232 research outputs found

    Misleading Generalized Itemset discovery

    Get PDF
    Frequent generalized itemset mining is a data mining technique utilized to discover a high-level view of interesting knowledge hidden in the analyzed data. By exploiting a taxonomy, patterns are usually extracted at any level of abstraction. However, some misleading high-level patterns could be included in the mined set. This paper proposes a novel generalized itemset type, namely the Misleading Generalized Itemset (MGI). Each MGI represents a frequent generalized itemset X and its set E of low-level frequent descendants for which the correlation type is in contrast to the one of X. To allow experts to analyze the misleading high-level data correlations separately and exploit such knowledge by making different decisions, MGIs are extracted only if the low-level descendant itemsets that represent contrasting correlations cover almost the same portion of data as the high-level (misleading) ancestor. An algorithm to mine MGIs at the top of traditional generalized itemsets is also proposed. The experiments performed on both real and synthetic datasets demonstrate the effectiveness and efficiency of the proposed approac

    Data Mining Algorithms for Internet Data: from Transport to Application Layer

    Get PDF
    Nowadays we live in a data-driven world. Advances in data generation, collection and storage technology have enabled organizations to gather data sets of massive size. Data mining is a discipline that blends traditional data analysis methods with sophisticated algorithms to handle the challenges posed by these new types of data sets. The Internet is a complex and dynamic system with new protocols and applications that arise at a constant pace. All these characteristics designate the Internet a valuable and challenging data source and application domain for a research activity, both looking at Transport layer, analyzing network tra c flows, and going up to Application layer, focusing on the ever-growing next generation web services: blogs, micro-blogs, on-line social networks, photo sharing services and many other applications (e.g., Twitter, Facebook, Flickr, etc.). In this thesis work we focus on the study, design and development of novel algorithms and frameworks to support large scale data mining activities over huge and heterogeneous data volumes, with a particular focus on Internet data as data source and targeting network tra c classification, on-line social network analysis, recommendation systems and cloud services and Big data

    Frequent Itemset Mining for Big Data

    Get PDF
    Traditional data mining tools, developed to extract actionable knowledge from data, demonstrated to be inadequate to process the huge amount of data produced nowadays. Even the most popular algorithms related to Frequent Itemset Mining, an exploratory data analysis technique used to discover frequent items co-occurrences in a transactional dataset, are inefficient with larger and more complex data. As a consequence, many parallel algorithms have been developed, based on modern frameworks able to leverage distributed computation in commodity clusters of machines (e.g., Apache Hadoop, Apache Spark). However, frequent itemset mining parallelization is far from trivial. The search-space exploration, on which all the techniques are based, is not easily partitionable. Hence, distributed frequent itemset mining is a challenging problem and an interesting research topic. In this context, our main contributions consist in an (i) exhaustive theoretical and experimental analysis of the best-in-class approaches, whose outcomes and open issues motivated (ii) the development of a distributed high-dimensional frequent itemset miner. The dissertation introduces also a data mining framework which takes strongly advantage of distributed frequent itemset mining for the extraction of a specific type of itemsets (iii). The theoretical analysis highlights the challenges related to the distribution and the preliminary partitioning of the frequent itemset mining problem (i.e. the search-space exploration) describing the most adopted distribution strategies. The extensive experimental campaign, instead, compares the expectations related to the algorithmic choices against the actual performances of the algorithms. We run more than 300 experiments in order to evaluate and discuss the performances of the algorithms with respect to different real life use cases and data distributions. The outcomes of the review is that no algorithm is universally superior and performances are heavily skewed by the data distribution. Moreover, we were able to identify a concrete lack as regards frequent pattern extraction within high-dimensional use cases. For this reason, we have developed our own distributed high-dimensional frequent itemset miner based on Apache Hadoop. The algorithm splits the search-space exploration into independent sub-tasks. However, since the exploration strongly benefits of a full-knowledge of the problem, we introduced an interleaving synchronization phase. The result is a trade-off between the benefits of a centralized state and the ones related to the additional computational power due to parallelism. The experimental benchmarks, performed on real-life high-dimensional use cases, show the efficiency of the proposed approach in terms of execution time, load balancing and reliability to memory issues. Finally, the dissertation introduces a data mining framework in which distributed itemset mining is a fundamental component of the processing pipeline. The aim of the framework is the extraction of a new type of itemsets, called misleading generalized itemsets

    Twitter data analysis by means of Strong Flipping Generalized Itemsets

    Get PDF
    Twitter data has recently been considered to perform a large variety of advanced analysis. Analysis ofTwitter data imposes new challenges because the data distribution is intrinsically sparse, due to a large number of messages post every day by using a wide vocabulary. Aimed at addressing this issue, generalized itemsets - sets of items at different abstraction levels - can be effectively mined and used todiscover interesting multiple-level correlations among data supplied with taxonomies. Each generalizeditemset is characterized by a correlation type (positive, negative, or null) according to the strength of thecorrelation among its items.This paper presents a novel data mining approach to supporting different and interesting targetedanalysis - topic trend analysis, context-aware service profiling - by analyzing Twitter posts. We aim atdiscovering contrasting situations by means of generalized itemsets. Specifically, we focus on comparingitemsets discovered at different abstraction levels and we select large subsets of specific (descendant)itemsets that show correlation type changes with respect to their common ancestor. To this aim, a novelkind of pattern, namely the Strong Flipping Generalized Itemset (SFGI), is extracted from Twitter mes-sages and contextual information supplied with taxonomy hierarchies. Each SFGI consists of a frequentgeneralized itemset X and the set of its descendants showing a correlation type change with respect to X. Experiments performed on both real and synthetic datasets demonstrate the effectiveness of the pro-posed approach in discovering interesting and hidden knowledge from Twitter dat

    Digging deep into weighted patient data through multiple-level patterns

    Get PDF
    Large data volumes have been collected by healthcare organizations at an unprecedented rate. Today both physicians and healthcare system managers are very interested in extracting value from such data. Nevertheless, the increasing data complexity and heterogeneity prompts the need for new efficient and effective data mining approaches to analyzing large patient datasets. Generalized association rule mining algorithms can be exploited to automatically extract hidden multiple-level associations among patient data items (e.g., examinations, drugs) from large datasets equipped with taxonomies. However, in current approaches all data items are assumed to be equally relevant within each transaction, even if this assumption is rarely true. This paper presents a new data mining environment targeted to patient data analysis. It tackles the issue of extracting generalized rules from weighted patient data, where items may weight differently according to their importance within each transaction. To this aim, it proposes a novel type of association rule, namely the Weighted Generalized Association Rule (W-GAR). The usefulness of the proposed pattern has been evaluated on real patient datasets equipped with a taxonomy built over examinations and drugs. The achieved results demonstrate the effectiveness of the proposed approach in mining interesting and actionable knowledge in a real medical care scenario

    MeTA: Characterization of medical treatments at different abstraction levels

    Get PDF
    Physicians and healthcare organizations always collect large amounts of data during patient care. These large and high-dimensional datasets are usually characterized by an inherent sparseness. Hence, the analysis of these datasets to gure out interesting and hidden knowledge is a challenging task. This paper proposes a new data mining framework based on generalized association rules to discover multiple-level correlations among patient data. Specically, correlations among prescribed examinations, drugs, and patient proles are discovered and analyzed at different abstraction levels. The rule extraction process is driven by a taxonomy to generalize examinations and drugs into their corresponding categories. To ease the manual inspection of the result, a worthwhile subset of rules, i.e., the non-redundant generalized rules, is considered. Furthermore, rules are classied according to the involved data features (medical treatments or patient proles) and then explored in a top-down fashion, i.e., from the small subset of high-level rules a drill-down is performed to target more specic rules. The experiments, performed on a real diabetic patient dataset, demonstrate the effectiveness of the proposed approach in discovering interesting rule groups at different abstraction levels

    Expressive generalized itemsets

    Get PDF
    Generalized itemset mining is a powerful tool to discover multiple-level correlations among the analyzed data. A taxonomy is used to aggregate data items into higher-level concepts and to discover frequent recurrences among data items at different granularity levels. However, since traditional high-level itemsets may also represent the knowledge covered by their lower-level frequent descendant itemsets, the expressiveness of high-level itemsets can be rather limited. To overcome this issue, this article proposes two novel itemset types, called Expressive Generalized Itemset (EGI) and Maximal Expressive Generalized Itemset (Max-EGI), in which the frequency of occurrence of a high-level itemset is evaluated only on the portion of data not yet covered by any of its frequent descendants. Specifically, EGI s represent, at a high level of abstraction, the knowledge associated with sets of infrequent itemsets, while Max-EGIs compactly represent all the infrequent descendants of a generalized itemset. Furthermore, we also propose an algorithm to discover Max-EGIs at the top of the traditionally mined itemsets. Experiments, performed on both real and synthetic datasets, demonstrate the effectiveness, efficiency, and scalability of the proposed approac

    Specious rules: an efficient and effective unifying method for removing misleading and uninformative patterns in association rule mining

    Full text link
    We present theoretical analysis and a suite of tests and procedures for addressing a broad class of redundant and misleading association rules we call \emph{specious rules}. Specious dependencies, also known as \emph{spurious}, \emph{apparent}, or \emph{illusory associations}, refer to a well-known phenomenon where marginal dependencies are merely products of interactions with other variables and disappear when conditioned on those variables. The most extreme example is Yule-Simpson's paradox where two variables present positive dependence in the marginal contingency table but negative in all partial tables defined by different levels of a confounding factor. It is accepted wisdom that in data of any nontrivial dimensionality it is infeasible to control for all of the exponentially many possible confounds of this nature. In this paper, we consider the problem of specious dependencies in the context of statistical association rule mining. We define specious rules and show they offer a unifying framework which covers many types of previously proposed redundant or misleading association rules. After theoretical analysis, we introduce practical algorithms for detecting and pruning out specious association rules efficiently under many key goodness measures, including mutual information and exact hypergeometric probabilities. We demonstrate that the procedure greatly reduces the number of associations discovered, providing an elegant and effective solution to the problem of association mining discovering large numbers of misleading and redundant rules.Comment: Note: This is a corrected version of the paper published in SDM'17. In the equation on page 4, the range of the sum has been correcte
    • …
    corecore