MeTA: Characterization of medical treatments at different abstraction levels

Abstract

Physicians and healthcare organizations always collect large amounts of data during patient care. These large and high-dimensional datasets are usually characterized by an inherent sparseness. Hence, the analysis of these datasets to gure out interesting and hidden knowledge is a challenging task. This paper proposes a new data mining framework based on generalized association rules to discover multiple-level correlations among patient data. Specically, correlations among prescribed examinations, drugs, and patient proles are discovered and analyzed at different abstraction levels. The rule extraction process is driven by a taxonomy to generalize examinations and drugs into their corresponding categories. To ease the manual inspection of the result, a worthwhile subset of rules, i.e., the non-redundant generalized rules, is considered. Furthermore, rules are classied according to the involved data features (medical treatments or patient proles) and then explored in a top-down fashion, i.e., from the small subset of high-level rules a drill-down is performed to target more specic rules. The experiments, performed on a real diabetic patient dataset, demonstrate the effectiveness of the proposed approach in discovering interesting rule groups at different abstraction levels

    Similar works