21 research outputs found

    Decision models on therapies for intensive medicine

    Get PDF
    Decision support models are crucial in intensive care units as they allow intensivists to make faster and better decisions. The application of optimization models in these areas becomes challenging given its complexity and multidisciplinary nature. The main objective of this study is to use the stochastic Hill Climbing optimization model in order to identify the best medication to treat the Covid Pneumonia problem, considering the top 3 medications administered as well as the cost of treatment. It should be noted that the problem to be analyzed in the optimization model was selected considering that the extracted data is from the time when Covid-19 was ravaging the intensive care units, so it will be the most interesting. The results obtained in this study denote that the n_iterations parameter was crucial in obtaining the optimal solution since all scenarios with this parameter set to a value of 1000 were able to return the optimal solution, unlike the other ones.The work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: DSAIPA/DS/0084/2018

    Data Mining models for automatic problem identification in intensive medicine

    Get PDF
    This paper aims to support medical decision making on predicting the diagnosis of COVID-19. Thus, a set of Data Mining (DM) models was developed using prediction techniques and classification models. These models try to understand whether the vital signs of patients have a correlation with a diagnosis. To achieve the objective of the paper, initially, the data was acquired and collected from several data sources such as bedside monitors and electronic nursing records from the Intensive Care Unit of the Santo Antonio Hospital. Secondly, the data was transformed so that it could be used in DM models. The models were induced using the following algorithms: Decision Trees, Random Forest, Naive Bayes, and Support Vector Machine. The analysis of the sensitivity, specificity, and accuracy were the metrics used to identify the most relevant measures to predict COVID-19 diagnosis. This work demonstrates that the models created had promising results.The work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: DSAIPA/DS/0084/2018

    Real-Time models to predict the use of vasopressors in monitored patients

    Get PDF
    The needs of reducing human error has been growing in every field of study, and medicine is one of those. Through the implementation of technologies is possible to help in the decision making process of clinics, therefore to reduce the difficulties that are typically faced. This study focuses on easing some of those difficulties by presenting real-time data mining models capable of predicting if a monitored patient, typically admitted in intensive care, will need to take vasopressors. Data Mining models were induced using clinical variables such as vital signs, laboratory analysis, among others. The best model presented a sensitivity of 94.94%. With this model it is possible reducing the misuse of vasopressors acting as prevention. At same time it is offered a better care to patients by anticipating their treatment with vasopressors

    Optimization techniques to detect early ventilation extubation in intensive care units

    Get PDF
    The decision support models in intensive care units are developed to support medical staff in their decision making process. However, the optimization of these models is particularly difficult to apply due to dynamic, complex and multidisciplinary nature. Thus, there is a constant research and development of new algorithms capable of extracting knowledge from large volumes of data, in order to obtain better predictive results than the current algorithms. To test the optimization techniques a case study with real data provided by INTCare project was explored. This data is concerning to extubation cases. In this dataset, several models like Evolutionary Fuzzy Rule Learning, Lazy Learning, Decision Trees and many others were analysed in order to detect early extubation. The hydrids Decision Trees Genetic Algorithm, Supervised Classifier System and KNNAdaptive obtained the most accurate rate 93.2%, 93.1%, 92.97% respectively, thus showing their feasibility to work in a real environment.This work has been supported by FCT-Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2013. The authors would like to thank FCT for the financial support through the contract PTDC/EEI - SII/1302/2012 (INTCare II

    Step towards a patient timeline in intensive care units

    Get PDF
    In Intensive Medicine, the presentation of medical information is done in many ways, depending on the type of data collected and stored. The way in which the information is presented can make it difficult for intensivists to quickly understand the patient's condition. When there is the need to cross between several types of clinical data sources the situation is even worse. This research seeks to explore a new way of presenting information about patients, based on the timeframe in which events occur. By developing an interactive Patient Timeline, intensivists will have access to a new environment in real-time where they can consult the patient clinical history and the data collected until the moment. The medical history will be available from the moment in which patients is admitted in the ICU until discharge, allowing intensivist to examine data regarding vital signs, medication, exams, among others. This timeline also intends to, through the use of information and models produced by the INTCare system, combine several clinical data in order to help diagnose the future patients’ conditions. This platform will help intensivists to make more accurate decision. This paper presents the first approach of the solution designe

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    A clustering approach for predicting readmissions in intensive medicine

    Get PDF
    Decision making assumes a critical role in the Intensive Medicine. Data Mining is emerging in the clinical area to provide processes and technologies for transforming data into useful knowledge to support clinical decision makers. Appling clustering techniques to the data available on the patients admitted into Intensive Care Units and knowing which ones correspond to readmissions, it is possible to create meaningful clusters that will represent the base characteristics of readmitted patients. Thus, exploring common characteristics it is possible to prevent discharges that will result into readmissions and then improve the patient outcome and reduce costs. Moreover, readmitted patients present greater difficulty to be recovered. In this work it was followed the Stability and Workload Index for Transfer (SWIFT). A subset of variables from SWIFT was combined with the results from laboratory exams, namely the Lactic Acid and the Leucocytes values, in order to create clusters to identify, in the moment of discharge, patients that probably will be readmitted

    Pervasive patient timeline for intensive care units

    Get PDF
    This research work explores a new way of presenting and representing information about patients in critical care, which is the use of a timeline to display information. This is accomplished with the development of an interactive Pervasive Patient Timeline able to give to the intensivists an access in real-time to an environment containing patients clinical information from the moment in which the patients are admitted in the Intensive Care Unit (ICU) until their discharge This solution allows the intensivists to analyse data regarding vital signs, medication, exams, data mining predictions, among others. Due to the pervasive features, intensivists can have access to the timeline anywhere and anytime, allowing them to make decisions when they need to be made. This platform is patient-centred and is prepared to support the decision process allowing the intensivists to provide better care to patients due the inclusion of clinical forecasts.FCT -Fundação para a Ciência e a Tecnologia(PTDC/EEI-SII/1302/2012

    A pervasive approach to a real-time intelligent decision support system in intensive medicine

    Get PDF
    The decision on the most appropriate procedure to provide to the patients the best healthcare possible is a critical and complex task in Intensive Care Units (ICU). Clinical Decision Support Systems (CDSS) should deal with huge amounts of data and online monitoring, analyzing numerous parameters and providing outputs in a short real-time. Although the advances attained in this area of knowledge new challenges should be taken into account in future CDSS developments, principally in ICUs environments. The next generation of CDSS will be pervasive and ubiquitous providing the doctors with the appropriate services and information in order to support decisions regardless the time or the local where they are. Consequently new requirements arise namely the privacy of data and the security in data access. This paper will present a pervasive perspective of the decision making process in the context of INTCare system, an intelligent decision support system for intensive medicine. Three scenarios are explored using data mining models continuously assessed and optimized. Some preliminary results are depicted and discussed.Fundação para a Ciência e a Tecnologia (FCT

    Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The intensive care unit (ICU) length of stay (LOS) of patients undergoing cardiac surgery may vary considerably, and is often difficult to predict within the first hours after admission. The early clinical evolution of a cardiac surgery patient might be predictive for his LOS. The purpose of the present study was to develop a predictive model for ICU discharge after non-emergency cardiac surgery, by analyzing the first 4 hours of data in the computerized medical record of these patients with Gaussian processes (GP), a machine learning technique.</p> <p>Methods</p> <p>Non-interventional study. Predictive modeling, separate development (n = 461) and validation (n = 499) cohort. GP models were developed to predict the probability of ICU discharge the day after surgery (classification task), and to predict the day of ICU discharge as a discrete variable (regression task). GP predictions were compared with predictions by EuroSCORE, nurses and physicians. The classification task was evaluated using aROC for discrimination, and Brier Score, Brier Score Scaled, and Hosmer-Lemeshow test for calibration. The regression task was evaluated by comparing median actual and predicted discharge, loss penalty function (LPF) ((actual-predicted)/actual) and calculating root mean squared relative errors (RMSRE).</p> <p>Results</p> <p>Median (P25-P75) ICU length of stay was 3 (2-5) days. For classification, the GP model showed an aROC of 0.758 which was significantly higher than the predictions by nurses, but not better than EuroSCORE and physicians. The GP had the best calibration, with a Brier Score of 0.179 and Hosmer-Lemeshow p-value of 0.382. For regression, GP had the highest proportion of patients with a correctly predicted day of discharge (40%), which was significantly better than the EuroSCORE (p < 0.001) and nurses (p = 0.044) but equivalent to physicians. GP had the lowest RMSRE (0.408) of all predictive models.</p> <p>Conclusions</p> <p>A GP model that uses PDMS data of the first 4 hours after admission in the ICU of scheduled adult cardiac surgery patients was able to predict discharge from the ICU as a classification as well as a regression task. The GP model demonstrated a significantly better discriminative power than the EuroSCORE and the ICU nurses, and at least as good as predictions done by ICU physicians. The GP model was the only well calibrated model.</p
    corecore