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Abstract

Traditional data mining tools, developed to extract actionable knowledge from

data, demonstrated to be inadequate to process the huge amount of data

produced nowadays. Even the most popular algorithms related to Frequent

Itemset Mining, an exploratory data analysis technique used to discover frequent

items co-occurrences in a transactional dataset, are ineicient with larger and

more complex data.

As a consequence, many parallel algorithms have been developed, based on

modern frameworks able to leverage distributed computation in commodity

clusters of machines (e.g., Apache Hadoop, Apache Spark). However, frequent

itemset mining parallelization is far from trivial. The search-space exploration,

on which all the techniques are based, is not easily partitionable. Hence,

distributed frequent itemset mining is a challenging problem and an interesting

research topic.

In this context, our main contributions consist in an (i) exhaustive theoreti-

cal and experimental analysis of the best-in-class approaches, whose outcomes

and open issues motivated (ii) the development of a distributed high-dimensional

frequent itemset miner. The dissertation introduces also a data mining frame-

work which takes strongly advantage of distributed frequent itemset mining

for the extraction of a speciĄc type of itemsets (iii). The theoretical analy-

sis highlights the challenges related to the distribution and the preliminary

partitioning of the frequent itemset mining problem (i.e. the search-space

exploration) describing the most adopted distribution strategies. The extensive

experimental campaign, instead, compares the expectations related to the

algorithmic choices against the actual performances of the algorithms. We run

more than 300 experiments in order to evaluate and discuss the performances

of the algorithms with respect to diferent real life use cases and data distribu-



v

tions. The outcomes of the review is that no algorithm is universally superior

and performances are heavily skewed by the data distribution. Moreover, we

were able to identify a concrete lack as regards frequent pattern extraction

within high-dimensional use cases. For this reason, we have developed our own

distributed high-dimensional frequent itemset miner based on Apache Hadoop.

The algorithm splits the search-space exploration into independent sub-tasks.

However, since the exploration strongly beneĄts of a full-knowledge of the

problem, we introduced an interleaving synchronization phase. The result is

a trade-of between the beneĄts of a centralized state and the ones related

to the additional computational power due to parallelism. The experimental

benchmarks, performed on real-life high-dimensional use cases, show the ei-

ciency of the proposed approach in terms of execution time, load balancing and

reliability to memory issues. Finally, the dissertation introduces a data mining

framework in which distributed itemset mining is a fundamental component of

the processing pipeline. The aim of the framework is the extraction of a new

type of itemsets, called misleading generalized itemsets.
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Chapter 1

Introduction

Nowadays, data stream from every-day life. Social networks, wearable devices

and cities infrastructure are just few examples of current data sources. The

reasons behind the collection of this huge amount of data concern its renovated

value. Indeed, the so called Big Data revolution does not concern only the

increasing quantity of data. The real innovation is related to the actionable

knowledge which can be extracted from it [1]. Thanks to the analysis of huge

amount of customersŠ information, currently, many companies are able to

develop predictive models to target each customer with the proper campaign.

Recommendation systems are used to propose products to customers relying on

the choices of other similar customers. By means of municipal data collections,

in urban scenarios, crimes are predicted or interesting correlations between

health and air quality are extracted. The information collected by sensors in the

automotive environment, instead, is leveraged in many research domains: from

the training of self-driving algorithms to predictive component replacement.

The branch of computer science whose analytic tools are used to transform

these huge collections of data into efective and useful knowledge is called data

mining. In the last years, the interest towards data mining in Big Data contexts

has risen. The trend is noticeable in both industrial and academic environments.

For companies, as already discussed, it represents a very powerful source of

information. In [2] it is explained how larger data can indeed be more valuable

assets for predictive analytics. Companies with larger collections of data and, of

course, the skills to take advantage of them, can obtain a competitive advantage.
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On the other hand, in the academic domain, the design of big data algorithms

represents a very inspiring challenge and research opportunity. In fact, the

application of traditional data mining techniques to such large collection of

data is very challenging. Furthermore, as the amount of data increases, the

proportion that people are able to interpret decreases [3]. For this reason, there

is a concrete and urgent need of a new generation of scalable tools.

In this dissertation, we focus on one of the most popular data mining

techniques, Frequent Itemset Mining. Frequent itemset mining (FIM) is an

exploratory data analysis method used to discover frequent co-occurrence among

the items of a transactional dataset. Frequent itemsets are very useful for

data summarization and correlation analysis. They can be used to identify the

most relevant insights from large collections of data which cannot be manually

examined because of their size. Itemsets are also used to generate Association

Rules [4], which highlight and analyze relations between objects.

Several eicient frequent itemset mining algorithms have been proposed in

the last decades. However, they are very eicient when the dataset could be

stored in main memory but cannot cope with larger and more complex data. In

this context, frequent itemset extraction becomes a challenging and interesting

problem. For this reason, some scalable techniques have been introduced in the

last years. All of them rely on diferent distribution strategies and this leads to

diferent performances related to diferent use cases and data distributions.

Thesis statement: The target of this dissertation is to thoroughly analyze

the distributed frequent itemset mining environment, identify the open issues

and make a step forward to fill in the discovered gap.

In the Ąnal part of this Chapter, we resume the dissertation plan highlighting

our research contribution.
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1.1 Dissertation plan and research contribu-

tion

The dissertation is structured into three main parts, which follow the natural

order of algorithms design and application. At the same, time, this division

organically clusters my main research contributions:

1. A deep analysis of the most reliable frequent itemset mining tools for big

data. In every research project, this preliminary efort is fundamental to

better understand the domain and, above all, discover possible lacks or

issues. This analysis is divided in two main components:

(a) A theoretical analysis introducing frequent itemset mining and out-

lining the motivations and the inherent challenges related to par-

allelization. Finally, the best-in-class distributed approaches are

described.

(b) An experimental comparison aimed to compare the performances

of the state-of-the-art approaches through diferent use-cases char-

acterized by diferent data distribution (using both synthetic and

real-life datasets) in order to identify possible open issues.

2. The enrichment of the scalable frequent pattern mining environment with

a new distributed high-dimensional mining algorithm.

3. The integration of distributed frequent pattern mining in a real world

context and within a big data mining framework.

The remainder part of this section will brieĆy introduce each phase in order to

deliver a clear idea of the structure of the dissertation work.

1.1.1 Frequent Itemset Mining: motivations, challenges

and state of the art

As already mentioned, with the increasing amount of generated data, diferent

distributed and scalable frequent itemset algorithms have been developed.

In this section, we will Ąrstly introduce the motivations behind the need

of scalable frequent itemset mining algorithms and the current migration
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towards the distributed computing frameworks [5, 6]. Since all the distributed

approaches and their inherent algorithmic design choices strongly rely on a

set of underlying centralized algorithms, the basic frequent itemset mining

approaches will be introduced. This knowledge allows a better comprehension

of the inherent challenges of parallelization, which will be extensively described.

A new taxonomy based on the distribution strategy will be introduced as well.

Finally, this section of the work describes how the best-in-class distributed

frequent itemset mining approaches have addressed the parallelization issues to

extract frequent itemsets from large amount of data.

1.1.2 State of the art experimental evaluation and open

issues

The detailed description on the algorithmic choices of the distributed methods

for frequent itemset mining is followed by an experimental analysis compar-

ing the performance of state-of-the-art distributed implementations on both

synthetic and real datasets. The strengths and weaknesses of the algorithms

are thoroughly discussed with respect to the dataset features: e.g., data dis-

tribution, average transaction length and number of records. Finally, based

on the theoretical and experimental analyses, open research directions for the

parallelization of the itemset mining problem are presented. The outcomes

of the experimental review is that no algorithm is universally superior and

performances are heavily skewed by the use cases and the relative input data.

Additionally, the experiments have highlighted the fundamental importance of

Load Balancing, even sacriĄcing Communication Costs, which, in this scenario,

could be considered as a price worth paying. All of the algorithms assess their

reliability dealing with a huge number of transactions. None of them has been

designed to cope with a huge number of attributes, i.e. high-dimensional data.

As shown in the next subsection, we have tried to Ąll in this gap.
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1.1.3 A Parallel Map-Reduce Algorithm to Efficiently

Support Itemset Mining on High Dimensional Data

As mentioned in the previous subsection (and as clearly shown in Chapter 4),

most of the current scalable frequent itemset mining algorithms are designed to

cope with low-dimensional datasets, delivering poor performances in those use

cases characterized by high-dimensional data. Chapter 5 introduces PaMPa-HD

[7],[8], a MapReduce-based frequent closed itemset mining algorithm for high

dimensional datasets. An eicient solution has been proposed to parallelize

and speed up the mining process. Furthermore, diferent strategies have been

proposed to easily tune-up the algorithm parameters. The experimental results,

performed on real-life high-dimensional use cases, show the eiciency of the

proposed approach in terms of execution time, load balancing and robustness

to memory issues.

1.1.4 Big Data Mining frameworks and real-life scenar-

ios

This section describes the integration of distributed frequent itemset mining

in a real world context and, speciĄcally, within a big data mining framework

designed to mine a diferent type of itemsets[9]. The framework includes several

steps, all of them relying on distributed processing, in order to be able to deal

with large amount of data. In the framework, distributed frequent itemset

extraction is just one of the required processes to extract the desired knowledge

from raw data. We will speciĄcally focus on the extraction of misleading

generalized itemset [10], a particular type of itemsets obtained from frequent

itemsets and a taxonomy of the input data. In this context, two real life use

cases will be analyzed. The Ąrst is related to smart cities [10],[11] while the

second consists network traic logs [12].

1.1.5 Dissertation Plan

This dissertation is organized as follows. Chapter 2 introduces the background

related to frequent itemset mining and the distributed platforms involved. In
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Chapter 3, the problem of distributed frequent itemset mining will be motivated

and the main challenges and parallelization strategies will be outlined. After

that, a thorough review of the most airmed solutions will be introduced. In

Chapter 4 the performance of the best-in-class approaches will be evaluated

through the utilization of synthetic and real datasets, evidencing the current

limitation and the open issues of the academic state of the art. Then, in

Chapter 5 an innovative distributed algorithm will be presented and evaluated,

demonstrating its efectiveness in the context of high-dimensional pattern

mining. In Chapter 6 a big data mining framework will be introduced and

exploited to obtain a special type of frequent itemsets from network traic

and smart cities datasets. Finally, Chapter 7 summarizes the main results we

achieved and provides some future possible work directions.



Chapter 2

Frequent Itemset Mining and

distributed frameworks

As already introduced, data mining represents a family of tools and techniques

aimed at extracting usable and efective knowledge from collections of data. It

is possible to distinguish three main groups of techniques:

• Unsupervised Learning (Clustering) [13]

• Supervised Learning [14]

• Frequent Itemset Mining and Correlation Discovery [15]

The goal of clustering and, more in general, unsupervised learning, is to

discover hidden structures in unlabeled data. SpeciĄcally, the aim of this set

of techniques is grouping sets of objects in such a way that objects grouped

together (in the same cluster) are more similar to each other than to those

in other groups (clusters). The greater the homogeneity inside a group and

the dissimilarity among diferent groups, the better the clustering results can

be considered. The division into groups can be seen as an attempt to get the

natural structure of the data.

Supervised Learning, instead, starting from a set of labeled input data, aims

at building a predictive model from it. This model, which is an inferred function,

should approximate the distribution of the input dataset, called training set,

with respect to the class labels. The built model is then used to classify new

unlabeled samples.
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Frequent itemset mining is an exploratory data analysis method used to

discover frequent co-occurrence among the items of a transactional dataset

(attribute-value pairs). The support of an itemset, a set of items, is the number

of transactions in which it appears. A set of items is considered frequent if

its support is over a user-provided frequency threshold (minimum support).

Frequent itemsets are commonly used to summarize large collection of data since

they output the most frequent patterns, which can be interpreted as the most

representative ones [16]. In a similar way, they can be leveraged to highlight

patterns which do not respect the most common trend [17],[18]. They can hide

interesting outliers which could worth be investigated and deepened [19],[20].

Frequent itemsets are often used as input for Association rules mining, a method

to discover interesting relations between objects. They were Ąrst introduced

analyzing retail transactions data from supermarkets. Each rule is organized on

two members, respectively called antecedent and consequent. The rule concept

is very straightforward and an example rule is: {bread,butter} → {milk}. This

rule means that customers who buy bread and butter usually buy also milk. Of

course, the rules should be considered statistically signiĄcant just if supported

by a suicient support and conĄdence (i.e. how often the rule has been found

to be true). Association rules and, in general, the extracted knowledge in terms

of correlations, could be considered very valuable information. For instance,

a whole category of classiĄer or recommendation systems are based on rules

[21],[22].

In the following Section, a preliminary background on frequent itemset

mining, useful to better understand the content of this work, will be introduced.

2.1 Frequent Itemset Mining - Preliminaries

Let I be a set of items. A transactional dataset D consists of a set of transactions

{t1, . . . , tn}, where each transaction ti ∈ D is a set of items (i.e., ti ⊆ I) and it

is identiĄed by a transaction identiĄer (tidi). Figure 2.1a reports an example

of a transactional dataset with 4 transactions.

An itemset I is deĄned as a set of items (i.e., I ⊆ I) and it is characterized

by a tidlist and a support value. The tidlist of an itemset I, denoted by

tidlist(I), is deĄned as the set of tids of the transactions in D containing I.
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D

tid items
1 a b c d
2 a c d e
3 b c d e
4 a d e

(a) Horizontal rep-
resentation of D

TT

item tidlist
a 1,2,4
b 1,3
c 1,2,3
d 1,2,3,4
e 2,3,4

(b) Transposed rep-
resentation of D

Frequent Itemsets

itemsets Support
a 3
b 2
c 3
d 4
e 3

a c 2
a d 3
a e 2
b c 2
b d 2
c d 3
c e 2
d e 3

a c d 2
a d e 2
b c d 2
c d e 2

(c) Frequent itemset ex-
tracted from D with a min-
sup=2

Fig. 2.1 Running example dataset D

When the average number of items per transactions is orders of magnitudes

larger than the number of transactions, a transactional dataset can also be

more efectively represented in a vertical format. In this representation, also

called transposed table TT , each row consists of an item I and its list tidlist(I).

Figure 2.1b reports the transposed representation of the running example

reported in Figure 2.1a.

The support of I in D, denoted by sup(I), is deĄned as the ratio between the

number of transactions in D containing I and the total number of transactions

in D (i.e., |tidlist(I)|/|D|). For instance, the support of the itemset {acd} in

the running example dataset D is 2/4 and its tidlist is {1,2}. An itemset I

is considered frequent if its support is greater than a user-provided minimum

support threshold minsup. Figure 2.1c reports the frequent itemset extracted

from D with a minsup value equal to 2.
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Given a transactional dataset D and a minimum support threshold minsup,

the frequent itemset mining [23] problem consists in extracting the complete

set of frequent itemsets from D.

The dimension of the search-space, which can be represented as a lattice

with an empty set at the top and an itemset containing all the possible itemset

at the bottom, scales exponentially with the number of items [24]. The main

underlying property adopted by most of the algorithms to prune the search-

space is the monotonicity of the support. Because of this property, if an itemset

is infrequent, none of its supersets could be frequent. In Figure 2.2, it is shown

the lattice related to our running example.

In this work, we focus also on a valuable subset of frequent itemsets called

frequent closed itemsets [25]. Closed itemsets allow representing the same

information of traditional frequent itemsets in a more compact form. An item

or itemset I is closed in D if none of the supersets of I has the same support

count as I.

For instance, in our running example, given a minsup = 2, the itemset {ac}

is a frequent itemset (support=2), but it is not closed for the presence of the

itemset {acd} (support=2); the itemset {ad} (support=3), instead, is closed.

2.2 Big Data and Distributed Frameworks

TodayŠs shift towards horizontal scaling in hardware has highlighted the need

of distributed data mining algorithms. Indeed, being able to analyze big data

is a huge value from both an economic and social point of view. Unfortunately,

traditional tools have demonstrated to be not reliable for dealing with such

large amount of data. This subsection introduces the distributed frameworks

which have allowed the design of scalable data mining and frequent itemset

mining algorithms.

Starting from data storage, new solutions had to be developed to replace

traditional relational database managements systems. We have Ąrstly witnessed

the development of distributed Ąle systems such as Google File System [26] and

its derivative Hadoop Distributed File System [5]. For the computational issues,

already well-known parallel frameworks have shown their limitations due to
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Finally, the reduce phase is run for each unique key and iterates through all

the associated values.

Designed to cope with very large datasets, the Java-based framework

Hadoop [5] is the most widely adopted MapReduce implementation. It al-

lows programmers not to concern about low level details and to focus just on

the algorithm design.

However, Hadoop and MapReduce paradigm is not aimed for iterative

processes. In this case, each iteration would require a complete read and

transmission (shule phase) of the input dataset, which is critical when dealing

with huge datasets. This issue motivated the development of a new in-memory

distributed platform called Apache Spark [6]. This framework, when possible,

allows machines to cache data and intermediate results in memory, instead

of reloading it from the disk at each iteration. Spark has also introduced a

new type of data collection called RDD (Resilient Distributed Dataset). Every

RDD modiĄcation is done just by the generation of another RDD, keeping

track of all the transformations in order to be able to regenerate data in case

of failures. Furthermore, RDDs avoid on-disk materialization until not strictly

mandatory, i.e. when an action requires a result to be returned to the driver

program, saving resources in terms of communication and I/O costs. Spark

supports both graph-based and streaming processes, demonstrating to be more

Ćexible than Hadoop, still keeping full compatibility with the latter.

Because of the winning features of Hadoop and Spark, testiĄed by their

spread in the academic environment, in this dissertation we will focus onto these

distributed frameworks, analyzing the best-in-class Hadoop and Spark-based

works and utilizing their paradigm for further advancements of the state of the

art.

However, Hadoop and Spark are not the only frameworks supporting the

parallelization of Data mining algorithms. GraphLab [28], Google Pregel [29]

and its open-source counterpart Giraph [30] are fault-tolerant, graph-based

framework while SimSQL [31], for instance, exploits an SQL-based approach.

Distributed systems are popular also because they became very easy to use: as

already stated, Message Passing Interface (MPI) [32], one of the most adopted

framework in academic environment, works eiciently only on very low level

programming such as C.
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2.2.1 Hadoop and Spark Machine Learning Libraries

In recent years the success of these distributed platforms was supported by

the introduction of open source libraries of machine learning algorithms. Ma-

hout [33] for Hadoop has represented one of the most popular collection of

Machine Learning algorithms, containing implementations in the areas such

as clustering, classiĄcation, recommendation systems, etc. All the current

implementations are based on Hadoop MapReduce. MADlib [34], instead,

provides a SQL toolkit of algorithms that run over Hadoop. Finally,

MLlib [35] is the Machine Learning library developed on Spark, and it is

rapidly growing up. MLlib allows researchers to exploit Spark special features to

implement all those applications that can beneĄt from them, e.g. fast iterative

procedures.



Chapter 3

FIM and Big Data: motivations,

challenges and state of the art

As already mentioned, existing data mining algorithm revealed to be very

eicient on typical datasets but very resource intensive when the size of the

input dataset grows up [36]. In general, applying data mining techniques to

big data collections has often entailed to cope with computational costs that

represent a critical bottleneck. For this reason, in the last years many distributed

data mining algorithms have been developed and widely exploited in diferent

application domains (e.g., network traic data [37], healthcare [38], biological

data [39], energy data [40], images [41], open linked data [42], document and

data summarization [43Ű45]).

In this section, we will Ąrstly introduce the reasons behind the need of scal-

able frequent itemset mining algorithms and the current migration towards the

distributed computing frameworks (e.g., Apache Hadoop [5], Apache Spark [6]).

Then, the most popular centralized approach will be introduced to better

understand the inherent challenges of parallelization. Finally, this section will

extensively describe the main issues related to the distribution of frequent

itemset mining problem and how the best-in-class distributed frequent itemset

mining approaches have addressed them.

The contents of this chapter have been presented in [46] and [47] and are

organized as follows. Section 3.1 outlines the motivations behind the need

of distributed frequent itemset mining algorithms. Section 3.2 provides a
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brief description of the state-of-the-art centralized itemset mining algorithms.

Section 3.3 describes the algorithmic strategies adopted so far to partition and

parallelize the frequent itemset mining problem by means of the MapReduce

paradigm, while Section 3.4 describes the state-of-the-art distributed algorithms

and their implementations.

3.1 Motivations

Several traditional centralized mining algorithms have been proposed (detailed

in Section 3.2). They are very eicient when the datasets can be completely

loaded in main memory. However, they cannot cope with larger and more

complex data. For this reason, in the last years, diferent distributed approaches

have been introduced, able to perform the itemsets extraction even in cases

related to large amount of data. This work is focused on the MapReduce-based

approaches. In fact, Hadoop and Spark have been widely adopted in the

research environment [48, 49, 1]. The reasons are partly related to the easier

data management and better fault tolerance [50, 50, 51] but, above all, these

frameworks allow the development of parallel algorithms by unexperienced

users [48].

The need of distributed frequent itemset miner is motivated by diferent

factors.

Input data size. The Ąrst, obviously, is the amount of data to process. This

issue is strongly related to the data structures (e.g., FP-tree [52], Enumeration

Tree [25], PreĄx Tree [53], ...) leveraged by the algorithms to explore the

search-space. Generally, bigger datasets lead to more complex data structures

which require a larger amount of computational resources and memory to be

explored and maintained1. Hence, centralized approaches could easily fail to

process very large datasets.

On the other hand, frequent itemset mining is a technique that is often

leveraged to summarize large data collections, hard to be manually explored by

1Please note that in the cases characterized by different data size but same data distribution
and relative minimum support threshold, the data structures are very similar. In these case,
the hardest part is related to the steps required to build the data structure (I/O costs) when
the input size becomes challenging.
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a domain expert. Therefore, in the cases related to big data collections there is

even a greater need of reliable frequent itemset miners.

Minimum support threshold. The second issue is related to minimum

support threshold, which directly mirrors the depth of the analysis. Even for

datasets not belonging to big data environment, a very low support extraction

could require a huge amount of resources. The lower it is, the more challenging

in terms of resource the mining will be. It is likely that a frequent itemset miner

is easily able to complete the itemsets extraction with a minimum support

threshold and runs out of memory with a lower support. Even in this case,

the motivations are related to the inner structure used by the algorithms to

explore the search-space [24]. A low minimum support threshold leads to a

deeper exploration of the search-space. The extreme case is the generation and

testing of all the possible combinations of the items. The mining considers

any possible items co-occurrence and it may happen that the output of the

process exceeds the input data size (as clearly shown in Tables 2.1a and 2.1c).

In addition, please note that the size and the complexity of these structure

do not scale linearly with the minimum support threshold [23, 24]. For these

reasons, this parameter is very important in order to evaluate the performance

of a frequent itemset mining algorithm.

In [54] it is shown how low frequencies itemsets could be more interesting. A

very low minimum support threshold might be also needed in the cases in which

frequent itemset mining is just a step in a more comprehensive framework. In

these cases it might be convenient to extract as many itemsets as possible.

An example of this type of usage can be found in Section 6.5, where frequent

itemsets are used to mine misleading generalized itemsets. The counter-efect of

low-minsup itemset and association rule extraction is the quantity of generated

itemset/rules. In these cases, many eforts have been spent by the community to

automatically reduce the amount of patterns or rules generated by a low minsup

value, with the introduction of diferent interestingness indexes and statistical

measures. However, most of these measures [55Ű59] could be applied after the

actual itemset mining. Besides, only a few guarantee the downward/upward

closure property, allowing them to replace the support-based pruning to reduce

the search-space [60Ű63]. In conclusion, there is still a clear need for techniques

able to extract low support itemsets even with large amount of data.
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Data distribution. As we will see in Chapters 4 and 5, also input data

distribution has an impact on the search-space. A high average transaction

length strongly impacts the complexity of the search-space, and, therefore,

the data structure to explore and maintain [24]. A dense dataset tends to

produce more frequent itemset because a larger number of items per transaction

inherently leads to a higher number of co-occurrences.

It is clear how the large amount of input data to be processed is only

one of the factors afecting the frequent itemset extraction, which is strongly

inĆuenced also by the depth of the analysis (i.e. minimum support threshold)

and the data distribution.

3.2 Centralized algorithms

The search-space exploration strategies of the distributed approaches (described

in Section 3.3) are often inspired by the solutions adopted by the centralized

approaches. Hence, this section shortly introduces the main strategies of the

centralized itemset mining algorithms. This introduction is useful to better

understand the algorithmic choices behind the distributed algorithms.

The frequent itemset mining task is challenging in terms of execution time

and memory consumption because the size of the search-space is exponential

with the number of items of the input dataset [24]. Two main search-space

exploration strategies have been proposed: (i) level-wise or breadth-Ąrst explo-

ration of the candidate itemsets in the lattice and (ii) depth-Ąrst exploration

of the lattice.

The most popular representative of the breadth-Ąrst strategy is Apriori [64].

Starting from single items, it iteratively generates and counts the support

of the candidate itemsets of size k + 1 from the frequent itemsets of size k.

SpeciĄcally, at each iteration k, the supports of the candidate itemsets of length

k are counted by performing a new scan of the input dataset. Then, the set

of k +1 candidates are generated and tested against the whole dataset, in an

iterative fashion. At each iteration, the search-space is pruned by exploiting

the downward-closure property, which guarantees that all the supersets of an

infrequent itemset are infrequent too. Precisely, the downward-closure property
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allows pruning the set of candidate itemsets of length k +1 by considering the

frequent itemsets of length k. The Apriori algorithm is signiĄcantly afected by

the density of the dataset. The higher the density of the dataset, the higher

the number of frequent itemsets and hence the amount of candidate itemset

stored in main memory. The problem becomes unfeasible when the number of

candidate itemsets exceeds the size of the main memory.

More eicient and scalable solutions exploit the depth-Ąrst visit of the

search-space. FP-Growth [52] is the most popular and it relies on a tree-based

compressed representation of the input dataset. BrieĆy, the algorithm is divided

in two main logical phases. In the Ąrst, the data structure is built while in

the second the frequent itemsets are extracted, the problem is projected with

respect to a preĄx of items and the algorithm is recursively invoked on the

subproblem, following a Şdivide and conquerŤ approach. In the Ąrst phase, the

support of each single item is counted and only the frequent items are stored in

the Şfrequent items tableŤ (F-list), ranked by their support. This step allows to

prune the search-space by avoiding the analysis of the itemsets obtained from

infrequent items (which cannot be frequent because of the monotonicity of the

support). Then, the FP-tree, the base data structure on which the algorithm

relies, is built exploiting the input dataset and the F-list table. SpeciĄcally, each

transaction is included in the FP-tree by adding or extending a path on the tree,

exploiting common preĄxes. Paths can overlap when transactions share items

(i.e. when they share the same preĄx). The FP-tree is a compact representation

of the dataset and the compression with respect to the original dataset is

proportional to the number of paths that overlap. The tree is built together

with a Header table which stores, for each frequent item, its support and a

pointer to the Ąrst node in the FP-tree carrying the same item name. Once

the FP-tree associated with the input dataset is built, FP-growth scans the

Header table and, for each frequent item or prefix p, generates the conditional

pattern-base with respect to p (this set matches the projection with respect

to p of the dataset transactions). On this set, the FP-growth algorithm is

invoked again, following a depth-Ąrst exploration. Each iteration generates

a new conditional FP-tree with respect to the incremental projection, until

the resulting one is empty or contains only a single path. At this point, the

search backtracks to the previous level of exploration until all the projections

of the initial FP-tree are processed. Further details on FP-growth algorithm
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can be found in [52]. FP-growth suits well dense datasets, because they can be

efectively and compactly represented by means of the FP-tree data structure.

Diferently, with sparse datasets, the compressions beneĄts of the FP-tree are

reduced because this would lead to a higher number of branches [15] (i.e., a

large number of subproblems to generate and results to merge).

Another very popular depth-Ąrst approach is the Eclat algorithm [53].

It performs the mining from a vertical transposition of the dataset. In the

vertical format, each transaction includes an item and the transaction identiĄers

(tid) in which it appears (tidlist). After the initial dataset transposition, the

search-space is explored in a depth-Ąrst manner, similarly to FP-growth. The

algorithm is based on equivalence classes (groups of candidate itemsets sharing

a common preĄx). An equivalence class of k-itemsets is a set of all k-itemsets

having a preĄx of k-1 items in common. Itemsets of the same equivalence

class could be smartly merged to obtain the itemset containing the preĄx and

the two distinguishing items. The support of the itemset is obtained from

the intersection of the tidlists. PreĄx-based equivalence classes are mined

independently, in a Şdivide and conquerŤ strategy. From each equivalence

class it is possible to obtain all the itemsets sharing the preĄx. The process

starts with an empty preĄx and the initial search sub-tree is actually the

whole search-tree. Then the Ąrst item is selected and used to generate the

corresponding equivalence class. After the mining of the itemsets containing

the former item (itemsets), the preĄx is expanded with another item.

Eclat is relatively robust to dense datasets. It is less efective with sparse

distributions, because the depth-Ąrst search strategy may require generating

and testing more (infrequent) candidate itemsets with respect to Apriori-like

algorithms [65].

3.3 Itemset mining parallelization strategies

The parallelization of the mentioned data structures represents the main con-

tribution behind the development of distributed and parallel frequent itemset

mining algorithms. This set of techniques cannot be considered easily or

embarrassingly parallelizable and do not Ąt parallel and/or distributed imple-

mentations. In distributed and parallel domains, an ideal approach assumes
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to divide the problem into independent non-overlapping sub-problems, which

can be assigned to commodity cluster nodes [66, 67]. In this way, (i) the

resources are completely exploited and (ii) the communication costs, a concrete

bottleneck in distributed environment, are reduced as much as possible.

In the FIM environment, the main task to be parallelized is the search-space

exploration, which is achieved through ad-hoc data structures. Distributed FIM

algorithms smartly split and distribute the processing of these data structures,

most of them adopting a "divide and conquer" fashion. This technique overcomes

the main memory issues. However, this split is often sub-optimal:

• In order to guarantee the independency of the single mining task, the

set of resulting partitions could overlap 2. The presence of overlapping

partitions requires an increasing amount of memory in the commodity

cluster, storing redundant data [33],[7] which can lead to redundant and

useless itemsets [68],[7].

• In centralized algorithms, some pruning techniques are often used to limit

the search-space exploration, saving time and resources. However, these

pruning rules might assume a state centralized memory. In [7], we have

addressed this issue, introducing a trade-of among the beneĄts related

to a centralized memory ("state") and the ones related to the degree of

parallelization (i.e. number of independent parallel tasks) (further details

in Chapter 5).

The best-in-class MapReduce-based algorithms have addressed the chal-

lenges related to parallel frequent itemset mining by means of two main al-

gorithmic approaches. They are signiĄcantly diferent because (i) they use

diferent solutions to split the original problem in subproblems and (ii) make

diferent assumptions about the data that can be stored in the main memory

of each independent task.

Data split approach. It splits the problem in ŞsimilarŤ subproblems, exe-

cuting the same function on diferent data chunks. SpeciĄcally, each

subproblem computes the local supports of all candidate itemsets on

one chunk on the input dataset (i.e., each subproblem works on the

2The overlapping degree is dependent from the data distribution
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Fig. 3.1 Itemset mining parallelization: Data split approach

complete search-space but on a subset of the input data). Finally, the

local results (i.e., the local supports of the candidate itemsets) emitted

by each subproblem/task are merged to compute the global Ąnal result

(global support of each itemset). The main assumptions of this approach

are that (i) the problem can be split in ŞsimilarŠ subproblems working on

diferent chunks of the input data and (ii) the set of candidate itemsets

is small enough that it can be stored in the main memory of each task.

Search-space split approach. It splits the problem by assigning to each

subproblem the visit of a subset of the search-space (i.e., each subproblem

visits a part of the lattice). SpeciĄcally, this approach generates, from

the input distributed dataset, a set of projected datasets, each one small

enough to be stored in the main memory of a single task. Each projected

dataset contains all the information that is needed to extract a subset

of itemsets (i.e., each dataset contains all the information that is needed

to explore a part of the lattice) without needing the contribution of the

results of the other tasks. The Ąnal result is the union of the itemset

subsets mined from each projected dataset.
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Fig. 3.2 Itemset mining parallelization: Iterative Data split approach

Fig. 3.3 Itemset mining parallelization: Search-space split approach

Figures 3.1 and 3.3 depict the Ąrst and the second parallelization strategies,

respectively. In the data split approach (Figure 3.1), the map phase computes
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the local supports of the candidate itemsets in its data chunk (i.e., each mapper

runs a Şlocal itemset mining extractionŤ on its data chunk). Then, the reduce

phase merges the local supports of each candidate itemset to compute its global

support. This solution requires each mapper to store a copy of the complete set

of candidate itemsets (i.e., a copy of the lattice). This set must Ąt in the main

memory of each mapper. Since the complete set of candidate itemsets is usually

too large to be stored in the main memory of a single mapper, an iterative

solution, inspired by the level-wise centralized itemset mining algorithms, is

used. Figure 3.2 reports the iterative solution. At each iteration k only the

subset of candidates of length k are considered and hence stored in the main

memory of each mapper. This approach, thanks also to the exploitation of

the apriori-principle to reduce the size of the candidate sets, allows obtaining

subsets of candidate itemsets that can be loaded in the main memory of each

mapper.

In the search-space split approach (Figure 3.3), the main idea is to create

several independent projected dataset that can be mined in parallel in diferent

tasks. The map phase is therefore used for dividing or mapping the initial

dataset into several sub-shards which, if smartly aggregated, could be explored

and mined independently. Precisely, from the local data chunks of the initial

dataset, the mappers generate a set of local projected datasets. Each local

projected dataset is the projection of the input chunk with respect to a preĄx

p.3 Then, the reduce phase merges the local projected datasets to generate the

complete projected datasets (the transactions related to the same preĄx p, in

fact, could be contained in diferent data chunks). The aggregated projected

datasets are provided as input to the reducers. Each reducer, then, runs a

standard centralized itemset mining algorithm on the provide projected datasets,

extracting the relative set of frequent itemsets. Hence, the main assumption,

in this approach, is that each complete projected dataset must Ąt in the main

memory of a single reducer.

Table 3.1 summarizes the main characteristics of the two parallelization

approaches with respect to the following criteria: type of split of the problem,

usage of main memory, communication costs, load balancing, and maximum

parallelization (i.e. maximum number of mappers and reducers).

3Note that the projected datasets can overlap because the transactions associated with
two distinct prefixes p1 and p2 can be overlapped.
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Table 3.1 Comparison of the parallelization approaches.

Criterion Iterative data split approach (Fig-
ure 3.2)

Search-space split approach (Fig-
ure 3.3)

Type of split/Split
of the search-space

Each subproblem analyzes a different
subset of the input data and computes
the local supports of all the candidate
itemsets of length k on its chunks of
data. The final result is given by the
merge of the local results.

Each subproblem analyzes a different
subset of itemsets/a different part of
the search-space. The final result is the
union of the local results.

Usage of main
memory

The candidate set of length k is stored
in the main memory of a single task.

The complete projected dataset is
stored in the main memory of a single
task.

Communication
cost

Number of candidate itemsets × num-
ber of mappers × number of iterations.

Sum of the sizes of the local projected
datasets.

Load balancing Load balancing is achieved by associ-
ating the same number of itemsets to
each reducer.

The tasks could be significantly unbal-
anced depending on the characteristics
of the projected datasets assigned to
each node.

Maximum number
of mappers

Number of chunks Number of chunks

Maximum number
of reducers

Number of candidate itemsets Number of items

Type of split/Split of the search-space. The main diference between the

two parallelization approaches is the strategy adopted to split the problem in

subproblems. This choice has a signiĄcant impact on the other criteria.

Usage of main memory. The diferent usage of the main memory of the tasks

impact on the reliability of the two approaches. The data split approach assumes

that the candidate itemsets of length k can be stored in the main memory of

each mapper. Hence, it is not able to scale on dense datasets characterized by

large candidate sets. Diferently, the search-space split approach assumes that

each complete projected dataset can be stored in the main memory of a single

task. Hence, this approach runs out of memory when large complete projected

datasets are generated.

Communication costs. In a parallel MapReduce algorithm, communication

costs are important, because the network can easily become the bottleneck if

large amounts of data are sent on it. The communication costs are mainly

related to the outputs of the mappers which are sent to the reducers on the

network. For the data split approach the data that is sent on the network is

linear with respect to the number of candidate itemsets, the number of mappers,

and the number of iterations. Diferently, for the search-space approach, the

amount of data emitted by the mappers is equal to the size of the projected

datasets.
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Load balancing. The diferent split of the problem in subproblems signiĄcantly

impacts on load balancing. For the data split approach, the execution time of

each mapper is linear with respect to the number of input transactions and

the execution time of each reducer is linear with respect to the number of

assigned itemsets. Hence, the data split approach can easily achieve a good load

balancing by assigning the same number of data chunks to each mapper and the

same number of candidate itemsets to each reducer. Diferently, the search-space

split approach is potentially unbalanced. In fact, each subproblem is associated

with a diferent subset of the lattice, related to a speciĄc projected dataset

and preĄx, and, depending on the data distribution, the complexity of the

subproblems can signiĄcantly vary. A smart assignment of a set of subproblems

to each node would mitigate the unbalance. However, the complexity of the

subproblems is hardly inferable during the initial assignment phase.

The two parallelization approaches are used to design eicient parallel

implementations of well-known centralized itemset mining algorithms. Specif-

ically, the data split approach is used to implement the parallel versions of

level-wise algorithms (like Apriori [64]), whereas the search-space split approach

is used to implement parallel versions of depth-Ąrst recursive approaches (like

FP-growth [52] and Eclat [53]).

3.4 Distributed itemset mining algorithms

This section describes the algorithms, and available implementations, represent-

ing the state-of-the-art solutions in the parallel frequent itemset mining context.

We considered the following algorithms: YAFIM [69], PFP [36], BigFIM [68],

and DistEclat [68]. The only algorithm which is lacking a publicly available

implementation is YAFIM. Among the considered algorithms, YAFIM belongs

to the ones based on the data split approach, while PFP and DistEclat are

based on the search-space split approach. Finally, BigFIM mixes the two

strategies, aiming at exploiting the pros of them. For PFP we selected two

popular implementations: Mahout PFP and MLlib PFP, which are based on

Hadoop and Spark, respectively. The description of the four selected algorithms

and their implementations are reported in the following subsections.
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3.4.1 YAFIM

YAFIM [69] is an Apriori distributed implementation developed in Spark.

The iterative nature of the algorithm has always represented a challenge for its

application in MapReduce-based Big Data frameworks. The reasons are the

overhead caused by the launch of new MapReduce jobs and the requirement

to read the input dataset from disk at each iteration. YAFIM exploits Spark

RDDs to cope with these issues. Precisely, it assumes that all the dataset can

be loaded into an RDD to speed up the counting operations. Hence, after the

Ąrst phase in which all the transactions are loaded in an RDD, the algorithm

starts the iterative Apriori algorithm organizing the candidates in a hash tree to

speed up the search. Being strongly Apriori-based, it inherits the breadth-Ąrst

strategy to explore and partition the search-space and the preference towards

sparse data distributions. YAFIM exploits the Spark Şbroadcast variables

abstractionŤ feature, which allows programmers to send subsets of shared data

to each slave only once, rather than with every job that uses those subset of

data. This implementation mitigates communication costs (reducing the inter

job communication), while load balancing is not addressed.

3.4.2 Parallel FP-growth (PFP)

Parallel FP-growth [36], called PFP, is a distributed implementation of FP-

growth that exploits the MapReduce paradigm to extract the k most frequent

closed itemsets. It is included in the Mahout machine learning Library (version

0.9) and it is developed on Apache Hadoop. PFP is based on the search-space

split parallelization strategy reported in Section 3.3. SpeciĄcally, the distributed

algorithm is based on building independent FP-trees (i.e., projected datasets)

that can be processed separately over diferent nodes.

The algorithm consists of 3 MapReduce jobs.

First job. It builds the F-list Table, which is used to select frequent items, in a

MapReduce ŞWord CountŤ manner.

Second job. In the second job, the mappers project with respect to group

of items (preĄxes) all the transactions of the input dataset to generate the

local projected contributions to the projected datasets. Then, the reducers

aggregate the projections associated with the items of the same group and build
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independent complete FP-trees from them. Each complete FP-tree is managed

by one reducer, which runs a local main memory FP-growth algorithm on it

and extracts the frequent itemsets associated with it.

Third job. Finally, the last MapReduce job selects the top k frequent closed

itemsets.

The independent complete FP-trees can have diferent characteristics and

this factor has a signiĄcant impact on the execution time of the mining tasks.

As discussed in Section 3.3, this factor signiĄcantly impacts on load balancing.

SpeciĄcally, when the independent complete FP-trees have diferent sizes and

characteristics, the tasks are unbalanced because they addresses subproblems

with diferent complexities. This problem could be potentially solved by

splitting complex trees in sub-trees, each one associated with an independent

subproblem of the initial one. However, deĄning a metric to split a tree in such

a way to obtain sub-mining problems that are equivalent in terms of execution

time is not easy. In fact, the execution time of the itemset mining process

on an FP-Tree is not only related to its size (number of nodes) but also to

other characteristics (e.g., number of branches and frequency of each node).

Depending on the dataset characteristics, the communication costs can be very

high, especially when the projected the datasets overlap signiĄcantly because in

that case the overlapping part of the data is sent multiple times on the network.

Spark PFP [35] represents a pure transposition of PFP to Spark. It is

included in MLlib, the Spark machine learning library. The algorithm imple-

mentation in Spark is very close to the Hadoop sibling. The main diference, in

terms of addressed problem, is that MLlib PFP mines all the frequent itemsets,

whereas Mahout PFP mines only the top k closed itemsets.

Both implementations, being strongly inspired by FP-growth, keep from

the underlying centralized algorithm the features related to the search-space

exploration (depth-Ąrst) and the ability to eiciently mine itemsets from dense

datasets.
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3.4.3 DistEclat and BigFIM

DistEclat [68] is a Hadoop-based frequent itemset mining algorithms inspired

by the Eclat algorithm, whereas BigFIM [68] is a mixed two-phase algorithm

that combines an Apriori-based approach with an Eclat-based one.

DistEclat is a frequent itemset miner developed on Apache Hadoop. It

exploits a parallel version of the Eclat algorithm to extract a superset of closed

itemsets

The algorithm mainly consists of two steps. The Ąrst step extracts k-sized

preĄxes (i.e., frequent itemsets of length k) with respect to which, in the

second step, the algorithm builds independent projected subtrees, each one

associated with an independent subproblem. Even in this case, the main idea

is to mine these independent trees in diferent nodes, exploiting the search split

parallelization approach discussed in Section 3.3.

The algorithm is organized in 3 MapReduce jobs.

First job. In the initial job, a MapReduce job transposes the dataset into a

vertical representation.

Second job. In this MapReduce job, each mapper extracts a subset of the

k-sized preĄxes (k-sized itemsets) by running Eclat on the frequent items, and

the related tidlists, assigned to it. The k-sized preĄxes and the associated

tidlists are then split in groups and assigned to the mappers of the last job.

Third job. Each mapper of the last MapReduce job runs the in main memory

version of Eclat on its set of independent preĄxes. The Ąnal set of frequent

itemsets is obtained by merging the outputs of the last job.

The mining of the frequent itemsets in two diferent steps (i.e., mining of

the itemsets of length k in the second job and mining of the other frequent

itemsets in the last job) aims at improving the load balancing of the algorithm.

SpeciĄcally, the split in two steps allows obtaining simpler sub-problems, which

are potentially characterized by similar execution times. Hence, the application

is overall well-balanced.

DistEclat is designed to be very fast but it assumes that all the tidlists

of the frequent items should be stored in main memory. In the worst case,

each mapper needs the complete dataset, in vertical format, to build all the

2-preĄxes [68]. This impacts negatively on the scalability of DistEclat with
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respect to the dataset size. The algorithm inherits from the centralized version

the depth-Ąrst strategy to explore the search-space and the preference for dense

datasets.

BigFIM is a Hadoop-based solution very similar to DistEclat. Analogously

to DistEclat, BigFIM is organized in two steps: (i) extraction of the frequent

itemsets of length less than or equal to the input parameter k and (ii) execution

of Eclat on the sub-problems obtained splitting the search-space with respect

to the k-itemsets. The diference lies in the Ąrst step, where BigFIM exploits

an Apriori-based algorithm to extract frequent k-itemsets, i.e., it adopts the

data split parallelization approach (Section 3.3). Even if BigFIM is slower than

DistEclat, BigFIM is designed to run on larger datasets. The reason is related

to the Ąrst step in which, exploiting an Apriori-based approach, the k-preĄxes

are extracted in a breadth-Ąrst fashion. Consequently, the nodes do not have

to keep large tidlists in main memory but only the set of candidate itemsets

to be counted. However, this is also the most critical issue in the application

of the data split parallelization approach, because, depending on the dataset

density, the set of candidate itemsets may not be stored in main memory.

Because of the two diferent techniques used by BigFIM in its two main

steps (data split and then search-space split), in the Ąrst step BigFIM achieves

the best performance with sparse datasets, while in the second phase it better

Ąts dense data distributions.

DistEclat and BigFIM are the only algorithms speciĄcally designed for

addressing load balancing and communication cost by means of the preĄx

length parameter k. In particular, the choice of the length of the preĄxes

generated during the Ąrst step afects both load balancing and communication

cost.
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Chapter 4

State of the art experimental

evaluation and open issues

After the theoretical analysis, in this chapter we introduce and comment an

exhaustive experimental comparisons between all the approaches introduced in

Chapter 3.

The extensive evaluation campaign is useful to assess the reliability of the

expectations related to the theoretical analysis. SpeciĄcally, we ran more than

300 experiments on 14 synthetic datasets and 2 real datasets to evaluate the

execution time, load balancing, and communication costs of four state-of-the-art

parallel itemset mining implementations.

The campaign allowed us to identify the strengths and weaknesses of the

algorithms with respect to the input dataset features (e.g., data distribution,

average transaction length, number of records), and speciĄc parameter settings.

Finally, we will comment and discuss the result, introducing open research

directions for the parallelization of the itemset mining problem.

The contents of this chapter have been presented in [47] and are organized as

follows. In Section 4.1 we benchmark the selected algorithms with a large set of

experiments on both real and synthetic datasets. Algorithm performances are

evaluated in terms of (i) eiciency (i.e., execution time and scalability) under

diferent conditions (Sections 4.1.2-4.1.8), (ii) load balancing (Subsection 4.1.9),

and (iii) communication costs (Subsection 4.1.10). Subsection 4.1.11 comments

the experimental results while Section 4.2 summarizes the concrete and practical
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lessons learned from our evaluation analysis. Finally, Section 4.3 discusses the

open issues raised by the experimental validation of the theoretical analysis,

highlighting some possible research directions to support a more efective and

eicient data mining process on Big Data collections.

4.1 Experimental Campaign

4.1.1 Experimental setup

The experimental evaluation includes the following four algorithms, which are

described in Section 3.4:

• the Parallel FP-Growth implementation provided in Mahout 0.9 (named

Mahout PFP in the following) [33],

• the Parallel FP-Growth implementation provided in MLlib for Spark 1.3.0

(named MLlib PFP in the following) [35],

• the June 2015 implementation of BigFIM [70],

• the version of DistEclat downloaded from [70] on September 2015.

We recall that Mahout PFP extracts the top k frequent closed itemsets,

BigFIM and DistEclat extract a superset of the frequent closed itemsets, while

MLlib PFP extracts all the frequent itemsets. To perform a fair comparison,

Mahout PFP is forced to output all the closed itemsets. Since the extraction

of the complete set of frequent itemsets is usually more resource-intensive than

dealing with only the set of frequent closed itemsets1, the execution times of

Mahout PFP, BigFIM and DistEclat may increase with respect to MLlib PFP.

However, in our experiments, the numbers of frequent itemsets and closed

itemsets are in the same order of magnitude. Therefore, the disadvantages

related to the more intensive task performed by MLlib are mitigated.

We deĄned a common set of default parameter values for all experiments.

SpeciĄc experiments with diferent settings are explicitly indicated. The default

setting of each algorithm was chosen by taking into account the physical

1We recall that the complete set of frequent itemsets can be obtained expanding and
combining the closed itemsets by means of a post-processing step.
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characteristics of the Hadoop cluster, to allow each approach to exploit the

hardware and software conĄguration at its best.

• For Mahout PFP, the default value of k is set to the lowest value forcing

Mahout PFP to mine all frequent closed itemsets.

• For MLlib PFP the number of partitions is set to 6,000. This value

has shown to be the best tradeof among performance and the capacity

to complete the task without memory issues. In particular, with lower

values of the number of partitions MLlib PFP cannot scale to very long

transactions or very low minsup. Higher values, instead, do not lead to

better scalability, while afecting performance.

• The default value of the preĄx length parameter of both BigFIM and

DistEclat is set to 2, which achieves a good tradeof among eiciency and

scalability of the two approaches.

• We did not deĄne a default value of minsup, which is a common parameter

of all algorithms, because it is highly related to the data distribution and

the use case, so this parameter value is speciĄcally discussed in each set

of experiments.

We considered both synthetic and real datasets. The synthetic ones have

been generated by means of the IBM dataset generator [71], commonly used

for performance benchmarking in the itemset mining context. We tuned the

following parameters of the IBM dataset generator to analyze the impact

of diferent data distributions on the performance of the mining algorithms:

T = average size of transactions, P = average length of maximal patterns,

I = number of diferent items, C = correlation grade among patterns, and

D = number of transactions. The full list of synthetic datasets is reported in

Table 4.1, where the name of each dataset consists of pairs <parameter,value>.

Finally, two real datasets have been used to simulate real-life use cases. They

are described in Section 4.1.8.

All the experiments, except the speedup analysis, were performed on a cluster

of 5 nodes running the Cloudera Distribution of Apache Hadoop (CDH5.3.1) [72].

Each cluster node is a 2.67 GHz six-core Intel(R) Xeon(R) X5650 machine with

32 Gigabytes of main memory and SATA 7200-rpm hard disks. The dimension
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Table 4.1 Synthetic datasets

ID Name/IBM Generator Num. of Avg. Size
parameter setting different # items per (GB)

items transaction

1 T10-P5-I100k-C0.25-D10M 18001 10.2 0.5
2 T20-P5-I100k-C0.25-D10M 18011 19.9 1.2
3 T30-P5-I100k-C0.25-D10M 18011 29.9 1.8
4 T40-P5-I100k-C0.25-D10M 18010 39.9 2.4
5 T50-P5-I100k-C0.25-D10M 18014 49.9 3.0
6 T60-P5-I100k-C0.25-D10M 18010 59.9 3.5
7 T70-P5-I100k-C0.25-D10M 18016 69.9 4.1
8 T80-P5-I100k-C0.25-D10M 18012 79.9 4.7
9 T90-P5-I100k-C0.25-D10M 18014 89.9 5.3
10 T100-P5-I100k-C0.25-D10M 18015 99.9 5.9
11 T10-P5-I100k-C0.25-D50M 18015 10.2 3.0
12 T10-P5-I100k-C0.25-D100M 18016 10.2 6.0
13 T10-P5-I100k-C0.25-D500M 18017 10.2 30.4
14 T10-P5-I100k-C0.25-D1000M 18017 10.2 60.9

of Yarn containers is set to 6 GB. This value leads to a full exploitation

of the resources of our hardware, representing a good tradeof between the

amount of memory assigned to each task and the level of parallelism. Lower

values would have increased the level of parallelism at the expense of the task

completion, whereas higher values would have afected the parallelism, with

very few distributed tasks.

For the speedup experiments we used a larger cluster of 30 nodes2 with

2.5 TB of total RAM and 324 processing cores provided by Intel CPUs E5-

2620 at 2.6GHz, running the same Cloudera Distribution of Apache Hadoop

(CDH5.3.1) [72].

From a practical point of view, all the implementations revealed to be

quite easy to deploy and use. Actually, the only requirement for all the

implementations to be run was the Hadoop/Spark installation (from a single

machine scenario to a large cluster). Only the MLlib PFP implementation

requires few additional steps and some coding skills, since it is delivered as a

library: users must develop their own class and compile it.
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Fig. 4.1 Execution time for different minsup values (Dataset #1), average transaction
length 10.

4.1.2 Impact of the minsup support threshold

The minimum support threshold (minsup) has a high impact on the complexity

of the itemset mining task.

To avoid the bias due to a speciĄc single data distribution, two diferent

datasets have been considered: Dataset #1 and Dataset #3 (Table 4.1). They

share the same average maximal pattern length (5), the number of diferent

items (100 thousands), the correlation grade among patterns (0.25), and the

number of transactions (10 million). The diference is in the average transaction

length: 10 items for Dataset #1 and 30 items for Dataset #3. Being the other

characteristics constant, longer transactions lead to a higher dataset density,

which results into a larger number of frequent itemsets.

Figure 4.1 reports the execution time of the algorithms when varying the

minsup threshold from 0.002% to 0.4% and considering Dataset #1. DistEclat

is the fastest algorithm for all the considered minsup values. However, the

improvement with respect to the other algorithms depends on the value of

2http://bigdata.polito.it
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Fig. 4.2 Execution time for different minsup values (Dataset #3), average transaction
length 30.

minsup. When minsup is greater than or equal to 0.2%, all the implementations

show similar performances. The performance gap largely increases with minsup

values lower than 0.05%. BigFIM is as fast as DistEclat when minsup is higher

than 0.1%, but below this threshold BigFIM runs out of memory during the

extraction of 2-itemsets.

In the second set of experiments, we analyzed the execution time of the

algorithms for diferent minimum support values on Dataset #3, which is

characterized by a higher average transaction length (3 times longer than

Dataset #1), and a larger data size on disk (4 times bigger), with the same

number of transactions (10 million). Since the mining task is more computa-

tionally intensive, minsup values lower than 0.01% were not considered in this

set of experiments, as this has proven to be a limit for most algorithms due

to memory exhaustion or too long experimental duration (days). Results are

reported in Figure 4.2. MLlib PFP is much slower than Mahout PFP for most

minsup values (0.7% and below), and BigFIM, as in the previous experiment,

achieves top-level performance, but cannot scale to low minsup values (the

lowest is 0.3%), due to memory constraints during the k-itemset generation

phase. Finally, DistEclat was not able to run because the size of the initial
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Fig. 4.3 Execution time with different average transaction lengths (Datasets #1–10,
minsup 1%).

tidlists was already too big.

Overall, as expected, DistEclat is the fastest approach when it does not run

out of memory. Mahout PFP is the most reliable implementation across almost

all minsup values, even if it is not always the fastest, sometimes with large

gaps behind the top performers. MLlib is a reasonable tradeof choice, as it is

constantly able to complete all the tasks in a reasonable time. Finally, BigFIM

does not present advantages over the other approaches, being unable to reach

low minsup values and to provide fast executions.

4.1.3 Impact of the average transaction length

We analyzed the efect of diferent average transaction lengths, from 10 to 100

items per transaction. We Ąxed the number of transactions to 10 million. To

this aim, Datasets #1Ű10 were used (see Table 4.1). Longer transactions often

lead to more dense datasets and a larger number of long frequent itemsets. This

generally corresponds to more computationally intensive tasks. The execution

times obtained are reported in Figure 4.3 and Figure 4.4, with a respective
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Fig. 4.4 Execution time with different average transaction lengths (Datasets #1–10,
minsup 0.1%).

minsup value of 1% and 0.1%. In the experiment of Figure 4.3, BigFIM and

DistEclat execution times for transaction length of 10 and 20 are not reported

because, for these conĄgurations, no 3-itemsets are extracted and hence the two

algorithms crashed3. For higher transaction lengths, DistEclat is not included

since it runs out of memory for values beyond 20 items per transaction. The

other algorithms have similar execution times for short transactions, up to 30

items. For longer transactions, a clear trend is shown: (i) MLlib PFP is much

slower than the others and it is not able to scale for longer transactions, as

its execution times abruptly increase until it runs out of memory; (ii) Mahout

PFP and BigFIM have a similar trend until 70 items per transactions, when

Mahout PFP becomes slower than BigFIM.

The experiments of Figure 4.4, shows a very similar trend, with exception that

also BigFIM is not able to run.

Overall, despite the Apriori-based initial phase, BigFIM proved to be the best

scaling approach for very long transactions and a relatively high minsup. When

the minsup is decreased only Mahout PFP is able to cope with the complexity

3Due to the absence of a specific test, BigFIM and DistEclat crash if no itemsets longer
than the value of the prefix length parameter are mined.
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Fig. 4.5 Execution time with different numbers of transactions (Datasets #1, #11–14,
minsup 0.4%).

of the task.

4.1.4 Impact of the number of transactions

We evaluated the efect of varying the number of transactions, i.e., the dataset

size, without changing intrinsic data characteristics (e.g., transaction length

or data distribution). The experiments have been performed on Datasets #1,

#11Ű14 have been used (see Table 4.1), which have a number of transactions

ranging from 10 million to 1 billion. The minsup is set to 0.4%, which is the

highest value for which the mining leverages both phases of BigFIM, and it

corresponds to the highest value used in the experiments of Section 4.1.2. Since

in the experiment the relative minsup threshold is Ąxed, from the mining point

of view, the search-space exploration is similar and not particularly challenging,

as shown in Section 4.1.2. What really afects this experiment is the algorithms

reliability dealing with such amounts of data.

As shown in Figure 4.5, all the considered algorithms scale almost linearly

with respect to the dataset cardinality, with BigFIM being the slowest, closely
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Fig. 4.6 Speedup with different parallelization degrees (Dataset #14, minsup 0.4%)

followed by Mahout PFP, and with MLlib PFP being by far the fastest ap-

proach, with execution times reduced by almost an order of magnitude. PFP

implementations are faster than BigFIM because they read from the disk the

input dataset only twice. BigFIM pays the iterative disk reading activities

during its initial Apriori phase when the number of records of the input dataset

increases. Finally, DistEclat fails under its assumption that the tidlists of the

entire dataset should be stored in each node, and it is not able to complete the

extraction beyond 10 million transactions.

4.1.5 Scalability in terms of parallelization degree

We analyzed the speedup by running the same mining problem with increasing

numbers of parallel tasks. The dataset selection and the minsup parameter

choice are diicult since we need to identify a mining problem satisfying two

conditions: (i) allowing all the executions to complete with any number of

parallel tasks, and, at the same time, (ii) being very demanding so that the

distributed framework is actually exploited. We selected minsup 0.4% and
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Dataset #14 (see Table 4.1) to be light enough for condition (i) and demanding

enough for condition (ii).

Figure 4.6 shows the speedup results. A parallelization degree equal to 1 cor-

responds to the minimal computational resource setting, i.e., the conĄguration

with only two parallel independent tasks. Its execution time is the reference

with respect to which the speedup is computed. SpeciĄcally, the speedup of a

conĄguration with a parallelization degree equal to p is computed as

speedup(paral_degree = p) =
Exec_Time(paral_degree = 1)

Exec_Time(paral_degree = p)

Ideally, the speedup should be equal to the parallelization degree p itself,

i.e., increasing the number of resources (parallel tasks) of a factor p, should

lead to a speedup equal to p.

In this experiment, it is clear that the FP-Growth-based implementations

provide a better speedup. BigFIM, on the contrary, is not able to leverage

a number of parallel tasks higher than 6. Because of the size of the dataset,

DistEclat is not able to perform the mining.

4.1.6 Impact of framework and hardware configurations

We performed a set of experiments to test the behavior of the algorithms with

diferent framework and hardware conĄgurations to identify possible bottlenecks.

We selected a set of conĄgurations characterized by diferent combinations of

(i) parallelization degree, (ii) computational power (cores per task) and (iii)

memory (memory per task). The selected conĄgurations are reported in Table

4.2. Conf. 1 is considered the reference conĄguration. The diferences of the

other conĄgurations with respect to Conf. 1 are reported in bold in Table 4.2.

Conf. 1, Conf. 2, and Conf. 3 are used to evaluate the impact of the

computational power (in terms of number of cores per task), Conf. 1 and

Conf. 4 are used to evaluate the impact of the available memory, while Conf. 1,

Conf. 5, and Conf. 6 are used to compare the impact of the previous features

with respect to the parallelization degree. Experiments have been performed

on dataset #1, with a Ąxed minsup set to 0.2%, and on dataset #5, with a
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minsup value set to 1.5%.4 The main diference between the two datasets is

the average transaction length (10 attributes per transaction in Dataset #1, 50

attributes per transaction in Dataset #5). In this way, it is possible to evaluate

if the impact of hardware conĄguration is afected by data distribution. For

DistEclat, in the experiments with Dataset #1, we were forced to reduce the

dataset size to 1/10. In this way we were able to complete its experiments

in all conĄgurations (please note that the intra-algorithm comparison is still

possible in percentage). As evidenced in Section 4.1.3, DistEclat does not suit

large transactions length and, for this reason, we were not able to run any

experiment with Dataset #5.

Table 4.2 Framework and Hardware configurations

Configuration Parallelization Number Memory
name Degree of cores per task

per task (GB)

Conf. 1 5 1 1.5
Conf. 2 5 2 1.5
Conf. 3 5 3 1.5
Conf. 4 5 1 3
Conf. 5 2 1 1.5
Conf. 6 10 1 1.5

Figure 4.7 and 4.8 present the normalized execution time for each algorithm

over diferent conĄgurations on Dataset #1. For each algorithm, the normalized

execution time is computed by dividing the execution time of each conĄguration

by the execution time of the slowest conĄguration. Hence, for each algorithm,

100% is associated with the slowest conĄguration.

The comparison of Conf. 1, 2, and 3 shows that the number of cores per

task does not impact on the execution time of the algorithms. Only in the

second experiment (Figure 4.8), MLlib PFP seems to take advantage of the

superior computational power. This means that the work assigned to each

task, in the majority of the cases, can be performed by one single core. Hence,

increasing the number of cores per task is not much efective.

Similarly, the main memory assigned to each task does not impact on the

execution time of the algorithms (see Conf. 1 and 4). SpeciĄcally, the main

memory per task impacts only on the size of the sub-problem that can be

4This support value is higher than that used in Section 4.1.3 to allow the execution of the
experiments also for the BigFIM algorithm with all the selected hardware configurations.
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Fig. 4.7 Performances with different hardware configurations (Dataset #1, minsup

0.2%)

Fig. 4.8 Performances with different hardware configurations (Dataset #5, minsup

1.5%
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managed by each task, but not on its execution time. Hence, a proper setting

of the main memory per task is required to be able to complete the execution

and obtain the results, but not for its eiciency and performance. Finally,

ConĄgurations 1, 5, and 6 conĄrm that the parallelization degree is the most

important factor afecting the execution time of the considered algorithms, as

deeply investigated in Section 4.1.5, especially in the cases with a large amount

of attributes per transactions Figure 4.8.

4.1.7 Execution time breakdown into phases

To investigate possible bottlenecks inside multi-phase algorithms, we compared

the execution times related to each phase. SpeciĄcally, for each algorithm, we

computed the percentage of time associated with the execution of each phase

with respect to the total execution time of the algorithm.

We selected Dataset #1 and we set minsup to 0.15%, which allowed us to

complete the full set of experiments with all algorithms.5

As reported in Figure 4.9, for BigFIM the length of the preĄxes extracted

in the Ąrst phase strongly afects the weight of that phase in the overall process.

For DistEclat (Figure 4.10), instead, the diference is not that heavy.

The last phase of both algorithms (i.e. the top dotted part on the graphs),

that is associated with the mining of the itemsets with a length greater than

the preĄx-length threshold, has a lower impact on the execution time of the

algorithms, especially when a higher preĄx threshold is set. These data, and the

failures reported in the experiments of the previous subsections, indicate that

the Ąrst two phases are the main bottlenecks for both algorithms. For BigFIM,

each phase is strongly exposed to memory issues, as resumed in Table 4.3. The

experiments demonstrate that the Apriori phase is particularly challenging. For

DistEclat, instead, the very Ąrst stage is dedicated to the mining of 1-itemsets

and it is mostly afected by high reading and communication costs. However,

we have experienced some memory issues, which are probably related to the

5In this set of experiments, we used a smaller configuration of our cluster to guarantee
network isolation. For this reason, we had to use a reduced version of Dataset #1 (1/10) for
DistEclat, very sensitive to memory issues.
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Fig. 4.9 BigFIM: Execution time of its phases

Fig. 4.10 DistEclat: Execution time of its phases

handling of the tidlists. The other stages, instead, are more likely to be afected

by memory constraints.
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Fig. 4.11 Mahout and MLlib PFP algorithms: Execution time of their phases

Figure 4.11 reports the results for the PFP implementations. Mahout PFP

spends 1/3 of the time in the Ąrst phase, in which the F-list is generated,

while MLlib PFP is on the second phase for almost 90% of the time.6 The

diference between the two approaches is motivated by the less elastic handling

of the diferent jobs by Hadoop with respect to the Spark framework. Even

if, especially for the Mahout PFP, the F-list generation could take a good

amount of time, it is not a possible bottleneck of the whole mining. Firstly,

it is a very Ćat WordCount-like application, characterized by high reading

and communication costs, and secondly, it has never shown to be a point of

failure in any previous experiment. From Figure 4.11, the bottleneck for the

FP-growth-based algorithms is the itemset extraction phase (i.e., the second

phase of both MLlib PFP and Mahout PFP), strongly constrained by memory.

All the algorithms and the majority of their phases are strongly bottlenecked

by memory issues. Memory availability is the main factor afecting the ability

of each algorithm to complete the itemset extraction. Interestingly, we have

seen that it does not afect the execution time performances (Subsection 4.1.6).

6Please note that we have forced the materialization of all the preliminary results with
the Spark-based MLlib PFP.
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Table 4.3 Stage Bottlenecks

Algorithm Phases Bottleneck
FP-growth-based
Algorithms

F-List Reading and Communication Cost
FP-Tree Mining Memory

BigFIM
Apriori Phases Memory
K+1 PreĄxes Memory
Eclat Mining Memory

DistEclat
Singletons Read. and Comm. Cost + Memory
PreĄxes Memory
Eclat Mining Memory

We have also tried to track and measure the resource utilization in terms

of disk usage (read and write phases of HDFS), network communication, and

CPU usage. Please note that the values are normalized with respect to the

maximum resource utilization. SpeciĄcally, Figures 4.12a and 4.12b report the

achieved results for BigFIM and DistEclat, while Figures 4.13a and 4.13b show

the results for the PFP-based implementations.

Figures 4.12a and 4.12b highlight two main peaks in resources utilization

for BigFIM and DistEclat.7 For BigFIM the Ąrst peak is related to the Apriori

phase and the k+1-preĄxes generation, while the second is related to the depth-

Ąrst mining. Similarly, for DistEclat the Ąrst peak is related to the singleton

and preĄxes generation while the second to the depth-Ąrst mining.

In Figure 4.13a it is shown the behavior in terms of resource utilization of

Mahout PFP. The Ąrst peak in terms of HDFS and Network communication is

related to the initial F-list generation. After that, the tree exploration starts

and the CPU is more exploited. The last peaks are related to the aggregation

job used to extract the top-k frequent closed itemsets. Figure 4.13b shows

instead the MLlib PFP resource usage. Also the MLlib implementation of PFP

is characterized by an initial peak in terms of HDFS operations followed by a

peak in terms of CPU usage, associated with the intensive mining phase.

7For the sake of clarity we have used a prefix length of 1 to enhance the effect of the last
mining phase.
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(a) BigFIM: Resource utilization (b) DistEclat: Resource utilization

Fig. 4.12 Resource utilization of BigFIM and DistEclat

(a) Mahout PFP: Resource utilization (b) MLlib PFP: Resource utilization

Fig. 4.13 Resource utilization of the PFP approaches

4.1.8 Real use cases

In the following, we analyze the performance of the mining algorithms in two

real-life scenarios: (i) URL tagging of the Delicious dataset and (ii) network

traic Ćow analysis. The characteristics of the two datasets are reported in

Table 4.4.

Table 4.4 Real-life use-cases dataset characteristics

ID Name Num. of Avg. # items Size
different items per transaction (GB)

15 Delicious 57,372,977 4 44.5
16 Netlogs 160,941,600 15 0.61
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URL tagging

We evaluated the selected algorithms on the Delicious dataset [73], which is

a collection of web tags. Each record represents the tag assigned by a user

to a URL and it consists of 4 attributes: date, user id (anonymized), tagged

URL, and tag value. The transactional representation of the Delicious dataset

includes one transaction for each record, where each transaction is a set of four

pairs (attribute, value), i.e., one pair for each attribute. The dataset stores

more than 3 years of web tags. It is very sparse because of the huge number of

diferent URLs and tags. Additional characteristics of the dataset are reported

in Table 4.5.

This experiment simulates the environment of a service provider that peri-

odically analyzes the web tag data to extract frequent patterns: they represent

the most frequent correlations among tags, URLs, users, and dates. Many

diferent use cases can Ąt this description: tag prediction, topic classiĄcation,

trend evolution, etc. Their evolution over time is also interesting. To this aim,

the frequent itemset extraction has been executed cumulatively on temporally

adjacent subsets of data, whose length is a quarter of year (i.e., Ąrst quarter,

then Ąrst and second quarter, then Ąrst, second, and third quarter, and so

on, as if the data were being collected quarterly and analyzed as a whole at

the end of each quarter). The setting of minsup in a realistic use-case proved

to be a critical choice. Too low values lead to millions of itemsets, which

become useless as they exceed the human capacity to understand the results.

However, too high minsup values would discard longer itemsets, which are

more meaningful as they better highlight more complex correlations among the

diferent attributes and values. Because of the high sparsity of the dataset, we

identiĄed the setting minsup=0.01% as the best trade-of.

Table 4.5 reports the cumulative number of transactions for the diferent

periods of time (i.e., the cardinality of the input dataset) and the number of

frequent itemsets extracted with a Ąxed minsup of 0.01%, while the execution

times of the diferent algorithms are shown in Figure 4.14.

MLlib PFP consistently proves to be the fastest approach, with DistEclat

following. However, while DistEclat is slightly faster than MLlib PFP only with

the Ąrst, smallest dataset (up to Dec 2003, with 150 thousands transactions),
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Table 4.5 Delicious dataset: cumulative number of transactions and frequent itemsets
with minsup 0.01%.

Up to year, Number of Number of
month, quarter transactions frequent itemsets

2003 Dec, Q4 153,375 7197
2004 Mar, Q1 489,556 6013
2004 Jun, Q2 977,515 5268
2004 Sep, Q3 2,021,261 5084
2004 Dec, Q4 4,349,209 4714
2005 Mar, Q1 9,110,195 4099
2005 Jun, Q2 15,388,516 3766
2005 Sep, Q3 24,974,689 3402
2005 Dec, Q4 41,949,956 3090

Fig. 4.14 Execution time for different periods of time on the Delicious dataset
(minsup=0.01%)

when the dataset size increases, DistEclat execution time does not scale. Dis-

tEclat eventually fails for the Ąnal 40-million-transaction dataset of Dec 2005,

due to memory exhaustion. BigFIM and Mahout PFP consistently provide 2 to

3 times higher execution times. Apart from DistEclat, all algorithms complete

the task with similar performance despite increasing the dataset cardinality

from 150 thousand transactions to 41 million, thanks to the constant relative

minsup threshold which reduces the number of frequent itemsets for decreasing
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Fig. 4.15 Number of flows for each hour of the day.

density of the dataset. Hence, MLlib PFP is the best choice for this dataset

characterized by short transactions (the transaction length is 4).

Network traffic flows

This use case entails the analysis of a network environment by using a network

traic log dataset, where each transaction represents a TCP Ćow. A network

Ćow is a bidirectional communication between a client and a server. The

dataset has been gathered through Tstat [74, 75], a popular internet traic

snifer broadly used in literature [76, 77], by performing a one day capture in

three diferent vantage points of a nation-wide Internet Service Provider in

Italy. Each transaction of the dataset is associated with a Ćow and consists

of pairs (flow feature,value). These features can be categorical (e.g., TCP

Port, Window Scale) or numerical (e.g., RTT, Number of packets, Number of

bytes). Numerical attributes have been discretized by using the same approach

adopted in [77]. Finally, we have divided the set of Ćows (i.e., the set of

transactions) in 1-hour slots, generating 24 sub-datasets. The number of Ćows

in each sub-dataset is reported in Figure 4.15.
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Fig. 4.16 Execution time of different hours of the day. (dataset 31, minsup=1%)

Table 4.6 Network traffic flows: number of transactions and frequent itemsets with
minsup 0.1%.

Hour of Number of Number of
the day transactions frequent itemsets

0.00 437,417 166,217
1.00 318,289 173,960
2.00 205,930 163,266
3.00 162,593 166,344
4.00 122,102 157,069
5.00 123,683 164,493
6.00 121,346 170,129
7.00 127,056 159,921
8.00 211,641 169,751
9.00 357,838 187,912
10.00 644,408 191,867
11.00 656,965 183,021
12.00 648,206 184,279
13.00 630,434 180,384
14.00 544,572 175,252
15.00 729,518 192,992
16.00 735,850 189,160
17.00 611,582 177,808
18.00 719,537 179,228
19.00 607,043 174,783
20.00 477,760 161,153
21.00 470,291 159,065
22.00 534,103 144,212
23.00 531,276 164,516
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Fig. 4.17 Normalized execution time of the most unbalanced tasks.

In this use case, the network administrator is interested in performing

hourly analysis to shape the hourly network traic. Hence, we evaluated the

performance of the four algorithms, comparing their execution time, on the 24

hourly sub-datasets. For all the 24 experiments minsup was set to 1%, which

was the tradeof value allowing all the algorithms to complete the extraction.

The results are reported in Figure 4.16, where the performance of the

diferent approaches show a clear trend: DistEclat always achieves the lowest

execution time, followed by MLlib PFP and BigFIM. Mahout PFP is the

slowest. The execution time is almost independent of the dataset cardinality,

as it slightly changes throughout the day. The low dataset size (less than

1 Gigabyte overall) and cardinality (less than 1 million transactions) make this

the ideal use case for DistEclat, which strongly exploits in-memory computation.

4.1.9 Load balancing

We analyzed load balancing on a 1-hour-long subset of the network log dataset

(Table 4.4) with a Ąxed minsup of 1%. We consider the most unbalanced

jobs of each algorithm and compare the execution times of the fastest and the
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slowest tasks. To this aim, we are not interested in the absolute execution time,

but rather in the normalized execution times, where the slowest task is assigned

a value of 100, and the fastest task is compared to such value, as reported in

Figure 4.17.

MLlib PFP achieves the best load balancing, with comparable execution

times for all tasks throughout all nodes, whose diference is in the order of 10%.

Mahout PFP, instead, shows the worst load balancing issues, with diferences

as high as 90%. The diference between MLlib PFP and Mahout PFP can be

correlated to the granularity of the subproblems. The smaller the subproblems,

the better the load balancing because their execution times are more similar.

MLlib PFP allows specifying the number of partitions, i.e., of subproblems,

which obviously impacts on the granularity of each subproblem. Hence, setting

opportunely this parameter, a good load balancing result is achieved. Diferently,

Mahout PFP automatically sets the number of subproblems and the current

heuristic used to set it does not seem to work well on the considered datasets

(unbalanced subproblems are generated).

We included BigFIM and DistEclat with 2 diferent Ąrst-phase preĄx sizes.

For these algorithms, the experiment conĄrms that a conĄguration with longer

preĄxes leads to a more balanced mining tasks than a conĄguration with

short-sized preĄxes, as mentioned in Subsection 3.4.3.

4.1.10 Communication costs

To evaluate the communication cost, we measure the amount of data transmitted

and received through the nodes network interfaces. This information has been

retrieved by means of the utilities provided by the Cloudera Manager tool.

The experiments have been performed on Dataset #1 with a Ąxed minsup

value of 0.1%, which was the lowest value for which all algorithms completed

the extraction. Figure 4.18 reports, for each algorithm, the average value among

transmitted and received traic, compared to the total execution time. Firstly,

the two measures do not seem to be correlated: higher communication costs are

associated with low execution times for BigFIM and DistEclat, whereas MLlib

reports both measures with high values. Mahout PFP has a communication

cost 4 to 5 times lower than all the others, which exchange an average of
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Fig. 4.18 Communication costs and performance for each algorithm, Datasets #1,
minsup 0.1%. The graph reports an average between transmitted and received data.

2 Gigabytes of data. Mahout PFP average communication cost is around

0.5 Gigabytes, which is approximately the dataset size. The diference between

DistEclat and BigFIM is not large because with only 2-length preĄxes just

an extra iteration is done by BigFIM. Even though Mahout PFP is the most

communication-cost optimized implementation, the very low amount of data

sent through the network is related to the adoption of compression techniques,

which lead to higher execution times.

4.1.11 Discussion

The experiments conĄrm that the performance of the data-split-based algo-

rithms (i.e., BigFIM in its Ąrst phase) is highly afected by the number of

candidate itemsets, which must be stored in the temporary main memory of

each task. SpeciĄcally, BigFIM crashes during its Apriori-based phase when

low minsup values or dense datasets are considered, due to the large number of

generated candidate itemsets. This issue does not afect the approaches based

on the search split strategy (Mahout PFP and MLlib PFP), since they do not
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need to store candidate itemsets as an intermediate result. Hence, Mahout

PFP and MLlib PFP proved to be more suitable than BigFIM to process large

dataset sizes, high-density datasets, and low minsup thresholds. DistEclat

deserves a separate consideration: even if it is based on the search-space ap-

proach, it often runs out of memory, because in its initial job it needs to store

the tidlists of all frequent items in main memory and this operation becomes

easily unfeasible when large or dense datasets are considered.

Experiments also highlight the predominant importance of load balancing in

the itemset mining problem, in particular when comparing BigFIM to Mahout

PFP. Since the initial mining phase of BigFIM is based on the data split par-

allelization approach, it reads many times the input dataset (diferently than

Mahout PFP). Moreover, BigFIM is also characterized by greater communica-

tion costs than Mahout PFP. These two factors should impact signiĄcantly on

the execution time of BigFIM. Instead, not only the execution time of BigFIM

is comparable with that of Mahout PFP with 1000-million record datasets

(Figure 4.5), but BigFIM is also even faster than Mahout PFP in speciĄc cases,

e.g., with datasets with an average number of items per transaction greater

than 70 (Figure 4.3). The rationale of such results is the better load balancing

of BigFIM with respect to Mahout PFP. Results highlight that load balancing

seems to be predominant on the number of dataset reads (I/O costs) and

communication costs in the parallelization of the itemset mining problem.

4.2 Lessons Learned

The reported experiments provide a wide view of the diferent behaviors of

the algorithms in various experimental settings. With this section, we aim at

supporting the reader in a conscious choice of the most suitable approach, de-

pending on the use case at hand. Pursuing this target, we measured the real-life

performance of the openly-available frequent-pattern mining implementations

for the most popular distributed platforms (i.e., Hadoop and Spark). They

have been tested on many diferent datasets characterized by diferent values

of minimum support (minsup), transaction length (dimensionality), number of

transactions (cardinality), and dataset density, besides two real-life use cases.

Performance in terms of execution time, load balancing, and communication
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cost have been evaluated: a one-table summary of the results is reported

in Table 4.7. As a result of the described experience, the following general

suggestions emerge:

• High reliability. Without prior knowledge of dataset density, dimen-

sionality (average transaction length), and cardinality (number of trans-

actions), Mahout PFP is the algorithm that best guarantees the mining

task completion, at the expense of longer execution times. Mahout PFP

is the only algorithm able to always reach the experimental limits.

• High cardinality and low-dimensional data. On most real-world

use cases, with limited dimensionality (up to 60 items per transaction

on average), MLlib PFP has proven to be the most reasonable tradeof

choice, with fast execution times and optimal scalability to very large

datasets.

• High-dimensional data. For high-dimensional datasets, BigFIM re-

sulted the fastest approach, but it cannot cope with minsup values as low

as the others. In those cases, Mahout PFP represents the only option.

• Limited dataset size. When the dataset size is small with respect to

the available memory, DistEclat has proven to be among the fastest

approaches, and also to be able to reach the lowest experimental minsup

values. DistEclat experiments showed that it cannot scale for large or high-

dimensional datasets, but when it can complete the itemset extraction, it

is very fast.

Table 4.7 Summary of the limits identified by the experimental evaluation of the
algorithms (lowest minsup, maximum transaction length, largest dataset cardinality).
The faster algorithm for each experiment is marked in bold.

Section 4.1.2 Section 4.1.2 Section 4.1.3 Section 4.1.4
minsup minsup transaction millions of

length transactions
Mahout PFP 0.002% 0.01% 100 (0.1%) 100
MLlib PFP 0.002% 0.01% 60 100

BigFIM 0.1% 0.3% 100 (1%) 100
DistEclat 0.002% - - 1
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4.3 Open research issues

The comparative study presented in this review highlighted interesting research

directions to enhance distributed itemset mining algorithms for Big Data.

Smarter load balancing techniques. The experimental evaluation al-

lowed us to show that load balancing issues signiĄcantly afect distributed

itemset mining performance, more than communication and I/O costs (e.g.,

reading the dataset many times). SpeciĄcally, the diferent complexity among

the task-level sub-problems leads to load unbalance in the cluster (i.e., some

sub-problems are more computationally expensive and time consuming than

others causing ineicient resource usage). Load balancing improvements should

be addressed in the design of new distributed frequent itemset mining algo-

rithms. In that context, we believe that a new research direction to investigate

is the deĄnition of variable-length preĄxes, with respect to which the mining

sub-problems are deĄned, hence leading to a more balanced exploration of the

search-space.

Self-tuning itemset mining frameworks. As discussed in this analy-

sis, diferent algorithms have been proposed in literature to discover frequent

itemsets. However, the eicient exploitation of each algorithm strongly de-

pends on speciĄc skills and expertise. The analyst is required to select the

best method to eiciently deal with the underlying data characteristics, and

manually conĄgure it (e.g., from input parameters settings, such as the minsup

threshold, the k parameter of BigFIM, etc., to distributed frameworks tuning).

Thus, state-of-the-art algorithms may become inefective because of the inei-

cient hand-picked choices of the inappropriate speciĄc implementations, and

cumbersome parameter-conĄguration sessions. The improvements in algorithm

usability should be addressed by designing innovative self-tuning itemset min-

ing frameworks, capable of intelligently selecting the most appropriate itemset

extraction algorithm and automatically conĄguring it.

High-dimensional datasets. The performance analysis included a mining

experiments on datasets with up to 100 dimensions. Even if Mahout PFP

has outperformed the competitors, its performances are still very weak for low

minimum support values. On the other hand, 100-features dataset certainly
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do not represent a state-of-the-art high dimensional problem, which can be

instead characterized by thousands of million of dimensions.

The state of the art review highlighted the concrete lack of a real scalable

implementation which focus on the number of items per transaction. In

Chapter 5, it will be introduced a High-Dimensional Map-Reduce-based frequent

pattern miner developed to Ąll this gap.

4.4 Relevant publications

D. Apiletti, E. Baralis, T Cerquitelli, P. Garza, F. Pulvirenti and L. Ven-

turini,ŞFrequent Itemsets Mining for Big Data: a comparative analysis,Ť Else-

vier Big Data Research - 2017, 9: 67-83.



Chapter 5

Frequent Itemset Mining for

High-Dimensional data

Existing mining algorithms revealed to be very eicient on simple datasets but

very resource intensive in Big Data contexts. In general, the application of

data mining techniques to Big Data collections is characterized by the need of

huge amount of resources. For this reason, we are witnessing the explosion of

parallel and distributed approaches, typically based on distributed frameworks,

such as Apache Hadoop [5] and Spark [6].

As clearly shown in Chapter 4, unfortunately, most of the scalable dis-

tributed techniques for frequent itemset mining have been designed to cope

with datasets characterized by few items per transaction (low dimensional-

ity, short transactions). Their design, on the contrary, focuses on very large

datasets in terms of number of transactions. Currently, only single-machine

implementations exist to address very long transactions, such as Carpenter [25],

and no distributed implementations at all.

Nevertheless, many scientiĄc applications, such as bioinformatics or networking,

generate a large number of events characterized by a variety of features. Thus,

high-dimensional datasets have been continuously generated. For instance, most

gene expression datasets are characterized by a huge number of items (related

to tens of thousands of genes) and a few records (one transaction per patient or

tissue). Many applications in computer vision deal with high-dimensional data,

such as face recognition. An increasing portion of big data is actually related



5.1 High-Dimensional Frequent itemset mining background 61

to geospatial data [78] and smart-cities. Some studies have built this type of

large datasets measuring the occupancy of diferent car lanes: each transaction

describes the occupancy rate in a captor location and in a given timestamp [79].

In the networking domain, instead, the heterogeneous environment provides

many diferent datasets characterized by high-dimensional data, such as URL

reputation, advertising, and social network datasets [80]. To efectively deal

with those high-dimensional datasets, novel and distributed approaches are

needed.

This work introduces PaMPa-HD [7], [8], a parallel MapReduce-based

frequent closed itemset mining algorithm for high-dimensional datasets. PaMPa-

HD relies on the Carpenter algorithm [25]. The PaMPa-HD design1,through

an ad-hoc synchronization technique, takes into account crucial design aspects,

such as load balancing and robustness to memory-issues. Furthermore, diferent

strategies have been proposed to easily tune up the parameter conĄguration.

The algorithm has been thoroughly evaluated on real high dimensional datasets.

PaMPa-HD outperforms the state-of-the-art distributed approaches in execution

time and by supporting lower minimum support threshold.

The chapter is organized as follows: Section 5.1 brieĆy reintroduces the

frequent (closed) itemset mining problem, Section 5.2 brieĆy describes the

centralized version of Carpenter, and Section 5.3 presents the proposed PaMPa-

HD algorithm. Section 5.4 describes the experimental evaluations proving

the efectiveness of the proposed technique, Section 5.5 discusses possible

applications of PaMPa-HD and, Ąnally, Section 5.6 introduces future works

and conclusions.

5.1 High-Dimensional Frequent itemset min-

ing background

Since frequent itemset mining preliminaries were introduced far before in the

dissertation, let us just recall and deepen the key concepts fundamental to better

understand PaMPa-HD and its enumeration tree-based exploration strategy.

1The source code of PaMPa-HD can be downloaded from
https://github.com/fpulvi/PaMPa-HD
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D

tid items
1 a,b,c,l,o,s,v
2 a,d,e,h,l,p,r,v
3 a,c,e,h,o,q,t,v
4 a,f,v
5 a,b,d,f,g,l,q,s,t

(a) Horizontal representa-
tion of D

TT

item tidlist
a 1,2,3,4,5
b 1,5
c 1,3
d 2,5
e 2,3
f 4,5
g 5
h 2,3
l 1,2,5
o 1,3
p 2
q 3,5
r 2
s 1,5
t 3,5
v 1,2,3,4

(b) Transposed repre-
sentation of D

TT |¶2,3♢

item tidlist
a 4,5
e -
h -
v 4

(c) TT |{2,3}: exam-
ple of conditional
transposed table

Fig. 5.1 Running example dataset D

The running example has been slightly modiĄed from the one presented in

Chapter 2 to better Ąt the use case.

As already mentioned, a transactional dataset can also be represented in

a vertical format, which is usually more efective when the average number

of items per transactions is orders of magnitudes larger than the number of

transactions. This representation, called transposed table TT , assumes that each

row consists of an item I and its list of transactions, i.e., tidlist({I}). Let r be

an arbitrary row of TT , r.tidlist denotes the tidlist of row r. Figure 5.1b reports

the transposed representation of the running example reported in Figure 5.1a.

Given a transposed table TT and a tidlist X, the conditional transposed

table of TT on the tidlist X, denoted by TT |X , is deĄned as a transposed

table such that: (1) for each row ri ∈ TT such that X ⊆ ri.tidlist there exists

one tuple r′
i ∈ TT |X and (2) r′

i contains all tids in ri.tidlist whose tid is higher

than any tid in X. For example, consider the transposed table TT reported in
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Figure 5.1b. The projection of TT on the tidlist {2,3} is the transposed table

reported in Figure 5.1c. Each transposed table TT |X is associated with an

itemset composed by the items in TT |X . For instance, the itemset associated

with TT |¶2,3♢ is {aehv} (see Figure 5.1c).

5.2 The Carpenter algorithm

The most popular techniques to perform itemset mining (e.g., Apriori [64] and

FP-growth [52]) adopt the itemset enumeration approach (see Section 3.2 for

further discussion). However, itemset enumeration revealed to be inefective

with datasets with a high average number of items per transactions [25]. To

tackle this problem, the Carpenter algorithm [25] was proposed. SpeciĄcally,

Carpenter is a frequent itemset extraction algorithm devised to handle datasets

characterized by a relatively small number of transactions but a huge number

of items per transaction. To eiciently solve the itemset mining problem,

Carpenter adopts an efective depth-Ąrst transaction enumeration approach

based on the transposed representation of the input dataset. To illustrate

the centralized version of Carpenter, we will use the running example dataset

D reported in Figure 5.1a, and more speciĄcally, its transposed version (see

Figure 5.1b). Recall that in the transposed representation each row of the table

consists of an item i with its tidlist. For instance, the last row of Figure 5.1b

shows that item v appears in transactions 1, 2, 3, 4.

Basically, Carpenter builds a transaction enumeration tree by exploiting

a set of pruning rules which avoid the expansion of useless branch of the

tree. In the tree, each node corresponds to a conditional transposed table

TT |X and its related information (i.e., the tidlist X with respect to which the

conditional transposed table is built and its associated itemset). The transaction

enumeration tree, when pruning techniques are not applied, contains all the tid

combinations (i.e., all the possible tidlists X). Figure 5.2 reports the transaction

enumeration tree obtained by processing the running example dataset. To

avoid the generation of duplicate tidlists, the transaction enumeration tree is

built by exploring the tids in lexicographical order (e.g., TT |¶1,2♢ is generated

instead of TT |¶2,1♢). Each node of the tree is associated with a conditional
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Carpenter applies a procedure that decides if the itemset associated with that

node is a frequent closed itemset or not. SpeciĄcally, for each node, Carpenter

decides if the itemset associated with the current node is a frequent closed

itemset by considering:

1. The tidlist X associated with the node, useful to enforce the depth-Ąrst

exploration and to check the actual support of the itemset

2. The conditional transposed table TT |X , used to obtain the itemset asso-

ciated to the node and, through the remaining tids, determine how and

if the node should be expanded

3. The set of itemsets found up to the current step of the tree search, used

to avoid to process the same itemset twice (due to the enumeration tree

architecture, the real support of the itemset is the one obtained the Ąrst

time the itemset is processed in a depth-Ąrst exploration manner)

4. The enforced minimum support threshold (minsup), used to decide if the

itemset is a frequent closed itemset

Based on the theorems reported in [25], if the itemset I associated with the

current node is a frequent closed itemset then I is included in the frequent

closed itemset set. Moreover, by exploiting the analysis performed on the

current node, part of the remaining search space (i.e., part of the enumeration

tree) can be pruned, to avoid the analysis of nodes that will never generate

new closed itemsets. To this purpose, three pruning rules are applied on the

enumeration tree, based on the evaluation performed on the current node and

the associated transposed table TT |X :

• Pruning rule 1. If the size of X, plus the number of distinct tids in

the rows of TT |X does not reach the minimum support threshold, the

subtree rooted in the current node is pruned.

• Pruning rule 2. If there is any tid tidi that is present in all the tidlists

of the rows of TT |X , tidi is deleted from TT |X . The number of discarded

tids is updated to compute the correct support of the itemset associated

with the pruned version of TT |X .

• Pruning rule 3. If the itemset associated with the current node has

been already encountered during the depth Ąrst search, the subtree rooted
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in the current node is pruned because it can never generate new closed

itemsets.

The tree search continues in a depth Ąrst fashion moving on the next node

of the enumeration tree. More speciĄcally, let tidl be the lowest tid in the

tidlists of the current TT |X , the next node to explore is the one associated

with X ′ = X ∪{tidl}.

Among the three rules mentioned above, pruning rule 3 assumes a global

knowledge of the enumeration tree explored in a depth Ąrst manner. This, as

detailed in section 5.3, is very challenging in a distributed environment that

adopts a shared-nothing architecture, like the one we address in this work.

5.3 The PaMPa-HD algorithm

In this section we describe the new algorithm, called PaMPa-HD, proposed in

this chapter. SpeciĄcally, we describe how PaMPa-HD parallelizes the itemset

mining process and applies the pruning rules discussed in Section 5.2 in a parallel

environment. Furthermore, we discuss how, through an ad-hoc synchronization

phase, PaMPa-HD achieves a good load balancing and robustness to memory

issues.

As discussed in the previous section, given the complete enumeration tree

(see Figure 5.2), the centralized Carpenter algorithm extracts the whole set of

closed itemsets by performing a depth Ąrst search (DFS) of the tree. Diferently,

in order to parallelize the mining process, the PaMPa-HD algorithm splits the

depth Ąrst search process in a set of (partially) independent sub-processes,

which autonomously evaluate sub-trees of the search space.

SpeciĄcally, the whole problem can be split by assigning each subtree

rooted in TT |X , where X is a single transaction id in the initial dataset, to

an independent sub-process. Each sub-process applies the centralized version

of Carpenter on its conditional transposed table TT |X and extracts a subset

of the Ąnal closed itemsets. The subsets of closed itemsets mined by each

sub-process are merged to compute the whole closed itemset result. Since the

sub-processes are independent, they can be executed in parallel by means of a

distributed computing platform, e.g., Hadoop. Figure 5.3 shows the application
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centralized version. However, this approach does not allow fully exploiting

pruning rule 3 because each sub-process works independently and is not aware

of the partial results (i.e., closed itemsets) already extracted by the other

sub-processes. Hence, each sub-process can only prune part of its own search

space by exploiting its ŞlocalŤ closed itemset list, while it cannot exploit the

closed itemsets already mined by the other sub-processes. For instance, Task

T2 in Figure 5.3 extracts the closed itemset av associated with node TT |2,3,4.

However, the same closed itemset is also mined by T1 while evaluating node

TT |1,2,3. In the centralized version of Carpenter, the duplicate version of av

associated with node TT |1,2,4 is not generated because TT |1,2,4 follows TT |1,2,3

in the depth Ąrst search, i.e., the tasks are serialized and not parallel.

Since pruning rule 3 has a high impact on the reduction of the search space,

its inapplicability leads to a negative impact on the execution time of the

distributed algorithm (see Section 5.4 for further details). To address this issue,

we share partial results among the sub-processes. Each independent sub-process

analyzes only a part of the search subspace. Then, when a maximum number

of visited nodes is reached, the partial results are synchronized through a

synchronization phase. Of course, the exploration of the tree Ąnishes also when

the subspace has been completely explored.

SpeciĄcally, the sync phase Ąlters the partial results (i.e., nodes of the tree

still to be analyzed and found closed itemsets) globally applying pruning rule 3.

The pruning strategy consists of two phases. In the Ąrst one, all the transposed

tables and the already found closed itemsets are analyzed. The transposed

tables and the closed itemsets related to the same itemset are grouped together

in a bucket. For instance, in our running example, each element of the bucket

Bav can be:

• a frequent closed itemset av extracted during the subtree exploration of

the node TT3,4,

• a transposed table associated to the itemset av among the ones that still

have to be expanded (nodes TT1,2,3 and TT2,3,4).

We remind the readers that, because of the independent nature of the Carpenter

subprocesses, the elements related to the same itemset can be numerous, because

obtained in diferent subprocesses. Please note that all the extracted closed
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itemsets come together with the tidlist of the node in which they have been

extracted.

In the second phase, in order to respect the depth-Ąrst pruning strategy of

the rule 3, for each bucket it is kept only the oldest element (transposed table

or closed itemset) based on a depth-Ąrst order. The depth-Ąrst sorting of the

elements can be easily obtained comparing the tidlists of the elements of the

bucket. Therefore, in our running example from the bucket Bav, it is kept the

node TT1,2,3 (See Figure 5.5) . The transposed tables which are not pruned in

this phase are then expanded to continue the enumeration tree exploration.

Afterwards, a new set of sub-processes is deĄned from the Ąltered results,

starting a new iteration of the algorithm. In the new iteration, the Carpenter

tasks process also the frequent closed itemsets obtained in the previous itera-

tion, which are used to enrich the local memory of the task and enhance the

efectiveness of the local pruning. The Carpenter tasks process the remaining

transposed tables, which are expanded, as before, until the maximum number

of processed tables is reached. In order to enhance the efectiveness of the

pruning rules related to the local Carpenter task, the tables are processed in a

depth-Ąrst order. After that, as before, in the synchronization phase, pruning

rule 3 is applied. The overall process is applied iteratively by instantiating

new sub-processes and synchronizing their results, until there are no nodes

left. The application of this approach to our running example is represented in

Figure 5.4, in which the small crosses represent the pruning related to the local

state memory; and in Figure 5.5, in which the bigger crosses represent the prun-

ing related to the synchronization phase. The table related to the itemset av

associated with the tidlist/node {2, 3, 4} is pruned because the synchronization

job discovers a previous table with the same itemset, i.e. the node associated

with the transaction ids combination {1, 2, 3}. The use of this approach allows

the parallel execution of the mining process, providing at the same time a very

high reliability dealing with heavy enumeration trees, which can be split and

pruned according to pruning rule 3. Of course, this architecture cannot deliver

the same pruning eiciency characterizing the centralized implementation of

Carpenter in which the complete tree depth-Ąrst exploration is known.

The introduction of the sync phase leads also to a better load balancing

of the tasks. At each synchronization, the tables to process are redistributed
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Algorithm 1 PaMPa-HD at a glance
1: procedure PaMPa-HD(minsup; initial T T )
2: Job 1 Mapper: process each row of TT

and send it to reducers, using as key values
the tids of the tidlists

3: Job 1 Reducer: aggregate T T |x and run
local Carpenter until expansion threshold is
reached or memory is not enough

4: Job 2 Mapper: process all the closed itemset
or transposed tables from the previous job
and send them to reducers

5: Job 2 Reducer: for each itemset belonging
to a table or a frequent closed, keep
the eldest in a Depth First fashion

6: Job 3 Mapper: process each closed itemset
and T T |x from the previous job.
For the transposed tables run local Carpenter
until expansion threshold is reached

7: Job 3 Reducer: for each itemset belonging
to a table or a frequent closed, keep
the eldest in a Depth First fashion

8: Repeat Job 3 until there are no more
conditional tables

9: end procedure

among the tasks. Therefore, the task related to the Ąrst branches of the tree,

which are the ones with more nodes than others, are divided into several

subtasks. In this way, as shown Section 5.4, we achieve a better exploitation of

the resources. As regards to the categorization introduced in Subsection 3.3,

PaMPa-HD can be considered a search space-split approach since the search

space is divided and explored within diferent tasks. Please note that the tasks

are independent and output the correct set of frequent closed itemsets. The

synchronization task has been introduced to delete the redundant results and

prune the search space.

5.3.1 Implementation details

PaMPa-HD implementation uses the Hadoop MapReduce framework. The

algorithm consists of three MapReduce jobs as shown in PaMPa-HD pseudocode

(Algorithm 1).

The Job 1, whose pseudocode is reported in Algorithm 2, is developed to

distribute the input dataset to the independent tasks, which will run a local

and partial version of the Carpenter algorithm. The second job performs the

synchronization of the partial results and exploits the pruning rules. At the

end, the last job interleaves the Carpenter execution with the synchronization
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For instance, if the input transaction is the tidlist of item b (b, 1 2 3) and

minsup is 1, the mapper will output three pairs: <key=1; value=2 3, b>,

<key=2; value=3, b>, <key=3; value=b>.

After the map phase, the MapReduce shule and sort phase aggregates the

<key,value>pairs and delivers to reducers the nodes of the Ąrst level of the tree,

which represent the transposed tables projected on a single tid (lines 10-13 in

Algorithm 2). The tables in Figure 5.6 illustrate the processing of a row of

the initial Transposed representation of D. Given that each key matches a

single transposed table TTX , each reducer builds the transposed tables with the

tidlists contained in the ŞvalueŤ Ąelds. These independent transposed tables

match the "projected datasets" deĄnition in Subsection 3.3.

From this table, a local Carpenter routine is run (line 14 in Algorithm 2).

Carpenter recursively processes a transposed table expanding it in a depth-Ąrst

manner (see Section 5.2 for further details). However, the local Carpenter

routine stops when the number of processed transposed tables is over the

given maximum expansion threshold. This allows periodically performing the

synchronization among the parallel tasks and hence enforcing pruning rule 3.

All the intermediate results of the local invocation of the Carpenter routine are

written to HDFS (lines 15-17 in Algorithm 2).

During the local Carpenter process, the found closed itemsets and the

explored branches are stored in memory in order to apply a local pruning. The

closed itemsets are emitted as output at the end of the task, together with

the tidlist of the node of the tree in which they have been found (lines 18-20

in Algorithm 2). This information is required by the synchronization phase

in order to establish which element is the eldest in a depth Ąrst exploration,

i.e., which element is visited Ąrst in a depth Ąrst exploration (e.g. the node

associated with tidlist {1, 2, 3, 5} is eldest than the node associated with tidlist

{2, 3, 4} in a depth-Ąrst exploration order).
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item tidlist
a 1,2,3,4,5

(a) Transposed repre-
sentation of D: tidlist
of item a

key value
1 2,3,4,5 |a
2 3,4,5 |a
3 4,5 |a
4 5 |a
5 - |a

(b) Emitted key-value
entries from the exam-
ple row in Table 5.1b

key value
3 4,5 |a
3 - |c
3 - |e
3 - |h
3 - |o
3 5 |q
3 5 |t
3 4 |v

(c) key-value en-
tries for key 3

TT |¶3♢

item tidlist
a 4,5
c -
e -
h -
o -
q 5
t 5
v 4

(d) TT |{3}: com-
posed with the re-
ceived values

Fig. 5.6 Job 1 applied to the running example dataset (minsup = 1): local Carpenter
algorithm is run from the Transposed Table 5.6d.

Algorithm 2 Dataset distribution and local and partial Carpenter execution
(Job 1)

1: procedure Mapper(minsup; itemi; tidlist T L)

2: for j = 0 to |(T L)|−1 do

tidlist T Lgreater : set of tids greater than

the considered tid tj .

3: if |T Lgreater| ≥minsup then

4: output <key= tj ; value= T Lgreater, item>

5: else Break

6: end if

7: end for

8: end procedure

9: procedure Reducer(key = tid X,value = tidlists T L[ ])

10: Create new transposed table T T |X

11: for each tidlist T Li of T L[ ] do

12: add T Li to T T |X (populate the transposed table)

13: end for

14: Run Carpenter(minsup;T T |X ;max_exp)

15: for each transposed table I found but not processed do

16: Output < itemset; tidlist + T ransposedT able I rows >

17: end for

18: for each frequent closed itemset found do

19: Output(< itemset; tidlist + support >)

20: end for

21: end procedure

Job 2 (Algorithm 3). The synchronization phase is a straightforward

MapReduce job in which mappers input is the output of the previous job: it
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is composed of the closed frequent itemsets found in the previous Carpenter

tasks and intermediate transposed tables that still have to be expanded. The

itemsets are associated to their minsup and the tidlist related to the node of

the tree in which they have been found; the transposed tables are associated to

the table content, the corresponding itemset and the table tidlist.

• For each table, the mappers output a pair of the form:

<key=itemset; value=tidlist,table_rows>(lines 2 - 5 of Algorithm 3);

• for each itemset, the mappers output a pair in the form:

<key=itemset; value=tidlist,minsup>(lines 6 - 11 of Algorithm 3).

The shule and sort phase delivers to the reducers the pairs aggregated by keys.

The reducers, which match the buckets introduced in Section 5.3, compare the

entries and emit, for the same key or itemset, only the oldest version in a depth

Ąrst exploration (lines 15 - 21 of Algorithm 3). For instance, referring to our

running example in Figure 5.5, in the reducer related to the itemset av are

collected the entries related to the nodes T123 and T234. Since the tidlist 123

is previous than 234 in a depth-Ąrst exploration order, the reducer keeps and

emits only the entry related to the node T123. With this design, the redundant

tables that can be obtained due to the independent nature of the Carpenter

tasks, which can explore nodes related to the same itemsets, are discarded.

This pruning is very similar to the one performed in centralized memory at the

cost of a very MapReduce-like job (similar to a WordCount application).

Job 3 (Algorithm 4). This is a mixture of the two previous jobs. In the

Map phase all the remaining tables are expanded by a local Carpenter routine.

The Reduce phase, instead, applies the same kind of synchronization that is run

in the synchronization job. The job has two types of input: transposed tables

and frequent closed itemsets. The former are processed respecting a depth-Ąrst

sorting and expanded until it is reached the maximum expansion threshold

(line 5 of Algorithm 4). From that moment, the tables are not expanded but

sent to the reducers (lines 6 - 8 of Algorithm 4). Please note that the tree

exploration processing the initial transposed tables in a depth-Ąrst order is

the same to a centralized architecture, enhancing the impact of pruning rule 3

(which strongly relies on this exploration manner). The latter (i.e. the frequent
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closed itemsets of the previous PaMPa-HD job) are processed in the following

way. If in memory there is already an oldest depth-Ąrst entry of the same

itemset, the closed itemset is discarded. If there is not, it is saved into memory

and used to improve the local pruning efectiveness (lines 2 - 3). At the end of

the task, all the frequent closed itemsets found are sent to the reducers, where

the redundant elements are pruned. This job is iterated until all the transposed

tables have been processed.

Thanks to the introduction of a global synchronization phase (Job 2 and Job

3 in Algorithms 3 and 4), the proposed PaMPa-HD approach is able to apply

pruning rule 3 and handle high-dimensional datasets, otherwise not manageable

due to memory issues.

Algorithm 3 Synchronization Phase and exploitation of the pruning rule 3
(Job 2)

1: procedure Mapper(F requent Closed itemset;

T ransposed table)

2: if Input I is a table then

3: itemset← ExtractItemset(I)

4: tidlist← ExtractT idlist(I)

5: Output(< itemset; tidlist + table I rows >)

6: else (i.e. input I is a frequent closed Itemset)

7: itemset← ExtractItemset(I)

8: tidlist← ExtractT idlist(I)

9: support← ExtractSupport(I)

10: Output(< itemset; tidlist + support >)

11: end if

12: end procedure

13: procedure Reducer(key = itemset;

value = itemsets & tables T [ ])

14: oldest← null

15: for each itemset or table T of T [ ] do

16: tidlist← ExtractT idlist(T )

17: if tidlist previous of oldest in a Depth-First Search then

18: oldest← T

19: end if

20: end for

21: Output(< itemset + oldest >)

22: end procedure
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Algorithm 4 Interleaving of the Carpenter execution and synchronization
phase (Job 3)

1: procedure Mapper(F requent Closed itemset;T ransposed table)

2: if Input I is a frequent closed itemset then

3: save I to local memory

4: else (i.e. input I is a Transposed Table)

5: Run Carpenter(minsup;T T |X ;max_exp)

6: for each transposed table I found but not processed do

7: Output < itemset; tidlist + T ransposedT able I rows >

8: end for

9: end if

10: for each frequent closed itemset found do

11: Output(< itemset; tidlist + support >)

12: end for

13: end procedure

14: procedure Reducer(key = itemset;

value = itemsets & tables T [ ])

15: oldest← null

16: for each itemset or table T of T [ ] do

17: tidlist← ExtractT idlist(T )

18: if tidlist previous of oldest in a Depth-First Search then

19: oldest← T

20: end if

21: end for

22: Output(< itemset + oldest >)

23: end procedure

5.4 Experiments

In this section, we present a set of experiments to evaluate the performance of

the proposed algorithm. Firstly, we assess the impact on performance of the

maximum expansion threshold (max_exp ) parameter (Section 5.4.1). This

phase is mandatory in order to tune-up the parameter conĄguration to compare

the proposed approach with the state-of-the-art algorithms. Because the tuning

of the parameter is not trivial, we discuss and experimentally evaluate some

self-tuning strategies to automatically set the max_exp parameter and improve

the performance (Section 5.4.2).

Next, we evaluate the speed of the proposed algorithm, comparing it with

the state-of-the-art distributed approaches (Section 5.4.3). Finally, we exper-

imentally analyze the impact of (i) the number of transactions of the input

dataset (Section 5.4.4), (ii) the number of parallel tasks (Section 6.6.3), and

(iii) the communication costs and load balancing behavior (Section 5.4.6).
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Experiments have been performed on two real-world datasets. The Ąrst is

the PEMS-SF dataset [81], which describes the occupancy rate of diferent car

lanes of San Francisco bay area freeways (15 months of daily data from the

California Department of Transportation [82]). Each transaction represents the

daily traic rates of 963 lanes, sampled every 10 minutes. It is characterized

by 440 rows and 138,672 attributes (6 x 24 x 963), and it has been discretized

in equi-width bins, each representing 0.1% occupancy rate.

As mentioned, PaMPa-HD design is focused on scaling up in terms of

number of attributes, being able to cope with high-dimensional datasets. For

this reason, we have used a 100-rows version of the PEMS-SF dataset for all the

experiments. However, we have used the full dataset and several down-sampled

versions (in terms of number of rows) to measure the impact of the number of

transactions on the performance of the algorithm (Section 5.4.4).

The second dataset is the Kent Ridge Breast Cancer [83], which contains

gene expression data. It is characterized by 97 rows that represent patient

samples, and 24,482 attributes related to genes. The attributes are numeric

(integers and Ćoating point). Data have been discretized with an equal-depth

partitioning using 20 buckets (similarly to [25]). The discretized versions of

the real datasets are publicly available at http://dbdmg.polito.it/PaMPa-HD/.

Table 5.1 Datasets

Dataset Number of Number of Number
transactions diferent items of items

per transaction

PEMS-SF 440 8,685,087 138,672
Dataset

Kent Ridge Breast 97 489,640 24,492
Cancer Dataset

PaMPa-HD is implemented in Java 1.7.0_60 using the Hadoop MapReduce

API. The experiments were performed on two diferent conĄgurations. The

Ąrst, Configuration 1, consists of a cluster of 5 nodes running the Cloudera

Distribution of Apache Hadoop (CDH5.3.1). Each cluster node is a 2.67 GHz

six-core Intel(R) Xeon(R) X5650 machine with 32 Gbyte of main memory. The

conĄguration assumes 17 contemporary independent Yarn containers (tasks) of
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6 GB of memory. Configuration 2 consists of a larger shared Hadoop cluster of

30 nodes with 2.5 TB of total RAM and 324 processing cores provided by Intel

CPUs E5- 2620 at 2.6GHz, running the same Cloudera Distribution of Apache

Hadoop (CDH5.3.1). We were able to work with 80 contemporary independent

Yarn containers (tasks), each one characterized by 4GB of main memory.

5.4.1 Impact of the maximum expansion threshold

In this section we analyze the impact of the maximum expansion threshold

(max_exp) parameter, which indicates the maximum number of nodes to be

explored before a preemptive stop of each distributed sub-process is forced. This

parameter, as already discussed in Section 5.3, strongly afects the enumeration

tree exploration, forcing each parallel task to stop before completing the visit

of its sub-tree and send the partial results to the synchronization phase. This

approach allows the algorithm to globally apply pruning rule 3 and reduce the

search space. Low values of max_exp threshold increase the load balancing,

because the global problem is split into simpler and less memory-demanding

sub-problems, and, above all, facilitate the global application of pruning rule

3, hence a smaller subspace is searched. However, higher values allow a more

eicient execution, by limiting the start and stop of distributed tasks (similarly

to the context switch penalty) and the synchronization overheads. Above all,

higher values enhance the pruning efect of the state centralized memory. In

order to assess the impact of the expansion threshold parameter, we have

performed two sets of experiments. In the Ąrst one we perform the mining

on the PEMS-SF (100 transactions) dataset with minsup = 10, by varying

max_exp from 100 to 100,000,000. The minsup value has been empirically

selected to highlight the diferent performance related to diferent values (trivial

mining would be overwhelmed by overhead costs of the MapReduce framework).

In Figure 5.7 are shown the results in terms of execution time and number of

iterations (i.e., the number of jobs)2. It is clear how the max_exp parameter

can inĆuence the performance, with wall-clock times that can be doubled with

diferent conĄgurations. The best performance in terms of execution time is

2Please note that in all the experiments, for the sake of clarity, the confidence intervals
(obtained after a sufficient number of executions and with complementary level of significance
of 95%) are omitted from the graphs.
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decreases together with their related overhead due the HDFS interactions (the

temporary itemsets and related data are stored in HDFS). However, limiting

the number of synchronizations has a negative impact on the global pruning

efectiveness of pruning rule 3, that is applied less frequently and hence the

probability of extracting multiple times the same (useless) itemsets increases.

For PEMS-SF (the denser dataset), the overhead given by the synchronization

operations is balanced by pruning rule 3 for a large range of values of max_exp

(up to 1.000.000), because of the enhanced impact of the task level pruning

in such a dense dataset. Diferently, for Breast Cancer (the sparser dataset) ,

the negative impact of the synchronization phase overhead is initially higher

than the positive impact of the application of pruning rule 3 (this is true up to

10.000). The main reason is that, since the dataset is sparse, pruning rule 3 is

less efective when short Şiterations" are performed (few itemsets are mined

and hence the pruning impact of rule 3 is limited).

We run the same experiments with ConĄguration 2. In Figures 5.9 and 5.10

we reported the performance of the algorithm with respect to the expansion

threshold parameter, highlighting the length (execution time) of each iteration

of the mining. It is clear how the length of the last iterations is strongly

reduced with respect to the central ones. Figures 5.11 and 5.12, instead, plot

the pruning impact of the synchronization phase, i.e. the number of elements

(tables or closed itemsets) that are deleted. These elements are redundant and

their generation is caused by the parallelization which decreases the efect of the

centralized pruning. The higher the pruning efect, the more useless elements

are produced and, hence, discarded in the synchronization phase. From the

trend it is clear how large maximum expansion threshold value conĄgurations

are characterized by a greater number of deleted elements between the iterations.

On the contrary, low values and frequent synchronization lead to less redundant

elements to be deleted and a better optimization of the whole process at the

cost of a higher number of iterations. Interestingly, the best conĄgurations for

both datasets are the ones related to the steadiest pruning efect along all the

iterations. This is particularly evident for PEMS-SF dataset in Figure 5.11

(scattered bars). The value of max_exp impacts also on the load balancing

of the distributed computation among diferent nodes. With low values of

max_exp, each task explores a smaller enumeration sub-tree, decreasing the

size diference among the sub-trees analyzed by diferent tasks, thus improving
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the load balancing. Table 5.2 reports the minimum and the maximum execution

time of the mining tasks executed in parallel for both datasets, ConĄguration

1 and for two extreme values of max_exp. The load balance is better for the

lowest value of max_exp.

In the next subsection we introduce and motivate some tuning strategies

related to max_exp.

5.4.2 Self-tuning strategies

This section introduces some heuristic strategies related to the max_exp

parameter. The aim of this experiment is to identify a heuristic technique

able to improve the performances of the algorithm and easily conĄgure the

algorithm parameter. The heuristic consists in the automatic modiĄcation,

inside the mining process, of the max_exp parameter, without requiring the

user to manually tune it. To introduce the techniques, we provide motivations

behind their design in the following. Because of the enumeration tree structure,

the Ąrst tables of the tree are the most populated. Each node, in fact, is

generated from its parent node as a projection of the parent transposed table

on a tid. In addition, the Ąrst nodes are, in the average, the ones generating

more sub-branches. By construction, their transposed table tidlists are, by

deĄnition, longer than the ones of their children nodes. This increases the

probability that the table could be expanded. For these reasons, the tables

of the initial mining phase are the ones requiring more resources and time to

be processed. On the other hand, the number of nodes to be processed by

each local Carpenter iteration tends to increase with the number of iterations.

Still, this factor is mitigated by (i) the decreasing size of the tables and (ii) the

eventual end of some branches expansion (i.e. when there are not more tids

in the node transposed table). These reasons motivated us to introduce four

strategies (Table 5.3) that assume a maximum expansion threshold which is

increased with the number of iterations. These strategies start with very low

values in the initial iterations (i.e. when the nodes require a longer processing

time) and increase max_exp during the mining phases.

Strategy #1 is the simplest: max_exp is increased with a factor of X at

each iteration. For instance, if max_exp is set to 10, and X is set to 100
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at the second iteration it is raised to 1000 and so on. In addition to this

straightforward approach, we leverage information about (i) the execution time

of each iteration and the (ii) pruning efect (i.e. the percentage of transposed

tables / nodes that are pruned in the synchronization job).

The aim of the strategy #2 is balancing the execution times among the

iterations, trying to avoid a set of very short Ąnal jobs. SpeciĄcally, strategy #2

increases, at each iteration, the max_exp parameter with a factor of XTold/Tnew ,

where Tnew and Told are, respectively, the execution times of the previous two

jobs.

For strategy #3, we analyzed the pruning impact of the synchronization

phase (i.e. the percentage of pruned table due to redundancy). An increasing

percentage of pruned tables means that there are a lot of useless tables that

are generated. Hence, this could suggest to limit the growth of the max_exp

parameter. However, the pruning efect is an information which cannot be

easily interpreted. In fact, an increasing trend of the pruning percentage is also

normal, since the number of nodes that are processed increases exponentially.

Given that our intuition is to rise the max_exp among the iterations, in strategy

#3, we increase the max_exp parameter with a factor XP rold/P rnew , given

Prnew and Prold the relative number of pruned tables in the previous two jobs.

In this way, when the pruning impact increases (Prnew ≥ Prold), the growth of

max_exp is slowed.

Finally, strategy #4 is inspired by the congestion control of TCP/IP (a data

transmission protocol used by many Internet applications [84]). This strategy,

called ŞSlow StartŤ, assumes two ways for growing the window size (i.e. the

number of packets that are sent without congestion issues): an exponential one

and a linear one. In the Ąrst phase, the window size is increased exponentially

until it reaches a threshold (ŞssthreshŤ, which is calculated from some empirical

parameters such as Round Trip Time value). From that moment, the growth

of the window becomes linear, until a data loss occurs. In strategy #4, the

max_exp is handled like the congestion window size.

In our case, we just inherit the two growth factor approach. Therefore,

our Şslow startŤ strategy consists in increasing the max_exp of a factor of X

(X ≥ 10) until the last iteration reaches an execution time greater than a given

threshold. After that, the growth is more stable, increasing the parameter of
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Table 5.3 Strategies

Strategy #1(X) Constant growth Increasing at each iteration
of the parameter with a factor of X

Strategy #2(X) Job balancing via Increasing at each iteration with

execution time analysis a factor of XTold/Tnew

Strategy #3(X) Job balancing via Increasing at each iteration with

pruning impact analysis a factor of XP rold/P rnew

Strategy #4 Slow start Fast increase with a factor of
X, slow increase with a factor of 10

Table 5.4 Best strategies performance

ConĄgurations PEMS-SF BreastCancer

ConĄguration 1
Strategy 1
(X = 10,
-6,48%)

Strategy 1
(X = 10,000

-19,03%)

ConĄguration 2
Fixed Max_exp

(1,000,000)

Strategy 1
(X = 10,
-25,12%)

a factor of 10. Please note that we have Ąxed the threshold to the execution

time of the Ąrst two jobs (Job 1 and Job 2). These jobs, for the architecture of

our algorithm, consists of the very Ąrst Carpenter iteration. They are quite

diferent than the others since the Ąrst Mapper phase builds the initial projected

transposed tables (Ąrst level of the tree) from the input Ąle. This choice is

consistent with our initial aim, which is to normalize the execution times of

the last iterations which are often shorter than the Ąrst ones.

For ConĄguration 1, Strategy #1 is the one achieving the best performances

for both datasets. Table 5.4 reports the best performance for each conĄguration,

in terms of relative performance diference with the best results obtained with

a Ąxed max_exp parameter. As shown in Table 5.4, the results among the

datasets and the conĄgurations are quite diferent. It is clear how the higher

parallelization degree decreases the efect of the centralized pruning. For

this reason, the mining with ConĄguration 2 should be synchronized more

frequently with respect to ConĄguration 1. Breast Cancer data distribution

better Ąts the growth of the parameter, as shown by the better results with
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respect to the PEMS-SF dataset. The beneĄts of the growth of the max_exp

parameter with PEMS-SF dataset are, indeed, limited. The reason behind

this behavior is related to the data distribution. With PEMS-SF dataset, the

mining process generates more intermediate results. In this scenario, a more

frequent synchronization phase delivers more beneĄts with respect to the Breast

Cancer dataset. The identiĄed best parameter conĄgurations will be used to

compare PaMPa-HD with other distributed approaches.

5.4.3 Execution time

Here we analyze the eiciency of PaMPa-HD by comparing it with three

distributed state-of-the-art frequent itemset mining algorithms:

1. Parallel FP-growth [36] available in Mahout 0.9 [85], based on the FP-

growth algorithm [52]

2. DistEclat [68], based on the Eclat algorithm [53]

3. BigFIM [68], inspired from the Apriori [64] and DistEclat

This set of algorithms represents the most cited implementations of frequent

itemset mining distributed algorithms. All of them are Hadoop-based and are

designed to extract the frequent closed itemsets (DistEclat and BigFIM actually

extract a superset of the frequent closed itemsets). The parallel implementation

of these algorithms has been aimed to scale in the number of transactions of

the input dataset. Therefore, they are not speciĄcally developed to deal with

high-dimensional datasets as PaMPa-HD. The algorithms have been already

discussed in detail in Section 3.4.

Even in this case, the frameworks are compared over the two real dataset

(PEMS-SF and Breast Cancer datasets) The experiments are aimed to analyze

the performance of PaMPa-HD with respect to the best-in-class approaches in

high-dimensional use-cases. The Ąrst set of experiments has been performed

with the 100-rows version PEMS-SF dataset [81] and minsup values 35 to 5.3

3The algorithms parameters, which will be introduced in Subsection 4.1.1, has been set in
the following manner. PFP has been set to obtain all the closed itemsets; the prefix length
of the first phase of BigFIM and DistEclat, instead, has been set to 3, as suggested by the
original paper [68], when possible (i.e. when there were enough 3-itemsets to execute also
the second phase of the mining).
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Fig. 5.15 Execution time for different Minsup values on the PEMS-SF dataset and
Configuration 2.

than the cons related to the I/O costs and the iterative architecture. This is

more evident with PEMS-SF, due to its density and the production of more

intermediate tables. For lower minsup values, PaMPa-HD demonstrated to

be most suitable approach with datasets characterized by a high number of

items and a small number of rows. After the comparison with the state of the

art distributed frequent itemset mining algorithms, the next subsections will

experimentally analyze the behavior of PaMPa-HD with respect to the number

of transactions, number of independent tasks, communication costs and load

balancing.

5.4.4 Impact of the number of transactions

This set of experiments measures the impact of the number of transactions

on PaMPa-HD performances. To this aim, the PEMS-SF datasets will be

used in three versions (100-rows, 200-rows and full). The algorithm is very

sensitive to this factor: the reasons are related to its inner structure. In fact,

the enumeration tree, for construction, is strongly afected by the number of

rows. A higher number of rows leads to:
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Fig. 5.16 Execution time for different Minsup values on the Breast Cancer dataset
and Configuration 2.

1. A higher number of branches. As shown in the example in Figure 5.2,

from the root of the tree, it is generated a new branch for each tid

(transaction-id) of the dataset.

2. Longer and wider branches. Since each branch explores its research

subspace in a depth-Ąrst order, exploring any combination of tids, each

branch would result with a greater number of sub-levels (longer) and a

greater number of sub-branches (wider)

Therefore, the mining processes related to the 100-rows version and to the

200-rows or the full version of PEMS-SF dataset are strongly diferent. With

a number of rows incremented by, respectively, 200% and more than 400%,

the mining of the augmented versions of PEMS-SF dataset is very challenging

for the enumeration-tree based PaMPa-HD. The performance degradation is

resumed in Figures 5.17 and 5.18 , where, for instance, with a minsup of 35%,

the execution times related to the 100-rows and the full version of the PEMS-SF

dataset difer of almost two orders of magnitude.
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Fig. 5.18 Execution times for different versions of PEMS-SF for PaMPa-HD and
Configuration 2.

terms of execution time when the computation passes from 5 to 20 nodes. The

experiment of Breast Cancer instead, Figure 5.20, shows a stronger performance

gain. As before, the behavior is related to the dataset data distribution which

causes the PEMS-SF mining process generating more intermediate tables. In

this case, the advantages related to additional independent nodes into the

mining is mitigated by the loss of state in the local pruning phase inside the

nodes. With additional nodes, each node is pushed to a smaller exploration

of the search space, decreasing the efectiveness of the local pruning. These

speciĄc results recall a very popular open issue in distributed environments. In

problems characterized by any kind of ŤstateŤ beneĄt (in this case, the local

pruning inside the tasks), a higher degree of parallelism does not lead to better

performance a priori.

5.4.6 Load Balancing and communication costs

The last analyses are related to the load balancing and the communication

costs of the algorithm. These issues represent very important factor in such a

distributed environment. Communication costs are among the main bottlenecks
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Fig. 5.19 Execution times for PEMS-SF dataset with different number of parallel
tasks based on Configuration 2.

Fig. 5.20 Execution times for Breast Cancer dataset with different number of parallel
tasks based on Configuration 2.

for the performance of parallel algorithms [86]. A bad-balanced load among

the independent tasks leads to few long tasks that block the whole job.
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PaMPa-HD, being based on the Carpenter algorithm, mainly consists on the

exploration of an enumeration tree. The basic idea behind the parallelization

is to explore the main branches of the tree independently within parallel tasks

(Figure 5.3). For this reason, each task needs the information (i.e. transposed

tables) related to its branch expansion. The ideal behavior of a distributed

algorithm would be to distribute the least amount of data, avoiding redundant

information as much as possible. The reason is that network communications

are very costly in a Big Data scenario. Unfortunately, the structure of the

enumeration tree of PaMPa-HD assumes that some pieces of data of the initial

dataset is sent to more than one task. For instance, some data related to nodes

TT |2 and TT |3 are the same, because from node TT |2 will be generated the

node TT |2,3. This is an issue related to the inner structure of the algorithm

and a full independence of the initial data for each branch cannot be reached.

In addition, the architecture of the algorithm, with its synchronization

phase, increases the I/O costs. In order to prune some useless tables and

improve the performance, the mining process is divided in more phases writing

the partial results into HDFS. However, as we have already seen when studying

the impact of max_exp (Figure 5.7 and Figure 5.8), in some cases additional

synchronization phases lead to better execution times, despite their related

overhead.

We measured the resource utilization in terms of disk usage (read and write

phases of HDFS), network communication, and CPU usage. Please note that

the values are normalized with respect to the maximum resource utilization.

SpeciĄcally, Figure 5.21 and 5.22 report the achieved results for the two datasets

in an insulated hardware conĄguration. The spikes are related to the shule

phases, in which the redundant tables and closed itemsets are removed. The

Ćat part of the curve between the spikes is longer in the case of the Breast

Cancer dataset because of the adopted strategy. Its mining has been executed

with a more aggressive increasing of the max_exp parameter (steps of 10

for PEMS-SF dataset, 10,000 for Breast Cancer dataset), which leads to a

very long period without synchronization phases. As regards CPU utilization

(Figure 5.22) the degradation is due to the completion of some of the tasks. The

higher max_exp, as already mentioned, has the counter efect of decreasing

the load balance. The trend is, in fact, more Ćat for the mining of PEMS-SF

dataset (Figure 5.21), characterized by more frequent synchronizations.
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Fig. 5.21 Resource utilization, PEMS-Cancer dataset, minsup=25.

Fig. 5.22 Resource utilization, Breast Cancer dataset, minsup=7.

The load balancing is evaluated by comparing the execution time of the

fastest and slowest tasks related to the iteration job in which this diference

is strongest. The most unbalanced phase of the job is, not surprisingly, the



98 Frequent Itemset Mining for High-Dimensional data

Table 5.5 Load Balancing, Configuration 1

Dataset Slowest Task Fastest Task
Execution time Execution time

PEMS-SF (minsup = 20) 3mins 58 sec 3mins 37sec
Breast Cancer (minsup = 6) 20mins 33sec 8mins 42sec

mapper phase of the Job 3. This job is iterated until the mining is complete

and it is the one more afected by the increase of the max_exp parameter

(iterations characterized by high max_exp value are likely characterized by

long and unbalanced task). The diference among the fastest and the slowest

mapper is shown in Table 5.5. It is clear that the mining on PEMS-SF dataset

is more balanced among the independent tasks. Even in this case, the reason

is the diferent increment value in the Strategy #1 (10 for PEMS-SF dataset,

10,000 for Breast Cancer dataset). A slower max_exp increasing leads to more

balanced tasks.

5.5 Applications

Since PaMPa-HD is able to process extremely high-dimensional datasets, it

enriches the set of algorithm able to deal with datasets characterized by a

very large variety of features (e.g. [87], [88]). Consequently, many Ąelds of

applications which exploits frequent itemset to discover hidden correlations

and association rules [89] could beneĄt of it. The Ąrst example is bioinfor-

matics [90] and health environments: researchers in this domain often cope

with data structures deĄned by a large number of attributes, which matches

gene expressions, and a relatively small number of transactions, which typically

represent medical patients or tissue samples. Furthermore, smart cities and

computer vision applications are two important domains which can beneĄt

from our distributed algorithm, thanks to their heterogeneous nature. Another

Ąeld of application is the networking domain. Some examples of interesting

high-dimensional dataset are URL reputation, advertisements, social networks

and search engines. One of the most interesting applications, which we plan to

investigate in the future, is related to internet traic measurements. Currently,

the market ofers an interesting variety of internet packet snifers like [74], [91].
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Collected datasets, which include traic Ćows in which the item are Ćow at-

tributes ([37], [92], [93]), represent already a very promising application domain

for data mining techniques, where PaMPa-HD can be eiciently exploited

5.6 Conclusion

This chapter introduced PaMPa-HD, a novel frequent closed itemset mining

algorithm able to eiciently parallelize the itemset extraction from extremely

high-dimensional datasets. Experimental results show its good scalability and

its eicient performance in dealing with real-world datasets characterized by

up to 8 million diferent items and, above all, an average number of items per

transaction over hundreds of thousands, on a small commodity cluster of 5

nodes. PaMPa-HD outperforms state-of-the-art algorithms, by showing a better

scalability than all popular distributed approaches, such as PFP, DistEclat and

BigFIM.

Further developments of the algorithm can be related to the analysis of the

trade-of between the beneĄts of the scalability and the ones related to the

local state. In addition, future works could analyze the introduction of better

load balancing mechanisms. The increasing max_exp parameter introduced by

the self-tuning strategies leads to a degradation of the load balancing between

the parallel tasks of the job. As shown in Table 5.2, higher max_exp values

decrease load balancing (i.e. only few tasks running), wasting the resources

assigned to the tasks that are already complete. Forcing the synchronization

phase after a Ąxed period of time would limit the amount of time in which the

resources are not completely exploited. From the algorithmic point of view,

this is not a loss, since the tables are expanded in a depth-Ąrst fashion. The

last tables, hence, are the ones with highest probability to be pruned. This

future development, therefore, would analyze the choice of the time-out which

forces the synchronization phase.
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Chapter 6

Frequent Itemset Mining in

Distributed Scalable

Frameworks

This chapter of the dissertation presents a concrete example of contextual

application of distributed frequent itemset mining. Precisely, the introduced

works concern a research problem in which distributed frequent itemset mining

is integrated in a wider data mining framework to extract a speciĄc type of

itemsets called misleading generalized itemsets [10Ű12].

The framework was initially designed to analyze network traic logs [9] and

provide users with a variety of network analytics services. In this Ąeld, in fact,

communication proĄling, anomaly or security threat detection, and recurrent

pattern discovery are very important issues. In a following work, the framework

has been extended to support the analysis of traic law infractions committed

by the citizens of Turin, an important business and cultural center in northern

Italy. In this case, the target of the analysis is to improve the eiciency of

public services, the transparency of public administrations, and the awareness

of the degree of civilization of urban people.

This is not the Ąrst attempt to take advantage of centralized and distributed

data mining techniques to extract actionable insights in real-life scenarios,

especially for network traic analysis. Several approaches address the discovery

of signiĄcant correlations among data [93, 94], the extraction of knowledge
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useful for prediction [95], and the clustering of network data with similar

properties [96]. Due to the continuous growth in network speed, petabytes

of data may be transferred through a network every day, stressing the limits

of existing data mining techniques and setting new horizons for the design of

innovative data mining approaches.

The Chapter is organized as follows. Section 6.1 presents NeMiCo (Network

Mining in the Cloud), the cited data mining system focused on eiciently

discovering interesting knowledge from large network datasets by means of

distributed approaches. After that, in Section 6.2, we will introduce an instance

of the framework, named MGI-Cloud (Misleading Generalized Itemset miner

in the Cloud), developed to mine misleading generalized itemsets. Section 6.3

overviews most relevant previous works while Section 6.4 states the problem

addressed in this work. Section 6.5 presents the MGI-Cloud architecture

while an experimental evaluation of our approach is reported in Section 6.6.

Finally, Section 6.7 draws conclusions and discusses future research directions.

6.1 The NeMiCo architecture

NeMiCo consists of a series of distributed MapReduce jobs related to difer-

ent steps of the knowledge discovery process. It ranges from network data

acquisition to knowledge exploitation, as we will detail in the next chapters.

In Figure 6.1 are shown the building blocks of the NeMiCo architecture. To

efectively support analysts in discovering diferent and interesting kinds of

knowledge, a broad variety of data mining algorithms can be integrated in the

system such as exploratory techniques (e.g., association rules, clustering) and

prediction ones (e.g., classiĄcation and regression algorithms).

In this job pipeline, each job takes as input the result of one or more

preceding jobs, performing a speciĄc step of the data mining process. (each job

is performed by one or more MapReduce tasks running on a Hadoop cluster).
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Fig. 6.1 Architecture of NeMiCo

6.1.1 Data acquisition and preprocessing

NeMiCo exploits passive traic sniing to acquire massive amounts of net-

work traic measurements and stores them in HDFS distributed Ąle system.

More details about the speciĄc use case data preparation will be provided in

Section 6.2.

To suit the raw data to each of the subsequent data mining step, diferent

data preprocessing steps are applied to the input data. A brief description of

the main data preparation steps is given below.

Discretization. Discretization concerns the transformation of continuous

values into discrete ones. Since some data mining algorithms are unable to

cope with continuously valued data, measurement values are discretized prior

to running the algorithms. The discretization step can be performed either

automatically by using established techniques [97] or semi-automatically by

partitioning continuous value ranges into appropriate bins based on the prior

knowledge about the measurement domains.

Data conversion. Data conversion entails the transformation of the raw

data into the data format expected by the data mining algorithms to apply.

It happens that algorithms are designed to handle only a subset of speciĄc

format. For example, most association rule mining algorithms are designed

to cope with transactional data [97]. Hence, applying association rule mining

algorithms requires the acquired data to be tailored to the transactional data

format.
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Taxonomy generation. The data mining process can be driven by

semantics-based models (e.g., taxonomies or ontologies). These models, when

available, are used to enrich the source data with multiple-level or multi-faceted

information that would result in additional knowledge as output. For instance,

a taxonomy, as shown in this Chapter for the use-cases taken into account,

consists of set of Šis-aŠ hierarchies built over the data attributes. These struc-

tures are exploited to aggregate speciĄc data values (e.g., the TCP ports) into

meaningful higher-level categories. NeMiCo supports both the automatic

taxonomy inference over a subset of speciĄc network data attributes (e.g., port

number, packet number) and the semi-automatic taxonomy construction.

Labeling. Supervised data mining techniques (e.g., classiĄcation) require

the labeling of one data attribute as class label. Hence, if the data mining

process comprises supervised analyses domain-experts have to specify the class

attribute.

The current implementation of NeMiCo includes all the described activities

as parallel map jobs.

6.1.2 Knowledge extraction and exploration

Knowledge extraction entails the application of data mining algorithms to Ąnd

implicit, previously unknown, and potentially useful information from large

volumes of network data. NeMiCo comprises novel data mining algorithms

that contribute to a paradigm-shift in distributed data mining. The analytics

algorithms entail (i) discovering underlying correlations among traic data (e.g.,

multiple-level associations among data equipped with taxonomies), (ii) grouping

traic Ćows with similar properties (e.g., clustering), and (iii) extracting models

useful for prediction (e.g., classiĄcation, regression).

As already mentioned, the current implementation of NeMiCo comprises

Hadoop-based data mining algorithms focused on the extraction of interesting

and multiple-level correlations among network data [10]. The next Section

will describe the application of such comprehensive framework to the Network

traic and Smart Cities environments.
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6.2 Misleading Generalized Itemsets

In this second part of the chapter, as already mentioned, we will extend

the discussed distributed network data mining framework to focus on an

established pattern mining technique called generalized itemset extraction [98].

The obtained architecture framework has been named MGI-Cloud (Misleading

Generalized Itemset miner in the Cloud). This technique has already been

applied to data coming from several application domains (e.g., market basket

analysis [98], network traic data analysis [99] and genetic data mining [100]).

Generalized itemset mining entails discovering correlations among data at

diferent abstraction levels. By exploiting a taxonomy (i.e., a set of is-a

hierarchies) built over the analyzed data, frequent generalized itemsets, which

represent recurrent co-occurrences among data items at diferent granularity

levels, are extracted. These patterns are worth to be considered by domain

experts to transform huge amounts of raw data into useful and actionable

knowledge. However, a subset of peculiar high-level patterns should be analyzed

separately during manual result inspection. More speciĄcally, each generalized

itemset has a correlation type which indicates the strength of the correlation

between the corresponding items. Misleading Generalized Itemsets (MGIs) [101]

are generalized itemsets whose correlations type is in contrast to those of most

of their low-level descendant itemsets. These high-level patterns are worth

considering for in-depth analysis because they are likely to represent misleading

and thus potentially interesting situations. In [101] MGI extraction is performed

in main memory on top of frequent level-sharing itemsets. Unfortunately, when

coping with large datasets and low minsup values, a large number of itemsets

is often generated thus MGI extraction becomes a challenging task. For this

reason, we have introduced a distributed architecture to mine MGIs.

The remainder part of this Chapter presents MGI-Cloud (Misleading

Generalized Itemset miner in the Cloud), an instance of the more general

framework NeMiCo designed to eiciently mine MGIs on a distributed com-

puting model. The experimental results show the efectiveness and eiciency of

the MGI-Cloud architecture as well as they demonstrate its applicability to

the analyzed use-cases.
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6.3 Related work

As largely introduced in the previous chapters, a relevant research efort has been

devoted to large-scale itemset mining based on the MapReduce paradigm. This

chapter, instead, introduces and investigates the applicability of a generalized

pattern mining technique on the MapReduce platform.

The frequent generalized itemset and association rule mining problems [98]

have largely been studied by the data mining community. The Ąrstly proposed

approach [98] generates itemsets by considering for each item all its ancestors

in the taxonomy. To avoid generating all the possible itemsets, the authors

in [102, 103] proposed to push (analyst-provided) constraints into the mining

process. In parallel, many algorithm optimizations and variations have been

proposed [104Ű106]. For example, the approach presented in [104] proposes an

optimization strategy based on a top-down hierarchy traversal, while in [105]

the authors propose to mine closed and maximal generalized itemsets. More

recently, a new type of generalized pattern, called Misleading Generalized

Itemset (MGI), has been proposed [101]. MGIs are high-level (generalized)

itemsets for which a relevant subset of frequent descendants have a correlation

type in contrast to their common ancestor. MGIs are worth considering

separately from traditional itemsets if their low-level contrasting correlations

cover almost the same portion of data as the high-level itemset, because the

information provided by traditional high-level patterns becomes misleading.

This chapter, hence, describes how to perform MGI mining on the MapReduce

platform. Furthermore, it evaluates the MGIs extracted big data acquired in

smart city and networking environments.

6.4 Preliminary concepts and problem state-

ment

As largely mentioned in the previous chapters, a transactional dataset D

consists of a set of transactions/records, where each transaction is a set of

items [23]. Each item could be seen as a pair (attribute, value). A taxonomy

Γ built over the source dataset D aggregates the data items into higher-level

concepts (i.e., the generalized items). Table 6.1 and Figure 6.2 report two
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Table 6.2 Misleading Generalized Itemsets mined from D. min_sup = 10%,
max_neg_cor= 0.70, min_pos_cor= 0.80, and max_NOD = 80%.

Frequent Frequent Not
itemset (level≥2) descendants overlapping

[correlation type (Kulc value)] [correlation type (Kulc value)] degree (%)
{ (a.m.), (Prohibition)} {([8 a.m.,9 a.m.]), (One-way infraction)} 75
[positive (5/6=0.83)] [positive (7/8=0.88)]

{([8 a.m.,9 a.m.]), (Speeding)}
[[negative (5/8=0.63)]

{(a.m.), (Duty)} {([9 a.m., 10 a.m.]), (Driving without license)} 0
[negative (1/2=0.50)] [positive (1)]
{(p.m.), (Duty)} {([4 p.m.,5 p.m.]), (Unfastened seat belt)} 0

[negative (2/3=0.66)] [positive (1)]

are covered by I and the total number of records in D [98, 104, 101]. Given a

set of generalized itemsets I, we also deĄne the coverage of I with respect to

D, hereafter denoted as cov(I,D), as the ratio between the number of records

in D that are covered by any itemset in I and the total number of records

in D. Finally, given two generalized k-itemsets I1 and I2, I1 is said to be a

descendant of I2, i.e. I1 ∈ Desc[I2, Γ] if for every item ij ∈ I1 there exists an

item ik ∈ I2 such that either ij = ik or ij is a descendant of ik with respect to

the given taxonomy.

Similar to [104, 107], we target the correlations among items at same

abstraction level, i.e. the itemsets that exclusively contain items with the

same level. Such patterns are denoted by level-sharing itemsets [104]. The

itemset correlation measures the strength of the correlation between its items.

Similar to [107], in this work we evaluate the correlation of a k-itemset I

by means of the Kulczynsky (Kulc) correlation measure [108], deĄned as

kulc(I) = 1
k

k∑

i=1

sup(I,D)

sup(ij ,D)
, where sup(I,D) is IŠs support in D and ij is the j-th

item in I. Kulc values range from 0 to 1. By properly setting maximum negative

and minimum positive Kulc thresholds, hereafter denoted by max_neg_cor

and min_pos_cor, the itemsets may be classiĄed as negatively correlated,

uncorrelated, or positively correlated itemsets according to their correlation

value.

Let LSI be the set of all frequent level-sharing itemsets in D according

to a minimum support threshold min_sup. Given a frequent level-sharing

itemset X ∈ LGI of level l ≥ 2, let Desc∗[X,Γ] be the subset of corresponding

level-(l − 1) XŠs descendants for which the correlation type is in contrast to

those of X. A Misleading Generalized Itemset (MGI) is a pattern in the
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form X ▷E , where X ∈ LSGI and E=Desc∗[X,Γ] [101]. For example, from the

dataset in Table 6.1, by enforcing the parameters in the following way:

• min_sup=10%

• max_neg_cor=0.70

• min_pos_cor=0.80

the MGI: {(Time,a.m.), (Infraction name,Prohibition)} ▷ {(Time, [8 a.m.,9

a.m.]), (Infraction name,Speeding)} is mined. In fact, {(Time: a.m.), (Infraction

name: Prohibition)} has a positive correlation (0.83), whereas its descendant

itemset {(Time: [8 a.m., 9 a.m.]), (Infraction name: Speeding)} is negatively

correlated (0.63). To measure the degree of interest of a MGI X ▷E with respect

to its corresponding traditional itemset version (X), the Not Overlapping Degree

(NOD) measure has been deĄned in [101]. The NOD of an MGI X ▷E is deĄned

as sup(X,D)−cov(E ,D)
sup(X,D) . It expresses the relative diference between the support of

the ancestor itemset X and the coverage of its low-level contrasting correlations

in E . The NOD values range from 0 to 1. The lower NOD value we achieve,

the more signiĄcant the degree of overlapping between the contrasting low-level

correlations in E and their common ancestor X becomes.

The mining task addressed by this work entails discovering from D all

the MGIs for which the NOD value is less than or equal to a maximum

threshold max_NOD. The subset of Misleading Generalized Itemsets mined

from Table 6.1 by setting the maximum NOD threshold to 80% is reported in

Table 6.2.

6.5 The MGI-Cloud architecture

The MGI-Cloud architecture provides a cloud-based service for discovering

hidden and actionable patterns among potentially Big datasets. it represents a

very concrete example of the usage of distributed frequent itemset mining in a

real context and as a part of a wider framework. We focus our analysis on two

speciĄc case studies, i.e., the analysis of the traic law infractions committed in

an urban environment and the Internet traic generated by an Italian ISP. To

eiciently cope with Big Data, the system implementation is distributed and
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FIN, RST). The status of the TCP sender is rebuilt by matching sequence

numbers on data segments with the corresponding acknowledgement (ACK)

numbers. To evaluate the MGI-Cloud tool in real-world application, we

focus on a subset of measurements describing the traic Ćow among the many

provided by Tstat. The most meaningful features, selected with the support of

domain experts, comprehends a set of 22 features including RTT, Port, Class

and other numeric attributes such as Data Packets, Hops, Windows Size, etc.

To obtain reliable estimates on reordering and duplicate probabilities, only

TCP Ćows which last more than P = 10 packets are considered. This choice

allow focusing the analysis on longlived Ćows, where the network path has a

more relevant impact, thus providing more valuable information.

Since frequent itemset mining requires a transactional dataset of categorical

values, data has to be discretized before the mining. The discretization step

converts continuously valued measurements into categorical bins. Then, data

are converted from the tabular to the transactional format. As already men-

tioned, attribute selection and data discretization are performed as distributed

MapReduce jobs (speciĄcally, as a single map only job). Each record is pro-

cessed by the map function and, if the number of packets is above the threshold

(10 packets), the corresponding discretized transaction is emitted as a result of

the mapping. This task entails an inherently parallel elaboration, considering

that can be applied independently to each record.

6.5.2 Taxonomy generation

To analyze data from a high-level viewpoint, the datasets are equipped with

taxonomies. A taxonomy is a set of is-a hierarchies built over data items in

D. An example taxonomy built over the dataset in Table 6.1 is depicted in

Figure 6.2. Items whose value is a high-level aggregation belonging to the

taxonomy (e.g., Duty in the Infractions taxonomy of Figure 6.2) are called

generalized items. In Figure 6.4, instead, is reported a sample taxonomy over

the attribute RTT of the network traic dataset. Analyst-provided taxonomies

could be generated either manually or semi-automatically by domain experts.

We built 3-level hierarchies over the contextual attributes for our analyzes

about the traic law dataset (Location, Time, Date). SpeciĄcally, geographical

addresses are aggregated into the zip code, which in turn are aggregated into the
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mining from data containing items at diferent abstraction levels, it generates

multiple copies of each record, one for each taxonomy level. While the original

record contains only taxonomy leaves (i.e., the dataset items), each copy

contains the corresponding combination of item generalizations at a diferent

abstraction level. To avoid unnecessary I/O operations, the extended dataset

version is not materialized on disk, but it is directly generated in the map

function of the itemset extraction task and then immediately stored into a

compact FP-tree structure [23].

Itemset extraction. To eiciently mine frequent level-sharing itemsets [104]

from the extended dataset version, this task exploits a variation of the Hadoop-

based itemset mining algorithm proposed in [37]. Indeed, since the use case

cannot be considered High-Dimensional, PaMPa-HD was not a suitable solution.

6.5.4 MGI extraction

This job performs MGI mining on top of the frequent level-sharing itemsets.

SpeciĄcally, it accomplishes the task stated in Section 6.4. This step consists of

a MapReduce job, as described in the following. The contribution of this job is

new because, to the best of our knowledge, no cloud-based service currently

supports MGI mining from Big Data.

To extract MGIs we combine each frequent level-sharing itemset I with

its corresponding set of descendant itemsets Desc[I,Γ]. More speciĄcally, In

the map function for each level-sharing itemset I, the following two pairs (key,

value) are emitted: (i) a pair (key, value), where key is the direct ancestor

of itemset I and value the itemset I with its main properties (i.e., support

and Kulc values) and (ii) a pair (key, value), where key is the itemset I is

the value: itemset I with its main properties (i.e., support and Kulc values).

Two pairs are emitted because each itemset can be a descendant of an itemset

and a parent of another one at the same time. The Ąrst pair allows us to

associate I with the ancestor key, whereas the second pair is used to associate

I to itself if MGIs in the form I ▷E are extracted. The generated pairs allow

us to map each itemset and its corresponding descendants to the same key.

Hence, in the reduce function, each key is associated with a speciĄc itemset I

and the corresponding set of values contains both the (ancestor) itemset I and
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its respective descendants. By iterating on the set of values associated with key

I, we generate candidate MGIs I ▷E , where E is the set of IŠs descendants in

contrast to I in terms of correlation type, and we compute the corresponding

NOD values. Finally, only the MGIs satisfying the max_NOD threshold are

stored into the HDFS Ąle system.

6.6 Experiments

We performed experiments on two real datasets acquired in diferent domains:

AperTo dataset. This open dataset, available at http://aperto.comune.torino.it,

collects information about approximately 2 million of traic law infractions

committed in the city of Turin over the 3-year period 2011-2013. The dataset is

characterized by Ąve attributes (Infraction name, Vehicle type, Location, Date,

and Time). Its size is approximately 198 MB. Hierarchies over the infraction

data items were deĄned according to the guidelines reported in Section 6.5.2.

BigNetData dataset. This relational network traic dataset has been ob-

tained by performing diferent capture stages on a backbone link of a nation-wide

ISP in Italy that ofers us three diferent vantage points. The dataset has size

192.56 GB and it consists of 413,012,989 records, i.e., one record for each

bi-directional TCP Ćow). A more detailed dataset description is given in [37].

The MapReduce jobs of the MGI-Cloud workĆow (see Section 6.5) were

developed in Java using the new Hadoop Java APIs. The experiments were

performed on a cluster of 5 nodes running ClouderaŠs Distribution of Apache

Hadoop (CDH4.5). Each cluster node is a 2.67 GHz six-core Intel(R) Xeon(R)

X5650 machine with 32 Gbyte of main memory running Ubuntu 12.04 server

with the 3.5.0-23-generic kernel. All the reported execution times are real times

obtained from the Cloudera Manager web control panel.

In the experiments we addressed the following issues: (i) the analysis of the

characteristics of the mining results achieved with diferent parameter settings

(Section 6.6.1), (ii) the validation of the usefulness of the results achieved for

performing in-depth analysis (Section 6.6.2), and (iii) the scalability of the

MGI Miner algorithm with the number of nodes (Section 6.6.3). We addressed

Tasks (i) and (ii) mainly on AperTo dataset, because data fully complies with







6.6 Experiments 117

{(Location,Zip code 10125), (Infraction name,Prohibition)} ▷

{(Location, Sommeiller Avenue), (Infraction name, One-way infraction)}.

The high-level itemset {(Location,Zip Code 10125), (Infraction name,Prohibition)}

is negatively correlated, whereas its frequent descendant {(Location, Sommeiller

Avenue), (Infraction name, One-way infraction)} is positively correlated and it

covers a signiĄcant portion of data already covered by the high-level itemset

(∼59%). Hence, to a certain extent, analyzing only the traditional high-level

itemset instead of the complete MGI could be misleading. This pattern indi-

cates that in a certain area of Turin, identiĄed by zip code 10125, a category

of infractions (prohibitions) is not very likely to occur, whereas for a speciĄc

avenue within the area wrong way driving prohibition is violated more com-

monly than expected. Hence, road signs in Sommeiller Avenue could be either

not well visible or misplaced. The public administration of Turin should deem

such information to be worthy for signage maintenance and monitoring.

Let us consider now the following MGI:

{(Location,District 1), (Vehicle type,Private car),(Time, p.m.)} ▷

{(Location, Zip code 10122),(Vehicle type, Private car),(Time, (4 p.m.,8 p.m.]),

(Location, Zip code 10121),(Vehicle type, Private car),(Time, (8 p.m.,12 p.m.]),

. . . }.

The high-level itemset is positively correlated, whereas 11 of its descendant

itemsets are negatively correlated and the NOD value of the mined MGI is

58%. District 1 of Turin appears to be an area in which many infractions are

committed by private cars during the afternoon, evening, or night. Hence,

traic corps should monitor the area more carefully in these speciĄc daily time

periods. However, in 42% of the subareas of district 1 (e.g., the ones identiĄed

by zip codes 10121 and 10122, respectively), infractions are less likely to occur

than in the others. Therefore, it would be more advisable to monitor the

subareas other than district 1. In summary, MGI extraction from infraction

data could help traic corps optimize road monitoring services and identify

anomalous situations be due to either inappropriate citizensŠ behaviors or to

temporary service disruptions.

Even if the qualitative analysis of the results from the network traic traces

dataset requires a domain expert, here we deliver a tentative interpretation
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of the most interesting obtained MGI. In this case we focused our analysis

on the pattern related to either protocols or RTT values, because we deemed

such patterns as interesting to understand application/service server geography.

As an example let use consider the following MGI extracted by enforcing

max_neg_cor=0.2, min_pos_cor=0.3, and max_NOD=70%:

{(Class,Chat) (RTT-Min,100-200)} ▷

{(Class,32) (RTT-Min,165-170), (Class,513) (RTT-Min,145-150)}.

The high-level itemset {(Class,Chat) (RTT - Min=100-200)} is negatively

correlated whereas its frequent descendants {(Class,32) (RTT-Min, 165-170),

(Class,513) (RTT-Min, 145-150)} are positively correlated and they cover a

signiĄcant portion of data already covered by the high-level itemset (especially

Class,32, with the 32%). This means that the traic Ćows associated with any

chat protocol and characterized by RTT between 100 and 200 ms are less likely

to occur than expected, whereas the Ćows associated with two speciĄc chat

protocols, i.e., MSN (class 32) and Skype (class 513), are likely to have RTTs

in the ranges 165-170 ms and 145-150 ms, respectively. Hence, in this case,

analyzing only the high-level itemset instead of the complete MGI could be

misleading and the pattern may indicate that only some speciĄc chat protocols

(MSN, Skype) often rely on servers physically located relatively faraway with

each other. In this speciĄc example, MGI analysis proves its efectiveness in

the network environment, i.e. helping network administrator to understand

and optimize networks and identify anomalous situations. Nevertheless, there

are many other possible use cases because of the generality of our approach

and its compatibility with huge datasets due to its distributed architecture.

6.6.3 Scalability with the number of cluster nodes

We evaluated the scalability of the proposed architecture by measuring the

speedup achieved increasing the number of Hadoop cluster nodes. SpeciĄcally,

we considered three conĄgurations: 1 node, 3 nodes, and 5 nodes. Figure 6.7

reports the speedup achieved setting min_sup to 1%, max_neg_cor to 0.1,

min_pos_cor to 0.3, and max_nod to 60%. The Ąrst box in Figure 6.7 (i.e.,

1 node) corresponds to a run of MGI-Cloud on a single node. Speedup

with increasing nodes is computed against the single-node performance. The
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Chapter 7

Conclusion

This dissertation focused on analyzing and enriching the state of the art of one

of the most adopted Data Mining techniques: Frequent Itemset Mining. This

is an exploratory data analysis method used to discover frequent co-occurrence

among the items of a transactional dataset. Frequent Itemset extraction is a

very demanding technique in terms of resources. The problem is caused by the

inner data structure exploited by the algorithms to explore the search space.

Depending on the depth of the analysis (i.e. the selected minimum support

threshold) the search-space could potentially consider all the possible items

combinations.

Applying frequent itemset mining in Big Data environment is even more

challenging. Larger amounts of data lead to bigger data structures to handle

and to analyze. Since centralized techniques revealed to be ineicient, in

the last years, some scalable frequent itemset mining techniques has been

re-designed to leverage distributed frameworks such as Hadoop MapReduce

and Spark. One of the main contributions of the dissertation is the analysis of

these techniques. Through a structured theoretical and experimental analysis,

we taxonomized the proposed works in two families, search-space-split and

data-split approaches. Then, we have thoroughly evaluated the behavior and

the performances of all the algorithms with an extensive and comprehensive

set of the experiments. Thanks to this review, we were able to identify the

key aspects of the problem and the open issues. One of the most important

was the lack of algorithms designed for high-dimensional data. For this reason,
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we have designed a new high-dimensional frequent itemset miner, PaMPa-

HD. This algorithm, which represents the second main contribution of this

dissertation, partitions the search space in order to leverage the resources of

cluster of commodity hardwares. At the same time, however, some aspects

of a centralized state are kept, in order to prune the search-space and boost

the performances. PaMPa-HD demonstrated to be a reliable solution when

dealing with datasets characterized by a long number of items per transactions,

outperforming all the competitors. The last contribution of the dissertation

is the description of the usage of distributed frequent itemset mining in a

wider data mining framework aimed to the extraction of misleading generalized

itemsets.

7.1 Future works

Using our work as a starting point, we present possible further development:

Load balancing and Communication Costs. In the experimental

evaluation in Chapter 4, we have seen how the importance of Communication

Costs for frequent itemset mining, even in a Big Data environment, is secondary

with respect to the one related to Load Balancing. High communication costs

can be considered a price worth to be paying in the sake of a balanced load

assignment to the independent commodity machines. The reason is related to

the nature of the problem, in which the most demanding task is related to the

inner data structure exploration. This implies that the reading costs hardly

dominates the overall performances and that a higher priority should be given

to the handling of the inner structures exploited for the itemsets extraction.

In a similar way to [86], it could be very interesting for the community to

analytically model the trade-of between Communication and I/O costs and

the load assigned to a single task (or the degree of parallelism) in the very

speciĄc context of frequent itemset mining.

Self-tuning itemset mining frameworks. All the algorithms presented

in this dissertation, requires speciĄc skills and expertise to be eiciently lever-

aged to extract frequent itemsets from large amount of data. The analyst is

required to select the best method to eiciently deal with the underlying data

and use case features. From this point of view, the improvements in algorithm
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usability could be addressed by designing innovative self-tuning itemset mining

frameworks, capable of intelligently selecting the most appropriate itemset

extraction algorithm and automatically conĄguring it. This passes from a

preliminary analysis of the dataset in order to brieĆy predict which would be

the characteristics of the search space.

Interestingness measures. In literature, many Interestingness measures

for frequent patterns have been devised [55Ű63]. These are user-deĄned mea-

sures, closely related to the usersŠ objective, delivering additional insights with

respect to the mere support of the itemset. Depending on the analysis target,

the data mining experts could choose the appropriate measure to rank and

Ąlter the output of the frequent itemset mining, without being overwhelmed

by a huge amount of patterns. As already mentioned in Section 3.1, some

works focus on the integration of interestingness measures within the mining

process, replacing the support-based constraints [60Ű63]. The integration of

such type of measures within PaMPa-HD represents an interesting possible

development of this work. Even in this case, the best candidates measures are

the ones supporting upward/downward closure property. This feature would

allow the pruning of the search-space during the mining and, as a consequence,

the exploration of a much smaller search-space similarly to the support-based

pruning. At the same time, because of the independence of the parallel explo-

ration tasks, the pruning should be reliable also with a reduced visibility of

the search-space. In PaMPa-HD, for instance, the support is not issued by the

parallelization because the current partition strategy does not negatively afect

the count of itemsets occurrences. However, pruning rule 3 (itemset already

encountered in the exploration, more details in Section 5.2) is less efective due

to the limited visibility of the whole enumeration tree. This rule is not eicient

as if it was implemented in a centralized environment, but, at the same time,

the limited visibility of the search-space does not cause the pruning of branches

that should not be deleted for the correctness of the result.

Sequence mining. Another possible development might be related to the

exploration of the domain of Frequent Sequence Mining. Sequential Pattern

mining is a data mining technique aimed to discover frequent sequences within

a sequence dataset. As frequent pattern mining, centralized methods struggle

under huge amount of data or low minsup values. Even in this case, in fact, the

mining process becomes challenging when the sequences cannot be loaded into
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main memory [111Ű115]. It might be interesting to try to take advantage of our

knowledge of the distributed frequent itemset mining domain to analyze and

address the issues related to the distributed extraction of frequent sequential

patterns.
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