11 research outputs found

    Reduzierung von Missing Wedge Artefakten mit DIRECTT

    Get PDF
    Wir stellen eine Prozedur vor, mit der typische Missing Wedge MW Artefakte in CT Rekonstruktionen effektiv unterdrĂŒckt werden können. Dazu wird der iterative DIRECTT Algorithmus Direkte Iterative Rekonstruktion Computertomographischer Trajektorien mit einigen Zyklen diskreter Rekonstruk tion eingesetzt. Die Kernfunktionen des Algorithmus , die wiederholte Auswahl und Gewichtung von Elementen einer Zwischenrekonstruktion, werden beibehalten. Abgesehen von SonderfĂ€llen der Röntgen und Neutronentomographie tritt die MW Restriktion neben einer Vielzahl anderer in Standardkonfigurationen der Elektronentomographie auf. Um den MW Effekt isoliert zu untersuchen und beurteilen zu können, werden hier vollstĂ€ndige experimentelle DatensĂ€tze einer bekannten Porenstruktur um einen Sektor beschnitten sowie MW Rekonstruktionen von Porenmodellen erzeugt. Die Ergebnisse werden mit zurzeit verbreiteten Algorithmen Gefilterte RĂŒckprojektion FBP und ART Varianten verglichen. Die Bewertung im Fourierraum zeigt, dass DIRECTT die fehlende Information im MW erfolgreich ergĂ€nzt. Zur quantitativen Bewertung der lokalen Rekonstruktions qualitĂ€t werden Methoden der rĂ€umlichen Statistik eingesetz

    Three-Dimensional Imaging of Magnetic Domains with Neutron Grating Interferometry

    Get PDF
    This paper gives a brief overview on3D imaging of magnetic domains with shearing grating neutron tomography. We investigated the three-dimensional distribution of magnetic domain walls in the bulk of a wedge-shaped FeSi single crystal. The width of the magnetic domains wasanalyzed at different locations within the crystal. Magnetic domains close to the tip of the wedge are much smaller than in the bulk. Furthermore, the three-dimensional shape of individual domains wasinvestigated. We discuss prospects and limitations of the applied measurement technique

    Investigation of materials for catalysis with electron tomography

    Get PDF
    Elektronentomographie mit dem Transmissionselektronenmikroskop (TEM) ermöglicht die Erstellung dreidimensionaler Darstellungen (Tomogramme) von Proben in der GrĂ¶ĂŸenordnung von einigen Nanometern bis hin zu einigen Mikrometern. Im Rahmen dieser Arbeit wurden verschiedene auf Ruthenium basierende Werkstoffe fĂŒr die Katalyse in Brennstoffzellen untersucht. Die Tomographie liefert, im Gegensatz zu gewöhnlichen TEM Bildern (Projektionen), Aufschluss ĂŒber die Verteilung und Erreichbarkeit der Katalysatorpartikel auf bzw. in dem TrĂ€germaterial. Es konnte gezeigt werden, dass neben qualitativen Vergleichen der Verteilung der Rutheniumpartikel auf/in dem KohletrĂ€germaterial verschieden hergestellter Proben auch detaillierte quantitative Analysen möglich sind. Da die Katalyse an heterogenen Katalysatoren an der OberflĂ€che des Katalysators stattfindet, spielen neben der GrĂ¶ĂŸe der OberflĂ€che auch die unterschiedlichen Koordinationszahlen verschieden orientierter Facetten der Katalysatorpartikel eine Rolle. Dazu wurde erstmalig ein Algorithmus entwickelt, der es erlaubt, viele verschiedene Partikel in dreidimensionalen DatensĂ€tzen automatisch hinsichtlich Facettierung zu analysieren. Durch die teilweise Einbettung der Katalysatorpartikel in das TrĂ€germaterial ist eine Unterscheidung der bedeckten und unbedeckten OberflĂ€che nötig, da nur der unbedeckte Teil der KatalysatoroberflĂ€che von den Reaktanten erreicht werden kann. Neben dieser unbedeckten OberflĂ€che ist durch die teilweise Einbettung auch die Ausrichtung der Katalysatorpartikel in Bezug zur lokalen OberflĂ€che des TrĂ€gers bedeutsam, da so statistische Untersuchungen der unbedeckten Facettentypen möglich werden. Zu den durchgefĂŒhrten Charakterisierungen wie: Partikelverteilung innerhalb des TrĂ€gers, GrĂ¶ĂŸenverteilung, OberflĂ€chen, Volumina, Formanalyse und der lokalen Ausrichtung, wurden Erkenntnisse gewonnen, die es erlauben, den untersuchten Katalysatortyp wĂ€hrend der Herstellung weiter zu optimieren. Es konnte zudem gezeigt werden, dass die entwickelten Bildanalysemethoden sich auch auf tomographische DatensĂ€tze anderer Messmethoden wie z.B. Neutronen- und Focused Ion Beam-Tomographie anwenden lassen.Electron tomography with a transmission electron microscope (TEM) enables creation of three-dimensional representations (tomograms) of samples in the range of a few nanometres to a few micrometres. In the frame of this thesis different ruthenium-based materials for catalysis in fuel cells were investigated. Tomography, in contrast to common TEM images (projections), yields information about the distribution and accessibility of the catalyst particles on or in the support material. It was shown that in addition to qualitative comparisons of the distribution of ruthenium particles on/in the carbon support material of differently manufactured samples, quantitative analyses are also possible. Since catalysis on heterogeneous catalysts takes place at the surface of the catalyst, the amount of surface area matters as do the coordination numbers of differently oriented facets of the catalyst particles. For this purpose a new algorithm was developed that allows to automatically analyse faceting of many different particles in a three-dimensional dataset. Due to the partial embedding of the catalyst particles into the support material only the uncovered fraction of the catalyst surface is accessible to the reactants and therefore a differentiation between the covered and uncovered catalyst surface is necessary. Apart from this uncovered surface, the orientation of the catalyst particles relative to the local support surface is also important since this allows statistical investigation of the uncovered facet types. In addition to the conducted characterizations such as: particle distribution within the support, size distribution, surface areas, volumes, shape analysis and the local orientation, new insights were gained which allow optimization of the examined catalyst during production. Furthermore, it could be shown that the developed image analysis methods can be applied to tomographic datasets from other measurement techniques such as neutron and focused ion beam tomography

    3D exemplar-based image inpainting in electron microscopy

    Get PDF
    In electron microscopy (EM) a common problem is the non-availability of data, which causes artefacts in reconstructions. In this thesis the goal is to generate artificial data where missing in EM by using exemplar-based inpainting (EBI). We implement an accelerated 3D version tailored to applications in EM, which reduces reconstruction times from days to minutes. We develop intelligent sampling strategies to find optimal data as input for reconstruction methods. Further, we investigate approaches to reduce electron dose and acquisition time. Sparse sampling followed by inpainting is the most promising approach. As common evaluation measures may lead to misinterpretation of results in EM and falsify a subsequent analysis, we propose to use application driven metrics and demonstrate this in a segmentation task. A further application of our technique is the artificial generation of projections in tiltbased EM. EBI is used to generate missing projections, such that the full angular range is covered. Subsequent reconstructions are significantly enhanced in terms of resolution, which facilitates further analysis of samples. In conclusion, EBI proves promising when used as an additional data generation step to tackle the non-availability of data in EM, which is evaluated in selected applications. Enhancing adaptive sampling methods and refining EBI, especially considering the mutual influence, promotes higher throughput in EM using less electron dose while not lessening quality.Ein hĂ€ufig vorkommendes Problem in der Elektronenmikroskopie (EM) ist die NichtverfĂŒgbarkeit von Daten, was zu Artefakten in Rekonstruktionen fĂŒhrt. In dieser Arbeit ist es das Ziel fehlende Daten in der EM kĂŒnstlich zu erzeugen, was durch Exemplar-basiertes Inpainting (EBI) realisiert wird. Wir implementieren eine auf EM zugeschnittene beschleunigte 3D Version, welche es ermöglicht, Rekonstruktionszeiten von Tagen auf Minuten zu reduzieren. Wir entwickeln intelligente Abtaststrategien, um optimale Datenpunkte fĂŒr die Rekonstruktion zu erhalten. AnsĂ€tze zur Reduzierung von Elektronendosis und Aufnahmezeit werden untersucht. Unterabtastung gefolgt von Inpainting fĂŒhrt zu den besten Resultaten. Evaluationsmaße zur Beurteilung der RekonstruktionsqualitĂ€t helfen in der EM oft nicht und können zu falschen SchlĂŒssen fĂŒhren, weswegen anwendungsbasierte Metriken die bessere Wahl darstellen. Dies demonstrieren wir anhand eines Beispiels. Die kĂŒnstliche Erzeugung von Projektionen in der neigungsbasierten Elektronentomographie ist eine weitere Anwendung. EBI wird verwendet um fehlende Projektionen zu generieren. Daraus resultierende Rekonstruktionen weisen eine deutlich erhöhte Auflösung auf. EBI ist ein vielversprechender Ansatz, um nicht verfĂŒgbare Daten in der EM zu generieren. Dies wird auf Basis verschiedener Anwendungen gezeigt und evaluiert. Adaptive Aufnahmestrategien und EBI können also zu einem höheren Durchsatz in der EM fĂŒhren, ohne die BildqualitĂ€t merklich zu verschlechtern

    Automatic Differentiation for Inverse Problems in X-ray Imaging and Microscopy

    Get PDF
    Computational techniques allow breaking the limits of traditional imaging methods, such as time restrictions, resolution, and optics flaws. While simple computational methods can be enough for highly controlled microscope setups or just for previews, an increased level of complexity is instead required for advanced setups, acquisition modalities or where uncertainty is high; the need for complex computational methods clashes with rapid design and execution. In all these cases, Automatic Differentiation, one of the subtopics of Artificial Intelligence, may offer a functional solution, but only if a GPU implementation is available. In this paper, we show how a framework built to solve just one optimisation problem can be employed for many different X-ray imaging inverse problems

    Complementary 2D/3D Imaging of Functional Materials using X-ray & Electron Microscopy

    Get PDF
    Catalysts and other functional materials are generally hierarchically structured materials. Hence, the detailed characterization at different length scales, and especially under reaction conditions, are necessary to unravel their mechanisms and to improve their performance and catalytic activities. Besides, a combination of several techniques is required to acquire complementary information owing to the lack of a single technique able to cover all the length scales. With respect to length, the best way to investigate is by microscopy either in 2D or more preferably in 3D. The work began with an exploration of three different 3D imaging techniques, i.e. ptychographic X-ray computed tomography, electron tomography, and focused ion beam slice-and view. Using nanoporous gold as the model, this study aimed to exhibit the versatility of 3D microscopy as a method beyond imaging as well as to confirm the necessity of complementary nature between them, where electron offers better spatial resolution and X-ray provides larger field of view. The study then continued by utilizing ptychographic X-ray computed tomography for quasi in situ thermal treatment of the same materials under atmospheric pressure. This study highlighted its ease of use of implementing in situ studies, complemented by electron tomography to prove its powerful ability to resolve what ptychographic tomography cannot. The resulting 3D volumes were then used for air permeability and CO2 diffusion simulations, along with material’s electrical and thermal conductivity simulations in order to further expose another excellent benefit from 3D microscopy. Ultimately, the work proceeded into developing two cells in order to perform full in situ investigations under controlled temperatures and atmospheres, where one cell was built for 2D only (X-ray) ptychography experiments with simultaneous X-ray fluorescence mapping, and the other was constructed with an additional capability for 3D limited-angle ptychographic tomography experiments. The feasibility tests were conducted using several functional materials, i.e. nanoporous gold, zeolite, and cobalt-manganese-oxides hollow sphere, as the models for thermal annealing process under specific atmospheres. This work eventually attests the importance of in situ studies in precisely determining the onset annealing temperatures under particular environments, to visualize the morphology online either in 2D or 3D, and to simultaneously map elemental distributions live. Moreover, a complementary technique via transmission electron microscopy was also demonstrated on the same sample, adding up another advantage in using the cells. Despite the preliminary results from in situ limited-angle ptychographic tomography experiments for limitation in data reconstruction, a new tomographic reconstruction technique was recently developed as a solution to acquire 3D images with shortened acquisition times. In conclusions, the work here converges into the ideal case of performing all-around in situ 3D imaging of functional materials for quantitative analysis and simulation

    Reduzierung von Missing Wedge Artefakten der CT mit DIRECTT

    No full text
    Reduction of Missing Wedge Artifacts in Computerised Tomography by DIRECTT. Typical missing wedge MW artifacts in reconstructions of computerised tomography CT can be suppressed by the iterative algorithm DIRECTT Direct Iterative Reconstruction of Computed Tomography Trajectories . The MW restrictions due to missing projection angles are presently limited to specific applications of X ray and neutron tomography. However, in the field of nanometer resolving electron tomography they are an inevitable standard. The MW artifacts can be removed much better by an additional procedure of the DIRECTT algorithm applying partially discrete intermediate solutions. Reconstructions of complete and incomplete data sets from measurements and models are created in order to evaluate their quality, and to compare them to the results of other algorithms filtered back projection FBP and ART approaches . The Fourier transforms of the reconstructions demonstrate the contribution of supplementary information to the missing wedge sector. For further assessment of the reconstruction quality, adapted techniques of spatial statistics are applie
    corecore