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Twitter Data Analysis by means of Strong Flipping

Generalized Itemsets

Luca Cagliero∗, Tania Cerquitelli, Paolo Garza, Luigi Grimaudo

Dipartimento di Automatica e Informatica, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129, Torino, Italy

Abstract

Twitter data has recently been considered to perform a large variety of ad-
vanced analysis. Analysis of Twitter data imposes new challenges because
the data distribution is intrinsically sparse, due to a large number of messages
post every day by using a wide vocabulary. Aimed at addressing this issue,
generalized itemsets - sets of items at different abstraction levels - can be
effectively mined and used to discover interesting multiple-level correlations
among data supplied with taxonomies. Each generalized itemset is charac-
terized by a correlation type (positive, negative, or null) according to the
strength of the item correlation.

This paper presents a novel data mining approach to supporting different
and interesting targeted analysis - topic trend analysis, context-aware service
profiling - by analyzing Twitter posts. We aim at discovering contrasting sit-
uations by means of generalized itemsets. Specifically, we focus on comparing
itemsets discovered at different abstraction levels and we select large subsets
of specific (descendant) itemsets that show correlation type changes with re-
spect to their common ancestor. To this aim, a novel kind of pattern, namely
the Strong Flipping Generalized Itemset (SFGI), is extracted from Twitter
messages and contextual information supplied with taxonomy hierarchies.
Each SFGI consists of a frequent generalized itemset X and the set of its
descendants showing a correlation type change with respect to X.

Experiments performed on both real and synthetic datasets demonstrate

∗Corresponding author. Tel.: +39 011 090 7084. Fax: +39 011 090 7099.
Email addresses: luca.cagliero@polito.it (Luca Cagliero),

tania.cerquitelli@polito.it (Tania Cerquitelli), paolo.garza@polito.it (Paolo
Garza), luigi.grimaudo@polito.it (Luigi Grimaudo)

Preprint submitted to



the effectiveness of the proposed approach in discovering interesting and hid-
den knowledge from Twitter data.

Keywords: Social Network Analysis and Mining, Data Mining and
Knowledge Discovery, Generalized Itemset Mining

1. Introduction

In recent years, social networks and online communities have become
a powerful source of knowledge. Social network sites, such as Twitter and
Facebook, are accessed by millions of people every day and their users usually
publish and continuously update multimedia resources, posts, and blogs.

Since actions undertaken by Web users reflect their habits, personal in-
terests, and professional skills, a particular attention has been paid to the
analysis of data acquired from Twitter. Although a large body of research
addresses social network data mining [11, 12, 14, 26, 31, 32, 34, 45], the
potential business impact of mining social data is still largely unexplored.
Service providers (e.g., TV channels, radio stations) may explore and ana-
lyze Twitter posts to improve service provision according to the knowledge
hidden in Twitter data. From a business point of view, it is worth pro-
filing Twitter user trends and message topics to plan targeted promotions
or to identify exceptional situations. For example, let us consider a music
tour organizer. To plan a singer tour in Italy, it is important to known in
which Italian cities and in which time periods people are most likely to at-
tend concerts. The analysis of the Twitter messages posted by Italian users
about a given singer may support organizers in planning tours and advertis-
ing sessions. For example, they can promote album or songs to specific user
segments. Innovative analytics solutions are needed to effectively and effi-
ciently support service profiling and topic trend analysis as well as to discover
exceptional situations from large social data collections. However, Twitter
data is intrinsically sparse because posts range over many different topics
and use a wide vocabulary. To address this issue, a promising research di-
rection is to exploit semantics-based models (e.g., ontologies, taxonomies) to
drive the data mining process and to discover interesting correlations among
Twitter data at different abstraction levels.

Generalized itemset mining [40] is an exploratory data mining technique
that allows us to discover multiple-level correlations among data supplied
with an analyst-provided taxonomy. The taxonomy (i.e., a set of is-a hierar-
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chies) is used to aggregate low-level data items into higher-level concepts. For
example, a city (e.g., Milan) can be generalized as the corresponding coun-
try (e.g., Italy). A generalized itemset (e.g., {(Location,Italy),(Day,Working
day)}) consists of a set of items that either occur in the source dataset or
represent data item generalizations according to the given taxonomy. How-
ever, the potentially large set of extracted itemsets could be hardly man-
ageable by domain experts for manual inspection. By comparing itemsets
extracted at different abstraction levels we focus the analysis on worth-
while itemset subsets, representing only contrasting or unexpected situa-
tions, because in social data analysis targeted actions are often triggered by
exceptional or surprising events [20, 33]. Specifically, itemsets can be fur-
ther evaluated and compared by using established correlation indexes (e.g.,
Kulc, interest, lift [44]), which indicate the item correlation type (i.e., pos-
itive, negative, or null) and strength. If the correlation type of an ancestor
(high-level) itemset is in contrast with those of many of its low-level descen-
dant itemsets, then an anomalous situation may come out. For example, if
items in {(Location,Italy),(Day,Working day)} are positively correlated with
each other, we expect that itemsets such as {(Location,Milan),(Day,Working
day)} have the same correlation type. Otherwise, the comparison between
the two itemsets can be worth investigating more in detail. Even though
itemsets with contrasting correlation have already been studied in [5], to the
best of our knowledge an approach to mining large groups of itemsets in con-
trast with a common ancestor in terms of correlation type has never been
proposed so far.

This paper presents the TFC Analyzer (Twitter Flipping Correlation
Analyzer) system to support different and interesting targeted analysis,
i.e., topic trend analysis, context-aware service profiling, outlier detection. It
aims at analyzing Twitter posts to discover subsets of frequent generalized
itemsets that potentially represent contrasting situations. Given the Twitter
posts (i.e., the tweets) enriched with their publication context (i.e., date,
time, place), a novel kind of pattern, namely the Strong Flipping Generalized
Itemset (SFGI), is mined. SFGIs are patterns in the form X ∼ Ψ, where X

is a frequent generalized itemset having a large set Ψ of low-level exceptions,
i.e., frequent descendant itemsets of X whose correlation type changes with
respect to X. The existence of a large group of contrasting low-level itemsets
may indicate the presence of an unexpected situation in Twitter data. To
extract all SFGIs whose number of contrasting low-level correlations is equal
to or exceeds a given (analyst-provided) threshold, TFC Analyzer exploits
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Table 1: Example dataset D.

Location Day

Milan Working day
Milan Working day
Turin Working day
Trento Working day
Naples High day

an efficient LCM-based (Linear Time Closed Itemset Miner-based) itemset
mining algorithm combined with an ad-hoc post-pruning phase.

Experiments performed on real-life data coming from Twitter demon-
strate the effectiveness of the proposed system in discovering interesting
knowledge. Furthermore, the performance and scalability of the adopted
mining strategy have been evaluated on real and synthetic datasets.

Even though this work focuses on Twitter data analysis, it is worth men-
tioning that the proposed patterns can be successfully mined and exploited
to support knowledge discovery from data coming from different contexts.

This paper is organized as follows. Section 2 presents a motivating exam-
ple. Section 3 compares our work with related approaches. Section 4 thor-
oughly describes the characteristics of the TFC Analyzer system, while
Section 5 describes the experiments performed. Section 6 discusses the ex-
tension of TFC Analyzer in a distributed environment. Finally, Section 7
draws conclusions and discusses future work.

2. Motivating example

We are interesting in analyzing Twitter data to efficiently support busi-
ness applications based on social network data mining, e.g., context-aware
service profiling. Let us consider the example Twitter dataset D in Table 1.
It consists of 5 Twitter posts. For each post the publication weekday and
the city of provenance of the author are available. For the sake of simplicity,
in this preliminary example we disregard the textual content of the tweet as
well as any other contextual information.

Figure 1 shows an example of taxonomy built on the analyzed data. It
generalizes cities as the corresponding region and country, whereas publi-
cation days (working or high days) are aggregated into weekday. Frequent
generalized itemsets are sets of items or generalized items that (i) represent
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(a) GHlocation (b) GHday

Figure 1: Taxonomy built over data items in D

high-level correlations among data and (ii) frequently occur in the dataset,
i.e., their support value is above a given threshold [40]. Itemset quality
measures (e.g., lift, Kulc, interest [44]) have been proposed to evaluate item
correlation strength and type (i.e., positive, negative, or null). Since a po-
tentially large number of itemsets can be extracted, a manual inspection of
the result set could be a challenging task. To discover unexpected and po-
tentially interesting situations we focus on subsets of item correlations at
different abstraction levels that are in contrast in terms of correlation type.

Table 2 reports the frequent generalized itemsets mined from D by a tra-
ditional approach [40] (see Column 2). The mining task was accomplished
by exploiting the taxonomy in Figure 1 and by enforcing an absolute mini-
mum support threshold min sup equal to 1. For each itemset, the support
value (Column 3), the generalization level (Column 4), and the value of an
established correlation index, i.e., the Kulczynsky index [44] (hereafter de-
noted as Kulc), are also reported. By setting the maximum negative and
minimum positive Kulc thresholds max neg cor and min pos cor to 0.7 and
0.8, respectively, itemsets with Kulc between 0.7 and 0.8 are uncorrelated,
itemsets with Kulc below 0.7 show negative item correlation, whereas item-
sets with Kulc above 0.8 indicate a positive item correlation, i.e., their items
co-occur more than expected.

From the comparison between each frequent generalized itemset in Table 2
and its frequent descendants it appears that 3 out of 17 frequent generalized
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Table 2: SFGIs extracted from D. min sup = 1. max neg cor= 0.7. min pos cor= 0.8.
min except = 1

Id Generalized itemset X Sup Level Low level SFGI
(Kulc correlation) descendant set Ψ X ∼ Ψ

Mined: X
Pruned: -

1 {Turin} (1) 1 1 - -
2 {Naples} (1) 1 1 - -
3 {Trento} (1) 1 1 - -
4 {High Day} (1) 1 1 - -
5 {Milan} (1) 2 1 - -
6 {Working Day} (1) 4 1 - -
7 {Naples,High Day} (1) 1 1 - -
8 {Turin,Working Day} (0.625) 1 1 - -
9 {Trento,Working Day} (0.625) 1 1 - -
10 {Milan,Working Day} (0.75) 2 1 - -
11 {South Italy} (1) 1 2 {Naples} (1) -
12 {North Italy} (1) 4 2 {Milan} (1) -

{Turin} (1)
{Trento} (1)

13 {Week Day} (1) 5 2 {Working Day} (1) -
{High Day} (1)

14 {South Italy,Week Day} (0.6) 1 2 {Naples,High Day} (1) X
15 {North Italy,Week Day} (0.9) 4 2 {Turin,Working Day} (0.625) X

{Milan,Working Day} (0.75)
{Trento,Working Day} (0.625)

16 {Italy} (1) 5 3 {North Italy} (1) -
{South Italy} (1)

17 {Italy,Week Day} (0.2) 5 3 {North Italy,Working Day} (1) X
{South Italy,High Day} (1)

itemsets have at least one exception (i.e., a low-level descendant itemset with
different correlation type). The existence of a large number of exceptions may
prompt experts to manually explore these pattern subsets, because items
unexpectedly change their correlation type while climbing up or down the
taxonomy. A SFGI X ∼ Ψ combines a frequent generalized itemset X with
the corresponding subset Ψ of frequent low-level exceptions. SFGIs mined
by setting the minimum number of exceptions min except to 1 are marked
with X at Column 5 in Table 2. Focusing on the generalized itemsets with
at least one exception, itemsets (11), (12), and (13) are not yet considered.
Let us consider the positively correlated itemset (15) {North Italy, Week
Day} and its corresponding negatively correlated descendant itemsets {Turin,
Working Day} and {Trento, Working Day}. Their comparison and analysis
could be deemed to be relevant by domain experts for service shaping and
maintenance. For example, since Twitter posts submitted from Turin and
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Trento from Monday to Friday are less than expected, service maintenance
activities in these cities are less likely to cause disruption if scheduled over
the working days rather than over the weekend.

3. Related work

A significant research effort has been devoted to analyzing the content and
structure of online communities and social networks. For example, in [6, 35]
the authors analyze click-stream and blog data to identify most common Web
user activities, such as universal searches, message sending, and community
creation. Similarly, in [20, 33] the evolution of online communities and the
lifetime of their User-Generated Content (UGC) are investigated. Sentiment
analysis techniques (e.g., [28]) have also been used to detect attitudes and
opinions of social network and online community users. In recent years, the
application of data mining techniques to discover relevant social knowledge
from the UGC has become an appealing research topic [31, 45, 24]. In [19,
43] a particular attention has been paid to microblogging websites, such as
Twitter, which represent rapidly evolving communities. The extraction of
hidden associations from Twitter UGC has already been investigated in [11,
14]. Specifically, the authors in [14] discover trend patterns from Twitter
data to identify the users who contribute towards the discussions on specific
trends. The approach presented in [11] addresses topic trend analysis from
Twitter data by exploiting generalized association rules. Unlike [11, 14], this
paper focuses on discovering unexpected situations from Twitter data by
exploiting a new type of generalized patterns, namely the Strong Flipping
Generalized Itemsets.

A parallel research issue is frequent itemset and association rule mining
driven by item correlation measures [1, 5, 8, 39]. The frequent itemset and
association rule mining problems were first introduced in [2] to discover hid-
den item correlations from potentially large market basket data. The first
attempt to evaluate association rule significance by means of the chi square
test for correlation has been made in [8]. To avoid generating all candidate
frequent itemsets, the upward closure of the chi square measure is exploited to
early prune part of the search space. Since negatively correlated itemsets are
usually characterized by a low support value [42], their extraction becomes a
challenging task when coping with large and complex datasets. To overcomes
this issue, in [1, 39] the authors propose two novel itemset quality measures,
namely the collective strength and support expectation, which can be used to
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indirectly mine negative associations among data. Unfortunately, since chi
square, support expectation, and collective strength are not null-invariant,
their value depends on the dataset size. In [44] the authors investigate the
use of null-invariant correlation measures [25] in frequent itemset mining.
The approach proposed in [5] focuses on exploiting the null-invariant Kul-
czynsky measure to discover flipping correlations among data supplied with
taxonomies. Flipping correlations are itemsets whose correlation type flips
from positive to negative (or vice versa) when items are generalized to a
higher level of abstraction for every generalization step. However, in case
many sibling itemsets flip their correlation type with respect to a common
ancestor, many different patterns are generated and thus the result could
become redundant and hardly readable. Furthermore, in real-world data the
itemset correlation type (i) rarely changes at every generalization step and
(ii) may also change from correlated to uncorrelated (and not only from pos-
itive to negative or vice versa). To overcome these issues, we propose a new
type of generalized pattern, namely the Strong Flipping Generalized Itemsets
(SFGIs). A SFGI consists of a generalized itemset and its corresponding set
of frequent descendant itemsets with contrasting correlation type (positive,
negative, or null). SFGIs differ from flipping correlations [5] because (i) they
do not consider one itemset per abstraction level, but groups of sibling item-
sets with contrasting correlation type with respect to their common ancestor,
(ii) they also consider uncorrelated descendants and not only positive or neg-
ative item correlations. SFGIs that contain many descendant itemsets with
contrasting correlation are selected because they may represent unexpected
situations in the analyzed data.

A parallel effort has been devoted to efficiently extracting generalized fre-
quent itemsets and association rules. The first generalized frequent itemset
mining algorithm has been proposed in [40] in the context of market basket
analysis. It generates itemsets by considering for each item all its parents
in the hierarchy. To avoid generating all the possible candidates in the tax-
onomy the authors in [3, 41] propose to push (analyst-provided) constraints
into the mining process. Many algorithm optimizations have also been pro-
posed [4, 13, 21, 29]. For example, the approach presented in [21] proposes
an optimization strategy based on a top-down hierarchy traversal. It iden-
tifies in advance itemsets that cannot be frequent in a transactional dataset
by exploiting the Apriori principle [2]. In [29] the authors propose to mine
closed and maximal [36] generalized itemsets. More recently, support-driven
approaches to mining generalized itemsets and analyzing their changes over
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time have been presented [4, 9, 10]. In [4, 9] only the itemsets infrequent with
respect to the support threshold are generalized at a higher level of abstrac-
tion, whereas in [10] only the descendant itemsets with different correlation
contribute to the support counting of a high-level ancestor. Unlike [10, 4, 9],
our approach does not rely on a support-driven generalized pattern selec-
tion strategy. Conversely, we discover large groups of sibling itemsets with
contrasting correlation with respect to their common ancestor.

4. The TFC Analyzer framework

TFC Analyzer (Twitter Flipping Correlation Analyzer) is a new
data mining environment to analyze Twitter data with the aim at highlight-
ing unexpected and potentially interesting situations. The main components
of TFC Analyzer are described below.

Twitter data collection and preprocessing. The textual content of
the Twitter posts (i.e., the tweets) and their publication context (i.e., the
publication date and time stamp, the geographical location of the user who
posted the tweet) are retrieved through the Twitter Stream APIs (Applica-
tion Programming Interfaces). Twitter data are first preprocessed to make
them suitable for the subsequent mining steps and then integrated into a
common transactional data repository to perform off-line data analysis. The
preprocessed dataset contains a set of transactions, where each transaction
corresponds to a different tweet and contains both textual content and con-
textual feature values.

Expert-driven taxonomy generation. A taxonomy (i.e., a set of is-a
hierarchies) is generated over the analyzed Twitter data with the help of
domain expert. A semi-automatic procedure based on an established lex-
ical databases (i.e., WordNet [15]) is used to aggregate tweet words into
higher-level concepts, whereas analyst-provided aggregation functions (pos-
sibly relying on external database queries) are used to generalize spatial and
temporal contextual data.

Strong Flipping Generalized Itemset Miner. Given a Twitter dataset
and the corresponding taxonomy, a novel kind of pattern, namely the Strong
Flipping Generalized Itemsets (SFGI), is extracted. SFGIs are worth being
manually explored by domain experts because they represent unexpected and
potentially interesting situations in Twitter data.

A more thorough description of the TFC Analyzer components is given
in the following sections.
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4.1. Twitter data collection and preprocessing

Tweets are short, user-generated, textual messages of at most 140 char-
acters long and publicly visible by default. Beyond the textual content, some
additional tweet features describing the context of publication of the tweet
(i.e., the GPS coordinates of the user who posted the tweet, the tweet pub-
lication date and time stamp) are commonly available.

This component performs the retrieval of data published on the Twitter
microblogging website (http://twitter.com). To make data suitable for the
subsequent (offline) data mining analysis a preprocessing step is applied to
raw data. The textual content of each tweet and its corresponding contex-
tual information are retrieved through the Stream Application Programming
Interfaces (APIs). Data is gathered, prior to tweet deletion, by establishing
and maintaining a continuous connection with the stream endpoint. Twitter
data is retrieved in the JSON (JavaScript Object Notation) format, which is
a text-based open standard for data exchange. A simplified example of two
Twitter messages in the JSON format is reported in Figure 2.

TWEET ID 1

UserB: [{profile_image_url:..., created_at: Mon, 01 Oct 2012

13:30:12 +0000, from_user:.., metadata:{result_type: recent}, to_user_id: X,

text: Data mining enables knowledge discovery, id: X, from_user_id: X, to_user: User2,

geo:{coordinates: +X -Y id: Z, place: Los Angeles, place_type: city

Country: California-United States of America}, iso_language_code:en, source..

TWEET ID 2

UserA: [{profile_image_url:..., created_at: Tue, 30 Oct 2012

11:43:31 +0000, from_user:.., metadata: {result_type:recent}, to_user_id: X,

text: Data analysis a complex task!, id: Y, from_user_id: X, to_user: UserB,

geo:{coordinates:+X -Y id: Z, place: New York City, place_type: city

Country: NY-United States of America}, iso_language_code: en, source..

Figure 2: A simplified example of tweet set in the JSON data format

To suit the raw textual data to the following mining process, some pre-
liminary data cleaning and processing steps are applied. Specifically, textual
messages are preprocessed by eliminating stopwords, numbers, links, non-
ascii characters, mentions, and replies (not only the @ sign), and reducing
words to their lemmas by using the WordNet lexical database [7].

After preprocessing, textual words and contextual data are both mapped
to distinct data items, whose formal definition follows.
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Definition 4.1. Item. Let TW be a tweet set. An item i is a literal expres-
sion occurring in twj ∈ TW . It is expressed as a pair (feature:value), where
feature denotes a tweet feature (e.g., text, location, time, date, day) while
value its corresponding value in twj.

Hereafter we will consider the following subset of tweet features, which
can be directly read from the JSON tweet representation: (i) Text: tex-
tual content, (ii) Location: GPS coordinates, (iii) Time: publication time
stamp, (iv) Date: publication date, (v) Day: publication weekday.

Examples of items occurring in tweet 1 of Figure 2 are (Time:1.30 p.m.),
(Text:Data), (Text:Knowledge), and (Day:Monday).

To perform the subsequent data mining analysis we tailor Twitter data
to the transactional data format. To this aim, for each tweet we generate the
corresponding transaction. Each transaction consists of a set of items related
to both textual content and contextual features. To avoid item repetitions
within each transaction the stemmed words occurring in the tweet content
are mapped to a set of distinct data items (i.e., words occurring many times
in the same tweet are represented just once). Note that word repetitions are
very unlikely because tweets are relatively short messages. A more formal
definition of the transactional data model is reported below.

Definition 4.2. Transactional Twitter dataset. Let TW be a tweet set.
The transactional Twitter dataset T associated with TW is a set of transac-
tions tj, one for each tweet twj ∈ TW . Each transaction tj={item1, item2,
. . ., itemk} is a set of distinct items related to twj.

For example, Figure 3 shows the tweets of the transactional Twitter
dataset generated from the example in Figure 2.

TWEETS
Tweet ID 1
(Text:Data), (Text:Mining), (Text:Enable), (Text:Knowledge), (Text:Discovery), (Location:Los

Angeles), (Date:2012-30-01), (Day:Monday), (Time:1.30 p.m.)

Tweet ID 2
(Text:Data), (Text:Analysis), (Text:Complex), (Text:Task), (Location:New York),
(Date:2012-10-30), (Day:Tuesday), (Time:11.43 a.m.)

Figure 3: An example of transactional Twitter dataset
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4.2. Expert-driven taxonomy generation
Given a transactional Twitter dataset T , this component accomplishes

the task of generating a taxonomy Θ over items in T with the help of a
domain expert. A taxonomy Θ is a set of generalization hierarchies. Each
generalization hierarchy is a tree-based structure whose leaf nodes are items
in T , whereas upper-level nodes, named generalized items, aggregate items
in T into higher-level concepts.

For example, recalling the running example in Figure 3, (Time:1.30 p.m.)
is an example of taxonomy leaf, whereas (Time:From 1 p.m. to 3 p.m.)
is an example of generalized item which aggregates time stamps into the
corresponding time slot.

Each generalization hierarchy refers to a specific Twitter data feature.
For example, a generalization hierarchy may aggregate specific textual terms
(e.g., (Text:Mining)) into higher-level concepts (e.g., (Text:Process)), whereas
another hierarchy can aggregate specific geographical locations ((Location:
Value)) into the corresponding city, region, and country. Note that some
spatial aggregations are already indicated in the JSON tweet format. For
example, for each pair of GPS coordinates in Figure 2 the corresponding city
and country are also available (see tags Place, Place type and Country).

To extend the set of available data aggregations and generate a complete
taxonomy over the transactional Twitter dataset, TFC Analyzer exploits
a semi-automatic, expert-driven approach. According to the type of data
item considered, two different strategies have been adopted:

Domain-specific database querying. The first strategy entails defin-
ing aggregation functions which rely on semantics-based models, such as
controlled vocabularies, lexical or domain-specific databases. For example,
an aggregation function could access a geographical database (e.g., through
the Google Maps APIs available at https://developers.google.com/maps/)
to derive from a pair of GPS coordinates the corresponding city, region, and
country. Similarly, the WordNet lexical database [15] could be queried to re-
trieve the most relevant semantic relationships between lemmas. More specif-
ically, we derive hyponyms (i.e., is-a-subtype-of relationships) from WordNet
to generalize lemmas as higher-level concepts. For example, according to the
WordNet relationship <dog> is-a-subtype-of <domestic animal> we gener-
alize item (Text:Dog) as (Text:Domestic animal). The generalization process
is iterated to find higher-level aggregations, e.g., according to the WordNet
relationship <domestic animal> is-a-subtype-of <animal> we further gener-
alize (Text:Domestic animal) as (Text:Animal)).
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Data warehousing-like hierarchy generation. Hierarchy definition
is a standard and established step of the data warehouse design process [27].
Specifically, hierarchies are usually defined on temporal data by exploiting
predefined hierarchies or aggregation functions which extract is-a relation-
ships parsing item values. For example, by aggregating dates into the corre-
sponding month item (Date:2012-10-30) can be simply parsed and general-
ized as (Date:2012-10). Items and generalized items may be also aggregated
according to different data facets. For example, months may be further ag-
gregated into the corresponding trimester or 4-month time period. Similar
ad-hoc aggregation functions are usually exploited to generate hierarchies on
non-temporal data (e.g., products may be generalized as the corresponding
category or brand, etc).

In general, a taxonomy may include items that belong to many generaliza-
tion hierarchies. For the sake of simplicity, in the following we only consider
taxonomies in which items belong to at most one generalization hierarchy.

4.3. Strong Flipping Generalized Itemset mining

This component aims at analyzing Twitter data to discover the Strong
Flipping Generalized Itemsets (SFGIs).

This section is organized as follows. Section 4.3.1 introduces some pre-
liminary and well-known concepts related to the frequent generalized item-
set mining problem. Section 4.3.2 formally states the SFGI mining problem,
while Section 4.3.3 thoroughly describes the SFGI mining process adopted
in TFC Analyzer.

4.3.1. Preliminary concepts and notation

Given a transactional Twitter dataset T , a taxonomy Θ, and a minimum
support threshold min sup, the frequent generalized itemset mining prob-
lem, first introduced in [40], entails discovering all the frequent generalized
itemsets from T .

An itemset [2] is defined as a set of dataset items. For example, {(Location:
Los Angeles), (Date:2012-01-30)} is an example of itemset occurring in the
running example (see Figure 3). A taxonomy is used to generalize items at
a higher level of abstraction and discover generalized (high-level) itemsets.
For example, if (Location:U.S.A) and (Date:2012-01) are ancestors of (Loca-
tion:Los Angeles) and (Date:2012-01-30) with respect to a given taxonomy,
then {(Location:U.S.A), (Date:2012-01)} is a generalized itemset.
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Generalized itemsets are characterized by several remarkable properties,
which are briefly outlined below.
Level-sharing itemset. The level of a generalized item ij with respect to a
given taxonomy is defined as the height of the subtree rooted in ij. Gener-
alized itemsets whose items all have the same level are called level-sharing
itemsets [21]. The level of a level-sharing itemset with respect to a given
taxonomy corresponds to the one of its items. Similar to [21], in the work
we focus on this generalized itemset subset.

To mine level-sharing itemsets, analysts have to generate balanced tax-
onomy hierarchies (i.e., all the hierarchies in the taxonomy must have the
same height). Since the semi-automatic taxonomy generation procedure de-
scribed in Section 4.2 could generated unbalanced hierarchies, we re-balance
taxonomy hierarchies before itemset mining by means of the following pro-
cedure: given a taxonomy with maximal aggregation tree height Hmax, for
each aggregation tree with height H < Hmax we perform a depth-first visit.
For each tree leaf node with depth less than Hmax we added several copies
of the item with highest level sharing the same branch, say i, as ancestors
of i until depth Hmax is reached. As discussed in [5], the aforementioned
procedure is established in level-sharing itemset mining.
Descent relationship. A generalized k-itemset I1 (i.e., a generalized itemset
composed of k distinct items) is a descent of another k-itemset (I2) if for
every item ij ∈ I1 there exists an item ik ∈ I2 such that either ij=ik or ij is
a descendant of ik with respect to the given taxonomy.
Coverage and support. A generalized itemset is said to cover a given dataset
transaction ti ∈ T if all its generalized items are either contained in ti or
ancestors of items in ti. The support of a generalized itemset I in T is
defined as the ratio between the number of transactions in T covered by
I and the total number of transactions in T . A generalized itemset whose
support is equal to or above a given threshold min sup is said to be frequent.
For example, itemset {(Location:U.S.A.), (Date:2012-01)} has support 1

2
in

the dataset in Figure 3, because it covers only the first transaction.
Correlation. Correlation measures are used to evaluate the strength of the
correlation between the items contained in a given itemset. The Kulczynsky
(Kulc) correlation measure of a generalized k-itemset I is defined as follows:

kulc(I) =
1

k

k∑

j=1

sup(I, T )

sup(ij, T )
(1)
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where sup(I, T ) is the support of I in T and ij [1 ≤ j ≤ k] is the j-th item
in I.
As follows from Equation 1, Kulc index values range from 0 to 1. Unlike
several other existing itemset correlation measures (e.g., lift, interest [42]),
Kulc has the null (transaction)-invariant property, which implies that the
correlation measure is independent from the dataset size [44].

By properly setting a maximum negative and a minimum positive Kulc
thresholds, hereafter called max neg cor and min pos cor, generalized item-
sets may be classified, according to their correlation value, as negatively cor-
related, not correlated, or positively correlated itemsets. More specifically,
generalized itemsets with Kulc between max neg cor and min pos cor are un-
correlated, generalized itemsets with Kulc below max neg cor show negative
item correlation, whereas generalized itemsets with Kulc above min pos cor
indicate a positive item correlation, i.e., the co-occurrence between its items
holds more than expected. For the sake of brevity, we respectively denote
the above itemset correlation value ranges as null, negative, and positive cor-
relation types throughout the paper.

4.3.2. Mining task

We extend the traditional generalized itemset mining problem by propos-
ing a novel kind of pattern, namely the Strong Flipping Generalized Itemset
(SFGI). SFGIs are patterns in the form X ∼ Ψ, where X is a frequent gen-
eralized itemset having a large set Ψ composed of X’s descendants whose
correlation type differs from the one of X. A more formal definition follows.

Definition 4.3. Strong Flipping Generalized Itemset (SFGI). Let T
be a transactional Twitter dataset, Θ a taxonomy, min sup a minimum sup-
port threshold, and FI the set of frequent generalized itemsets mined from T
by enforcing min sup. Let min except a minimum number of exceptions. Let
X ∈ FI be a frequent generalized itemset of level l with correlation type t

(positive, null, or negative) such that Ψ, which is the subset of X’s frequent
descendants of level l−1 with correlation type different from t, has cardinality
greater than or equal to min except. A SFGI is a pattern in the form X ∼ Ψ.

SFGIs X ∼ Ψ are worthy of consideration by domain experts, because
they provide interesting insights into data correlation changes when gener-
alizing items at different abstraction levels. As shown in Section 5, SFGI
extraction from Twitter dataset is deemed to be particularly useful by a do-
main expert, because the extracted patterns may prompt targeted actions,
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such as topic trend analysis, context-aware service profiling, and outlier de-
tection.

Given a Twitter dataset T , a taxonomy Θ, a minimum number of excep-
tions min except, a minimum support threshold min sup, and two maximum
negative and minimum positive Kulc correlation thresholds max neg cor and
min pos cor, TFC Analyzer discovers all the SFGIs (Cf. Definition 4.3)
satisfying all the above constraints.

4.3.3. SFGI mining

To accomplish the SFGI mining task, the TFC Analyzer system ex-
ploits an efficient LCM-based itemset mining algorithm [18] combined with
an ad-hoc postpruning phase. A thorough description of the mining process
is reported below.

SFGI extraction entails the following steps: (i) Traditional frequent level-
sharing itemset mining and (ii) SFGI extraction at the top of the previously
extracted itemsets. During the itemset mining process the taxonomy is eval-
uated in a bottom-up fashion, i.e., the SFGIs are generated in order of in-
creasing generalization level. A pseudo-code of the mining process is reported
in Algorithm 1.

Frequent level-sharing itemset mining. For each SFGI X ∼ Ψ its
X part is a frequent level-sharing itemset, while its Ψ part also contains
frequent level-sharing X’s descendants. Hence, we use a traditional level-
sharing itemset mining algorithm to drive SFGI generation (see line 2).

To accomplish this task efficiently, we adopted a FP-Growth-like itemset
miner, i.e., Linear Time Closed Itemset Miner v.2 (LCMv2) algorithm [18].
Similar to FP-Growth [23], LCM relies on a projection-based approach, i.e.,
it entails: (i) the creation and in-memory storage of an FP-tree-based dataset
representation and (ii) the mining of frequent itemsets by recursively visiting
conditional FP-tree projections. To suit the standard LCM implementation
to generalized itemset mining, we adopted the strategy, first proposed in [40],
of extending the dataset transactions by appending to each transaction all
the item generalizations in Θ. Furthermore, the recursive generation of the
projected FP-tree is tailored to level-sharing itemset mining. More specif-
ically, the conditional FP-tree related to the level-l item i is populated by
adding only level-l items. In such a way, the generation of candidate not level-
sharing itemsets is prevented. Frequent level-sharing itemsets are stored in
T I (line 2).
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Algorithm 1 SFGI mining procedure
Input: a transactional Twitter dataset T , a taxonomy Θ, a minimum support threshold min sup, a

minimum number of exceptions min except, a maximum negative Kulc threshold max neg cor, and a
minimum positive Kulc thresholds min pos cor

Output: the set of all SFGIs L
1: /* Frequent level-sharing itemset mining. */
2: T I = mineTraditionalLevelSharingItemsets(T , Θ, min sup)
3: /* SFGI mining */
4: L = ∅
5: /* Generate SFGIs X ∼ Ψ having X with level l > 1 */
6: for l=2 to maxlevel do
7: /* One candidate SFGI of level l is generated for each frequent level-sharing itemset of level l */
8: /* maxlevel is the height of taxonomy Θ */
9: for all W in T I[l] do
10: /* Create a candidate SFGI of level l with W as its X part. Ψ is initially set to the empty set

*/
11: insert the candidate SFGI (W ∼ ∅) into C[l]
12: end for
13: /* Exploit frequent level-sharing itemsets of level l− 1 to populate the Ψ part of candidate SFGIs

of level l. */
14: for all it in TI[l− 1] do
15: /* Retrieve the candidate itemset genit of level l that is ancestor of it and update genit.Ψ */
16: genit = retrieveAncestor(TI[l],it,l,Θ);
17: cor type genit=Kulc(genit,T ,max neg cor,min pos cor)
18: cor type it=Kulc(it,T ,max neg cor,min pos cor)
19: /* If the level-(l − 1) candidate it has a correlation type different from genit then it must be

inserted into genit.Ψ */
20: if cor type genit 6= cor type it then
21: insert it into genit.Ψ
22: end if
23: end for
24: /* Select candidate SFGIs of level l with a large number of low level exceptions */
25: for all c in C[l] do
26: if |Ψ| ≥min except then
27: insert c into L[l]
28: end if
29: end for
30: end for
31: return L

SFGI mining: Once all the frequent level-sharing itemsets X are gener-
ated, TFC Analyzer first associates with each of them a candidate SFGI
X ∼ Ψ and populates its corresponding Ψ set. Then, SFGIs are evaluated
and filtered according to their number of low-level exceptions (see Defini-
tion 4.3).

SFGIs are mined by following a level-wise approach, i.e., by climbing up
the taxonomy step-wise from level 2 until the maximum generalization level
is reached (lines 6-30). Note that, by Definition 4.3, level-sharing itemsets of
level-1 cannot be the X part of any SFGI. Level-wise taxonomy evaluation
prevents the need for multiple itemset scans. In fact, SFGIs with level-l X
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part are generated from the sets of level-l and level-(l − 1) frequent level-
sharing itemsets T I[l] and T I[l − 1]. In Algorithm 1 genit represents the
level-l generalization of an arbitrary level-(l − 1) itemset it according to the
input taxonomy. While level-l itemsets in T I[l] are used to populate the X

part of the level-l SFGIs X ∼ Ψ (lines 9-12), level-(l−1) itemsets in contrast
with X in terms of correlation type are used to fill their Ψ set (lines 14-23).
Hence, when mining level-l SFGIs, all the traditional frequent itemsets with
level less than l − 1 can be discarded.

Finally, the SFGIs of level l having a number of exceptions greater than
or equal to min except are added to the output set (lines 25-29).

Time complexity. The analysis of the complexity of the SFGI mining
process can be divided into two steps. The first step concerns the analysis of
the time complexity of the frequent level-sharing itemset mining task. Since
it has been accomplished by a LCMv2 algorithm, it is linear in the number
of extracted itemsets [18]. The second step entails the analysis of the SFGI
mining procedure, which is performed at the top of level-sharing itemsets.
Since the SFGI extraction requires a level-wise scan of the list of extracted
itemsets, its time complexity is again linear in the number of mined itemsets.

5. Experimental results

We performed experiments on both real-life and synthetic datasets to
evaluate effectiveness and efficiency of the proposed approach. Specifically,
we analyzed (i) the applicability and usefulness of the TFC Analyzer sys-
tem on three real Twitter datasets with the help of a domain expert (see
Section 5.2), (ii) the expressiveness of the mined SFGIs compared to that
of the patterns extracted by a state-of-the-art approach [5] from Twitter
datasets (see Section 5.3), (iii) the impact of the parameters of the SFGI
mining process on the mined SFGIs (see Section 5.4), and (iv) the scalability
of the SFGI mining process on synthetic datasets (see Section 5.5).

The TFC Analyzer system was implemented in the C++ programming
language. Experiments were performed on a 3.30 GHz Intel(R) Xeon(R) CPU
E3-1245 PC with 16 GB main memory running Linux (kernel 3.2.0).

5.1. Datasets

This section briefly describes the characteristics of the evaluated datasets
and taxonomies. All the datasets and taxonomies that were used in the
experiments are available at [16].
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Table 3: Main Twitter dataset characteristics.

Dataset Number of Average Taxonomy
name transactions transaction height

length

Music 4,464 11.6 4
Sport 39,508 9.7 4
Cinema 3,431 9.2 4

Twitter datasets. We evaluated the usefulness and applicability of the SFGIs
generated by the TFC Analyzer system from three real datasets retrieved
from Twitter (http://twitter.com). The main characteristics of the Twitter
datasets are summarized in Table 3.

TFC Analyzer exploits a crawler to efficiently access the Twitter global
stream. To generate the three real Twitter datasets, concerning three differ-
ent topics (i.e., Sport, Cinema, Music), we monitored the public stream end-
point offered by the Twitter APIs over a 1-month time period and we tracked
the tweets containing a selection of approximately 10 significant keywords per
topic. The crawler establishes and maintains a continuous connection with
the stream endpoint to collect and store Twitter data. As described in Sec-
tion 4.1, tweets ranging over the same topic are first preprocessed and then
integrated into a transactional dataset (Cf. Definition 4.2). We collected
the textual content of the tweets as well as their most relevant contextual
features. For the latter we considered the tweet publication date, week-
day, and time stamp as well as the GPS coordinates of the author location.
Taxonomies over Twitter data are generated by exploiting the aggregation
functions described in Section 4.2.

Synthetic datasets. We analyzed the scalability of the SFGI extraction pro-
cess on transactional datasets generated using a synthetic generator [40].
The data generator allows us to automatically produce datasets and tax-
onomies with different characteristics. Specifically, the number of generated
transactions, the average transaction length, and the taxonomy height can
be manually configured.

5.2. Expert validation

We validated the usefulness of the SFGIs mined from the three real Twit-
ter datasets reported in Table 3 with the help of a domain expert. The
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Table 4: Examples of interesting classes of SFGIs and number of mined SFGIs per class.
Class Number of SFGIs

Music Sport Cinema
Context-aware service profiling 1 5 4

Context-aware topic trend analysis 293 198 66
Outlier detection 5 4 6

experiments were performed by setting min sup = 1%, max neg cor= 0.4,
min pos cor= 0.5, and min except = 2 for all the three considered datasets.
As discussed in Section 5.4, we suggest using the aforementioned parame-
ter setting as standard configuration, because it produces manageable sets
of SFGIs for all the three analyzed Twitter datasets. More specifically, the
number of SFIGs mined from the Cinema, Music and Sport datasets by set-
ting the standard configuration is 327, 2059, 851, respectively. Note that the
number of “traditional” level-sharing generalized itemsets mined from the
same datasets by applying a traditional approach, such as the one proposed
by Han et al in [22], is two orders of magnitude higher while enforcing the
same minimum support threshold (i.e., 20933 for Cinema, 450383 for Music,
56824 for Sport). Since SFGIs are more easily manageable than traditional
patterns, they are in practice more usable to discover interesting knowledge
from Twitter data.

The domain expert, who has experience in traditional itemset minign
from Twitter data, is in charge of comparing the information provided by
SFGI with that provided by traditional itemsets. Specifically, the expert
validation task is to pinpoint interesting and previously unknown knowledge
from all the three considered datasets and, at the same time, highlight the
higher usefulness of SFGIs compared to traditional itemsets. To focus the
analysis on a worthwhile pattern subset, the expert first defined a set of SFGI
“classes”. We denote as a “class” a subset of SFGIs that are all related to
the same subset of data features and that can be used to perform a similar
in-depth analysis. Once the SFGI classes have been identified, the domain
expert selected three classes that are deemed to be most useful in three
real-life application contexts: context-aware service profiling, contextualized
topic trend detection, and outlier detection. Table 4 reports the number
of mined SFGIs per selected classes. All the SFGIs that comply with the
aforementioned classes are considered to be interesting by the domain expert
for in-depth analysis and thus they manually explored. To gain an insight
into the achieved results, Table 5 reports a subset of representative SFGIs
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Table 5: Examples of selected SFGIs X ∼ Ψ mined from the Twitter datasets.
ID Dataset Generalized itemset X Exception set Ψ

(Kulc, support, level)
1 Music {(Date:Working Day),(Loc:Twickenham Rugby Stadium)} {(Date:2012-09-08),(Loc:51.45542 -0.34165)}

(Kulc=0.36 (Negative), Sup=11.0%, Level=2) (Kulc=0.66 (Positive), Sup=8.3%)
{(Date:2012-09-10),(Loc:51.45542 -0.34165)}

(Kulc=0.51 (Positive), Sup=1.5%)
2 Cinema {(Date:Working Day),(Loc:Bayernring)} {(Date:2012-09-07),(Loc:52.48102 13.39100)}

(Kulc=0.51 (Positive), Sup=7.6%, Level=2) (Kulc=0.20 (Negative), Sup=1.7%)
{(Date:2012-09-08),(Loc:52.48102 13.39100)}

(Kulc=0.39 (Negative), Sup=4.7%)

3 Music {(Date:Working Day),(Loc:Sumatralaan), (Text:mtv)} {(Date:2012-09-26),(Loc:52.23512 5.17347),(Text:mtv)}
(Kulc=0.92 (Positive), Sup=72.4%, Level=2) (Kulc=0.34 (Negative), Sup=1.6%)

{(Date:2012-09-25),(Loc:52.23512 5.17347), (Text:mtv)}
(Kulc=0.36 (Negative), Sup=4.1%)

{(Date:2012-09-24),(Loc:52.23512 5.17347),(Text:mtv)}
(Kulc=0.44 (Null), Sup=13.3%)

{(Date:2012-09-22),(Loc:52.23512 5.17347),(Text:mtv)}
(Kulc=0.31 (Negative), Sup=5.0%)

{(Date:2012-09-21),(Loc:52.23512 5.17347),(Text:mtv)}
(Kulc=0.37 (Negative), Sup=5.7%)

{(Date:2012-09-20),(Loc:52.23512 5.17347),(Text:mtv)}
(Kulc=0.42 (Null), Sup=10.2%)

{(Date:2012-09-19),(Loc:52.23512 5.17347),(Text:mtv)}
(Kulc=0.44 (Null), Sup=12.9%)

{(Date:2012-09-18),(Loc:52.23512 5.17347),(Text:mtv)}
(Kulc=0.48 (Null), Sup=16.8%)

{(Date:2012-09-17),(Loc:52.23512 5.17347),(Text:mtv)}
(Kulc=0.35 (Negative), Sup=2.7%)

4 Sport {(Date:Working Day),(Loc:Stratford Walk), (Text:olympic)} {(Date:2012-09-08),(Loc:51.53841 -0.01648),(Text:olympic)}
(Kulc=0.53 (Positive), Sup=5.8%, Level=2) (Kulc=0.29 (Negative), Sup=2.8%)

{(Date:2012-09-07),(Loc:51.53841 -0.01648),(Text:olympic)}
(Kulc=0.30 (Negative), Sup=2.1%)

5 Cinema {(Time:PM),(Loc:USA)} {(Time:[18-23],(Loc:CA 94607)}
(Kulc=0.58 (Positive), Sup=15.7%, Level=3) (Kulc=0.37 (Negative), Sup=1.9%)

{(Time:[18-23]),(Loc:CA 90731)}
(Kulc=0.23 (Negative), Sup=1.7%)
{(Time:[12-17]),(Loc:CA 90731)}

(Kulc=0.16 (Negative), Sup=1.2%)
{(Time:[18-23]),(Loc:TX 75212)}

(Kulc=0.30 (Negative), Sup=1.1%)
6 Sport {(Time:AM),(Loc:South Korea)} {(Time:[00-05],(Loc:Seoul)}

(Kulc=0.59 (Positive), Sup=6.3%, Level=3) (Kulc=0.45 (Negative), Sup=3.9%)
{(Time:[06-11]),(Loc:Seoul)}

(Kulc=0.24 (Negative), Sup=2.3%)

selected, clustered by the corresponding class. For each SFGI in Table 5 we
indicate the real dataset from which it was mined, and the Kulc value and
the correlation type (positive, negative, or null). The considerations of the
domain expert about the results reported in Table 5 are summarized below.

Context-aware service profiling. SFGIs may drive experts in profil-
ing services according to user location and post submission time. Based on
the analyzed patterns, experts can plan targeted location- and time-aware
promotions. For example, the X part of the SFGI with ID 1 represents a
high-level negative item correlation discovered from the Music dataset, which
indicates that Twitter users do not often post tweets while they are nearby
the Twickenham Rugby Stadium over working days. However, considering
only the generalized itemset X by itself could be misleading, because when
some important events (e.g., concerts) take place, user interests may unex-
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pectedly change. Changes appear to be relevant by analyzing the exception
set Ψ. For example, it contains a positive correlation between a specific
date (September 8th, 2012) and location (Loc:51.45542 -0.34165) nearby the
Twickenham Rugby Stadium. A similar positive correlation holds between
September 10th, 2012 and the same location. Since the exception set Ψ of
SFGI 1 contains 2 exceptions, the expert deemed its extraction to be rele-
vant for in-depth analysis. Furthermore, analysts located very far away from
the tweet submission place are often unaware of the current breaking events
related to different countries or places. Hence, for marketing purposes they
may would like to analyze the past Twitter user activities to discover most
suitable time periods over which specific services (e.g., news services, video
promotion, travel offers) should be offered. Surfing the Internet, the expert
discovers that Lady Gaga performed two sold-out concerts at the Twicken-
ham Rugby Stadium exactly on the same dates highlighted in the exception
set Ψ of SFGI 1. Therefore, low-level correlation type changes are motivated
by an extraordinary public event.

Similar to SFGI 1, the SFGI with ID 2 represents a correlation between
working days and a location, which can be used to perform service profiling.
Unlike the former case, the X part of SFGI 2 represents a positive item corre-
lation, whereas the exception set contains a set of negative item correlations.
Note that if we consider only the SFGIs that correspond to combinations
of locations and weekdays the mining result becomes easily manageable by
domain experts. For example, only 5 SFGIs belonging to this class were
extracted from Sport (see Table 4).

Context-aware topic trend analysis. SFGIs may drive experts in
profiling trends and topics of interest based on location and time. For exam-
ple, let us consider SFGI 3. It indicates that many tweets about the MTV
channel (Text:mtv) were posted from a specific location of the Netherlands
(Sumatralaan) during working days. The X part of this SFGI has a positive
item correlation. Hence, MTV can be considered to be of topical interest
for people coming from Sumatralaan during working days. On the other
hand, the same topic becomes less appealing in some specific days. The
set of negatively correlated or uncorrelated exceptions is reported in the Ψ
set. Discovering unexpected changes in user interests and classifying them
according to user provenance or time period could be useful for planning
targeted promotional campaigns for specific products or services. SFGI 4
was extracted from the Sport dataset and it represents a positive correlation
between a specific combination of weekday, location and topic (Olympic),
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which is worthy for topic trend analysis.
Outlier detection. SFGI analysis can be also targeted to identifying

anomalous situations. Exploring generalized itemset exceptions, which may
consist of positively correlated, negatively correlated, or even uncorrelated
items, may allow experts to figure out unexpected or anomalous behaviors.
For example, let us consider SFGI 5. It indicates that, although American
people are used to post tweets “after midday” (i.e., from 12 A.M. to 12 P.M.),
this recurrence does not hold for some specific locations and time slots (e.g.,
the correlation between users in located in CA 90731 and time slot [18 p.m.,
23 p.m.] is negative). From a marketing viewpoint, this information could
be valuable for outlier detection and analysis. For example, analysts may
focus their attention on this kind of anomalous situations in Twitter data to
discover interesting and underlying user behaviors. SFGI 6, which was mined
from the Sport dataset, shows a similar contrasting situation between South
Korea and Seoul. Specifically, “before midday” time slot (Time:AM) and
South Korea are positively correlated, whereas between the time slot [00:00,
05:00] and the capitol of Korea (Seoul) the item correlation type is negative.

The domain expert confirms the higher manageability and significance of
the extracted SFGIs with respect to traditional itemsets (traditional itemset
sets are at least one order of magnitude larger than SFGI sets).

5.3. Comparison with a state-of-the-art flipping correlation miner

We also compared, with the help of the domain expert, the expressiveness
of the SFGIs mined from the Twitter datasets with that of the flipping pat-
terns extracted by a recently proposed approach, namely Flipper [5]. Flipper
discovers flipping correlations, i.e., frequent itemsets whose correlation type
flips from positive to negative (or vice versa) when itemsets are generalized
to a higher level of abstraction. Note that a flipping correlation is a chain of
itemsets, with pairwise ancestor/descendant relationships, and contains ex-
actly one frequent (generalized) itemset per taxonomy level (e.g., 4 itemsets
when dealing with 4-level taxonomies). Furthermore, each included general-
ized itemset (i) must be in contrast, in terms of correlation type, with both
its corresponding ancestor and descendant and (ii) cannot be uncorrelated
(i.e., the itemsets with correlation type null are disregarded even if their
ancestor/descendant items are correlated with each other).

The comparison was performed on the Cinema dataset by enforcing the
standard configuration (min sup = 1%, max neg cor= 0.4, min pos cor= 0.5,

23



Table 6: Comparison between a representative SFGI and three flipping correlations [5].
Cinema datasets. max neg cor=0.4. min pos cor=0.5.

SFGI
min sup = 1%, min except = 2, max neg cor=0.4, min pos cor=0.5.

itemset kulc support (%)
{(Date:Working Day),(Time:from 7 a.m. to 12 a.m.)} 0.51 (Positive) 22.3

Exceptions:
{(Date:Working Day),(Time:11 a.m.)} 0.38 (Negative) 3.07
{(Date:Working Day),(Time:10 a.m.)} 0.38 (Negative) 2.44
{(Date:Working Day),(Time:9 a.m.)} 0.42 (Null) 2.44
{(Date:Working Day),(Time:8 a.m.} 0.19 (Negative) 3.87
{(Date:Working Day),(Time:7 a.m.} 0.46 (Null) 0.16
{(Date:Working Day),(Time:6 a.m.)} 0.39 (Negative) 3.87

Flipping correlations
min sup=0.08%, max neg cor=0.4, min pos cor=0.5.

itemset kulc support (%)
{(Date:Working Day),(Time:from 7 a.m. to 12 a.m.)} 0.51 (Positive) 22.3

{(Date:Working Day),(Time:6 a.m.)} 0.39 (Negative) 3.87
{(Date:Working Day),(Time:14-06)} 0.50 (Positive) 0.29
{(Date:2012-09-22),(Time:06.14.19)} 0.39 (Negative) 0.17

{(Date:Working Day),(Time:from 7 a.m. to 12 a.m.)} 0.51 (Positive) 22.3
{(Date:Working Day),(Time:6 a.m.)} 0.39 (Negative) 3.87
{(Date:Working Day),(Time:14-06)} 0.50 (Positive) 0.29
{(Date:2012-09-21),(Time:06.14.19)} 0.13 (Negative) 0.08

{(Date:Working Day),(Time:from 7 a.m. to 12 a.m.)} 0.51 (Positive) 22.3
{(Date:Working Day),(Time:10 a.m.)} 0.38 (Negative) 2.44
{(Date:Working Day),(Time:27-10)} 0.5 (Positive) 0.16
{(Date:2012-09-21),(Time:10.27.14)} 0.34 (Negative) 0.08

and min except = 2). However, similar situations are present also in the pat-
terns mined from the other datasets. The upper part of Table 6 reports a
representative SFGI mined from the Cinema dataset. It consists of a posi-
tively correlated generalized itemset (i.e., {(Date:Working Day), (Time:From
7 a.m. to 12 a.m.)}) and its corresponding set of low-level exceptions. We
compared the above SFGI with the patterns extracted by Flipper [5]. To
achieve this goal, we performed several runs with the competitor algorithm
by varying the min sup threshold and by using the same correlation thresh-
olds max neg cor= 0.4 and min pos cor= 0.5. To discover similar knowledge
with Flipper, we had to enforce a significantly lower support threshold value
(0.08%), because, since real-world data is relatively sparse, low-level item-
sets occur rarely in the analyzed data. The mined flipping correlations are
reported at the bottom of Table 6. Note that they represent only a subset of
the SFGI’s exceptions, because some of them are either uncorrelated or in-
frequent, at the least abstraction level, with respect to the minimum support
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threshold. Hence, a set of flipping correlations is needed just to partially
represent the knowledge covered by a single SFGI. In conclusion, the do-
main expert acknowledges that SFGIs provide a more complete and compact
view of contrasting item correlations, which is commonly more usable than
flipping correlations when coping with real-world data.

5.4. Impact of the algorithm parameters

We separately analyzed the impact of eachTFCAnalyzer parameter on
the number of SFGIs mined from the three Twitter datasets. To this purpose,
we run approximately 200 experiments. The results are summarized below.
When not otherwise specified, the standard configuration was considered.

5.4.1. Effect of the correlation thresholds

Setting different values of maximum negative and minimum positive cor-
relation thresholds may change the result of the SFGI mining process. To
separately analyze the impact of the positive and negative correlation thresh-
olds on the number of SFGIs mined from the Twitter datasets, in Figure 4
we plotted the number of SFGIs mined by varying max neg cor in the range
[0.2-0.9] and by setting four representative min pos cor values1, whereas in
Figure 5 we analyzed the opposite situation, i.e., we varied min pos cor in the
range [0.1-0.6] by setting four representative values for max neg cor. Since
max neg cor < min pos cor, then some curve points are missing. We per-
formed all the mining sessions by setting standard values for the other pa-
rameters (i.e., min sup = 1% and min except = 2).

From the results reported in Figure 4, it appears that max neg cor has
a significant impact on the number of mined SFGIs for all the considered
Twitter datasets. For the analyzed datasets the highest number of SFGIs is
extracted setting max neg cor in the range [0.2, 0.3]. To explain the reasons
behind this trend, we thoroughly analyzed the distribution of the itemset
correlation in the analyzed data. Itemsets are unevenly distributed in terms
of correlation value for every Twitter dataset. Many itemsets have correla-
tion between 0.2 and 0.4. Hence, the maximum number of SFGIs is extracted
when max neg cor and min pos cor fall in this value range, because the gen-
eralization process is more likely to flip itemset correlation types.

The impact of the min pos cor parameter appears to weakly affect SFGI
mining performance. According to the results reported in Figure 5, the

1Curves related to min pos cor=0.5 and min pos cor=0.6 are overlapped in Figure 4.
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Figure 4: Effect of the maximum negative correlation max neg cor on the number of
extracted SFGIs. min sup=1%. min except=2.

number of SFGIs mined from the Cinema and Music datasets is slightly af-
fected by min pos cor variations while enforcing max neg cor values equal
to or greater than 0.5 (especially when max neg cor ≥ 0.3). Despite the
Sport dataset shows a relatively different data distribution with respect to
Cinema and Music, and thus the corresponding curves are less stable, the
number of SFGIs mined remains acceptable for most configuration settings.
As expected, minimum and maximum correlation thresholds are strongly
correlated with each other. Specifically, increasing the positive correlation
threshold (or decreasing the negative one) yields a reduction in the number
of extracted SFGIs, because correlation type changes at different abstraction
levels are less likely to occur. Furthermore, setting relatively close correla-
tion threshold values on average yields a higher number of extracted SFGIs,
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Figure 5: Effect of the minimum positive correlation min pos cor on the number of ex-
tracted SFGIs. min sup=1%. min except=2.

because correlation flipping occurrences occur, on average, more frequently.
To generate a set of SFGIs easily manageable by domain experts and poten-
tially useful for advanced analysis, we suggest experts set max neg cor to 0.4
and min pos cor to 0.5. As shown in Section 5.2, this configuration allows
us to achieve a good trade-off between SFGI significance and cardinality on
real-life Twitter datasets.

5.4.2. Effect of the minimum number of exceptions

The minimum number of exceptions is a threshold value that is used
to drive SFGI mining. Specifically, only the frequent generalized itemsets
having a large number of flipping low-level descendants are deemed to be
worthy for manual inspection, because this patterns are more likely to rep-
resent contrasting and potentially interesting situations. Figure 6 reports,
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for each Twitter dataset, the number of SFGIs extracted by varying the
minimum number of exceptions in the range [1,10] and by setting four repre-
sentative pairs of values for the positive and negative correlation thresholds
min pos cor and max neg cor. The minimum support threshold min sup was
set to its standard value (1%).
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Figure 6: Effect of the minimum number of exceptions min except on the number of
extracted SFGIs. min sup=1%.

As expected, while increasing the minimum number of exceptions the car-
dinality of the SFGIs extracted decreases significantly. However, extremely
large and unmanageable sets of SFGIs were mined only setting min except
to 1. The decreasing trend in the number of mined SFGIs is smoothed when
setting correlation threshold values not fairly close with each other, because
the total number of exceptions averagely reduces.

To discard uninteresting and potentially misleading SFGIs and to gener-
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ate a manageable number of patterns, we suggest experts to set the minimum
number of exceptions min except to 2.

5.4.3. Effect of the minimum support threshold

The minimum support threshold may significantly affect the result of
traditional itemset mining algorithms (e.g., Apriori [2], FP-Growth [23]).
Hence, its impact on SFGI mining performance is worth considering as well.

Similar to traditional itemsets, the number of mined SFGIs increases en-
forcing lower min sup values. In fact, when the minimum support threshold
decreases the number of traditional generalized and non-generalized itemsets
increases. Hence, even the number of candidate SFGIs does. Although set-
ting different min pos cor and max neg cor values may yield different curve
slopes, the achieved curves resemble in trend one another. The choice of
the minimum support threshold is always a complex task. Setting relatively
high support threshold (e.g., 4%) some interesting patterns can be acciden-
tally discarded. Specifically, most of the negatively correlated itemsets are
discarded because they are likely to have low frequency in the analyzed data.
On the other hand, setting lower support thresholds (e.g., 0.5%) could yield
the extraction of a large and potentially redundant set of patterns that is
hardly manageable by domain experts. Setting min sup to 1% is usually a
good trade-off between result manageability and relevance.

5.5. Scalability

We evaluated the scalability of the SFGI mining process, in terms of
execution time, on synthetic datasets with (i) the number of dataset transac-
tions, (ii) the taxonomy height (i.e., the number of generalization levels), and
(iii) the average transaction length. Figure 7(a) reports the execution time
by varying the number of transactions from 10,000 to 1,000,000 on datasets
characterized by an average transaction length equal to 25 and by exploit-
ing taxonomies with height in the range [2,5]. All the experiments were
performed by setting the minimum support threshold to its standard value
(1%). Similar to traditional generalized itemset mining algorithms (e.g., [3]),
the SFGI mining process scales roughly linearly with the dataset cardinal-
ity. The curves obtained using taxonomies of different height show a similar
trend but a different slope (see Figure 7(a)).

We also analyzed the impact of the taxonomy height on the miner ex-
ecution time by exploiting taxonomies with height in the range [2,5] and
datasets with three representative sizes (10K, 100K, and 1M). The obtained

29



results are reported in Figure 7(b). Similar to traditional generalized itemset
mining algorithms (e.g., [40]) our mining approach scales more than linearly
with the taxonomy height due to the combinatorial increase in the number
of extracted high-level patterns. However, its execution time remains accept-
able (i.e., less than 200 s) even when coping with quite complex datasets and
taxonomies (e.g., dataset cardinality=1,000,000, taxonomy height=5).

Finally, we also analyzed the scalability of our approach with the average
transactions length. The results achieved on datasets with different size are
reported in Figure 7(c). They demonstrate that our mining strategy scales
non-linearly with the transactions length due to the potentially high number
of generated combinations. However, the execution time remains limited
(i.e., less than 200 s) for all the tested configurations.
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Figure 7: Scalability analysis. min sup=1%.
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6. Perspectives of extension of TFC Analyzer in a distributed en-
vironment

To efficiently track and analyze the huge amount of messages posted on
Twitter, we are currently investigating new solutions to extend the proposed
approach towards Big data issues. Since most operations can be mapped to
the MapReduce programming paradigm [17], the TFC Analyzer system
may easily lend itself to a distributed-based implementation.

The distributed-based extension of TFC Analyzer consists of a series of
distributed jobs running in a distributed system, such as Apache Hadoop [37].
Each job takes as input the result of one or more preceding jobs and performs
a specific step needed to mine SFGIs from Twitter datasets. Most jobs are
performed by one or more MapReduce tasks running on an Hadoop cluster.

For the extension of TFC Analyzer in a distributed environment we
envisage the following steps:

• Data acquisition, which exploits a set of crawlers to gather data from
Twitter and store new tweets in an HDFS distributed file system.

• Data preprocessing and transformation, which performs the following
activities: (i) Textual data cleaning (e.g., removal of stopwords, num-
bers, etc.), (ii) Lemmatization, by using the WordNet lexical database
[15], (iii) Data conversion to the transactional format (i.e., mapping
of textual words and contextual data to distinct data items), (iv) Ex-
tension of the dataset transactions by appending all the item gener-
alizations, according to the input taxonomy. The above tasks can be
performed as distributed MapReduce jobs.

• Taxonomy mapping, which maps the input taxonomy to the Twitter
data items.

• Traditional level-sharing generalized itemset mining. This step is ac-
complished by a combination of MapReduce tasks. We plan to extend
the Apache Mahout project [38], which currently provides only a FP-
Growth-like top-k closed itemset miner [30], with the twofold aim at
(i) extracting all frequent itemsets and (ii) mining also high-level (gen-
eralized) level-sharing itemsets, according to the input taxonomy.

• SFGI extraction at the top of the previously extracted level-sharing
itemsets. The key idea is to implement a MapReduce program that
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relies on the following operations. (i) A Map operation, which takes as
input the set of level-sharing itemsets and generates one key <parent
itemset, level-sharing itemset> for each itemset by climbing up the
taxonomy of one step. (ii) A Reduce operation, which aggregates pairs
<key, value> generated by the Map operation and identifies for each
“parent” itemset all of its descendants with the goal of selecting the
“parent” itemsets that can produce an SFGI.

7. Conclusions

This paper presents Twitter Flipping Correlation Analyzer(TFC An-

alyzer), a novel data mining approach to efficiently supporting business
applications based on social network data mining, e.g., context-aware ser-
vice profiling and topic trend analysis. TFC Analyzer aims at discovering
contrasting and unexpected situations from Twitter dataset equipped with
taxonomies by extracting Strong Flipping Generalized Itemsets (SFGIs), a
newly proposed type of patterns. The experiments performed on Twitter
datasets demonstrate the applicability of the proposed approach to perform
advanced analysis, such as topic trend analysis, context-aware service profil-
ing, and outlier detection. The efficiency and effectiveness of the proposed
system can be enhanced in several directions.

The two most promising future research perspectives are:
System scalability towards big data. As discussed in Section 6,

since Twitter messages are being posted at an ever increasing rate, new and
distributed solutions to extend the proposed approach towards big data issues
need to be investigated.

SFGI mining from data coming from other research contexts.
Given a taxonomy built over data items, SFGIs can be potentially extracted
from any transactional dataset. Despite in this work we focus our analysis
on Twitter datasets, because their characteristics are particularly suitable for
data generalization and item correlation analysis, we aim at studying also the
applicability of SFGIs to data coming from diverse application domains (e.g.,
network traffic data, sports data, financial data).
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