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Abstract

This thesis explores genetic algorithm and rule-basedrigdition techniques used
by cognitive radios to make operating parameter decisi@Qugnitive radios take ad-
vantage of intelligent control methods by using sensedrin&tion to determine the
optimal set of transmission parameters for a given sitnatide have chosen to explore
and compare two control methods. A biologically-inspiredetic algorithm (GA) and
a rule-based expert system are proposed, analyzed and tesitg simulations. We
define a common set of eight transmission parameters ancgisoement parame-
ters used by cognitive radios, and develop a set of prelirpifitmess functions that
encompass the relationships between a small set of theseang output parameters.
Five primary communication objectives are also defined a@diun conjunction with
the fitness functions to direct the cognitive radio to a sotut These fitness functions
are used to implement the two cognitive control methodscsede The hardware re-
sources needed to practically implement each techniqustadéed. It is observed,
through simulations, that several trade offs exist betwesh the accuracy and speed
of the final decision and the size of the parameter sets usaetéomine the decision.
Sensitivity analysis is done on each parameter in ordertierisiéne the impact on the
decision making process each parameter has on the cogeitgiee. This analysis
quantifies the usefulness of each parameter.
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Chapter 1
Introduction

1.1 Research Motivation

Cognitive radio technology is receiving significant attentas an approach to alle-
viate the FCC identified problem of the scarcity of availab#io spectrum [1-4]. Cog-
nitive radios take advantage of the reconfigurable atie#of a conventional software-
defined radio (SDR) by using an ™intelligent™ control methto automatically adapt
operating parameters based on learning from previous ®agok current inputs to the
system. The momentum of research efforts, due in part toutrert spectrum scarcity
problem, as well as a Department of Defense initiative [1di¢welop a flexible soft-
ware radio approach for war-fighter communications, halslgcenumerous initiatives
and programs by researchers in academia [5] and industryT[@ resulting plethora
of cognitive radio solutions range from cognitive radio gmnents and radio network
testbeds [5] to complete radio systems [2]. However, thestiil no common con-
sensus on how to implement a cognitive radio, most impdytantt agreement on the
best method used as the ™intelligent” control. This resbanvestigates two possible
methods for ™intelligent™ control and derives an anabsil relationship between the

radio environment and the radio transmission parametatgitive the control method



to a solution. From this relationship, sensitivity anatyisi performed on the commu-
nication parameters commonly used in wireless commuwoicgiin order to determine
the performance impact for each parameter.

The initial focus of this thesis is to investigate the quasbf what technology could
be used to implement a cognitive radio decision making engiowever, before this
guestion can be examined, several other questions mustshesead in order to piece
together a conclusion. In the most general sense, a cogméaio uses information
about the environment, and determines the best possibié tsahsmission parameters
to use given some set of service performance objectivesnibgfthe environmental
inputs used to make accurate decisions has a major impabeacturacy of the cog-
nitive radio decisions. These measurements are the basis décisions being made in
the system. Similarly, defining the set of transmission peters that are controlled by
the cognitive radio also dramatically affects the efficien€the radio. Using several
references and experience in the communications field, agoge a list of six trans-
mission parameters and six environmental measuremeritariaised to investigate
the implementation of the cognitive decision methods. Thadmission parameters
chosen represent common transmission parameters thatrspahysical, MAC, and
network layers. The environment measurements were sdlbeiged upon common
attributes that can be measured and that affect the ope@ttibe radio.

With a properly defined list of transmission parameters aedsurement inputs,
a cognitive radio engine uses the relationships betweepdhemeters and measure-
ments to select the optimal set of transmission parametéosiever, a function that
represents the relationship between the set of enviroraiheisensed parameters and
the set of controllable transmission parameters does nagxyst. For example, this
function is needed by the cognitive radio engine to undaedsthat by modifying trans-

mission parameter A, theoretically the environmentallyssel parameters B, C, and D,



should be affected in a certain way. This requires an amalytelationship to be found
that encompasses both the input and output radio paramé&te¥solution to this prob-
lem is to create an analytical environment model of the comoation environment.
In this work, we derive relationships between the transimisand environmental pa-
rameters and present a function that is used as the adapgusedor a cognitive radio
implementation. Once the function is defined, determiniveggtppropriate transmission
parameters becomes an optimization problem.

Determining the proper method to solve this optimizatioobbem is the primary
research goal of this dissertation. First, we classify tpigmization problem as non-
linear because of the nature of the wireless environmemtabas such as the received
power of a signal, noise power, or path loss can vary widelyedding on the state
of the current wireless system. Between the many differedinépenvironments and
multipath effects, the measured value of environment bég|can change based on
temporal or spatial differences. Several non-linear nodglst simply to model the
fading characteristics in an AWGN channel [7].

Several methods exist to solve optimization problems. Tdmapiexity of non-
linear and dynamically changing wireless communicationirenments make using
traditional non-linear programming (NLP) optimization tineds problematic with re-
spect to the convergence to a local optimum, or in some sitgmthe inability to find
a feasible solution. Typically, non-linear optimizati@chniques use some form of a
gradient search technique to move along the slope until #gsémum point it reached.
This problem is illustrated in Figure 1.1. To solve this tg@ptimization problem, we
propose using techniques from the artificial intelligen&h @domain. Al methods such
as genetic algorithms and simulated annealing take adyamtfarandom mutations in
order to avoid the local optima problem inherent in gradtenhniques.

Al can be divided into roughly two schools of thought: Convemal Al and Com-
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putational Al. Conventional Al, also commonly referred toraachine learningen-

compasses a wide variety of technologies includaxgqert systemg, 9], case-based

learning [10], andreinforcement learningl1]. The machine learning techniques fol-
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Machine learning techniques must make an approximatiasgdapon the environ-
mental measurements, of how well a given action will achi&xeegoal. This specific
approximation stage will be called tieateria selectionstage. Within this stage the ac-
tions are given scores based on how well they achieve the gsaig this knowledge,
the technique either continues to evolve and try to credter&ctions, or outputs the
current action to be applied to the system. Typically, thecfion used to determine the
optimality of the output is called thetility functionor fitness functiorjl2]. The opti-
mization world tends to usatility function, while fitness functions typically used for
genetic algorithms. We will use the terfitness functiorin this research which will be
considered analageousutlity function The inputs to the fithess function include the
set of objectives for the system, the current environmegrdehmeters or sensor data,
and the possible action to be scored. Translating into reas, the parameters be-
come: the intended performance goals for the radio, the unedshannel parameters,
and a set of controllable transmission parameters.

We investigate the applicability of a non-linear heuristjgproach using genetic
algorithms as the cognitive radio engine. A wireless traasion environment is a
non-linear environment, especially when the wireless cks/iare mobile. For exam-
ple, this can be seen from any of the theoretical bit-erate-models given in [7].
Signal strengths are constantly changing, other wireleses are appearing and dis-
appearing randomly, and physical obstacles create mthitgféects that can be model
using the Rayleigh distribution [7]. The implicit parallains of genetic algorithms
allow it to exploit large numbers of regions in the searchcepahile working on rel-
atively few strings. This parallelism also helps genetgoathm overcome nonlinear
problems [13]. Genetic algorithms (GAs), like simulatechealing (another popular
non-linear search method), use a random walk method and aiotprobability to

help guide their search and avoid local optima. Howeveikardimulated annealing,



GA's use a randomly chosen set of models and use binary stfarghe representa-
tion of these models. Unlike a random search, such as the téMBarlo” method, the

search used in the GA is not directionless. However, GAallyi do not converge to

the absolute optimum value. The accuracy of the GA decisalirectly related to the

number of iterations, or generations, that the GA uses toga®the information. Thus,
a secondary research question is: "What are the optimal nuofilgenerations needed
for the GA to provide an acceptable solution?”.

As an alternative to the genetic algorithm, we use the fithesgion to explore the
entire possible search space offline. This informationéslue create a rule base for an
expert system. To model the wireless environment accyrageleral parameters are
needed, each having a wide range of possible values. Tlatesra large search space
for our problem. The expert system must take into accounige lamount of informa-
tion and the memory resources needed to represent everyplpossvironment state
may become an issue. In our work, the total number of possil@onments reaches
100 million combinations taking into account all possibtersarios. Representing the
real-word environmental state requires us to approxintegesensed state to a certain
degree of precision, and therefore introduces some ertos dfrror is directly related
to the degree of precision used to create the rules. Thusxavaire the expert system
specific question: "What are the trade offs between the degfrpeecision of the rule
base and the accuracy of the expert system?”.

We foresee both genetic algorithms and expert systemsd#wair advantages and
disadvantages. GAs require little memory. However, theytgaically only achieve
near-optimal solutions. Expert systems have the advardhbeing able to produce
a solution fast due to the offline generated rules, but tyigicaquire a large amount
of memory to be implemented and determining the degree afgom of the rules can

become a problem. This thesis investigates the applitabiflthese two methods to the



cognitive radio engine domain. Each of these methods use®thtionships between
the environmentally sensed parameters and the contreliedsismission parameters to
determine the solution, thus deriving this relationshignamportant task.

In multiple objective problems, such as the cognitive raghigironment addressed
in this research, generating fitness functions becomesuiffi In the case of mul-
tiple objectives, where several objectives are often cdimgethere is not a single
optimal solution, but rather a set of possible solutions.esghsolutions are optimal
in the sense that no other solutions are superior to them \@hebjectives are be-
ing considered equally. This set of possible solutions @kmas thePareto-optimal
solution set [14-16]. Although, many different solutiorassé been proposed to allevi-
ate this problem [14], this disseration focuses on usin{gpeace information through
a weighted sum approach [17-20]. Preference informatiarsés to rank the objec-
tives in order of importance. This importance ranking camnthe used to single out a
solution that represents the optimal solution for a speriiking of objectives.

A comprehensive study of multiple objective optimizatiaolgems for evolution-
ary algorithms (EA) was published by Fonseca and Flemind [THAis study catego-
rized different approaches in formulating fitness fundiancluding aggregation meth-
ods, population based non-Pareto approaches, Paretd-bpgmaches, and methods
using the niched induction technique. Aggregation metlrodsbine objectives to form
a single fitness function. Formulating this single equatequires a large amount of
domain knowledge to form complete relationships betweerothjectives and the pa-
rameters. Pareto-based, non-Pareto based, and the nedieiigues have the advan-
tage of being able to solve for a family of solutions if prefiece information is not
available. However, this work uses preference informatsach as objective weights,
to rank objectives by their importance pertaining to thel gtate. Consequently, using

an aggregation method creates a single fitness functiotgadf a family of equa-



tions that would be more difficult to implement and much leastable of a solution.
The domain knowledge needed to create the aggregate fitnessoh is sought using
analytical relationships between the parameters and fleetoles. However, some pa-
rameters may not have closed form solutions that relate tbeire objectives. These
relationships must be found through extensive computeulsitions. A goal of this
dissertation is combine these relationships into an aggedanction that can be used
to relate a general set of transmission parameters to a sevobnmental parameters
and performance objectives.

Research conducted at Virginia Tech has also developed digetgorithm en-
gine for cognitive radios [2,21]. Their simulation resutslidate that their genetic
algorithm implementation does in fact change the transonigsarameters to different
settings, based upon a set of objectives. However, morandsé needed in the area
of fitness functions, which are not analyzed or presenteteir tvork. The focus of
the research thus far has been showing that the genetidthlgercan converge to a
suitable set of transmission parameters. There has beeemiom of the time require-
ments or memory resources needed to perform this task usimgtig algorithms. The
work presented in this paper goes beyond just demonstriiaighe genetic algorithm
outputs a selection, but also provides the numerical aisalgs the fitness functions
that drive the GA's and present simulations and analysig/sigpthe practical resource

usage for both genetic algorithms and the alternative ¢gystems implementation.

1.2 Research Obijectives

The primary research question we answer in this dissentégioWhat is the best
adaptation technique that can be used to implement a cegnétdio? Before we begin

to answer this question, we explore the characteristics afgmitive engine in order



to determine what is needed for a cognitive engine to opek&fehave identified the

need for a set of common parameters that must be used by th#ieegngine to make

decisions. These parameters represent both, transmissarcontrol parameters and
environmentally sensed parameters. It is important thatlist consist of common

parameters so that the cognitive engine analyzed in thik wam be related to the ma-
jority of other radios being developed. In addition to negh list of parameters, radio
operating goals must also be defined. These goals are needaitle the system to a
specific output, and may change depending upon the wirefesoement, operating

scenario, or hardware conditions of the radio.

The ideal cognitive radio observes the wireless enviroriraed make transmission
parameter modifications based upon those observationdyanddio operating goals.
Based upon this definition, the implementation of the cogaiéingine is an optimiza-
tion technique. The primary research question we addregtggrdissertation is now
more specific: What is the best optimization technique or &di@m technique to use
within the cognitive radio engine? A choice must now be mastevben several possi-
ble techniques. To determine the best technique, we fird¢¢gzmaur problem domain
to find important characteristics that let us weed out pdssiptimization techniques.
Thus, characterizing our problem domain is an importark tasorder to answer the
primary research question.

The secondary question that is answered is how each of tle@aepters impact
the performance of the communication. This analysis is divgg the fithess function
relationships that we have derived. Using the output of tmedis functions, we can
determine quantitively how the communications is affedt#dte cognitive radio system
does not take into affect a certain parameter. For exampmegaitive radio that does
not use the signal-to-noise (SNR) ratio will potentially betable to make an accurate

decision regarding anything to do with channel performanke®wever, with other



parameters such as coding rate, this may not be as clear. goameters may require
a large amount of processing in order for the cognitive rddiaise it for decision
making. However, it may turn out that these same parametess little to no affect
on the communication system and are not needed. This séysithalysis can save
cognitive radio system developers time and cost.

We have selected two different techniques that can be use@agnitive radio en-
gine. After characterizing the problem domain, we can selexse two methods and
focus on their specific implementations presented in Chajptard Section 4.3. Inde-
pendent of the method chosen, we have derived the analygiegionship that relates
all of our parameters in Chapter 5. This relationship is usethb selected methods
for the optimization. This brings us to the second reseatastipn that this disser-
tation answers: How can the transmission parameters,c@magntal measurements
and radio operating goals be related and represented reaiiy?i Once the optimiza-
tion techniques are determined, we turn our focus to howrthetionship is formed
and represented. Using published equations and simulasgarts we can create these
relationships and put them into a form that is usuable by ptenization techniques.

Research Questions and Task3o summarize the following research questions

and their tasks that this dissertation addresses is pegkent

1. What is the best way to implement a cognitive radio engine?

(a) Explore the characteristics and attributes of a cognéngine to determine

what is needed for operation.

2. What is the best set of transmission parameters and envamatially sensed pa-

rameters that can be used by a cognitive radio engine?

(a) Determine a common list of parameters that the majofityieless radios

will be using.

10



(b) Define a set of radio operating objectives that can beel the parame-

ters.

3. How can the transmission parameters, environmentaineess and radio oper-

ating parameters be related and represented analytically?
(a) Find published relationships between the defined pasasand radio op-
erating goals.
(b) Gather data using simulations for radio parametersdaanot be analyti-

cally related to the objectives.

4. How much impact does each parameter have in the decisigmgnprocess of
the cognitive engine?
(a) Explore the affect on the communication system when sotgucertain

parameters.

5. What implementation specific trade offs are present fotvtileeselected cognitive

methods?

6. What metrics should be used in order to accurately comp#esemht cognitive

methods?

(a) Explore the characteristics and ideal attributes ofgnitive engine to de-

termine what is needed for operation.

1.3 Research Contributions

This research investigates different methods for impleémgrcognitive radio en-
gines in a multi-carrier wireless environment. We are faog®n answering the ques-

tions of whether Al algorithms such as genetic algorithmexpert systems can be

11



practically used as the cognitive engine. We begin by defiaiistandard list of input
and output parameters used by the cognitive engine. Thesenpters represent the
controllable transmission parameters and the enviroratigrdensed parameters use
to make decisions. There is no solid consensus of which iapdtoutput parameters
should be used when developing a cognitive radio. Howelvemparameters we choose
to use several parameters that have been commonly definedtiplenpublications.

For cognitive radios to make decisions in any implementatibere must be a re-
lationship showing how the environment is affected as therotlable parameters are
modified. We derive this relationship between our defineddfsparameters using
commonly published equations and simulations that charnaetthe parameters. We
present a relationship represented as a scalar fitnessoiuticat is used to score how
well a set of transmission parameters affects a specific@mvient given a set of per-
formance objectives. This fitness function represents #ie gontribution of this work
and is used to implement two cognitive engines, each usiriifiegiht Al method. The
GA was selected because of its ability overcome non-linealslpms and adapt to the
constantly changing environment with no interaction. Th& i§ also desirable be-
cause of the relatively small amount of memory needed foptheessing, but the time
needed to produce the output needs to be explored. Expéghsysvere also chosen as
an alternative technique to the GA. The expert system pexlaciecision very quickly,
although the question of how much memory is required to Heédle base needs to be
explored. However, this function is not restricted to bedulsg only the methods pre-
sented here. In general, it can be used to determine if a $etrdmission parameters
is well matched to a given wireless environment.

We examine the resource usage of both the GA implementatidhee expert sys-
tem implementation, highlighting the trade offs for eaclttime. We show that inter-

esting trade offs exist for the GA implementation betweendize of the parameter list
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and the time required to determine a solution. We also shaivlip decreasing the
discrete range values used to generate the rule base forghe system, the accuracy
of the decisions is increased. However, this comes at tlee pfiincreased memory us-
age. Uncovering these trade offs allows us to discover thpgrparameter settings for
each method in order to make practically implementing threethods as a cognitive

radio engine a reality.

1.4 Dissertation Organization

The dissertation is organized as follows: In Chapter 2, & bigtory of cognitive
methods and the role fithness functions play is presentedtdilee literature survey is
provided that focuses on the origin of cognitive methods;imee learning, and several
popular cognitive methods. Also in Chapter 2, the cognitagio parameters are in-
troduced, including the transmission parameters, pedana objectives, and the envi-
ronmental channel measurements. In Chapter 3, the gengtigtam-based cognitive
engine is describe in detail. A population adaptation teplused to improve the per-
formance of the GA-based engine is introduced and the stionleesults of this engine
are presented. Also in Chapter 3, the rule-based systemtr@gaingine is describe in
detail. and the simulation results of this engine are pteserChapter 4 describes the
derivation of the dynamic multi-objective fitness functonin Chapter 5, simulation
results and the analysis on the simulation performancdtseme presented. Chapter 5
also contains the sensitivity analysis results detailiogy lransmission parameters can

affect the optimality of the system if they are not allowect=apt.

13



Chapter 2
Cognitive Radio Overview

2.1 Cognitive Radio

Cognitive radios have received much attention and fundingnily as a proposed
solution to the spectrum scarcity problem identified by tiCF The problem being
that, although there is a shortage of available frequenog®to license out, the current
licensed bands are severely underused in both a time and spase [4].

Mitola proposed that cognitive radios solve this problemskeysing the environ-
ment and autonomously adapting to take advantage of theusetespectrum, while
staying clear of the incumbent user’s signals [22]. Mitalagosed that the integration
of machine learning techniques in radio will allow the teicahoperation of wireless
networks to operate more efficiently. He analyzes the need tognitive control sys-
tem that translates the user needs into commands to thelyindeadio functions.

In March of 2005, Vanu, Inc. introduced the first (and prelyeorily), FCC-certified
software radio product [23]. The AnyWal® Base Station is the first base station
system that fully implements the base transceiver and haserscontroller entirely in
software, running on a general purpose server and RF fraht\&fith software-based

signal processing and a standards-based architectuneb#ése station is also capable
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of becoming the first commercial cognitive radio on the marke

Currently several research efforts exist to explore thetasilthat cognitive radios
can provide for both commericial and military use. Open seefforts, such as the
GNU Radio [24] and the Virginia Tech OSSIE program [25], alltaw wide spread
experimentation on software defined radios which in turvigl®the ground work for
cognitive radios. In order for these efforts to be expanadecbier cognitive radio re-
search, a connection needs to be made between the SDR coiyiaochithe artificial
intelligence (Al) community. Al algorithms such as genedigorithms, neural net-
works, expert systems, or case-based reasoning systentseaessentially layers on
top of the SDR system to provide that extra layer of intetige that defines a cogn-
tive radio. However, simply adding the Al layer is not enoughdevelop the radio.
The expertise of a radio engineer needs to be used by the Aitestin order to cre-
ate the complex relationships between the transmissianpeters that define how the
cognitive radio engine will operate. This is the primary ldvage addressed in this

dissertation.

2.2 Adaptive Parameters

Cognitive radios adapt the available transmission paraséteorder to achieve a
specific performance goal. They do this by combining sexaaptation techniques to
form a decision making engine with several dimensions ofsmaission control. Adap-
tive parameters for wireless systems is not a new resegoh @ynamic power adjust-
ment schemes for wireless systems have been proposed [28daptive modulation
has also become a popular way to adapt a wireless system smaealho achieve near-
optimal throughput [28—-31]. Even between transmit powekrandulation there exists

trade-offs between the system throughput and the systeenrbitrate (BER) [29].
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Combining these different techniques such as adaptive ratdn) dynamic power
adjustment, dynamic spectral allocation, and even adaftame length techniques
will provide for efficient communication because all of taeglvanced techniques are
being used. However, the difficulty arises when a systera toenake use and optimize
all these techniques that share operating parametersx&ampée, adaptive modulation
is common place even within the IEEE 802.11 wireless neta/@&mmon to most
households. The adaptive modulation techniques implezdantthe PHY layer of the
hardware monitor the signal-to-noise ratio (SNR) of the camitations signal and
adjust the power and modulation accordingly in order to eahithe best throughput
while still maintaining a useable bit-error-rate (BER). Reskan frame length adap-
tation has also been used to change the value of the frantkelangrder to achieve a
higher overall throughput in low SNR environments. Induadly, these techniques can
optimize performance for their specific goal. By using mugtigchniques at the same
time, a single parameter affects different techniquesffierdint ways and a tradeoff is
created. Combining these adaptive techniques is the job ofaittve engine that can
input the environment scenario and output the adaptablesicebased upon specific
objectives of the system. Figure 2.1 gives a visual reptaen on how the parameters

interact and are used in a cognitive radio.

2.3 Cognitive Engine Techniques

Several methods are available to implement the cognitigmerfor a cognitive ra-
dio. As mentioned earlier, in addition to traditional glbbatimization techniques, a
wide variety of Al technologies including, neural netwarigenetic algorithms, case-
based learning, reinforcement learning, fuzzy systemeggystems, and pattern recog-

nition exist that can be used as the control for the transomgsarameters in a wireless
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Figure 2.1 Visual representation of cognitive radio knobs and dials

system. Traditional optimization problems typically csh®f derived algorithms that
determine the exact optimal parameters for a given prob&sweral optimization tech-
niques exist for both linear and non-linear problems.

In addition to the non-linear attribute of the wireless commication environment,
we also must deal with a very dynamic and constantly changimgronment. The
cognitive system will be periodically sensing the envir@amt) providing a dynamic
and constantly changing the set of inputs to the system. Glualsystem components
may also be changing periodically, in order to compensatiafge changes in the envi-
ronment. With system component changes come changes torikiaints of the prob-
lem. For example, changing from one modulation to anothgrmequire a changing in
the possible coding types, or even a change in the maximurartrid power available.
These constraint changes and periodic changes of the iaputeters make traditional
optimization techniques not suitable for use in this probl#omain. Keeping an up-

dated optimization algorithm current to the dynamic par@mseand constraints is not
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possible. Thus, we need a flexible solution that adapts tdyhamic environment. For
this reason, we focus on using Al based techniques.

We have implemented two techniques that can be used as tpatagaengines
for cognitive radios. Expert systems are built upon a seutdsrthat define how the
system operates. All possible environments are represéamtée rule database along
with the optimal decision for each environment. This regsiian offline analysis of the
problem in order to generate the proper rule set. The adgargathis method is the
speed at which a solution is found. However, the quickneskeobutput comes at the
price of the large database required to represent the Mlesexplore the relationship
between the size of the rule base, the correctness of thetoatpd the time it takes
to determine a solution. This technique was chosen as a bemklagainst a machine
learning technique that does not require a complete dagadlggossible scenarios. We
explore the possibility of this complete search space tectenbeing more efficient
then the machine learning technique.

As the primary adaptive engine, we have implemented a madkiarning tech-
nique to determine the optimal solution. For our adaptivgrez we needed a machine

learning technique with the following primary charactecs.

e Ability to overcome the local minima in non-linear problems

Efficient search with problems containing large searchepac

High amount of system configuration flexibility.

Low requirement on storage memory usage.

Little initial setup required to operate.

There are several different surveys of machine learningnigces available [32—

34]. We looked at several different choices as to the seledf the adaptation engine
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technique. The most commonly referenced techniques b&nghnetworks, genetic
algorithms, and symbolic learning techniques such as lbased reasoning systems
and rule-based systems. Each technique has its own adeargagd disadvantages and
we need to find the technique that would fit our needs the best.

The ability to overcome the local minima problem is inherenall the machine
learning techniques we looked at. This problem is primaoilgsent in simple gradient
search techniques such as hill climbing. To distinguiskvben the different techniques
we focus on the ability to work with problems with large séespaces and techniques
that are flexibly and can be reconfigured on the fly with litbele changes. Placing a
small amount of focus on the amount of memory usage the tqohnises is feasible
otherwise a full search space solution would suit our nelel@slly our solution will be
implemented on mobile radios with limited processing andnme resources.

Knowledge in neural networks is learned and stored usingwaank of connected
neurons, weighted synapses, and threshold logic units [3&hrning algorithms are
used to adjust the weights on the synapses in order to glagskihown samples cor-
rectly. However, the output of the inductive techniqueshsas neural networks rely
fully on the examples provided during the training phasémst examples may include
user feedback or information collected during a relevaatback stage. In reality, user
feedback for the situation addressed here may be limiteaigynGathering training
examples would require a user to perform tests in the wisebesnmunication area
before the cognitive system would ever be deployed and heeveger set the optimal
parameters based upon the measurements collected. Tdwimatfon would be feed
into the neural network in order to train it appropriatelynelquestion of the sample
size used to train the neural network is also an on going relsemestion.

Case based reasoning (CBR) systems observe the environmeriteanatevious

solutions to similiar environments [35]. The difficulty in CBfgstems is determining
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the similarity of cases especially in non-linear environtseand how to adapt these
case to the current situation. We may observe an environameghihave an existing case
that is similiar but not close. How can we adapt multiple pagters of this case to
better match the current non-linear wireless environmélti@ effectiveness of CBR
systems rely on the case base. Having a larger case databesa&ses the probability
of a similiar case, thus increasing the probability of adrefinal solution. However,
holding cases requires storage memory, and in problemslavigle search spaces the
case database is large in order to provide a sufficient anodwstnilar cases. Similiar
to neural networks, a CBR system needs to being with exammestfaining. Again,
practically these inital cases can be difficult to produce. GB&ems are similiar to
rule based systems in that they start with initial caseslesrand make decisions based
on them. However, rule based systems hold every possiblbioation that is expected
to be seen.

We desire a system that ideally needs no inital setup to tmdexolutionary tech-
niques posess this characteristic by randomly generatingiil set of solutions and
evolving these solutions over time in order to eventuallpegate an optimal solu-
tion [12, 13]. Through the use of mutations and solution co@tons, evolutionary
techniques are well known for their resilience to conveogeat local extrema, un-
like traditional optimization techniques. More specifigabh genetic algorithm was
choosen over a simulated annealing technique which is venilia to the genetic al-
gorithm [36]. The primary difference being that GAs worké population of possible
solutions, not just a single point as simulated annealiresdd his parallel processing
allows the GA to explore different portions of the searchcgpsimultaneously. Genetic
algorithms operate on the original cost functions, not teevdtives of the cost func-
tions like traditional optimization solutions. This praes a higher level of flexibility

when dealing with a highly dynamic environment. For examplenging the com-
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plete operation of the system is achieved by subsitutindjtiness function used by the
genetic algorithm out for another, making this techniquey exibly with respect to
code changes in the event of a large change to the envirormugl. In addition, as
explained in Section 2.3.2, genetic algorithms does natirecq database of solutions
to be stored or any type of storage that grows as the systeen@ssmore scenarios.
The primary disadvantage of genetic algorithms is the arnoflcomputation needed to
determine a solution. We have selected genetic algortiteniseaadaptation technique
to explore because it matches our needs well, and exploggrdoessing requirements
needed to implement this technique within a cognitive raaigine.

The following sub-sections provide background informafiar each of the selected
methods and gives a general overview of how each determsuwdation. Sections 6.3.1

and 6.4.1 provide the implementation details for each neetho

2.3.1 Expert Systems

An expert system uses non-algorithmic expertise to solv&iceproblems [8, 9].
Expert systems have a number of primary system componattatlst interface with
people in various ways. Figure 2.2 shows major componertgtanindividuals who
interact with the system. Thienowledge baseés the representation of the expertise.
Each piece of expertise is typically termetdute, and is represented using an IF THEN
format. For example, one rule in our system may be: IF frequdrand of interest
is currently in use THEN alter frequency. The expertise errilles are created by the
domain expertThe domain expert would say specifically what frequencliesaptimal
to use. Typically, as shown in Figure 2.2, a knowledge erggimeused to encode the
experts knowledge into a form that can be used by the expstersly For some projects
the domain expert and the knowledge engineer may be the sars@p or in our case

the information produced by the domain expert actually cofram an equation.
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The second major component in the system istbeking storage This component
holds the problem specific information for the problem cntisebeing solved. This
information is typically termed théacts For example, a fact may exist that states:
frequency band 5.325 GHz is currently in use. This infororatan be added anytime
the system is running. In our case, the facts are broughom &ensors on the wireless
system. Information such as the battery life, channel niggsee, and received signal-
to-noise ratio can all be represented as facts.

The inference engine is also a primary system componentéxpert system. This
component includes the code which combines the informdtom the working storage
and the knowledge base to find the solution. This componeatasssed by the user
through thauser interface The user interface is simply the code that controls thedial
between the user and the system.

Many expert systems are implemented as products calledtesygtenshells The
shell is the software that contains the user interface, mdorfor the rules and facts,

and an inference engine. A commonly used shell is the CLIP8résgstem tool [37].
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CLIPS provides a complete environment for the constructiomile based expert sys-
tems. The primary reasons CLIPS is used in this researchdeclknowledge rep-

resentation, the rule based environment is already impléde portability, CLIPS is

written in C and runs on several different operating platferinteractive environment,
and most importantly, full documentation.

Currently the layout of our rule base uses a one layer approBcis means that
the decision is determined after one rule is fired. An exaropkeone layer rule is as
follows: IF sensed parameter THEN set transmission paemethis approach could
also be implemented as a table lookup method because ofm&dayer simplicity.
Using the table lookup method, the processing time shoulcelaively faster than
the CLIPS system because it is a simple table lookup insteadfafy implemented
expert system. However, as this research progresses,léhbase may become more
complex, involving several layers of rule dependencies.efample set of two layer
rules is as follows: IF sensed parameterl THEN set tempoanigblel, IF sensed
parameter2 THEN set temporary variable2, IF temporaryatéeil AND temporary
variable2 THEN set transmission parameters. In additiothéopossible changes in
the future, the primary analysis of the expert system wilbbethe storage resources
required for it to represent the complete expertise of tiséesy, or equivalently the total
number of rules needed. The total number of rules is equivédethe total number of
entries used in a table lookup method. Given the primary gbdhe analysis and
the possibility of more complex rules in the future, CLIPS wigtermined to be an

appropriate method to be analyzed as a feasible cognitigimetechnology.

2.3.2 Evolutionary Algorithms

Evolutionary algorithms, such as genetic algorithms, abically inspired search

technique to find the solution to optimization problems. &enalgorithms originated
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from the research of Dr. Holland on cellular automata at tmévérsity of Michi-
gan [13]. Initially remaining largely theoretical, acadermterest started growing in
the mid 1980’s as the power of processors grew to match theeedgeower required by
GAs. Currently, GAs are used to solve difficult schedulidga fitting, trend spotting
and budgeting problems for several Fortune 500 compan8sA3primary advantage
of genetic algorithms is the fact that they work on a popatatf solutions. This way,
the GA population can explore several parts of the solugats in parallel.

Genetic algorithms have been applied to wireless commtiorsaresearch in sev-
eral different aspects. In [39], an algorithm for contradjimobile users transmitter
power and information bit rate cooperatively in CDMA netwsik proposed. A sig-
nificant enhancement in signal quality and power level waked through several of
their experiments. Genetic algorithms are also invoked4dj for finding the opti-
mal weight vectors for the minimum BER of multiuser detectdtJD) for multiple-
antenna orthogonal frequency division multiplexing (OFD8§stems. Their results
show that the GA-assisted method provides a lower complexproach than the tra-
ditional conjugate algorithm (CG) approach in which theyduas a comparison. The
processing power made available today allows wirelesesysto outperform tradi-
tional gradient methods [40]. It has been shown in [41] thattime required by a GA
to converge is O(nlogn) function evaluations, where n iibyulation size. With GA's
being used more frequently as optimization methods forlesseecommunications, the
assumption that GA's are computationally infeasible f@l#téne communication sys-
tems is fading.

The basic idea of genetic algorithms is as follows: the gempetol of a given pop-
ulation of possible solutions or chromosomes, potent@diytains the optimal solution
to a given adaptive problem. The optimal solution is notvadti the current population

because its genetic combination is split between sevdral possible solutions. Split-
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ting and combining multiple chromosomes in the populatievesal times can lead to
the optimal solution. To perform this procedure, we mustraefivo things. The first
is the genetic representation of the solutions, and thenseisothe fitness function to
score the possible solutions. For the genetic representtte standard representation
is an array of bits. We explore the fitness function that wdlused by the genetic

algorithm to determine how well the possible solutions areafgiven objective.

| Chromosome 1a | Chromosome 1b | | Chromosome 1a | Chromosome 2b |

Single-Point Crossover

e

| Chromosome 2a | Chromosome 2b | | Chromosome 2a | Chromosome 1b |

@ 1c

Two-Point Crossover

—_—

Chromosome 2a | Chromosome 1b | Chromosome 2¢

Ct 2b | Ct 2c

Figure 2.3 Chromosome crossover example

Once the evaluation of the current population is finished,ttp ranking pairs of
chromosomes are combined to create a new generation obfmesromosomes. Sev-
eral techniques exist to combine the chromosomes. Fig@reepicts two crossover
techniques that are most commonly used. ©he-point crossoveselects a random
bit position in the chromosome and all data beyond that psistvapped between the
two parent chromosomes, thus creating two new chromosohmésresearch uses the
slightly more complicatedwo-point crossovetechnique. This method calls for two
points to be selected on the parent chromosomes. Evenyeingeen these two points
is swapped between the parents, also creating two new clsmmes.

In addition to creating a new generation through the contlwnaf chromosomes,
mutation is also a possibility. The purpose of mutation isfflow the algorithm to

avoid local minima by allowing the population to randomlytate and avoid becoming
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to similar. This can prevent the slowing, or the completeihglof evolution. A more
detailed look at the genetic algorithm methodology is pnésetin Section 4.2. The full
details of the implementation of the genetic algorithm usetlis research, along with

the genetic algorithm parameter settings used are presengection 6.3

26



Chapter 3
Cognitive Radio Operating Parameters

3.1 Introduction

In developing a cognitive radio control system, severalitapnust be defined. The
accuracy of the decisions made by an Al method are based bpajuality and quan-
tity of inputs to the system. More inputs to the system makerétdio more informed,
thus allowing the decision making process to generate idesishat are more accurate.
This brings us to the first set of inputs to the system. Envitental parameters are
information about the current wireless environment thateed as inputs to the cogni-
tive system. In order for the cognitive engine to make densiabout a certain output,
the current wireless environment must be modeled intgrndlhis model is created
using environmentally-sensed data received by the syssamg an external sensor.

Several devices exist to detect characteristics of thelegseenvironment. The
DARPA XG program has hardware for sensing environment cheniatics, including
spectrum usage [42]. This information is useful if the radityying to maximize spec-
tral efficiency. Other sensors detect important charasttesi such as: the current noise
floor, signal-to-noise ratio (SNR), or determine the BER of ¢cherent running con-

figuration. In the following sections, we will propose a ligtenvironmentally-sensed
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parameters that will be used to aide in the decision makionggss of the cognitive
controller. Section 3.3 covers the selection of the envirent variables used in this
dissertation.

Decision variables are also another important input to Athods. In the cognitive
radio case, these variables represent the transmissiampgars that can be controlled
by the system. Once the virtual wireless environment istetka set of decision vari-
ables is applied to the fitness function and an approximatfdrow well they meet a
set of operation goals is returned based upon the virtual@mment. The end result is
a quantification of how well a sample set of transmission mpatars achieves the set
of operation goals. The Al uses this scalar approximatioeviwve the system to an
optimal set of transmission parameters.

In addition to the environmental data used to model the es®lchannel and the
transmission parameters, performance objectives mustlbesdetermined to define
how the system should operate. The objectives of the systentha road map for
determining the fate of the system. They provide the meanth&controller to steer
the system to a specific state. For example, one basic algastio minimize the bit-
error-rate (BER) of the system. This can be done by manipgidtie transmission
parameters in a certain way as to provide the lowest posBiBR given the current
environment. This dissertation defines five objectives thptesent common wireless
radio goals. Section 3.4 covers the selection process sétliee objectives.

The following sections detail the selection process of #n@sion variables used for
generating the multi-objective fitness functions. Sec8chalso covers the selection
of the multiple objectives that are used to inform the fitnesetions of the optimal

direction for scoring.
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3.2 Transmission Parameters

Cognitive radios takes advantage of the control parametageravailable by the
underlying software-defined radio system. These contn@rpaters are input to a fit-
ness function along with the environmental parameters dajectives. This fithess
function provides a scalar score that represents how weetidintrol parameters achieve
the given objectives. Generating fithess functions to bd bgeognitive radio methods
require defining a specific list of transmission parameteas inust be available to the
system. These transmission parameters are equivalerd tmttirol parameters made
available by the software radio components. The teamsmission parametesill be
used in this dissertation to refer to the list of parameteas &ire used to control the
individual radio components.

Defining a complete list of transmission parameters andrgéing a generic fithess
function usable by all radios is not possible. Radios areldpeel for many different
reasons and depending upon the application of the radib,veidlqppossess a unique list
of parameters. A goal of this dissertation was to define astrégsion parameter list
large enough to accommodate a large percentage of softadicesr

The transmission parameters selected for this researcbaaaeneters that would
commonly be adjusted to adapt to the channel environmenta¥e chosen the eight
parameters based on an extensive literature survey. Tlaenpéers we have chosen
have been commonly cited in research literature as as trasiem parameters that can
be used by cognitive radios to control communication charestics [21,43—-46].

This work intentionally does not focus on parameters thange on the order of
hours, such as transmission formats (e.g. OFDM or CDMA), y@ton (e.g. WEP
or PGP), or error control techniques (e.g. Turbo coding owolutional coding). As

shown in the results section in Chapter 6, our system can e@paéehe order of 100 ms.
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The complete list of parameters used in this dissertatiggeterate a fitness function

is shown in Table 3.1.

Table 3.1 Transmission Parameter List

Parameter Name Description

Transmit Power Raw transmission power

Modulation Type Type of modulation format

Modulation Index Number of symbols for given mod-
ulation scheme

Bandwidth Bandwidth of transmission signal jn
Hertz

Channel Coding Rate Specific rate of coding scheme

Frame Size Size of transmission frame in bytes

Time Division Duplexing Percentage of transmit time

Symbol Rate Number of symbols per second

We assume the time scale for modifying the values of thesenpeters begins at
100 ms, due to our system being able to find a solution in thisumtnof time. The
value of 100 ms is approximately the fastest the geneticrigiigo is able to adapt
the parameters. This means that the genetic algorithm igda@pthnique is not well
suited for environments that change at speeds faster tlam$Mecause at the time
the solution is generated, the environment will have alyeathnged and need new
settings.

Although the focus of this dissertation is on the transroisdevel parameters listed
above and not system-level parameters such as using CDMA BAGEhose higher
order system parameters may still be passed to the cogsytstem to allow the filtering
out of several possible parameter values. For examplegittgnitive component is
informed that the system should be using iterative codirg@RDM modulation, this
restricts the modulation type and the channel coding ragsipiities. Chapter 5 goes

into detail about how the parameters are represented vittRinognitive engine.
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3.3 Environment Measurements

Environmental measurements inform the system of the sadiog environment
characteristics. These characteristics include: intenfiarmation about the radio op-
erating state, and external information representing tinel®ss channel environment.
Both types of information can be used to aide the cognitivarotar in making de-
cisions. The environmental variables can be classifiedtimtocategories. The first
being environment variables that are directly used by timedg function as primary
parameters to the function. An example of this type of patamis the noise power of
the channel which is used in the minimize BER objective fuorctiThese parameters
directly impact the fitness score of the specific objectiiee $econd class of environ-
ment parameters are trigger parameters. These paranretensitored by the system,
and decisions about the objective function are made basew thyeir values. A good
example of this is in regard to the battery life parametee 3ystem may be monitoring
this parameter while is decreases below a specified threshothis case, the system
may alter the weighting on the objective functions so as twige a higher weighting
on the minimize power consumption objective.

The complete list of environmental parameters used in tissedtation is shown in

Table 3.2:

Table 3.2 Environmentally Sensed Parameter List

Parameter Name Description

Path Loss Amount of signal degradation lgst
due to the channel path characterjs-
tics.

Noise Power Size in decibels of the noise power.

Battery Life Estimated energy left in batteries.

Power Consumption Power consumption of current con-
figuration.

Spectrum Information ~ Spectrum occupancy information.
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The path loss is the reduction in power density of the sigeat &ravels through
space. Path loss may be due to effects such as free-spaceefoastion, diffraction,
reflection, and absorption. Path loss can also be influengdtiebterrain and envi-
ronment. The noise power parameter informs the system aipgheoximate power of
the noise in decibels of the measured power referenced tadiwatt (mW). Battery
life and power consumption are both internal parametergsétparameters are used
to determine when the system should place more emphasisromizing the power.
The primary external parameter is spectrum occupancynrdton. This parameter
consists of information from cognitive radios within the#b network identifying the
spectral location of other signals in frequency bands dadragt. This information is
used to improve the spectral efficiency of the transmissi@hthe spectral occupancy
of the frequency band [47,48].

The trigger parameters represent an important charaatesfognitive radio sys-
tems. Much research focuses on the active parameters thasad in making trans-
mission parameter decisions, and the objective steeriggetr parameters are often
overlooked. This work defines these important parametetshows how they can be
integrated into cognitive radio systems using objectivegims to control the instanta-

neous goals of the communication system.

3.4 Performance Objectives

In a wireless communications environment, there are skdesarable objectives
that the radio system may want to achieve. We define five abgsctor the fithess
function in order to guide the system to an optimal state. fiMeeobjectives are given
in Table 3.3.

Minimizing the BER is a common communications goals in todaysless world.

32



Table 3.3 Cognitive Radio Objectives

Objective Name Description

Minimize Bit-Error-Rate Improve the overall BER of the
transmission environment.

Maximize Throughput Increase the overall data throughput

transmitted by the radio.

Minimize Power Consumption Decrease the amount of power con
sumed by the system.
Minimize Interference Reduce the radios interference gon-
tributions.

Maximize Spectral Efficiency = Maximize the efficient use oéth
frequency spectrum.

This objective represents minimizing the amount of errarselation to the amount
of bits being sent. In general, this objective represenfgaving the communications
signal of the radio. Maximizing the throughput deals witk thata throughput rate of
the system. Emphasis on this objective improves systenudimmut. Minimize power
consumption is self explanatory and is used to direct théesydo a state of mini-
mal power consumption. Trade-off analysis between minmgiBER, maximizing
throughput, and minimizing power consumption are showrhaspteliminary results
in Section 5.4,

The last two objectives focus on the spectral domain of wg®lcommunications.
Minimizing interference encompasses avoiding areas afpleetrum with a high noise
floor, or areas with high possibility of interference beinggent. Similarly, emphasis
on the maximize spectral efficiency objective would redineedpectral space used by
the transmitted signal.

In order to direct the system to a specific solution, we musichtpreference in-
formation to each objective. Otherwise, simply minimizimgth BER and power will
result in a set of solutions instead of a single solutionsThbecause minimizing BER
and minimizing power will have different solutions. Thusgbjectives must also con-

tain a quantifiable rank representing the importance of .€8lis will allow the fitness
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function to characterize the trade-offs between each tiagelsy ranking the objectives
in order of importance. Several approaches exists for ohéténg the preference in-
formation of a set of objectives [14]. We have decided to usesighted, aggregate
sum approach where each objective receives a weight repiegés importance. We
selected this method primarily because of the simplicityrgflementation within the
genetic algorithm technique and the ability of control tthe$ method provides to the
system. This method is detailed in Section 5.3, along witteosimilar methods and

more detailed reasoning behind its selection.

3.5 Summary

This chapter presented a well-defined list of common par@amséor cognitive ra-
dio systems. These parameters included environmentalfsuned parameters from
sensors within the system, and internal operating infaonagiroviding measurements
about the internal state of the radio. This information isdug conjunction with the
radio objectives to determine the appropriate transnrisgarameters to use for com-
munication. Multiple objective problems have difficultiwben all objectives are trying
to be achieved at once. The primary difficultly being detaing the complex relation-
ships and trade-offs between the parameters the the neuttijectives. Determining
a single search direction for the system is also a commoreulif§i in multiple objec-
tive problems. We defined five performance objectives forraless communication in
which several objectives conflict with regards to maxingziheir performance. These
conflicts create trade-offs between the transmission patexrsito meet a given perfor-
mance constraint. In order to quantify these trade-ofis aibjectives must have some
type of preference ranking. The fitness function must alpatimbjective preference

information to solve the problems of parameter conflict.
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Chapter 4

Adaptive Cognitive Radio Engine

Techniques

4.1 Introduction

Genetic algorithms are a class of artificial reasoning winetde search is per-
formed in a manner similar to genetic evolution. In genesalutions to a problem
set are represented by binary strings. These strings tleeallawed to act in a manner
similar to genetic growth; strings which are considered@jsplit and recombine with
other good strings to form new solutions, while ’poorerirggs are allowed to 'die’ out
of the solution set. This decision is made by the fitness fanavhich inputs the pa-
rameters and outputs a score based on the specific goalsrafiibe Strings undergo a
process called mutation, i.e., a random flipping of bits,dfplprevent local minimiza-
tion from occurring. Genetic algorithms are typically usexia method of problem
optimization [12,49]. However, given its random naturestfeomputation time, and
ability to spontaneously generate unique solutions, geakgorithms are an appealing
candidate for cognitive radios. Input and output paranseten easily be mapped to

a binary form and the size of the genetic population is custabte to space avail-
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able within any given configuration [12]. Genetic algorithare used mainly when the
search space is too large to be simply brute force searchi¢ondi@e the optimal pa-

rameter set. In this disseration the binary chromomsomad inghe genetic algorithm

consists of the eight parameters defined in Table 3.1.

As an alternative technique to genetic algorithms, we ché@gmplement a drasti-
cally different approach to selecting the optimal transiois parameters in a wireless
device. Genetic algorithms rely on the ability to use a sraailbunt of memory and
large amounts of processing to evolve to a solution. Ruledagstems, in contrast,
use large amounts of memory and a small amount of processimgke decisions.

A rule-based system (RBS) uses a simplistic model based upet & #-then
statements to implement an expert system. Expert systeansidely used in many
fields with the primary concept being that the knowledge ofapert is coded into
the rule set. When the expert system comes across a data seoultl behave the
same way as the expert who populated the database. We wamidoecthe feasibility
of using such a RBS in the context of cognitive radio decisiokinta Rule-based
systems are at a disadvantage when the rule base becomedémause it becomes
hard to manage and the rule base itself may consume too mutiomeRule-based
systems are typically also constrained by discrete valddss can be overcome by
using fuzzy sets and defined ranges for the rules to match awever, this then
requires a specific range to be determined for each rule. drfdathowing sections,
we explore the implementation of both of these techniquekercontext of cognitive

radios.
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4.2 Genetic Algorithms

The methodology of a genetic algorithm can be broken up oo $eperate stages.
The first stage is the initialization of the population. ity the population is randomly
generated to form the first generation of possible solutidrge choice of population
size is based loosely on the specific problem we are dealitig nowever a common
set of genetic algorithm settings has been defined and usssl/aral GA implemen-
tations with slight variations [50, 51]. In our case we useopyation size of 100
chromosomes. Traditionally the initial generations i®stdd at random. However, as
we show in Section 4.2.1, we can take advantage of previaus and seed the ini-
tial generations in order to achieve better performancerwdmnpared to randomly
generated inital populations.

The second stage is the selection stage. During each gemneaigiroportion of the
population is selected to breed a new generation. Indivhlations are ran through a
fitness function that assigns a fitness score to the solwgmesenting its value. Several
selection methods exist, such as tournament selectiochastic remainder selection
and roulette wheel selection that use the fitness scoreddat skee solutions that are
too be used to form the next generation of solutions. We clmsese the stochastic
remainder selection method. We chose this method mainlgusecof its popularity
and the large amount of research associated with it [12,82, $his method uses
the ratio between the fitness of an individual solution areldlierage fitness of the
population to determine the probability of the solution mmgvonto the reproduction
stage.

The third stage is the reproduction stage. In this stagenéte generation of so-
lutions is generated from the previously selected groupobft®ns. This process is

completed through genetic operators sucltrassoverand mutation Crossover is a
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method of combining two possible solutions to create a ndutisa. Mutation is the
process of randomly mutating a solution, typically randpfftipping a bit in the ge-
netic sequence. Mutation provides the means for the GA taddecal minima by
preventing the solutions from becoming too similar to eattten which can slow or
even stop evolution. For each new solution in the next géioera pair of solutions
is selected to be the “parents.” One point and two point ovessare two possible ap-
proaches of combining the “parents.” One point crossovictea random point in
the genetic sequence in which the “parents” swap all datarimeyhe selected points
Two point crossover is similiar except that two points alected and all data between
the two points are swapped. Dejong shows in [50] that twotpmimssover provides a
better mechanism for combining and mixing the chromosomegaoduces better re-
sults then the single point crossover technique. Along thighcrossover function, each
new solution has a typically small chance to have a bit mdtaleese processes result
in the next generation of solutions. Generally, the avefdgess has increased since
mostly the higher scoring solutions are selected to brdedgavith a small proportion
of lesser fit solutions to provide for a more diverse search.

The final stage is the termination stage. The genetic algurirocess detailed pre-
viously continues until a termination condition has beeacthed. Common termination

conditions include:

e A solution that satifies a minimum criteria is found.

¢ A fixed number of generations is reached.

e A specified computation time is reached.

e The fitness scores have plateaued such that succesive timeshow no im-

provement.
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e Combinations of the above conditions.

In this disseration we have chosen to run the genetic algoriintil a fixed num-
ber of generations is reached. We choose this condition sdomwi restrict ourselves
to certain time requirements and we wanted to explore thiedsigvalue of fitness the
algorithm can reach. In this work we are exploring the défegrcombinations of equa-
tions and settings. Future work may include implementingogng condition that
terminates once the fitness is within a certain thresholtdefiesired fitness value. We
choose not to do this because stopping at a specified fitnassallow us to observe
the “best” solution we could possibly find. The same reas@pdyafor why we chose
not to stop after a specific amount of computation time. A neffigient approach
would be to stop once the algorithm plateaus, however, ierai@ compare different
fitness function weights and other methods, we wanted to stsia number of genera-
tions to provide for a fair comparison between the diffeggofiles. Although we have
choosen to stop after a fixed number of generations, thetsasalpresent in Chapter 6
show the processing time per generation. Using this timgeeeration we can calcu-
late the time needed to run the genetic algorithm for a shatmber of generations if
needed.

Figure 4.1 shows the general flow for the genetic algorithatess that we imple-

ment in this research.

4.2.1 Population Adaptation Enhancement

In the area of wireless communications optimization, dquatdi-service (QoS) re-
guirements may limit the time required to determine a denisio facilitate these QoS
requirements, typically the GA engine would be requiredetoninate after a prede-
fined number of generations have been executed, in orderat@igiee a decision in a

set amount of time. However, this does not guarantee thaGhéas converged to
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Figure 4.2 Fitness convergence for a standard GA implementation

a adequate set of transmission parameters. Our previolshasrshown that a stan-
dard GA used in a multi-carrier system using a small numbgrandmeters requires
a significant amount of time for determining an optimal solut Figure 4.2 shows
the fitness convergence for a 16 channel GA-based impleti@ntgperating in emer-
gency mode (i.e. emphasis on bit-error-rate). This graphiges information about
how quickly the system converges to the optimal decision. &Foomplex cognitive
radio system with a large number of parameters, using aatdr@A-based implemen-
tation becomes infeasible since the time needed to compieteyeneration increases
as the system complexity increases. We show this to be trGaapter 6 by increasing
the number of channels, thus increasing the size of the assome and making the
system more complex.

We modify the initialization stage of the GA algorithm thatables the engine to
take advantage of previous measurements and decisionden tarimprove the con-
vergence time of the algorithm. Using the assumption thattheless channel envi-

ronment changes slowly, we can seed the initial generafitineoGA algorithm with
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chromosomes from the final generation of the previous GAecyghis technique bi-
ases the initial generation to the final decision of the Ia&tdgcle. We show that by
seeding the initial generation we can achieve increasedecgance times, thus de-
creasing the amount of processing needed to achieve thersamits as the standard
GA implementation.

Using information about the problem domain, we can usedinsteding techniques
to improve the operation of a GA algorithm [54]. In a quasitist wireless channel
environment, we can assume the environment parametersiangiog slowly. In this
case, the results from the previous evolutions in the GA @nthized by seeding a
percentage of the initial generation with chromosomes fiioal generation of the last
cognition cycle. Doing this will bias the initial generatidoward the last decision.
Depending on the amount of environmental variation, thesdsey will improve the
convergence rate of the GA algorithm.

In our population adaption technique, the change in enaemt parameters can
be characterized by a figure of merit called greironmental variation factofEVF),
which is used to determine the amount of seeds to be utilized the previous cogni-
tion cycle. The EVF represents the amount of variation tlaatdccurred in the envi-
ronment since the last cycle of environmental sensing. &blertique can significantly
reduce the number of generations required for the conveegehthe cognition cycle
by using the EVF to determine the amount of seeding.

The EVF is defined as the weighted sum of the percentage chamgjee environ-
ment parameters, which is the single metric for determiniregchanges in the envi-
ronmental parameters. For example, an EVF of 0.20 tellsatshie average variation
over all the environmental parameters was 20%. For our sitiouls, we restricted the
variation in the environment in such a way that the envirominseuld only worsen with

respect to the fithess. Had we not restricted the EVF in thys @eatain scenarios where
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the noise decreased significantly caused uncharactgrisigth fithness scores due to the
BER fitness function being normalized to a BER of 0.5. Using itfisrmation about
the variation in the environment, we can select the appte@aount of population
seeding for the GA algorithm. The assumption is that at loWwes of EVF, higher
seeding percentages will improve the convergence rateeoGi#y. This is due to the
fact that a low EVF represents a wireless environment thatoimdy slightly changed.
In this case, the previously determined decision will be tiebbestarting point than a
randomly selected population of decisions. However, inchee of a large change in
the wireless environment, or a high EVF, the initial popoiatshould be more diverse
to enable the algorithm to explore a larger portion of thedeapace. One common
situation where a high EVF may be detected is in the case d@dle@s channels ex-
periencing deep fades. In this case, if the seeding pe@ensatoo high, the initial

population not be diverse enough to evolve to the globaltynegd decision.

4.3 Rule Based System Framework

This section provides more details into the implementatitihe RBS and focuses
on each of the different sections that make up the RBS. As se€igume 2.2, a RBS
consists of several different components. We begin withdiimaain expert which can
be defined as the fitness function derived in Chapter 5. In doder the fitness function
to be used as the expert, we needed to perform a full searck spaover all possible
parameters using the fitness function, and find the optiraaktnission parameters for
each possible environment.

The environment parameters that are used in the rules tadfigise noise power
and path loss of the wireless channel, and the objectivehtiags of the system. Using

the sensed values of these variables the RBS asserts theaujpgdhides the optimal
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fithess function. The first step in the development of the RB&gyss to create the rule
base for the system. This is done by determining the optiraaktmission parameters
for each possible combination of environment variables.

Table 6.2 gives the operating values of the noise power atidipss. Using only
these two parameters we have a total of 100 rules. Factamiigei five objectives
weightings, each ranging range fronD0 to 100, this gives 10 billion possibilities.
However, we recognize that looking at all possible comlamet of parameter weight-
ings isn’t needed and instead focus on specific combinatbmgightings that repre-
sent interesting scenarios. The combinations we have ehaog defined in Table 5.7.
We chose these scenarios in such a way that four of the peafarenobjectives would
each have a major emphasis on them. These combinationhgicegnitive adaptation
engine a diverse selection of performance objectives talsii®. With only these four
scenarios we have a total of 400 rules that need to be gedenateder to implement a
RBS for testing.

A major advantage of the RBS is the ability to generate the rofésie when
time is not a key factor. This is a good thing because findiegojbtimal transmission
parameters for each of the environment scenarios requicesmgplete search of all
combinations of transmission parameters to find the contibmavith the largest fithess
score. For a single objective scenario, there exists appeigly 600 million possible
combinations of parameters that need to be search for amalptalue.

We begin this search by implementing the fitness function RIMAB and veri-
fying the output of the function is identical to that of thenéss function implemented
in the genetic algorithm. To verify this, several debugestagnts in the GA code were
inserted that outputted actual MATLAB code that could gab@g executed immedi-
ately to verify the MATLAB version of the fitness function aeted the same results.

Once it was determined that the fitness functions were idantihe fithess function
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was ran for all possible combinations of transmission patans. This consisted of 10
for loops, two days of processing and about 6 Gigabytes of omgo hold the large
10 dimensional array for a single performance objectivelmaation.

The large array is indexed by the radio parameters and hioédthess values for
each combination. Using a few simple MATLAB commands the imaxn fitness
value for each environment combination could be found,@leith the proper indexes
that represent the actual transmission parameters. Frese thie create the rules for
the RBS. This processes was automated by a MATLAB function amdbe view in

Appendix A.

4.3.1 CLIPS

The inference engine as shown in Figure 2.2, infers the pnape to be asserted.
We have choosen to use the C Language Integrated Produgtstens(CLIPS) expert
system [37] as the engine. CLIPS dates back to 1985 where tl@adoped by NASA
at the Johnson Space Center with the intent of gaining insigtitknowledge into the
construction of expert system tools and to lay the grounévior replacement tools
for the current commericially available tools. Eventuaihe CLIPS system’s low cost
and great performance made it the ideal tool the developwfeexpert systems and
eventually became available to groups outside of NASA in6198oday CLIPS is
widely used in the government, idustry, and acadamia. We bhwosen CLIPS due to
the fact that is it written in C and in the future this can allog/to implement the RBS
into existing cognitive engines easily. In addition, CLI®$iteractive environment
makes it very easy to use and provides a simple interface éatoradd rules and facts
manually when debugging or CLIPS is able to read in large dateof rules and facts
created from MATLAB. In the end, the primary reason CLIPS wasoslen was the

simple interface, the C implementation, the documenta@ol the ability to modify
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the source or integrate with solutions we already have.

We run the CLIPS shell under a linux environment and begin byoirting the
rules generated by our MATLAB fitness function. Once thedesrare imported, the
database exists within the engine and all that is left is serdacts about the envi-
ronment. For example, we may assert three facts statinghbatoise power is -114
dBm, path loss is 80 dBm, and we are operating in the emergendg nhere we
want to focus on minimizing the bit-error-rate of communicas. Once these facts are
stated in the system, CLIPS will match the facts to a rule tRet®in the database,
and assert another fact that provides the optimal trangmigmrameters for the given
environment. Our goal is to analysis the implementationdgsswith the RBS so we did
not integrate the CLIPS system into a standalone programteStg'were all ran within

the actual CLIPS shell.
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Chapter 5
Multi-Objective Fitness Functions

5.1 Introduction

This chapter will cover the multi-objective fitness functiproblem representation
and describe the analytical techniques that will be useénerte the fithess functions.
Section 5.2 provides an overview of multi-objective fitnesgtions and the challenges
that must be overcome to generate an accurate functionoB8&c® describes the rep-
resentation of the transmission parameters and the eméotally-sensed parameters.
The description of how the performance objectives are usdétermine the search di-
rection of the evolutionary algorithm will be presented gcgon 5.3. In Section 5.4, a
detailed description of the analytical techniques thauaesl to derive the fitness func-
tions is presented along with the fitness functions gengnadeng a subset of decision

variables. The final section presents a summary of the chapte
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5.2 Multi-Objective Fitness Function

5.2.1 Problem Statement

In general, a multi-objective fitness function problem campbesented as trying to
determine the correct mapping of a setnoparameters to a set df objectives. This

can be seen algebraically as:

Y= (f1(%), f2(%), 3(%), ... fn (X)) (5.1)

subject to

X = (X1,%X2,X3,...Xm) € X

y: <Y1ay27)’37-~)’N> ey

wherex is the set of decision variables aKds the parameter space, ani the set of
objectives withY as the objective space. In the case of a multiple objectivkigonary
algorithm, eaclf;(x) represents the fithess function for a single objective. Tatig to
combine them to get a single fitness functidii), taking into account all parameters
and objectives.

In real world problems, such as the problem addressed inhtégss, the objectives
under consideration might conflict with each other. For gxanminimizing power
and minimizing BER simultaneously creates a conflict due e dimgle parameter,
transmit power, affecting each objective in a different w®etermining the optimal
set of decision variables for a single objective, e.g. mir@rpower, often results in
a non-optimal set with respect to other objectives, e.g.imze BER and maximize

throughput. The optimal set for multiple objective funaolie on what is known as
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the Pareto optimal fron{14—16]. This front represents the set of solutions thahoan
be improved upon in any dimension. The solutions on the Bdrent are optimal and
co-exist due to the trade-offs between the multiple obyesti A graphical example of a
Pareto front, using a simple cognitive radio parameterageis shown in Figure 5.1.

1,
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0.851

min_Power(X)

f

0.75r

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
fmin_BER(X)

Figure 5.1 Pareto Front Trade-off

The x-axis in the figure represents the score of the singlectiisg fithess func-
tion for minimizing BER in the case of several modulation typ&hile the y-axis is
the score for the single objective fitness function for mizenpower. The parameter
X represents the decision variable vectors used as inputetéithess functions. In
this case, transmit power and modulation were used as dearsiriables. For each
curve, as the fitness score for minimize power decreasesctire for the minimize
BER objective increases. This trade-off represents the abtliee multiple objective
optimization problem. The QPSK curve represents the Péi@it, because no param-
eter set on that curve can be improved upon to gain a bettectolg score in respect

to both objectives. The other modulation curves representiominated solutions to
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the bi-objective optimization problem. The fitness funciaused for this example are
derived in Section 5.4.

In this thesis we develop a set of fitness functions using ¢hefsparameters de-
fined earlier, that are used by cognitive radio engines terdehe a single optimal
transmission parameter solution. In Figure 5.1, sevenarpater sets lie on the Pareto
front, however the fitness function must provide a seardttion that leads the system
to a single solution. We use a weighted sum optimization @gugr to give the fitness
function the ability to focus in on a single parameter setingsveights allow the fit-
ness function to instantly change the global objective efdyistem. Section 5.3 details
the weighted sum formula and how it applies to our fithessaten

Before we go into detail about the objective weighting, we naescribe how the
parameters of the cognitive radio are represented as itptlts fitness function. Thus,
a list of parameters used by the fitness function and thesiblesranges are defined in

Section 6.2.

5.3 Fitness Objective Representation

Ideally the fitness function must be able to guide the systeame optimal param-
eter set. A cognitive radio must perform an action based ongdesset of parameters,
which should be selected from the Pareto front accordingptoespreference infor-
mation. Preference information, or objective weightirggused to rank the objectives
in order to help the fitness function guide the evolutiondgoathm to one optimal
solution.

In addition to needing preference information for each cije, the scalarization of
the objective vector is also necessary. Evolutionary @lgms need scalar fitness func-

tions that provide a single scalar value for the given patanset. In many optimization
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problems, when no global criteria, e.g. goals, for the patans exist, objectives are
often combined, or aggregated, into a scalar function. &bgregation optimization
method has the advantage of providing a single scalar ealditir the fitness func-
tion. As a result, this requires no extra interaction wite #volutionary algorithm to
determine the optimality of a given parameter set.

There have been several approaches to the optimizationgrégated functions.
Weighted sum approaches are presented in [17,18]. The teédiglum approach at-
tempts to minimize the sum of the positively normalized, gied, single objective
scores. In [55], target vector optimization was developEatget vector optimization
requires a vector of goal values. The optimization is driseevard the shortest distance
between any candidate solution and the goal vector. Goglanaming was also stud-
ied by several authors [56,57]. In goal programming onecihje is minimized while
constraining the the remaining objectives to be less tharnalget values. However,
choosing appropriate goals for the constraints can be wiffiGoal programming has
also be shown to not generate the Pareto front effectivegrvihe number of objectives
is greater than two.

This research proposes to use the weighted sum approacts. niéthods suits
the cognitive radio scenario well since it provides a comeinprocess for applying
weights to the objectives and more importantly providesnglsi scalar value. Using
the weighted sum approach, we define a multiple objectivedgriunction of the pa-

rameter set solutior by the following weighted sum dfl objectives:

() = iwi i) 5.2
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with wy,. .. wy, satisfy the following constraints:

1>w; >0 fori=12....n (5.3)

Wi+Wo+...+Wy=1

When the weighting for each objective is constant, the sedirglction of the evolu-
tionary algorithm is fixed. This is the intended property whegying to find a single
optimal solution for a given environment. However, chagdine objective weighting
means the fitness function will immediately start steerhrgydvolutionary algorithm to
a new solution. For example, take the case in which a radipesating in a minimize
BER mode. In this mode, the fitness function will give highesres to parameter sets
providing a high transmit power. This is because the weighth® minimize BER
objective is the largest. Suppose that the radio then deteat battery power. At
this instance, it changes the objective weighting to reficémphasis on minimizing
power. This is done by reducing the weights on other objestwhile at the same time
increasing the weight of the minimize power objective. Otleeweights change, the
fitness function will instantly start giving higher scoregparameter sets which provide
for lower power transmission. This is the primary attribthat allows the objective
weighting to dictate the goal state of the radio. It alsovedidor a dynamic system to
instantly switch operating goals by simply modifying thgemftive weighting vector.
Figure 5.2 shows the previous example. The search direefiphcorresponds to a
minimized power weight vector in the 2-D objective spacee Sharch direction®].]
corresponds to a minimized BER weight vector in the 2-D objectpace. As the
objective space increases, so does the dimension of sqaach for a solution. We

propose to develop a fitness function using a five dimensialnjakctive space.
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Figure 5.2 Search Direction Example

5.4 Parameter Trade-off Analysis

5.4.1 Single Objective Goals

The weighted sum approach allows us to develop a single tlgeftinction for
each objective and combine them to create a multiple obgeétinction. To develop
the single objective functions, we must determine the depece relationship between
each objective and the set of parameters defined in SecRorTBe complete table of

relationships is displayed in Table 5.1.

Table 5.1 Objective and Parameter Relationships

Objective Name Related Parameters
1 Minimize Bit-Error-Rate P,PLmM,B,R:,SN
2 Maximize Throughput m,M,B,R.,L,TDD,Rs
3 Minimize Power Consumption P,M,m,B,R.,T DD

4 Minimize Interference P,B,f., TDD

5 Maximize Spectral Efficiency | Rs,B,m
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Shown in Table 5.1 are the parameter dependencies for egattiob. An impor-
tant task in this research is deriving the relationship leetweach performance objec-
tive and the parameters. Completing required a complex mettieal analysis of the
closed form solutions of each objective, using the definedrpaters and their potential
range of values. In addition to the weighting constraintsosed on the individual func-
tions, each single fitness function score must be normalbeddeen the same range.
Otherwise, if fithess function A outputs scores from range$][and fitness function
B outputs scores from [€], wherex > 1, then the global fithess function would show
a bias to function B due to the larger output range. The ostpithe functions devel-
oped in this research are all normalized to the range [0,1{h Wis output limitation
defined, the following subsections describe the individitrass functions representing

the performance objectives described in Section 3.4.

5.4.1.1 Minimize Bit-Error-Rate

Table 5.2 Minimize BER Cognitive Radio Parameters

Transmission Parameters| Environmental Parameters

Modulation Type Path Loss

Modulation Index Noise Power

Bandwidth Received Signal Strength
Symbol Rate

Transmit Power

One of the most common goals in wireless communications get@n error free
signal, or to minimize the bit error rate of the transmissiDetermining the theoretical
bit error rate depends on several transmission parametgdugling the transmit power,
modulation type, modulation index, signal power, bandiidind noise power.

The most important factor in determining the BER of the systethe channel type

and modulation in use. Each modulation and channel type r@atibn uses a different
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formula to determine the BER of the system. Another importactor in determining
the BER of the system is the ratio of the energy perBji) (o the noise power spectral
density (o). This ratio essentially is a measure of the amount of enpeg\bit to the
amount of noise power in the system, or the basis of the sigrabise ratio. Each of
the formulas uses th&,/N ratio in deriving the BER.

To determine th&, /Ny ratio which we will now denote ag, we start by using the
received signal powefs. We knowS is equal to the transmitted signal power that is
affected by the path loss. From S, we can get the amount ofgper symbol by using
the symbol rateS/Rs. This can then be used to get the energy per bit by dividing by

the modulation index or the number of bits in each symbol asvehin Equation (5.4).

S
© RexMm

Es (W/b) (5.4)

The total noise power spectral density is simply the noisédeetz and is computed

using Boltzmann’s equation.

No=kp*T (J) (5.5)
N=No#B (WxHz2) (5.6)

wherek, is Boltzmann’s constant (1.38 x 18 J/K), T is the system noise temperature
(290 K), B is the channel bandwidth, amdlis the total measured noise power. The final

equation for the value aof that the BER functions uses is given by:

Ep S
— =y=10lo _
No y Gio |:RS>I< m=* Np

S B S B
} =10log; [Rs* mﬁ] = 10log {N] +10log; {Rs* m] (dB)
(5.7)
The following equations give the BER of QAM, PSK, and FSK, gsargray-coded
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bit assignment and assuming an AWGN channel model.

For a BPSK signal constellation, the probability of a bit eisodefined as [7]:

Re=Q(\Y) (5.8)

Whereas for M-ary PSK, the probability of a bit error is gives{d:

B 2
~ logy(m)

FPoe

L TT
Q( 2xlogy(m) * y= smﬁ]) (5.9)
For M-ary QAM, the probability of a bit error is defined as [7]:

Fho= & (1- ~ >Q< Mv) (5.10)

~logy(m) T V/m m—1

A more detailed look at the forumlation of the BER functionsdippendix B. We
also show the probability of bit errors in Raleigh fading amels along with several
other modulation types in Appendix A.

The goal is to create a fitness function with a valid outpugeaof between 0 and
1. To do this, we normalized the BER against it's worst case.bfadd took the log
base 10 of the BER value in order to provide a linear scale basdte exponent of
the BER. Otherwise, higher values of BER would dominate ovey senall values.

Equation (5.11) provides the final objective function fonmizing BER:

4 10914(0.5) —log;o(Phe)
fminber = 10g;0(0.5) — l0gy(10-5) (5.11)

whereR,e represents the probability of a bit error or BER for a given olation scheme
and a given channel type normalized to the worst possible Bifievof 0.5 and divided

over the total possible range of BER values selected. We d®$do be the best case
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BER and all experimental values seen below this value willdomded up to 10°.

5.4.1.2 Maximize Throughput

Table 5.3 Maximize Throughput Cognitive Radio Parameters
Transmission Parameters| Environmental Parameters
Modulation Type
Modulation Index
Bandwidth

Symbol Rate

Coding Rate

Time Division Duplexing
Frame Length

The throughput definition we use is equivalent to the goodpuhe amount of good
information recieved at the receiver. This is in contrasth® amount of information
sent by the transmitter. This less complex definition is usemtder to avoid compli-
cated throughput calculations dealing with informationdsrors and retransmissions.
In addition, we assume only block coding is being used.

Maximizing throughput is useful in a variety of scenariope8ifically, multimedia
environments that stream audio and video would place a lagyghting on maximiz-
ing throughput. For this objective, we use a theoretical @hdol calculate the fitness
score for an ideal transmission environment. Determiregteoretical throughput of
a system depends on the bandwidth in use, coding rate, mmfuladex, framesize,
and percentage of transmit time. The bit error probabiliaye the major role in deter-
mining the throughput degradation of the system. To detezthie throughput, we use

the probability of a packet error:

Ppe=1—(1—Ppen)" (5.12)
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The total throughput of the system is affected by the numbeaoket errors, or
the total data lost in transmission. Also in considerat®ithe MAC layer parameter
framelength. At high levels of SNR, transmission will be tekly error free with
respect to lower levels of SNR, and large framesizes can lkins®der to lessen the
amount of MAC layer overhead being transmitted. At low level SNR more frames
will need to be retransmitted as they have a higher chanaalimigf MAC layer CRC
checks due to a bit error. The larger the framesize that fladscheck, the larger the
throughput that is lost every time a frame is thrown away. Retehas shown that by
decreasing the framesize during periods of low SNR, sigmifitaoughput savings can
be achieved along with savings in power consumption assatiaith retransmitting
frames [58]. Equation (5.13) shows the derived equatioh dghees the relationship

between framesize, bit-error-rate, and good throughput,

L

- _ (L+0O)

(1 - Poer)(L+O) =Ry

L
G=mxRgx ENOFT] *
whereR,, represents the raw bit rate of the system in bits per secbin. the MAC
and IP layer overhead at a value of 40 bytes @@ presents PHY layers overhead at
52.5 bytes.L represents the framelength size in bytes, Bpglis the probability of a
bit error.

In addition to the previous parameters, we also take intowatcblock coding and
the time division duplex parameters. After normalizing ve¢ tpe final single objective

function:

L
fmaxthroughput= L1O+H *(1- Poer)(L+o) *Re+ TDD (5.14)
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5.4.1.3 Minimize Power Consumption

Table 5.4 Minimize Power Consumption Cognitive Radio Parameters
Transmission Parameters| Environmental Parameters
Modulation Type
Modulation Index
Bandwidth

Transmit Power

Coding Rate

Time Division Duplexing

Mobile embedded environments may place high weighting emimimize power
consumption objective. Several factors in a wireless radio contribute to the con-
sumption of power, including bandwidth, modulation typeding rate, time division
duplexing, and the most obvious being transmit power. Iregarsetting these param-
eters high will allow the transmission to become more erree fand provide higher
throughput, however more power is consumed. The transmiepand bandwidth
parameters are the obvious choices for parameters thatfeahtais objective. Equa-
tion (5.15) shows the partial fithess function used for powgarsumption. Increasing
transmit power and increasing bandwidth will increase ttme$is score. These param-

eters are normalized to provide a valid fithess score range:

(Pmax+ Bmax) — (P+B)
Pmax+ Bmax

fl = (5.15)

Also affecting the power consumption are parameters suchaakilation and in-
creased symbol rate add to computational complexity antheel to the transmission
increasing processing and thus increasing power consompiihis power consump-
tion can vary widely over different system specificationfie goal of this work is to
keep the relationships general and not derive an equatrandpecific system.

Increasing the modulation index increases the complexitgesystem, in turn re-
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quired more processing. Specifically, for M-QAM modulatitigher order M-QAM
and M-PSK increases complexity in a straightforward linkashion as it does with
spectral efficiency also. One way we recognize that the cexitglincreases linearly
with the number of bits per symbol because it has been shasirfidhQAM modula-
tions, it requires an extra 6 dB per bit increase in SNR toe&hihe same performance
as the lower modulation index for AWGN performance.

Increasing the symbol rate also creates a linear increassmpling rate, which also
increases the processing required in a linear way. Equa(mt6) and (5.17) show the
general equations that are used to represent the powerrptisn from increased

computational complexity. Again, normalization is useg@tovide valid fithess scores.

f— 10g5(Minax) —10g, (M)

5.16
l0g, (Mmax) ( )
f3 = RS“ng—_RS (5.17)
Smax

Equation (5.18) shows the combined previous equationstir@dinear objective

function.

. (Pmax+ Bmax) — (P+B)

fmierower = 1-

Pmax—+ Bmax
l0g, (Mmax) — 10g, (M) Rspax — Rs
* 4+ Ao I 5.18
P l0g, (Mmax) Rsmax ( )

wherea,3, andA represent weighting factors on the different contribusiemthe ob-
jective function. Each of the sections typically will notrddbute the same amount
of power consumption. For example, the amount of power aoesuby increasing

the symbol rate by 100% will most likely not be as large as tbwgy consumed by
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increasing the transmit power by 100%. To account for thééereint scales, we use
weighting factors on each section that can be tweaked bgsaudthe specific imple-
mentations of modules and hardware within the communicat&vice. The selection
of these parameters for our simulation is presented in tigaeitee engine simulation

Chapter 6.

5.4.1.4 Minimize Spectral Interference

Table 5.5 Minimize Spectral Interference Cognitive Radio Parameters

Transmission Parameters| Environmental Parameters
Bandwidth Frequency Bands
Transmit Power
Time Division Duplexing

Minimizing interference is an important goal in shared freqcy bands. For exam-
ple, this goal may be given a high weighting by a secondargtsjp@ user operating
in a primary users band. In this case the primary user hastgrio a specific band of
frequency, however secondary users are allowed to tramsthié band given that they
don’t cause interference to the primary users. Transnmiggoameters such as transmit
power, bandwidth and time division duplexing are used temeine the approximate
amount of spectral interference that is being caused byitnassion. Interference is
caused by overlapping transmissions with other users.llyféa calculate the total
interference you would integrate over the spectral bantiwittht your transmitting on,
and find the total power of overlapping transmissions. Is thork, we assume uni-
form power transmission over the transmission bandwidihwahg us to derive the

interference equation given by Equation (5.19).

finterference= P+ B (5-19)
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More potential exists for interference as the bandwidtiheases. In addition, more
power interference is potential as the transmit power otridaesmitter increases. This
can cause increased spectral leakage and also simply nopoveer interfering with
another communications system. Equation (5.20) showsdhmalized spectral inter-

ference relationship with the addition of the TDD parameter

Prax* Bmax* 100

(5.20)

fmirLinterference: 1-

5.4.1.5 Maximize Spectral Efficiency

Table 5.6 Maximize Spectral Efficiency Cognitive Radio Parameters
Transmission Parameters| Environmental Parameters
Bandwidth
Modulation Index
Symbol Rate

Maximizing spectral efficiency refers to maxmizing the amioaf information that
can be transmitted over a given bandwidth. It is a measurewffficient a given band
of frequency is utilized by the physical layer. This objeetrelates directly with the
bandwidth and the amount of information being transmitldte symbol rate and mod-
ulation idex can be used to determine the total amount ofim&ion beign transmitted.
In order to maximize the spectral efficiency, the system @aded to high amounts
of information across a little amount of bandwidth. Inciagghe modulation index is
the primary way of doing this, while keeping the bandwidtinstant. Equation (5.21)

shows the normalized relationship between these parasneter

m*TRS m: RS* Bmm

fmaxspectralefficiency: Mimax*Remax = B+ Mmnax* R
— R ax™ 'Smax

Bmin

(5.21)
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5.4.1.6 Multi-carrier Objective Functions

For a multi-carrier system withN independent subcarriers, the objective functions

are defined as:

log;0(0.5)
_ 10910(05 5.22
10030(Foo) 5-22)

whereR,. is the average BER ovét independant subcarriers.

fmirLber =

N
Li B (Li+0) .
i;(—Li—i—O—FH * (1— Pher) *Re, * T DDy)

fmaxtp = — N (5.23)

For the maximum throughput multi-carrier fitness functinfEquation (5.23), each
carrier’s fitness score is summed together and then divided the total number of
carriers,N, to get the average fitness score over all subcarriers. ohigeg the sys-
tem to improve the overall system fitness. The same followsh® minimize power
fitness function in Equation (5.25), the minimize interfare fithess function in Equa-

tion (5.26), and the maximize spectral efficiency fitnessfiam in Equation (5.27).

N

_Z(Pmax+ Bmax) — (P +Bji)
fmi = |l-ax= 5.24
min_power a* N # Pt B ( )
Z'ng Mmax) — 10g, (M, Z\Rsmax
+ 5.25
B N * Iogz(max) N * Rsmax :| ( )
N
Zl«PI +Bi 4 TDDj) — (Pnin+Bmin+1))
fmininterference= 1 — = (5.26)
N * (Pmax"‘ Bmax"— 100)
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N m * Rs * Bmin

= B| * mT]ax* Rsmax
fmaxspectralefficiency: : N (5-27)

wherePR is the transmit power on subcarrierN is the number of carriers, and
Pmax Is the maximum possible transmit power for a single subear$imilarly M; is
the modulation index used on subcartiiandMmax iS the maximum modulation index

available, whileR,c is the averaged bit error rate over all channels.

5.4.2 Multiple Objective Goals

The weighted sum approach allows us to combine the singéetitg functions into
one aggregate multiple objective function. Equation (Sf2)ws that each objective
is multiplied by a weightw; and summed together to give a single scalar value for
approximating the value of a parameter set. For the singertibe equations, we form
the multiple objective function for multiple carriers given Equation (5.28). Note that
the single carrier version can be easily derived by seftirgl.

Multi-carrier:

fmutticarrier = W1 * (fminber) + W2 * ( fmaxtp) + W3 ( fmierower)

+ Wy ( fmirLinterferencg + W * (fmaxspectralef ficienc)

The weighting valuesyy, W, ws, wy, andws determine the search direction for the
evolutionary algorithm and must conform to the constragiisen in Equation (5.4). To
help aid in the creation of example simulations we have déffoar example weight
vectors representing common scenarios a cognitive may dzeglin. Each weight
vector shown in Table 5.7 emphasizes different objectiaesinng an evolutionary al-

gorithm using this fitness function to evolve toward solnsigertaining to the specific
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objective.

Table 5.7 Example Weighting Scenarios

Scenario Weight Vector [wq,Wo,W3,Wg4,Ws]
Low Power Mode (minimize power) [0.10, 0.20, 0.45, 0.15,0.10]
Emergency Mode (minimize BER) [0.50, 0.10, 0.10, 0.10,0.20]
Dynamic Spectrum Access Mode (minimize interferenc¢)0.10, 0.20, 0.10, 0.50, 0.10]
Multimedia Mode (maximize throughput) [0.15, 0.50, 0.10, 0.15,0.10]

Using the scenario weight vectors and a genetic algorithginen we have gen-
erated genetic algorithm convergence results, along Wwélstatistics representing the
average final decision output by the GA. These results aedaasthe fitness functions
and are presented in Chapter 6. Along with these results aresults of the decisions
made by a rule-based system implemented using the fitnestsdmo generate the rule
base. These two systems are compared and the trade-ofctosgstem are analyzed
to determine the system that is most feasible in a giventsituaThe block diagram
in Figure 5.3 shows how the fithess function is used in the tgea&orithm, while

Figure 5.4 shows how the fitness function fits into the impletagon of the rule base.

5.5 Summary

This chapter presented the fitness equations for a subdet prameters and ob-
jectives presented in Chapter 3. The general multiple abgoptimization problem
was formulated and we discussed how the problem fits intodgeitive radio wireless
domain. We use weighted sum approach for the formulatiohegtobal fithess func-
tions that aggregated the single objective fitness funstioto a weighted sum. This
approach has the advantage of providing a single fitnessidumthat outputs a scalar
value. Section 5.3 introduced the single objective fithaeastions that were developed.

These functions are the product of a small subset of parasnatel objectives. They
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demonstrate a sample relationship between the parametsbgectives and how the
fitness function is formulated. We then showed that by dgmetpmulti-carrier fithess

functions, single carrier systems could be easily acqusesktting the number of car-
riers to one. The weighting vector used to direct the geradgiorithm search direction
was introduced along with several example weighting sces#nat represent practical

cognitive radio situations.
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Chapter 6
Cognitive Engine Simulation

6.1 Introduction

This chapter presents the results gathered from the silmigabf the cognitive
radio engines defined in previous chapters. We being bywawgethe parameter list
as defined before, and defining the parameter value rangesehaill be using in the
simulations. Most of the parameter values used were chdodamsimiliar to systems
that would be implemented using the Kansas University Agadio (KUAR) hardware
platform [59].

After the parameter values are introducted, the cognithgiree implementations
are described in detail. Most importantly we describe haafitimess functions derived
earlier are implemented within each engine. The followiagti®n gives an analysis
on the advantages and disadvantages of each engine. Wdewgoperformance com-
parison between the two methods that emphasize the adesngagh engine has in
different hardware situations.

Finally, parameter sensitivity results are provided. Ehessults show how much
impact certain parameters have on the optimality of thesit@ei This is an important

factor when developing a cognitive engine. Selecting patars for a cognitive engine
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that have no impact on the decision is a waste of resourcesaandctually be harmful
to the decision making process by adding uneccesary complexaddition, knowing

which parameters have the largest impact on the decisiolsasi@mportant. If these
parameters are known, more emphasis should be placed ordtetg and accuracy

of these knobs.

6.2 Cognitive Parameters Representation

Section 3.2 provides a list of transmission parameters dethfp represent com-
mon transmission parameters for cognitive radios. The godéfining these param-
eters was to select parameters that will be used by a largbewaof radios. As this
parameter list increases, so does the number of controlngiimes of the radio.

Table 6.1 displays a list of seven transmission paramedtatsve use as inputs to the
fitness function, along with the ranges selected for eacanpater. The trade-off anal-
ysis between these preliminary parameters and objectresepted in the next section
will provide important numerical relationships that wik lised to develop the prelim-
inary fitness functions. Also shown in Table 6.1 are the symbwr each parameter

which are used in the fithess equations to represent the.value

Table 6.1 Transmission Parameter Values

Parameter Name Symbol | Min. Value | Max. Value | Step Size
Transmit Power P -8 dBm 24 dBm 1dBm
Modulation Type M N/A N/A N/A
Modulation Index m 2 256 v
Bandwidth B 2 MHz 32 MHz 1 MHz
Channel Coding Rate Rc N/A N/A N/A
Frame Length L 94 bytes | 1504 bytes | 10 bytes
Time Division Duplexing| T % 25% 100% 25%
Symbol Rate Rs 125 Ksps 1 Msps 125 Ksps

When performing the trade-off analysis, it is important t@krthe possible ranges
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of the parameters used. The ranges allow us to put constramthe relationships.
Without constraints, the trade-off analysis would be ingiole due to the infinite pa-
rameter space. The ranges chosen were based upon commdéssvegstem speci-
fications present in today’s world, with a focus on the valbesg used for the KU
Agile Radio (KUAR) experimental platform [59]. The transmawger, P, ranges from
-8 dBm to 24 dBm. This maximum power was selected because ipiozimately the
maximum specified transmit power in the middle UNII bandegia 1 MHz bandwidth.
The maximum and minimum ranges for the modulation types @iabe specified
because they are not numerical values. We have chosen taiadeatuyre amplitude
modulation (QAM), phase shift keying (PSK), and frequentuft &eying (FSK) signal
constellations to represent the modulation parameteesalidor each signal constella-
tion, the modulation index or the number of bits per symbatjes fromk =1 tok =8,
giving us a discrete range of 2 to 256 bits per symbol for aifipestgnal constellation.
The selection of the bandwidtB, range was selected based more on convenience.
The maximum value of 30 MHz is the same bandwidth used by the&Rproject. Sim-
ilar to modulation type, the channel coding rate is not aiooioius numerical value, but
instead represents the ratio of redundant code bits to thAkertiomber of bits in a block
of data. We assume only the only possible coding types amkldoding and turbo
coding. The link layer parameter, frame lendthis defined as being variable from 94
bytes to 1504 bytes, which is just above the maximum transniitavailable when us-
ing ethernet. We want to explore the trade-off relationshigtween this parameter and
all others, along with the impact on both the system throughpd BER objectives.
The third column in Table 6.2 indicates one possible step wizich allows us to
calculate the size of the parameter space. Using the vaiu&ghle 6.2, the total pa-
rameter space has approximately 75 million combinatiohe Step sizes are typically

constrained by the resolution of the hardware devices. Hhges in this disseration
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were chosen to for convenience of implementation and mayepoesent typical hard-
ware resolutions. We explore how changing these valuestalfe operation of the GA
and the rule-based system.

An important factor in this system is the parameter spacé®pbssible environ-
mental parameters. This parameter space representsdahauatber of environments
that could possible be seen by the radio. Each of these emvéots will have an op-
timal transmission parameter setting, and must be repedday a single rule in an
expert system. To determine the size of the parameter sp@&cmust first determine
the number of possible values for each parameter. Prdyfitted parameters have con-
tinuous ranges and must have a step size defined for eachesdetetmine the number
of possible values per parameter. The third column in Talderilicates one possible
step size to determine the number of values.

The SNR range was determined based upon typical values théd e seen when
using a radio such as the KUAR in the given frequency rangee SINR parameter
used in this research is the SNR value at the receiving rdthe information is sent
back to the transmitting radio over a separate control ablanfhe control channel is
assumed to be perfect and is not in the scope of this resekneltSNR can be detected
by measuring both the incoming power of the signal, whicht@ios both the signal
power plus the noise power. Next, the noise power of the atlanast be sensed by
measuring the channel when no signal is present. From th@seneasurements the
SNR can be determined. This can be done by allowing the riaggiadio to send out a
beacon to the transmitter on a regular interval indicativag it is going to measure the
noise power. The transmitter will not transmit for a spedifperiod of time in order to
allow the receiving radio to detect the noise power. Morerimfation on the measuring
the SNR of a channel can be examined in [60].

As mentioned previously, we use the SNR at the receiver terah@te the fitness
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score. In order for the system to adapt properly to dynamanobl attenuation, we
must use both the received SNR and the current transmit povwder to determine
the channel attenuation and path loss. Our system detextSNIR, determines the
channel attenuation and adapts the current power to theppate value.

The power consumption numbers are again drawn from the zippate values
from version 3 of the KUAR. The spatial knowledge is represdms GPS coordinates.
This information can be easily determined through the use®PS receiver built into

the radio.

Table 6.2 Environmentally Sensed Parameter List

Parameter Name Symbol | Min. Value | Max. Value | Step Size
Noise Power N -114dBm | -104 dBm 1dBm
Path Loss PL 85 dBm 95 dBm 1dBm
Battery Life BL 0% 100% 1%
Power Consumption | PC 10 W % 46 W 1w
Spatial Knowledge | SK| N/A N/A N/A
Spectrum Information S N/A N/A N/A

For the algorithmic computation we will only be using theseopower and the path
loss components of the environmental variables. The o#rerthe trigger variables that
allow the cognitive radio to trigger changes in the primabjeative of communication.
The following sections present the results of the simutegtiasing the parameters in the
previous tables. After the presentation of the implemeémtatand results, we provide a
analysis of the comparison between the two very differeghéwe engine implemen-
tations. We will highlight on the performance tradeoffstehave, and emphasis the
advantages each provides in different operating enviromsnéifter the comparisons,
we present parameter sensitivity results that will shelt lan the realistic impact each

parameter has on a cognitive radio system.
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6.3 Genetic Algorithm

6.3.1 Genetic Algorithm Implementation

The genetic algorithm used in this work was completely wnitin C, and compiled
and run on linux systems. The engine was built upon the SiiGgleetic Algorithm
(SGA) code [61] written by researchers at The University tdbama. As described
before, genetic algorithms have several system parantbetgrsiust be set specifically
for each system. In our genetic algorithm system we choossdohe de facto standard
for most genetic algorithms, the DeJong settings [50]. bgJoas shown that this
combination of parameters work better than many other pat@mtombinations for
function optimization. However, we make one modificationthie DeJong settings
due to our search space being extraordinarly large. Weaseréhe population size
of each generation from 50 to 200. This change was choosexdhgson a crude
population scaling law in [62]. This change allows the syst® operate on more
combinations in parallel. Without this change the smallylagion size causes the GA
to work on an extremely small subset of the entire populafidrs small size prohibits
the GA from being able to have spontaneous evolutions beddessmall chance of
randomly finding an optimal chromosome. With a larger popaita the processing
need is greater however the GA is able to more fully exploeesiarch space, which
is greatly needed with large search spaces such as the one prablem. Table 6.3
shows the Dejong settings alongside the settings we usedufogenetic algorithm
implementation.

To build the chromosomes, we first determined the numbentstiat were needed
to represent each parameter. This was found by using tHentoteber of possible val-
ues for each parameter and takiflgg2| of this value and modifying the parameter

values as needed to conform to this distribution. For exapipk the frame size pa-
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Table 6.3 DeJong Genetic Algorithm Settings

Parameter DeJdong Ours
Population Size 20 50
Number of Generations 1000 1000
Crossover Type Two Point | Two Point
Crossover Rate 0.60 0.60
Mutation Type Bit Flip Bit Flip
Mutation Rate 0.001 0.001

rameter we initially wanted to vary the length of the frammedrom 100 bytes to 1500
bytes in 100 byte increments. This gives us 15 total valueshis single parameter,
however we need 16 uniformly distributed values. To achibig we simply divide
1500 bytes by 16 to get the step value needed to have 16 vdluése frame length
case, 93.75 bytes is the step value, however we round thi4 tiy@®s and make the
maximum framesize 1504 instead of 1500 to avoid any mininzaibg effects.

In total, the length of each chromosome for a single charysteém consists of 31
bits. As the number of channels grows in the system, the $iteechromosomes also
grow. For example, in a 2 channel system, we have 2 indepéotannels each with
their own set of parameters. So the total length of a 2 chasimemosome will be 62
bits, or two times the 31 bits of a single channel system. rfléigul provides a visual
representation of this increase in chromosome lengthe&sing the size of the chro-
mosome adds complexity to the GA system. As the GA resultsosewill show, it
takes longer for systems to converge on an optimal resuitttiney have larger number
of channels. This is because the longer chromosome recuisgger amount of pro-
cessing time in order to determine the fitness. We have alrglanlvn that the amount
of time required grows linearly with the increase in numbkechannels. This result is
intuitive due to the linear increase in processing needdd the larger chromosome.

The main process begins with the GA engine populating 200rsbsomes with

random bits. These chromosomes are the initial populatidheosystem. However,
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Figure 6.1 Chromosome Length Growth

in the adapted version of the GA system, as we described io8et.2.1, we don't
initalize all the chromosomes randomly. Based upon the ahamghe environment
since the previous adaptation cycle, we initialize somehefdghromosomes with the
chromosomes that we ended with in the previous cycle. Tlaisdsi the initial genera-
tion to the solution of the previous cycle. Under the assuonphat the environment
hasn’t changed much, this biasing can save the GA systenegsing time and allow
it to converge at a much faster rate. The results for the ada@tA system are shown
in Section 6.3.2.2

Once this initial population is created, the fitness functi® perform on each in-
dividual chromosome and the fitness value for each is storedemory. The fitness
value not only represents the optimality of the parametaus,also is the means by
which the GA engine determines whether a specific parametes selected to move
onto the next stage of evolution. Our system uses the stochamainder method to
select which chromosomes are used for the evolution protefise stochastic remain-
der method, the ratio between a single chromosomes fitnelstharaverage fitness of
the population is used to determine the number of copieseotttomosome which
move on to the evolution process. For example, a chromosatheMitness to fithess
average ratio of 1.50 would be guaranteed one copy is movedesplution, and have
.50 probablity that a second copy would also be moved on.

Once the intermediate population of chromosomes have ledectad, they can now
be recombined to create the new population. Random chronessare selected to be

combined using the two-point crossover process shown iar€ig.3. The probability
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two randomly selected pairs go through the crossover psdses specific GA system
variable, in which we use 0.60 as shown in Table 6.3. Oncertigsovers are complete,
they will go through the mutation process. The chance fort anbitation is typically

very small, but it allows the GA to jump outside of the locahszh space, thus giving
it the ability for spontaneous evolution. In our system weeha 01% chance that a bit
will flip for each bit in the chromosomes. Once these openstizave been applied to
the new chromosomes, the fitness function assigns new \ialties chromosomes and
the process is repeated until we hit 1000 generations. Bugtsdrom our standard GA

simulations are shown in Section 6.3.2.1.

6.3.2 Genetic Algorithm Results

In this section we present the results of the GA simulatiddeveral simulations
were performed that cover a wide range of environment. Osir gioal is to explore
how the GA converges with the large number of parametersingdbd complex fithess
function. We look at convergence results from each of the pauformance objective
scenarios that were defined in Table 5.7.

The next result we analyze are the actual parameter settingthe GA produces.
These results will vary based on the performance objectieslook at how each the
performance objective weighting guide the GA to differeatgmmeter settings. In ad-
dition to the convergence and parameter settings, we shewartitount of time needed
to produce a result. An important aspect of this work is theam of processing time
needed by the GA in order to produce a valid output. Increggsia complexity of the
system increases the time need to produce a result. We expeeffect that the num-
ber of channels has on the time needed to converge to a régeildlso show that this

time is reduced when employing the adaptive techniquegitbesicin Section 6.3.2.2.
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6.3.2.1 Non-Adaptive Genetic Algorithm Results

We begin with the minimize power performance objective itas&igure 6.2 shows
a standard fitness convergence graph obtained from the GAnsyd his figure shows
the best results from varying channels in the system. It easelen that a system with
a single channel converges much faster then the system &ithdnnels. This is due
to the processing time needed to calculate the fithess ov@ichdnnel system. These
results, as with all of the following results, are averageerd.00 runs with each run
using random environment variables. To highlight the éfééc¢he increasing number
of channels in the system, Table 6.4 shows the optimal geaerahere the highest
fitness was found for each system. Again, for a single chasystem, the system is

able to find the best value much earlier than the system withaénels.
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Figure 6.2 Fitness convergence curves for the minimize power consump-
tion performance objective for systems with varying number of channels.

Figure 6.3 shows the convergence results for the Emergemrasgo. In this sce-

nario we have a large emphasis on minimizing the BER of thensyst order to provide
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Table 6.4 Power: Number of Channels vs. Optimal Generation

Number of Channels

Optimal Generation

Optimal Fitness

Time per Generations (ms)

1

77

0.981

1.0

4 789 0.904 3.9
8 845 0.886 7.7
16 892 0.831 17.6

a more error free communication geared toward situatioresgvtlear communications

is essential. This scenario exhibits the same charadtsrias the previous conver-

gence graph. Increasing the number of channels requiresepnacessing, resulting

in slower convergence rates for a higher number of chanielget a feel on how the

number of channels affects the fithess convergence, we eaftaga Figure 6.3 that

a channel with 16 channels causes the fithess to cap the upyteat approximately

20% lower then the system with a single channel.
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Figure 6.3 Fitness convergence curves for the emergency scenario perfor-
mance objective for systems with varying number of channels.

The following Figure 6.4 and Figure 6.5 also following thisngention. For the

multimedia scenario, the 16 channel system decreases livable fithess by 26%
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Table 6.5 Emergency: Number of Channels vs. Optimal Generation

Number of Channels | Optimal Generation | Optimal Fithess | Time per Generations (ms)
1 244 0.993 1.1

4 848 0.863 4.1

8 927 0.855 8.5

16 991 0.796 16.7

as compared to the single channel system. The DSA scenaria bap of only 10%
lower. This is because the DSA scenario is technically a lentpade off with fewer

parameters that are needed to converge.
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Figure 6.4 Fitness convergence curves for the multimedia scenario perfor-
mance objective for systems with varying number of channels.

An interesting attribute to point how is how the actual perfance objective weights
are affecting the convergence results. Typically systeiitis igher number of chan-
nels have a harder time converging. This is a consistantigmokhroughout all the
scenarios we have explored. However, some have a hardethamethers. As briefly
discussed earlier, this is because the performance olgsataary in complexity. This

complexity is defined by both the actual complexity of theoaiidpm, but also the num-
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Table 6.6 Multimedia: Number of Channels vs. Optimal Generation

Number of Channels | Optimal Generation | Optimal Fitness | Time per Generations (ms)
1 252 0.920 1.1
4 644 0.717 4.3
8 971 0.717 8.5
16 984 0.681 16.7
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Figure 6.5 Fitness convergence curves for the dynamic spectrum access
scenario performance objective for systems with varying number of-chan

nels.

Table 6.7 DSA: Number of Channels vs. Optimal Generation

Number of Channels

Optimal Generation

Optimal Fitness

Time per Generations (ms)

1 163 0.966 1.1
4 897 0.940 4.2
8 953 0.918 9.3
16 932 0.870 16.3
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ber of parameters and tradeoffs the function creates. Fongbe, the emergency sce-
nario deals with the BER of the system. Several parametegstdfie BER that are
present in other performance objectives. These tradeddfsent less clear to the sys-
tem which parameters to use, required more processing gvidration in order to
determine the optimal fithess. Notice that even in thesescdbke fitness is always
monotonically increasing, albiet slowly. In contrast smeos such as the DSA sce-
nario, it is clear how to set the parameters because theracaras many tradeoffs
between the parameters that affect the spectral intederehjective. This results in
the more complex systems with more channels not having sdebraase in the fitness
cap as other scenarios.

The decreasing performance of GAs with more complex sysisrtise primary
drawback of using such a system. The following section sstggenprovements that
cause the GA to increase the time it takes to converge to themaldfitness, and also
improves the system performance for systems with highereurof channels. These
improvements are based upon previous information and tlemanof channel devia-
tion that has happened since the previous GA cycle.

Another important characteristic of the systme is the tiree generation. In a
practical system, in order to optimize performance we wewddt the cognitive system
to stop after it reaches the generation that gives the hidtiesss possible, within a
ceratin threshold. For example, in the minimize power sger@s shown in Table 6.4, a
single channel system would stop after 77 generations. \ldr@ge time per generation
is 1.0 ms requiring a total of 77 ms for the complete compaitatFor higher number
of channels, the system has a much harder time convergingrirega larger number
of generations and an even larger time per generation. Wangbe DSA scenario
in Table 6.7 that for a 16 channel system the time per gewoeradi16.7 ms and the

average optimal generation is 984. A total of 16.4 secondsgsired to come to the
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optimal solution in this scenario.

To put this computation time into perspective we look at theetin a 3G system
such as High-Speed Downlink Packet Access (HSDPA) in UMT3. [Bh this system
each user device transmits an indication of the downlinkaiguality, as often as 500
times a second. The base station then decides which usérsensent data on the
next 2 ms frame and how much should be sent. So overall, a HIP&&mM provides
simple link adaptation results in 2 ms. In respect to the G#tey, a traditional link
adaptation system such as the 3G HSDPA system is signifydaster at updating the
parameters and adapting. However, link adaptation is alsiagproach to adjusting
parameters similiar to the RBS approach. Typically only thegraand modulation are
adjusted using a standard table of parameter values comésp to specific values of
SNR. The GA system introduces several more parameters thatlprmore dimensions
of control over the system. Unfortunately this larger digien of control comes at
a computational resource price. However, in the next seatie provide results on
adaptive GA techniques that improve the convergence tinteefGA, causing it to

require less amount of generations to get to an optimalisaolut

6.3.2.2 Adaptive Genetic Algorithm Results

For simulation purposes, we considered following two cams#sg the preliminary

fithess functions:
e Emergency Mode (minimize BER)
e Low Power Mode (minimize power)

Figure 6.6 shows the effect on the convergence rate of vgryopulation seed-
ing percentages over a system with a 10% EVF operating inganey mode. In our

simulation, the EVF represents the percentage change imdise power and channel
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Figure 6.6 Fitness convergence in emergency mode with 10% EVF, where
X/Y represents the ratio of the seeding percentage and EVF percentage.

attenuation. The fitness convergence statistics showaseptthe average fitness of the
best chromosomes for each generation. The simulationtsestd averaged over 500
different randomly generated environments for each gé¢inararhe standard line rep-
resents the standard GA implementation that is initialisetiomly. The figure shows
that as the seeding percentage increases, the initialditbfebe population increases.
The seeding is giving the GA algorithm a better estimate oénetio begin the search
initially, enabling the algorithm to start at an increaseitial fitness and converge to a
higher value. As a validation of these fitness scores, Figurshows the simulatanous
BER convergence with respect to the number of generations.pldt verifies that the
higher fithess scores are providing lower BER.

As the population seeding increases, the algorithm useg mésrmation from
previous cognition cycles to determine a good initial pagioh. Figure 6.7 shows that

a 10% seeding value allows the algorithm to start at a highigali fitness and converge
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Figure 6.7 BER convergence in emergency mode with 10% EVF, where
X/Y represents the ratio of the seeding percentage and EVF percentage.

to a higher value than the standard GA algorithm. In additibe proposed population
adaptation technique reaches within 1% of the standard G@fsgecged value in 70
generations and continues to improve past this value. Bhesi480% improvement
in speed over the standard GA implemenation that convergap@oximately 337
generations. However, at 50% seeding the GA converges twex fithess value than
the standard GA. This is due to the large number of similiaoctosomes being seeded
initially. This lack of diversity causes the algorithm todoene stuck within an area
of the search space that is not optimal. This affect becon@® prominent as the
environment becomes more dynamic.

As the EVF increases, the wireless environment is allowégt@me more dynamic
and as a result of our restriction on the variation of the mmment the average noise
level increases. This causes the population seeding tpobtd become less effective
at higher values, because the information from previousitog cycles becomes less

accurate when predicting the new location. Figure 6.8 slibevsonvergence statistics
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Figure 6.8 Fitness convergence with 50% EVF in emergency mode, where
X/Y represents the ratio of the seeding percentage and EVF percentage.

with a 50% EVF value. The initial fithess with a 50% EVF is lovikan the envi-
ronment with only 10% EVF, however it still is initially higi than the standard GA.
However, as the seeding is increased, the convergenceuiatdygdegrades more than
the 10% EVF case. This effect is also shown in Figure 6.9.

The figures also show the effect of the increased average anithe fithess scores.
As the EVF increases, the increased average noise causagetiage fitness scores to
decrease. This is because the BER fitness function must beahpeohto a worst case
BER of 0.5 for all values of EVF. This causes environments \atier average noises
to achieve higher fitness scores. ldeally, the BER fitnesgifumeould be normalized
to the worst possible BER given the specific environment &llractically, we can
not quickly determine the specific worst case BER, so we noemdalie function to a
BER of 0.5. This causes the range of possible fithess scoremyaaecording to the
environment values used. However, this effect on the ramd#ness scores as seen

by the different standard GA lines in Figure 6.6, Figure @u&j Figure 6.9, does not
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Figure 6.9 Fitness convergence with 90% EVF in emergency mode, where
X/Y represents the ratio of the seeding percentage and EVF percentage.

change the fact that the GA is still determining the best iptsditness for the given
environment.

Figure 6.9 shows how a highly dynamic environment is afi@btepopulation seed-
ing. With 10% seeding the proposed technique is an improwemer the standard
GA, however, there is less of an improvement in the case of B®¥% than the lower
EVF situations. In this case, the 10% seeding coverges tumwit% of the standard
GAs converged value in 192 generations, whereas the sthiGarin the 90% EVF
case converges in 426 generations. This indicates an iraprent of approximately
220% over the standard GA. We can also see from the plot that@f% seeding case
convergence is much lower relative to the standard GA tharptbvious plots. This
is because as the environment becomes more dynamic, lameésof seeding only
cause the algorithm to become stuck further away from thiengptlecision, thus caus-

ing a lower average fitness score.
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Figure 6.10 Fitness convergence with 10% EVF in Low Power mode,
whereX /Y represents the ratio of the seeding percentage and EVF percent-
age.

Figure 6.10 shows the simulation results in low power modé W©% EVF. Low
power mode is defined in a way that changes in the environnm@nbt have such a
big affect on the selection of an optimal decision as theyndemergency mode. This
is because in low power mode, the performance objectiveasipis on operating
with low power consumption. In our simple case this meanslotransmit power
translates to higher fitness, disregarding the currentemviental state. For example,
if a cognitive cell phone detects low battery power, the ainynperformance objective
would switch into low power mode. Figure 6.12 shows the itssallow power mode
with 50% EVF, which are similiar to the results with 10% EVBrkhis mode, the radio
can take advantage of higher percentage seeding to achgevgécantly improvements
in the convergence rate with respect to the standard GA cgemee. This work has
been published [64], and selected to be published in a jb@ssociated with that

conference [65]
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Figure 6.11 Power convergence with 10% EVF in Low Power mode,
whereX /Y represents the ratio of the seeding percentage and EVF percent-
age.

6.4 Rule-Based System

6.4.1 Rule-Based System Implementation

The implementation for the RBS consists of the MATLAB geneatatdes and the
CLIPS expert system shell. Initially the CLIPS shell is ran #melrules are manually
loaded into the system. At this point, facts are inserted thé system and the expert
system is executed using the "(run)” command. This actiVélbe inference engine
which matches the facts to the specific rules and assertpfre@ate facts.

For the RBS we are concerned with several issues. Initiallyweneted to look at
the memory usage needed to hold the database of rules. Siéstigrned out to not be a
problem due to the number of possible external environmesttseing large. However,
we explored four different weighting scenarios, each g6 combinations of envi-

ronments resulting in 436 or 144 rules. If we were to explore all possible weighting
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Figure 6.12 Fitness convergence with 50% EVF in Low Power mode,

whereX /Y represents the ratio of the seeding percentage and EVF percent-

age.
scenarios, we would need a total of 286 rules or 360 trillion rules. This number
could be dramtically cut down by combining like rules whicbwid be very common.

The second issue explored throughout the implementatidcheoRBS system is

the flexibility of the system as compared to the GA system. iktpa hard coded set
of rules does not allow the flexibility of parameter chandes the genetic algorithm
has. Currently the GA system inputs a simple text XML file hotdall the system
parameters such as the objective weights and which paresvae to be used in the
system. The RBS has no option to select which transmissiomedeas are to be used.
This requires a completely new rule base to be compiled fgrr@mdware change in
the system. The GA doesn't require any coding changes iinpetexrs need to be en-
abled or disabled. This is the results of the static naturexpert systems that must
be hard coded before run-time. In addition, informationuitibe operating environ-

ment may not be available until the system is needed. For pbeargather the proper
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ranges for the environmental parameters can require signtftime to collect accurate
measurements. In a battlefield or hostile environmentecttlg measurements before
the system can be used may risk lives and cost significant mtsi@fi money. Thus
needed a precompiled database of rules may not always bésticaasource that can
be created.

Contrast to those disadvantages, in a system that will notdzéfied the RBS may
be the most efficient engine to use. If it is possible to gathfarmation about the
environment and generate the rule base offline then the pigittessing and memory
needed for a specialized system implementation can prderdecognitive engine that
will make quick and optimal transmission parameter deossidl he following section
gives the performance and parameter results gathered veneg the RBS to find the

solutions.

6.4.2 Rule-Based System Results

The results for the RBS are essentially the rules created dhrthe use of the
MATLAB code in Appendix A. The RBS implementation brought tght several
important research questions that we analyze along witbepteng the results of the
engine. With a RBS, the environment parameters are matcheddcdis rules that were
created offline and the transmission parameters assoevdtethese rules are applied.
When matching against the values of the environment parasnet must be careful
not to create rules containing discrete numbers. In pralctigstems, the inputs to the
cognitive engine will come from the sensors available testystem. We cannot assume
these sensors will provide nice integer numbers. In fachynsansors pride themselves
in their sensitivity and provide very accurate measuresafith this in mind, the rules
that we create must cover specific ranges of environmerdblarvalues. So instead of

matching on a noise power of -112 dBm, we will match on a noisegoavithin the

90



range of -111.5 dBm and -112.5 dBm. This implementation reguént results in an
interesting design parameter. How does the range of thengdea in the rule affect the
number of rules needed, and the optimality of the decision.

The ranges we set introduce error in the decision of the RBS.trEmsmission
parameters that each rule specifies to use are based upoentee of the ranges in
our case. Thus, the more deviation from the center valuesoétivironment parameter
value, the further away the decision will be from the actwabmeters used to generate
the decision. Our goal is to determine ranges for the paemé¢hat will keep the
number of rules to a minimum while keeping the error of theiglen also minimum.
These two goals create a decision. Keeping the number & toll@ minimum requires
larger parameter value ranges, while keeping the error tchamam requires smaller
parameter value ranges.

Shown below is an example rule that would be created andezhieto the CLIPS

system:

(defrule cognitive_rule_13
(and (noise_power ?channel_num ?noise_power&:(>= 7noise_power -115.5))
(noise_power 7channel_num ?noise_power&: (< ?noise_power -114.5))
(and (path_loss 7channel_num ?7path_loss&:(>= 7path_loss 86.5))
(path_loss ?channel_num ?path_loss&: (< ?path_loss 87.5))
(scenario 7channel_num power_mode)
=>
(assert (channel ?7channel_num 14 2 2 psk 1500 1.00 125000 25)) )

This rule states that if the noise power is less than -114.5 dBchgreater than
-115.5 dBm and the path loss is less than 87.5 dBm and greate8&% dBm and we
are operating in minimize power mode, set the transmissaoameters to the following

settings:

e Transmit Power: 14 dBm
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Bandwidth: 2 MHz

Modulation: BPSK

Frame Length: 1500 bytes

Code Rate: 1

Symbol Rate: 125 Ksps

TDD: 25%

For this example we set the bin size to be 1 dBm and the tranemiparameter
settings were generated for a system with noise power of BB and path loss of
87 dBm. We load a set of rules similiar to this one into the systising the "(load*
irules¢)” command. At this point the system now waits foctéd to be asserted. An

example declaration for a fact that would match the previateswould be:

(deffacts c2
(noise_power 2 -114.5)
(path_loss 2 87.5)
(scenario 2 power_mode) )

This fact would be asserted into the system, and once theeimfe system is ran,

using the CLIPS command "(run)”, a new fact is instantly ateskthat states:

(channel 2 14 2 2 psk 1500 1.00 125000 25)

In this example, the system sees an environment that is oighhe edge of the
parameters ranges made for the rule that it matched. Althndhig rule matches the
given environment, the transmission parameters assereel mot generated for this

environment, creating a less than optimal decision. Inéxemple we have shown,
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the error between the fitness of the environment for whichrdmesmission parameters
were created and the environment that was actually seeryi2ét As we increase
the bin size to 1.5 dB we see an error of 5% and as it reaches Zedfetvan 8% error
in optimality. However, with the bin size at 2 dB our rule sigecut in half. Table 6.8
shows the results of the fitness deviation resulting fronngasing the bin size of the

parameters for the difference scenarios.

Table 6.8 Worst Case Fitness for Various Bin Sizes and Scenarios

Bin Size | Power Scenario| Emergency Scenario| Multimedia Scenario | DSA Scenario
1.0dB 0.9785 0.9416 0.9247 0.9414
1.5dB 0.9475 0.9202 0.8960 0.9201
2.0dB 0.9224 0.9007 0.8607 0.8998
2.5dB 0.8994 0.8745 0.7778 0.8647

6.5 Performance Comparison

The initial performance comparison we look at are the fitsesses. Each systems
fitness varies based upon the specific system parametemsdlat usign at the time.
For the RBS, with small bin sizes, we achieve a better estinfatee@nvironment giv-
ing us a better average fitness value. As the bin size gronapii@ximation becomes
less effective causing the average fitness score to decr&asdiary, the number of
channels in the GA system affects the overall fithess duedanitreasing complex-
ity of higher number of channels. Increasing the number @nclels increases the
chromosome size, and causing a larger processing requitdareeach generation. A
summary of these results is shown in Table 6.9.

The RBS has the advantage of providing these scores in a chiadegplendant
environment. No matter how many channels are in use in thersysf the bin size

is 1 dBm and the performance objective uses the minimize poweeghts, the worst
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Table 6.9 Cognitive Engine Results Comparison

Scenario GA: Single Channel | GA: 16 Channel | RBS: 1.0 dBm | RBS: 2.5 dBm
Minimize Power| 0.973 0.882 0.9785 0.8994
Emergency 0.992 0.793 0.9416 0.8747
DSA 0.966 0.869 0.9414 0.8647
Multimedia 0.920 0.680 0.9247 0.7778

case fitness will achieve 0.9785. This is because each rubnisndependantly for
each channel. This is not the case for the GA system whereutmber of channels
dictates the number of bits in the chromosome. The natureeoGiA system requires
the whole chromosome to be processed at once. Thus, systémbigher number

of channels require longer amounts of processing time vefipect to systems with
smaller number of parameters. In addition, the 1000 geioaratopping criteria places
a cap on the evolution of the genetic algorithms. This resaltower fithess scores for
systems with higher number of parameters.

The adaptive genetic algorithm showing much improvemeat tve non-adaptive
engine has been shown to converge to a solution in as littagenerations. In ad-
dition, a GA system can be designed and deployed in almoseawyonment with
little changes to the system. Using XML configuration filesrgsuts to the system,
the weights and active parameters can be changed on the iguwiny offline or pre-
design computation. In the end, in terms of raw performaheeRBS outperforms the
GA due to the amount of processing that can be performed @fflin

In terms of practical usage, each system has its place. The RB®4 in non-
mobile environments such as cell tower applications whbeesenvironment is not
changing dramatically enough and the performance obgstve typically always un-
changed. This results in fewer dynamic changes to the syateithe cognition can be
focuses on adapting to the low level channel environment Afs@tem would benefit

a very mobile environment such as a handheld battlefieldiggin. If needed the
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user could change the performance objective drasticatiytla@ system automatically
changes goals and converges using the new weights. In@uddgarameters can be
deactivated dynamically to save resources in a limiteduesoenvironment if needed.
For example, a soldier may notice that the battery life ismmig low and instead of
allowing the cognitive engine to modify the weights and epernn low power mode,
which results in a shorter communication range, the solkher deactivate the frame
length and code rate parameters and set them to static valleschange may save
processing and memory usage that may result in longer lifenfssion critical appli-
cations.

Refering to the previous scenario, the specific parametatgtb soldier needs to
deactivate should be choosen wisely. If the soldier deatetsszan important parame-
ter, the communication may be severly degraded. To addnessite do a parameter
sensitivity analysis for cognitive radios. This analysifl inelp users such as a soldier
in a battlefield using a cognitive radio such as ours, to wtdad which parameters
are sensitive to the current performance objective and lwparameters add little to

nothing and are not needed.

6.6 Parameter Sensitivity Analysis

An interesting result of this work is the ease of selectind daselecting param-
eters that are adaptable. The GA enables an interface tbatsalisers to select the
appropiate parameters for their system. For example, oahsmit power and mod-
ulation may be available and adaptable on a simple systeiiie others may include
frame length and code rate also. With the ability to seledt@select parameters we
can easily do parameter sensitivity analysis that is mueldee in the area of cognitive

radios. Much hype has been spoken about the ability of cegmiadios to automat-
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ically adapt parameters to achieve optimal communicatidinss work analyzes sev-
eral issues with complexity and performance issues spaltyfiwith regard to Genetic
Algorithms. These complexity and performance issues amenoon to all cognitive
engines, not just the GAs we analyze in this work. The prynguestion, does the
adaptability that cognitive radio enables really provideeaformance advantage when
it comes to processing time and efficient resource usage.

One research question we use to answer the more abstratbgueshow effec-
tive are the parameters that are adaptable? For examplgndige radio with an over
abundance of parameters may require extreme amounts fegaeyg resource require-
ments, primarily being processing. Identifying the prignparameters that contribute
greatly to the wireless communication will allow developtr "weed out” unessecary
parameters that do not add anything except processing tirtietsystem. To explore
this, we disable parameters in our system and watch how tres#tis affected when
a parameter is not required to be adaptable. We expect tthedértess converge to
low fitness values for the important parameters such asiapswer and modulation,
and the fithess converge to similiar values as presentedebfio parameters that do
not contribute much. We also expect the sensitivity to batlyeaffected by the perfor-
mance objective. For example, if a majority of the weightlecpd upon maximizing
the spectral efficiency of the communications, then the ratdun index, or the num-
ber of bits per symbol will be very sensitive and greatly etfthe fitness, while frame

length will have little to no affect.

6.6.1 Power Scenario

We begin our sensitivity analysis with the minimize powerfpanance objective.
The largest impact we expect to see is keep the transmit ppsrameter from being

adapted. We set the transmit power parameter to two sepsaditevalues of -8 dBm,
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10 dBm and the 20 dBm and observe the affect it has on the fitnasditmess conver-
gence graph is shown in Figure 6.13 that shows the origimedg graph mapped over

the fitness of the systems that are not able to adapt transmérp

11 T T T T

Adaptive
— — — Static: Power -8 dBm
Static: Power 7 dBm ||
—  —  Static: Power 20 dBm H

0.8

0.7

0.6

0.5
0

50 100 150 200 250 300

Figure 6.13 Minimize Power: Fitness convergence effect when holding
the transmit power parameter static at various values versus being completely
adaptable.

Figure 6.13 shows how the fitness is affected due to the statieadaptability of
the power parameter. With the power adaptable we convergdittess near perfect,
or near 1. However, without being able to adapt the powerpetear, the fithess con-
verges at 10% lower for a static setting of 10 dBm and 8% lowarsaatic value at the
maximum of 24 dBm. These results tell us that for this specdidgymance objective,
the transmit power parameter has significant value on thmubof the system. Another
parameter that we expect to have a major affect on the fitnees eing held constant
is the time division duplexing paramet&mDD. The value of this parameter tells us how
much time we are transmitting. A low value ©DD is ideal for low power scenarios,

while higher values correspond to longer transmissionstlansl higher power usage.
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Figure 6.14 shows the results of holdi@D constant at 100% or "always on”.

Adaptive H
— — — Static: TDD 50%

0.95 Static: TDD 100%|]
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0.85

0.8/
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0.7F

0.65
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Figure 6.14 Minimize Power:Fitness convergence effect when holding the
TDD parameter static at various values versus being completely adaptable.

The results of the TDD sensitivity on the minimize power sy@mis very signifiant.
While setting the TDD to 100% and not allowing the system tgadathe fitness can
evolve to only 66% of the adaptable systems fitness value.8AImID is not typically
a primary concern when setting transmission parametegsethesults show that this
parameter can significantly affect transmission, prigdsécause it controls the basic
transmission state of the system. In reality, a commurinatsystem will typically
never be transmitting 100% of the time. However these repualint out the importance
of allowing the system to adapt to appropiate values.

Finally we look at the result of not adapting the modulatiodex for the minimize
power scenario. With the emphasis on minimizing the powealdihg the modulation
index at a more power consuming modulation will cause thedgrio have a lower up-
per limit. However, the modulation plays a smaller role ia thinimize power fitness

score than transmission power and will not affect the scermaach. Figure 6.15 shows
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the results of keeping the modulation index static at eighit®ls per second. The sys-
tem is only loosing about 5% of optimality which give this pareter a low sensitivity.
Table 6.10 shows a summary of the parameters we have exgtordte performance

objective with an emphasis on minimizing power.

1 T
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Static: Modulation 16-QAM |
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0.95
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0.85

0.75 . . . . .
0 50 100 150 200 250 300

Figure 6.15 Minimize Power: Fitness convergence effect when holding
the modulation parameter static at various values versus being completely
adaptable.

Table 6.10 Power Scenario: Parameter Sensitivities
Transmission Parameter | Sensitivity
Transmission Power medium

Time Division Duplexing | high
Modulation Index medium

6.6.2 Emergency Scenario

Our next scenario places the majority of the weight on miring the bit-error-
rate of the transmission. We expect this scenario to betsens transmission power

and modulation parameters. However we also have 20% of tightven the spectral
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efficiency objective. This objective focuses on the numbdrits per symbol or the
modulation index, also emphasizing importance on the nattul index. Figure 6.16
shows the results of keeping the transmission power stat@ dBm, 7 dBm and 20

dBm.

0.9F

Adaptive

— — — Static: Power -8 dBm
0.8 Static: Power 7 dBm
— —  Static: Power 20 dBm

0.7F

0.6

05

0.4

0 50 100 150 200 250 300

Figure 6.16 Emergency: Fitness convergence effect when holding the
transmit power parameter static at various values versus being completely
adaptable.

Figure 6.16 shows the wide range of fithess that the trangmig®wer controls
in this objective. At the low power value of -8 dBm, the fitness lan upper limit
46% lower then if it were able to be adaptable. This highlg#deitness convergence
curve makes the transmission power a highly sensitive patiemigure 6.17 gives the

fithess convergence of keeping the modulation index stelioth 4,16 and 32 symbols.

Figure 6.17 shows that the modulation index does not affecsystem in the same
linear manner as the transmission power. When determiningtBERodulation index

plays an important role in determining the energy per bitrah$mission. At higher
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Figure 6.17 Emergency: Fitness convergence effect when holding the
modulation parameter static at various values versus being completely adapt-
able.

modulations the energy per bit is spread thin, causing IBER resulting in a low
fitness. We consider this high sensitivity because a largag in fitness results from
changing the modulation index. Figure 6.18 gives the fitmeswergence of keeping
the symbol rate static at 125000, 500000 and 1000000.

From the symbol rate sensitivity shown in Figure 6.18, we & that the adapt-
ability of the symbol rate has little affect on the fitness wihige focus is on minimizing
the BER. This result is expected because of the fact that thbaynate has little affect
on the system BER, and little weight is given to other objestivat use symbol rate.

Table 6.11 shows the summary of the explored parameterdarsgnsitivities that

they exhibit in the emergency scenario.
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Figure 6.18 Emergency: Fitness convergence effect when holding the
symbol rate parameter static at various values versus being completety adap
able.

Table 6.11 Emergency Scenario: Parameter Sensitivities

Transmission Parameter | Sensitivity
Transmission Power high
Symbol Rate low
Modulation Index high
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6.6.3 Multimedia Scenario

The third scenario focuses on multimedia applicationsréagire high throughput.
Maximizing the data throughput is the primary focus of tHigeative, with 50% of the
weight on the maximize throughput objective. We expectitmamodulation index and
frame length will be the most sensitive parameters in thenado. Figure 6.19 shows
the results of keeping the transmission power static atG&rid 20 dBm. We again
see from the Figure that certain values of transmission poegallt in a fithess upper
limit that is 50% lower then the limit that results from a fukkdaptable system. This
results again in transmission power being a highly semstarameter in the multimedia

scenario.

1
0_971—/%—:7’***************:
0.8 E

Adaptive
07t — — — Static: Power -8dBm| |
Static: Power 10dBm
§ —  —  Static: Power 20dBm
£ 06} b
£
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0.4}
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0.2 . . . . .
0 50 100 150 200 250 300
Generations

Figure 6.19 Multimedia: Fitness convergence effect when holding the
transmit power parameter static at various values versus being completely
adaptable.

Figure 6.20 gives the fitness convergence of keeping the Iatbaiuindex static at
2, 8 and 32 symbols.

Figure 6.21 gives the fitness convergence of keeping the siyaie static at 125000,
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Figure 6.20 Multimedia: Fitness convergence effect when holding the
modulation parameter static at various values versus being completely adapt-

able

500000 and 1000000 symbols per second. The fitness deviagea 6.05 range when

the symbol rate is held constant at the defined values.

Figure 6.22 gives the fithess convergence of keeping theeftangth static at 100,

700 and 1500 bytes. We see from the Figure that at lower framgths we typically

get lower fitness scores, about 30% lower.

Table 6.12 Multimedia Scenario: Parameter Sensitivities

Transmission Parameter | Sensitivity
Transmission Power high
Symbol Rate low
Frame Length high
Modulation Index low
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Figure 6.21 Multimedia: Fitness convergence effect when holding the
symbol rate parameter static at various values versus being completety adap
able
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Figure 6.22 Multimedia: Fitness convergence effect when holding the
frame length parameter static at various values versus being completely
adaptable
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6.6.4 DSA Scenario

The final scenario we will explore is the dynamic spectrunocation scenario.
This performance objective focuses on reducing the amoluspectral interference
that the system adds to the wireless spectrum as a hole. dinilsecdone by lowering
the transmission power of communications which dampens\ykeall noise power in
reference to others in the same band. Interference canalsulbced by decreasing the
transmission bandwidth of communication which in turn r@ehithe total throughput
of the system, but allows others to communicate with lessfi@tence in neighboring
bands. The most obvious way to reduce interference is tolgingb transmit. This will
be seen in th@ DD sensitivity which as shown in Figure 6.23 has high sengjtifar

this objective.

Adaptive L]
— — — Static: TDD 10% |

Static: TDD 50%
— —  Static: TDD 100%
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06F  — e ;
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0.5 L L L L L
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Generations

Figure 6.23 DSA: Fitness convergence effect when holding the TDD pa-
rameter static at various values versus being completely adaptable

Figure 6.24 gives the fithess convergence of keeping thertriassion static at -8,

10 and 20 dBm. Unlike the previous scenarios, the transnmgsdver does not affect
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the system as much in this scenario. In addition the resudhahging the power is a
non-linear change in the fitness cap. The low cap is with th&m gower, with the
20 dBm slightly higher and the -8 dBm cap is near the adaptalseisy This non-
lineary occurs because of the affect transmission poweohdke other performance
objectives. In this scenario, a lower transmission powdrresult in less interference,
however, the throughput will also be lower. We have a weidgh20 on the maximize

throughput which gives higher fitness to higher throughput.

1 \ T \ \
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Figure 6.24 DSA: Fitness convergence effect when holding the transmit
power parameter static at various values versus being completely adaptable

Figure 6.25 gives the fitness convergence of keeping thevadtidstatic at 2, 15
and 30 MHz. We see from this Figure that varying the bandwaith significantly
reduce the upper fithess cap. A drop of about 23% occurs wiedpathdwidth is set at
the maximum of 30 MHz, resulting in a large amount of intezfeze. This verifies that
in this scenario, the bandwidth is highly sensitive.

Figure 6.26 gives the fitness convergence of keeping theeftangth static at 100,

700 and 1500 bytes. You can see that there is little to no tiemidetween all four
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Figure 6.25 DSA: Fitness convergence effect when holding the bandwidth
parameter static at various values versus being completely adaptable

of the fitness convergence curves. This implies that the driangth parameter has
very little sensitivity to the DSA performance objective.eWan take advantage of
this information when implementing other cognitive radistems, whether they be
GA-based, RBS-based, or even Case based reasoning systemnisregamding any
computation involving the frame length when the system igis mode. This can be
done by removing the parameter from any rules, which woutdelese the size of the
rule base, or ignore the frame length parameter when tryimgetch specific cases in
a CBR system.

Again we provide a summary for this objective in both Figur2es which shows
graphically how the fitness is affected by the worst statiapeeter settings we ex-
plored, and Table 6.13 which shows the summary of the seitisii of each of the

parameters described in this section.
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Figure 6.26 DSA: Fitness convergence effect when holding the frame
length parameter static at various values versus being completely adaptable

Table 6.13 DSA Scenario: Parameter Sensitivities

Transmission Parameter | Sensitivity
Transmission Power medium
TDD high
Frame Length low
Bandwidth high
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Chapter 7
Conclusion

7.1 Research Achievements

In this disseration a number of contributions have been nrailte area of cognitive
engine adapatation techniques. The research achieveofehis disseration are the

following:

e Multiple objective fitness functions representing the tieteships between the
transmission parameters, environmental measurememtgexformance objec-
tives were developed. Using theoretically relationshigisveen several different
parameters and the weighted aggregate sum approach U@t each perfor-
mance objective were developed to be used within cognitiegtation engines.
The objectives of these multiple fitness functions are adietl by the values of

the weights on each function.

e These equations were implemented by two different maclkei@aing techniques
that were used in a cognitive adaptation engine. From thementation, we
explored the advantages and disadvantages of the gengtigtlam approach

and the rule based system approach. We discovered that tleti@algorithm
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approach was more flexible and provided an interface thatvallthe user to
easily adjust system parameters. However the geneticitigosuffered from a
high requirement for processing power which caused it téoper slower then
the RBS. The RBS was able to provide solutions very fast whileingedlower
amount of memory for storage then expected. However, thd f@ea static

database of rules restricted the flexiblity of the RBS.

¢ We developed an adaptive improvement to a standard getgaictam initializa-
tion procedure that improves the speed of convergence afahetic algorithm.
Based on the observed change in the environment, this adadetikinique biases
the initial generation of the GA population to lean toward #solution of the pre-
vious run. This technique improves performance only if ther@nment has not
changed significantly, and as long as the appropiate amdghtomosomes are

seeded.

e Sensitivity analysis was performed on several parametethd system. We
showed that this sensitivity varied based on the specifiopaance objective of
the system. Sensitivity analysis uncovered the param#tatdave little effect
on the system. This could allow wireless system designedesign a system
without the less sensitive parameters in order to loweresystomplexity and
resource usage. High sensitivity parameters were alsorstoexist. These pa-
rameters have a large effect on the system when alteredinfbisnation can be

used to suggest which parameters be used in the cognitiyteadida process.

The list of publications related to the work presented ia théseration is as follows:

Book Chapter
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B1. Timothy Newman, Alexander M. Wyglinski, and Joseph Ey&mgnitive Radio
Implementation for Efficient Wireless Communicatidmcyclopedia on Wireless

and Mobile Communication8orko Furht, Editor, CRC Press, 2007.

B2. Timothy Newman, Muthukumaran Pitchaimani, Benjamin Eang Joseph Evans,
Architectures for Cognition in Radio NetworkBjvited submission to Cognitive

Radio NetworksYang Xiao and Fei Hu, editor, CRC Press, 2008.

B3. Joseph Evans and Timothy Newman, VLSI ImplementationBigital Filters.
Invited section in Circuit and Filter Handbook, 2nd Editio?v. K. Chen, editor-
in-chief, CRC Press, 2008.

Journal Papers

J1. Timothy R. Newman, Rakesh Rajbanshi, Alexander M. Wygijdsiseph B. Evans,
and Gary J. Minden, “Population Adaptation for Genetic Altfon-based Cogni-
tive Radios,”ACM/Springer Mobile Ad Hoc Networks — Special Issue on Cognitive

Radio Oriented Wireless Networks and Communicati@ngs.

J2. G. J. Minden, J. B. Evans, L. Searl, D. DePardo, R. RajbahsBiiffey, Q. Chen,
T. Newman, V. R. Petty, F. Weidling, M. Lehnherr, B. Cordill, Dafln, B. Barker,
and A. Agah, “An agile radio for wireless innovationEEE Commun. MagMay

2007.

J3. Timothy R. Newman, Brett A. Barker, Alexander M. Wyglingkiyin Agah, Joseph
B. Evans, and Gary J. Minden, “ Cognitive Engine Implementafm Wireless
Multicarrier TransceiversWiley Journal on Wireless Communications and Mobile

Computingvol 7. (9), November 2007.
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Conference Papers

C1. Timothy R. Newman, Rakesh Rajbanshi, Alexander M. Wyglinkiseph B. Evans,
and Gary J. Minden, “Population Adaptation for Genetic Altfon-based Cog-
nitive Radios,”Proceedings of the Second International Conference on Gegnit
Radio Oriented Wireless Networks and Communicat{@rando, FL, USA), Au-
gust 2007.

C2. Gary J. Minden, Joseph B. Evans, Leon Searl, Daniel DeP¥rcior R. Petty,
Rakesh Rajbanshi, Jordan Guffey, Qi Chen, Timothy R. Newmaulefick Wei-
dling, Dinesh Datla, Brett Barker, Megan Peck, Brian Cordilxdnder M. Wyglin-
ski, and Arvin Agah, “KUAR: A Flexible Software-Defined Radicefzelopment
Platform,” Second IEEE Symposium on New Frontiers in Dynamic Spectrum Ac

cess Network®Dublin, Ireland), November 2006.

C3. Timothy R. Newman, and Gary J. Minden, “A Software Defined i®adchi-
tecture Model to Develop Radio Modem Component ClassificatidBEE Sym-
posium on New Frontiers in Dynamic Spectrum Access NetworkSRBW '05)

Baltimore, MD, Novemeber 8-11, 2005.

7.2 Future Work

There exists a number of topics resulting from this resetirahcan be continued.

e Several other possible machine learning techniques &estan be implemented
in addition to the techniques explored in this work. Teche such as case-
based reasoning systems or neural networks can be usedadaghtation tech-
nique or be implemented in tandem with the techniques dsestin this dissera-

tion. For example, using case-based reasoning systemuémrieer "good” solu-

113



tions to specific environments and use this information émlgbe GA could pos-
sibly improve performance of the system if it encountersr@mments it hasn’t

seen in long periods of time.

We explored four different weighting scenarios that emzeasdifferent perfor-
mance objectives. We noted on several occasions such asrbig\sty analysis
that the results differed based upon the weight combingtibats of room exists
to explore a more wide range of weight combinations in orddully uncover

how the performance objectives affect different aspectb®icognitive adapta-

tion.

Our system operates without the need for feedback infoomdétom the network
or the communication partner. The fitness functions wereldged using theo-
retical equations which are not exact and sometimes carppob@mate the en-
vironment correctly. With feedback from the the oppositenoaunication node,
the cognitive adaptation engine would have extended irdtion about how well
the current settings are working. Using this informatiotineo adaptation tech-
niques can be used to alter the parameters if the theorétioads functions are

not modeling the environment properly.

Fitness function improvements can be made in order to ahevsystem to model
a wider range of environments. Implementing BER functiora thodel other
environments such as the ones described in Appendix B ge/sythtem more

flexibility to work in additional environments.
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Appendix A

MATLAB Rule Generation

T T T To o T To To T To To o To o o To o To o o To o T o o Jo To Fo o To o o T o o To To o oo o o T o oo
%% Set variable values

Tolo o oo oo oo o oo ToToTo oo o o 1o o o o o o o o oo o To T ToToToTo oo oo oo o o

= .10;
= .50;
.10;
= .10;
= .20;

N< X = <
Il

To ot ToTo o oot To o To o T ToTo To o JoToTo To fo o To To o To o To To o To o Jo To o To o o To Vo o fo oo
%% Constant Values

Tolo oo oo o oo oo o ToToTo oo o o o o o o o o o o oo o oo T ToToToTo oo oo o o o o

mac_oh = 40; %» MAC Layer overhead in (Bytes)
phy_oh = 52.5; % PHY Layer overhead (Bytes)
kb = 1.38 * 10°-23; % Boltzmann’s constant (J/K)
T = 290; % System noise temperatue (K)

Voo oo ToToTo oo To ToTo To o To foTo To o To foTo o o To fo o To o To fo o To o To Fo o To o To fo o To oo o
%% Minimum and Maximum values

Do 1o Vo oo 1o oo To To o To To o Jo To o 1o To To o Jo Fo o to To oo To Jo o fo fo o 7o To o o To fo o Jo fo o o
power_max = 24; % Maximum Power (dBm)
-8; % Minimum Power (dBm)

power_min

bandwidth_max = 34; % Maximum bandwidth (MHz)
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bandwidth_min = 2; % Minimum bandwidth (MHz)

mod_max
mod_min

256; % Maximum modulation index.
2;

symbol_rate_max
symbol_rate_min

1000000; % Maximum symbol rate (Symbols / second)
125000;

Vo ToT6To o To o o To o o ToTo o Jo o o JoJo o o To o o To o o JoJo o Jo To o o To o o Jo o o Jo o o Jo o
%% Transmission paramet er ranges

oo 1o o6 oo o To o o To o Jo o o To o Jo o o To o Jo o o To o To o o To o JoJo o 1o o Jo o o 1o o Jo o
power = [power_min:2:power_max];

bandwidth = [bandwidth_min:2:bandwidth_max];
tdd = [1:10:100];

mod_index = [ 2 4 16 64 256 ];

symbol_rate = [125000 250000 500000 625000 750000 1000000];
frame_length = [100 : 100 : 1500 ];
coding_rate = [1 1/2 3/4 5/6];

mod_type = {’qam’,’psk’,’pam’};

oo 1o 1o To o JoTo o o o To o To o o To o o o ToToTo o o To o o o o To o o o To o o o o Jo o o o Jo o
%% Environmental parameter ranges

Yoo 1o o 1o s ToTo o o o To o To o o To o o o JoToTo o o ToTo o o Jo ToTo o o To T o o o To T o o To o
path_loss = [87:1:92];

noise_power = [-117:1:-112];

% Total number of parameter combinations
combinations = length(power) * length(bandwidth)
* length(tdd) * length(mod_index) * ...
length(symbol_rate) * length(frame_length)
* length(mod_type) * length(coding_rate) * ...
length(path_loss) * length(noise_power)

oo To o To ToTo To o To To o To o To o To Jo o To o To To o To foTo Fo o To o Jo Jo o To o Jo Fo o To fo o Fo o To o Jo Fo o To fo o o Jo fo o To o Fo fo o
%% Fitness Function

Dot

ToTo oo To ToTo oo To ToTo oo o foTo To o To foTo To o To foTo o o To foTo Fo o To foJo o o To fo o Fo o To foJo Fo o o foTh o To fo o o o Jo Fo o o

% Initialize the indexes that hold the position in the array
mod_index_index = 1;

tdd_index = 1;

symbol_rate_index = 1;
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power_index = 1;
bandwidth_index = 1;
mod_type_index = 1;
coding_rate_index 1;
frame_length_index = 1;
snr_index = 1;

np_index = 1;

pl_index = 1;

I~

fitness_array = [ J;

% Go through all possible combinations of transmission parameters and
% calculate the fitness. These fitness values are held in a 10-dimensional
% array indexed by the parameter indexes defined above.

for p = power
for b = bandwidth
for m = mod_index
for pl = path_loss
for sr = symbol_rate
for np = noise_power
for cr = coding_rate
for mt = mod_type
for t = tdd
for £ = frame_length
%% Populate the fitness array with
%/ outputs from the fitness
%% function
fitness_array(np_index,pl_index,power_index,
bandwidth_index,tdd_index,mod_index_index,
symbol_rate_index,frame_length_index,
coding_rate_index,mod_type_index) = ...

fitness_score(np,pl,p,b,t,m,sr,f,cr,char(mt),v,w,x,y,2,
power_max,power_min,symbol_rate_max,symbol_rate_min,
bandwidth_max,bandwidth_min,mod_max,mod_min) ;

frame_length_index = frame_length_index + 1;
end

tdd_index = tdd_index + 1;

frame_length_index = 1;
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end
tdd_index = 1;
mod_type_index = mod_type_index + 1;
end
mod_type_index = 1;
coding_rate_index = coding_rate_index + 1;
end
coding_rate_index = 1;
np_index =np_index + 1;
end
np_index = 1;
symbol_rate_index = symbol_rate_index + 1;
end
symbol_rate_index = 1;
pl_index = pl_index + 1;
end
pl_index = 1;
mod_index_index = mod_index_index + 1;
end
mod_index_index
bandwidth_index
end
power_index = power_index + 1;
bandwidth_index = 1;
end

1
bandwidth_index + 1;

% Determine the maximum,minimum, and range of fitness
% for each environment.

for 1 = 1:1:6
for j 1:1:6
A = fitness_array(i,j,:,:, ,:,0,:,5,:);
max_fitness(i,j) = max(A(:));
min_fitness(i,j) = min(A(:));
range_fitness(i,j) = max(A(:)) - min(A(:));
end

end

1o 16 To o To o ToTo o o ToTo o To o o Jo o o JoTo o o To o o To o o ToTo o To T o Jo T o Jo T o o To o o
%% Open CLIPS rules file for writing
Yoo 1o o To o JoTo o o o To o To o o To o o o ToTo o o o To o o o JoTo o o o To o o o Jo T o o o To o o
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filename = sprintf(’rules/Cognitive_Rules_emerg_1.clp’);

fid = fopen(filename, ’w’);
if (fid == -1)

error("write_file: cannot open file for writing’);
end

% Loop through each environment and create a CLIPS rule for the
% optimal fitness found.

for i = 1:1:6
for j = 1:1:6
rule_count = rule_count + 1;

% Find the max fitness and search for the corresponding
% transmission parameters in the array.

A = fitness_array(i,j,:,:,:,:,0,:,:,:);

[ ok ] = max(A(:));

[np_index pl_index power_index bandwidth_index
tdd_index mod_index_index symbol_rate_index
frame_length_index coding_rate_index mod_type_index]
ind2sub(size(d) ,k);

% Translate the index found for the max fitness
% into real parameter values.

power (power_index) ;
bandwidth(bandwidth_index) ;

= tdd(tdd_index);

mi = mod_index(mod_index_index) ;

sr = symbol_rate(symbol_rate_index);
f = frame_length(frame_length_index);
cr = coding_rate(coding_rate_index);
mt = char (mod_type(mod_type_index));

p
b
t

%% Print rules to the CLIPS rules file
fprintf (fid, ’(defrule cognitive_rule_%i\n’,rule_count);

fprintf(fid, ’° (noise_power %i)\n’,-118+i);
fprintf(fid, ’° (path_loss %i)\n’,86+j);
fprintf(fid, ’ (channel_number 7channel_num)\n’);
fprintf(fid, ’ (scenario emerg_mode)\n’);
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fprintf (fid, ’=>\n’);
fprintf(fid, ’ (assert (channel ?channel_num %2.0f
%2.0f %3.0f %s %4.0f %1.2f %7.0f %3.0f)) )\n\n\n’,
p,b,mi,mt,f,cr,sr,t);

end
end
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Appendix B

BER Equations

Section 5.4.1.1 gave several basic BER equations includireyyMPSK and M-
ary QAM forumlas in AWGN channels. However, we present morerfdas in this
appendix because different channel types exist other thaGN. We present breifly
cover the derivation of BER forumlas and present equation®Rfdeigh and Rician
fading channels.

For fading channels in general, [66] provides generalizesked form equations for
BPSK, M-QAM, and M-PSK modulations. Each forumla follows tieneral quation

format for the probability of a symbol error as shown in B.1.

Po= | Pawan(x)p(x)dx (8.1
0

Where p(x) is the probability density function (PDF) of the channel.r Each of
the following equationd,(y, g, 0), represents specific definite integrals for the Rayleigh
and Rician fading channels, wheyés the average signal to noise ratipis a modula-
tion coefficient, and is the variable of integration.

Rayleigh:

121



p(y,y) = EJaXp(——K) (B.2)

y y
_ gy \*
1(y,9,0) = (1+ m) (B.3)
Rician:
2\ a—n? 2
p(y,y,n) = %exp(@) lo <2na @) (B.4)

wheren? is the Ricean factor

_ - (1+m?)sir?e n“gy
8.8 = reysire ¢ ngp(_ (1+n?)sinf6 + QV) o

[66] uses these PDFs and definite integrals to defined the@emel closed form

equations for the different modulation schemes as showmeiidilowing equations.

BPSK:
P—l/gl(_ 6)do (B.6)
e — /o y797 .
whereg = 1 for BPSK
M-PSK:
1 (M=Dm
Pe=— 1(y,9,6)d6 (B.7)
T.Jo

whereg = sir? () for M-PSK
M-QAM:

4 1 7 4 1\? /4, _
Pe:l_T<l_\/_M>/o |(y,g7e)de—E(1—W) /0 I(V.0.0)d6  (B.8)
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whereg = m for M-QAM
As mentioned in the future work, new fithess functions candfadd that take into
account these BER models. This would extend the amount obleseavironments

that these cognitive adaptation engines can effectivedyaip within.
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