 and 1500 bytes. We see from the Figure that at lower frame lengths we typically

get lower fitness scores, about 30% lower.

Table 6.12 Multimedia Scenario: Parameter Sensitivities
Transmission Parameter Sensitivity

Transmission Power high

Symbol Rate low

Frame Length high

Modulation Index low
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Static: Symbol Rate 125 Ksps
Static: Symbol Rate 500 Ksps
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Figure 6.21 Multimedia: Fitness convergence effect when holding the
symbol rate parameter static at various values versus being completely adapt-
able
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Figure 6.22 Multimedia: Fitness convergence effect when holding the
frame length parameter static at various values versus being completely
adaptable
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6.6.4 DSA Scenario

The final scenario we will explore is the dynamic spectrum allocation scenario.

This performance objective focuses on reducing the amount of spectral interference

that the system adds to the wireless spectrum as a hole. This can be done by lowering

the transmission power of communications which dampens theoverall noise power in

reference to others in the same band. Interference can also be reduced by decreasing the

transmission bandwidth of communication which in turn reduces the total throughput

of the system, but allows others to communicate with less interference in neighboring

bands. The most obvious way to reduce interference is to simply not transmit. This will

be seen in theTDD sensitivity which as shown in Figure 6.23 has high sensitivity for

this objective.
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Figure 6.23 DSA: Fitness convergence effect when holding the TDD pa-
rameter static at various values versus being completely adaptable

Figure 6.24 gives the fitness convergence of keeping the transmission static at -8,

10 and 20 dBm. Unlike the previous scenarios, the transmission power does not affect
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the system as much in this scenario. In addition the result ofchanging the power is a

non-linear change in the fitness cap. The low cap is with the 7 dBm power, with the

20 dBm slightly higher and the -8 dBm cap is near the adaptable system. This non-

lineary occurs because of the affect transmission power hason the other performance

objectives. In this scenario, a lower transmission power will result in less interference,

however, the throughput will also be lower. We have a weight of .20 on the maximize

throughput which gives higher fitness to higher throughput.

0 50 100 150 200 250 300
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Generations

F
itn

es
s

 

 
Adaptive
Static: Power −6 dBm
Static: Power 7 dBm
Static: Power 20dBm

Figure 6.24 DSA: Fitness convergence effect when holding the transmit
power parameter static at various values versus being completely adaptable

Figure 6.25 gives the fitness convergence of keeping the bandwidth static at 2, 15

and 30 MHz. We see from this Figure that varying the bandwidthcan significantly

reduce the upper fitness cap. A drop of about 23% occurs when the bandwidth is set at

the maximum of 30 MHz, resulting in a large amount of interference. This verifies that

in this scenario, the bandwidth is highly sensitive.

Figure 6.26 gives the fitness convergence of keeping the frame length static at 100,

700 and 1500 bytes. You can see that there is little to no deviation between all four
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Figure 6.25 DSA: Fitness convergence effect when holding the bandwidth
parameter static at various values versus being completely adaptable

of the fitness convergence curves. This implies that the frame length parameter has

very little sensitivity to the DSA performance objective. We can take advantage of

this information when implementing other cognitive radio systems, whether they be

GA-based, RBS-based, or even Case based reasoning systems, by disregarding any

computation involving the frame length when the system is inthis mode. This can be

done by removing the parameter from any rules, which would decrease the size of the

rule base, or ignore the frame length parameter when trying to match specific cases in

a CBR system.

Again we provide a summary for this objective in both Figure 6.26, which shows

graphically how the fitness is affected by the worst static parameter settings we ex-

plored, and Table 6.13 which shows the summary of the sensitivities of each of the

parameters described in this section.
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Figure 6.26 DSA: Fitness convergence effect when holding the frame
length parameter static at various values versus being completely adaptable

Table 6.13 DSA Scenario: Parameter Sensitivities
Transmission Parameter Sensitivity

Transmission Power medium

TDD high

Frame Length low

Bandwidth high
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Chapter 7

Conclusion

7.1 Research Achievements

In this disseration a number of contributions have been madein the area of cognitive

engine adapatation techniques. The research achievementsof this disseration are the

following:

• Multiple objective fitness functions representing the relationships between the

transmission parameters, environmental measurements, and performance objec-

tives were developed. Using theoretically relationships between several different

parameters and the weighted aggregate sum approach, equations for each perfor-

mance objective were developed to be used within cognitive adaptation engines.

The objectives of these multiple fitness functions are controlled by the values of

the weights on each function.

• These equations were implemented by two different machine learning techniques

that were used in a cognitive adaptation engine. From this implementation, we

explored the advantages and disadvantages of the genetic algorithm approach

and the rule based system approach. We discovered that the genetic algorithm
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approach was more flexible and provided an interface that allows the user to

easily adjust system parameters. However the genetic algorithm suffered from a

high requirement for processing power which caused it to perform slower then

the RBS. The RBS was able to provide solutions very fast while needing a lower

amount of memory for storage then expected. However, the need for a static

database of rules restricted the flexiblity of the RBS.

• We developed an adaptive improvement to a standard genetic algorithm initializa-

tion procedure that improves the speed of convergence of thegenetic algorithm.

Based on the observed change in the environment, this adaptive technique biases

the initial generation of the GA population to lean toward the solution of the pre-

vious run. This technique improves performance only if the environment has not

changed significantly, and as long as the appropiate amount of chromosomes are

seeded.

• Sensitivity analysis was performed on several parameters in the system. We

showed that this sensitivity varied based on the specific performance objective of

the system. Sensitivity analysis uncovered the parametersthat have little effect

on the system. This could allow wireless system designers todesign a system

without the less sensitive parameters in order to lower system complexity and

resource usage. High sensitivity parameters were also shown to exist. These pa-

rameters have a large effect on the system when altered. Thisinformation can be

used to suggest which parameters be used in the cognitive adaptation process.

The list of publications related to the work presented in this disseration is as follows:

Book Chapter
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B1. Timothy Newman, Alexander M. Wyglinski, and Joseph Evans, Cognitive Radio

Implementation for Efficient Wireless Communication.Encyclopedia on Wireless

and Mobile Communications, Borko Furht, Editor, CRC Press, 2007.

B2. Timothy Newman, Muthukumaran Pitchaimani, Benjamin Ewy,and Joseph Evans,

Architectures for Cognition in Radio Networks,Invited submission to Cognitive

Radio Networks, Yang Xiao and Fei Hu, editor, CRC Press, 2008.

B3. Joseph Evans and Timothy Newman, VLSI Implementations ofDigital Filters.

Invited section in Circuit and Filter Handbook, 2nd Edition, W. K. Chen, editor-

in-chief, CRC Press, 2008.

Journal Papers

J1. Timothy R. Newman, Rakesh Rajbanshi, Alexander M. Wyglinski, Joseph B. Evans,

and Gary J. Minden, “Population Adaptation for Genetic Algorithm-based Cogni-

tive Radios,”ACM/Springer Mobile Ad Hoc Networks – Special Issue on Cognitive

Radio Oriented Wireless Networks and Communications, 2008.

J2. G. J. Minden, J. B. Evans, L. Searl, D. DePardo, R. Rajbanshi,J. Guffey, Q. Chen,

T. Newman, V. R. Petty, F. Weidling, M. Lehnherr, B. Cordill, D. Datla, B. Barker,

and A. Agah, “An agile radio for wireless innovation,”IEEE Commun. Mag., May

2007.

J3. Timothy R. Newman, Brett A. Barker, Alexander M. Wyglinski,Arvin Agah, Joseph

B. Evans, and Gary J. Minden, “ Cognitive Engine Implementation for Wireless

Multicarrier Transceivers,”Wiley Journal on Wireless Communications and Mobile

Computing, vol 7. (9), November 2007.
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Conference Papers

C1. Timothy R. Newman, Rakesh Rajbanshi, Alexander M. Wyglinski, Joseph B. Evans,

and Gary J. Minden, “Population Adaptation for Genetic Algorithm-based Cog-

nitive Radios,”Proceedings of the Second International Conference on Cognitive

Radio Oriented Wireless Networks and Communications(Orlando, FL, USA), Au-

gust 2007.

C2. Gary J. Minden, Joseph B. Evans, Leon Searl, Daniel DePardo, Victor R. Petty,

Rakesh Rajbanshi, Jordan Guffey, Qi Chen, Timothy R. Newman, Frederick Wei-

dling, Dinesh Datla, Brett Barker, Megan Peck, Brian Cordill, Alexander M. Wyglin-

ski, and Arvin Agah, “KUAR: A Flexible Software-Defined Radio Development

Platform,” Second IEEE Symposium on New Frontiers in Dynamic Spectrum Ac-

cess NetworksDublin, Ireland), November 2006.

C3. Timothy R. Newman, and Gary J. Minden, “A Software Defined Radio Archi-

tecture Model to Develop Radio Modem Component Classifications,” IEEE Sym-

posium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN ’05)

Baltimore, MD, Novemeber 8-11, 2005.

7.2 Future Work

There exists a number of topics resulting from this researchthat can be continued.

• Several other possible machine learning techniques exist that can be implemented

in addition to the techniques explored in this work. Techniques such as case-

based reasoning systems or neural networks can be used as theadaptation tech-

nique or be implemented in tandem with the techniques described in this dissera-

tion. For example, using case-based reasoning systems to remember ”good” solu-
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tions to specific environments and use this information to seed the GA could pos-

sibly improve performance of the system if it encounters environments it hasn’t

seen in long periods of time.

• We explored four different weighting scenarios that emphasized different perfor-

mance objectives. We noted on several occasions such as the sensitivity analysis

that the results differed based upon the weight combinations. Lots of room exists

to explore a more wide range of weight combinations in order to fully uncover

how the performance objectives affect different aspects ofthe cognitive adapta-

tion.

• Our system operates without the need for feedback information from the network

or the communication partner. The fitness functions were developed using theo-

retical equations which are not exact and sometimes can not approximate the en-

vironment correctly. With feedback from the the opposite communication node,

the cognitive adaptation engine would have extended information about how well

the current settings are working. Using this information, other adaptation tech-

niques can be used to alter the parameters if the theoreticalfitness functions are

not modeling the environment properly.

• Fitness function improvements can be made in order to allow the system to model

a wider range of environments. Implementing BER functions that model other

environments such as the ones described in Appendix B give the system more

flexibility to work in additional environments.
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Appendix A

MATLAB Rule Generation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Set variable values

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

v = .10;

w = .50;

x = .10;

y = .10;

z = .20;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Constant Values

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mac_oh = 40; % MAC Layer overhead in (Bytes)

phy_oh = 52.5; % PHY Layer overhead (Bytes)

kb = 1.38 * 10^-23; % Boltzmann’s constant (J/K)

T = 290; % System noise temperatue (K)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Minimum and Maximum values

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

power_max = 24; % Maximum Power (dBm)

power_min = -8; % Minimum Power (dBm)

bandwidth_max = 34; % Maximum bandwidth (MHz)
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bandwidth_min = 2; % Minimum bandwidth (MHz)

mod_max = 256; % Maximum modulation index.

mod_min = 2;

symbol_rate_max = 1000000; % Maximum symbol rate (Symbols / second)

symbol_rate_min = 125000;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Transmission paramet er ranges

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

power = [power_min:2:power_max];

bandwidth = [bandwidth_min:2:bandwidth_max];

tdd = [1:10:100];

mod_index = [ 2 4 16 64 256 ];

symbol_rate = [125000 250000 500000 625000 750000 1000000];

frame_length = [100 : 100 : 1500 ];

coding_rate = [1 1/2 3/4 5/6];

mod_type = {’qam’,’psk’,’pam’};

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Environmental parameter ranges

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

path_loss = [87:1:92];

noise_power = [-117:1:-112];

% Total number of parameter combinations

combinations = length(power) * length(bandwidth) ...

* length(tdd) * length(mod_index) * ...

length(symbol_rate) * length(frame_length) ...

* length(mod_type) * length(coding_rate) * ...

length(path_loss) * length(noise_power)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Fitness Function

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialize the indexes that hold the position in the array

mod_index_index = 1;

tdd_index = 1;

symbol_rate_index = 1;
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power_index = 1;

bandwidth_index = 1;

mod_type_index = 1;

coding_rate_index = 1;

frame_length_index = 1;

snr_index = 1;

np_index = 1;

pl_index = 1;

fitness_array = [ ];

% Go through all possible combinations of transmission parameters and

% calculate the fitness. These fitness values are held in a 10-dimensional

% array indexed by the parameter indexes defined above.

for p = power

for b = bandwidth

for m = mod_index

for pl = path_loss

for sr = symbol_rate

for np = noise_power

for cr = coding_rate

for mt = mod_type

for t = tdd

for f = frame_length

%% Populate the fitness array with

%% outputs from the fitness

%% function

fitness_array(np_index,pl_index,power_index,

bandwidth_index,tdd_index,mod_index_index,

symbol_rate_index,frame_length_index,

coding_rate_index,mod_type_index) = ...

fitness_score(np,pl,p,b,t,m,sr,f,cr,char(mt),v,w,x,y,z,

power_max,power_min,symbol_rate_max,symbol_rate_min,

bandwidth_max,bandwidth_min,mod_max,mod_min);

frame_length_index = frame_length_index + 1;

end

tdd_index = tdd_index + 1;

frame_length_index = 1;

117



end

tdd_index = 1;

mod_type_index = mod_type_index + 1;

end

mod_type_index = 1;

coding_rate_index = coding_rate_index + 1;

end

coding_rate_index = 1;

np_index =np_index + 1;

end

np_index = 1;

symbol_rate_index = symbol_rate_index + 1;

end

symbol_rate_index = 1;

pl_index = pl_index + 1;

end

pl_index = 1;

mod_index_index = mod_index_index + 1;

end

mod_index_index = 1;

bandwidth_index = bandwidth_index + 1;

end

power_index = power_index + 1;

bandwidth_index = 1;

end

% Determine the maximum,minimum, and range of fitness

% for each environment.

for i = 1:1:6

for j = 1:1:6

A = fitness_array(i,j,:,:,:,:,:,:,:,:);

max_fitness(i,j) = max(A(:));

min_fitness(i,j) = min(A(:));

range_fitness(i,j) = max(A(:)) - min(A(:));

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Open CLIPS rules file for writing

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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filename = sprintf(’rules/Cognitive_Rules_emerg_1.clp’);

fid = fopen(filename, ’w’);

if (fid == -1)

error(’write_file: cannot open file for writing’);

end

% Loop through each environment and create a CLIPS rule for the

% optimal fitness found.

for i = 1:1:6

for j = 1:1:6

rule_count = rule_count + 1;

% Find the max fitness and search for the corresponding

% transmission parameters in the array.

A = fitness_array(i,j,:,:,:,:,:,:,:,:);

[ o k ] = max(A(:));

[np_index pl_index power_index bandwidth_index

tdd_index mod_index_index symbol_rate_index

frame_length_index coding_rate_index mod_type_index]

= ind2sub(size(A),k);

% Translate the index found for the max fitness

% into real parameter values.

p = power(power_index);

b = bandwidth(bandwidth_index);

t = tdd(tdd_index);

mi = mod_index(mod_index_index);

sr = symbol_rate(symbol_rate_index);

f = frame_length(frame_length_index);

cr = coding_rate(coding_rate_index);

mt = char(mod_type(mod_type_index));

%% Print rules to the CLIPS rules file

fprintf(fid, ’(defrule cognitive_rule_%i\n’,rule_count);

fprintf(fid, ’ (noise_power %i)\n’,-118+i);

fprintf(fid, ’ (path_loss %i)\n’,86+j);

fprintf(fid, ’ (channel_number ?channel_num)\n’);

fprintf(fid, ’ (scenario emerg_mode)\n’);
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fprintf(fid, ’=>\n’);

fprintf(fid, ’ (assert (channel ?channel_num %2.0f

%2.0f %3.0f %s %4.0f %1.2f %7.0f %3.0f)) )\n\n\n’,

p,b,mi,mt,f,cr,sr,t);

end

end
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Appendix B

BER Equations

Section 5.4.1.1 gave several basic BER equations including M-ary PSK and M-

ary QAM forumlas in AWGN channels. However, we present more forumlas in this

appendix because different channel types exist other than AWGN. We present breifly

cover the derivation of BER forumlas and present equations for Raleigh and Rician

fading channels.

For fading channels in general, [66] provides generalized closed form equations for

BPSK, M-QAM, and M-PSK modulations. Each forumla follows thegeneral quation

format for the probability of a symbol error as shown in B.1.

Pe =
∫ ∞

0
PAWGN(x)p(x)dx (B.1)

Wherep(x) is the probability density function (PDF) of the channel. For each of

the following equations,I(γ̄,g,θ), represents specific definite integrals for the Rayleigh

and Rician fading channels, wherēγ is the average signal to noise ratio,g is a modula-

tion coefficient, andθ is the variable of integration.

Rayleigh:
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p(γ, γ̄) =
1
γ̄

exp

(

−γ
γ̄

)

(B.2)

I(γ̄,g,θ) =

(

1+
gγ̄

sin2θ

)−1

(B.3)

Rician:

p(γ, γ̄,n) =

(

1+n2
)

e−n2

γ̄
exp

(

(

1+n2
)

γ
γ̄

)

I0

(

2nα

√

(1+n2)γ
γ̄

)

(B.4)

wheren2 is the Ricean factor

I(γ̄ ,g,θ) =

(

1+n2
)

sin2θ
(1+n2)sin2θ +gγ̄

exp

(

− n2gγ̄
(1+n2)sin2θ +gγ̄

)

(B.5)

[66] uses these PDFs and definite integrals to defined the generalized closed form

equations for the different modulation schemes as shown in the following equations.

BPSK:

Pe =
1
π

∫ π
2

0
I(γ̄,g,θ)dθ (B.6)

whereg = 1 for BPSK

M-PSK:

Pe =
1
π

∫
(M−1)π

M

0
I(γ̄ ,g,θ)dθ (B.7)

whereg = sin2
( π

M

)

for M-PSK

M-QAM:

Pe =
4
π

(

1− 1√
M

)

∫ π
2

0
I(γ̄ ,g,θ)dθ − 4

π

(

1− 1√
M

)2∫ π
4

0
I(γ̄ ,g,θ)dθ (B.8)
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whereg = 3
2(M−1) for M-QAM

As mentioned in the future work, new fitness functions can be defined that take into

account these BER models. This would extend the amount of useable environments

that these cognitive adaptation engines can effectively operate within.
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