18 research outputs found

    Content consumption cartography of the Paris urban region using cellular probe data

    Get PDF
    A present issue in the evolution of mobile cellular networks is determining whether, how and where to deploy adaptive content and cloud distribution solutions at base station and back-hauling network level. In order to answer these questions, in this paper we document the content consumption in Orange cellular network for Paris metropolitan area. From spatial and application-level extensive analysis of real data, we numerically and statistically quantify the geographical distribution of content consumption with per-service classifications. We provide experimental statistical distributions usable for further research in the area

    Can Temperature be Used as a Predictor of Data Traffic? A Real Network Big Data Analysis

    Get PDF
    The proliferation of mobile devices and big data has made it possible to understand the human movements and forecasts of precise and intelligent short and long-term data consumption of services like call, sms, or internet data which has interesting and promising applications in modern cellular networks. Human nature and moods are known to be synonymous with the physical attributes of mother nature such as temperature. The change in those physical features affects the human routines and activities such as cellular data consumptions. The future of telecommunication lies in the exploration of heap of information and data available to companies and inferring the valuable results through extensive analysis. In this paper, we analyze three main traits of cellular activity: sms, call, and internet. This paper investigates whether the relationship between the temperature and the cellular data consumption exits or not. This work introduces a novel approach to identify the strength of relationship between the temperature and cellular activity (sms, call, internet) and discuss the methods to quantify the relationship using correlation method. The real network CDR big data set - Milano Grid data set is used to analyze the behavior of the cellular activity with respect to temperature

    Towards an Adaptive Completion of Sparse Call Detail Records for Mobility Analysis

    Get PDF
    International audienceCall Detail Records (CDRs) are a primary source of whereabouts in the study of multiple mobility-related aspects. However, the spatiotemporal sparsity of CDRs often limits their utility in terms of the dependability of results. In this paper, driven by real-world data across a large population, we propose two approaches for completing CDRs adaptively, to reduce the sparsity and mitigate the problems the latter raises. Owing to high-precision sampling, the comparative evaluation shows that our approaches outperform the legacy solution in the literature in terms of the combination of accuracy and temporal coverage. Also, we reveal those important factors for completing sparse CDR data, which sheds lights on the design of similar approaches

    zCap: a zero configuration adaptive paging and mobility management mechanism

    Get PDF
    Today, cellular networks rely on fixed collections of cells (tracking areas) for user equipment localisation. Locating users within these areas involves broadcast search (paging), which consumes radio bandwidth but reduces the user equipment signalling required for mobility management. Tracking areas are today manually configured, hard to adapt to local mobility and influence the load on several key resources in the network. We propose a decentralised and self-adaptive approach to mobility management based on a probabilistic model of local mobility. By estimating the parameters of this model from observations of user mobility collected online, we obtain a dynamic model from which we construct local neighbourhoods of cells where we are most likely to locate user equipment. We propose to replace the static tracking areas of current systems with neighbourhoods local to each cell. The model is also used to derive a multi-phase paging scheme, where the division of neighbourhood cells into consecutive phases balances response times and paging cost. The complete mechanism requires no manual tracking area configuration and performs localisation efficiently in terms of signalling and response times. Detailed simulations show that significant potential gains in localisation effi- ciency are possible while eliminating manual configuration of mobility management parameters. Variants of the proposal can be implemented within current (LTE) standards

    Towards connecting people, locations and real-world events in a cellular network

    Get PDF
    The success of personal mobile communication technologies has led an emerging expansion of the telecommunication infrastructure but also to an explosion to mobile broadband data traffic as more and more people completely rely on their mobile devices, either for work or entertainment. The continuously interaction of their mobile devices with the mobile network infrastructure creates digital traces that can be easily logged by the network operators. These digital traces can be further used, apart from billing and resource management, for large-scale population monitoring using mobile traffic analysis. They could be integrated into intelligent systems that could help at detecting exceptional events such as riots, protests or even at disaster preventions with minimal costs and improve people safety and security, or even save lives. In this paper we study the use of fully anonymized and highly aggregate cellular network data, like Call Detail Records (CDRs) to analyze the telecommunication traffic and connect people, locations and events. The results show that by analyzing the CDR data exceptional spatio-temporal patterns of mobile data can be correlated to real-world events. For example, high user network activity was mapped to religious festivals, such as Ramadan, Le Grand Magal de Touba and the Tivaouane Maouloud festival. During the Ramadan period it was noticed that the communication pattern doubled during the night with a slow start during the morning and along the day. Furthermore, a peak increase in the number of voice calls and voice calls duration in the area of Kafoutine was mapped to the Casamance Conflict in the area which resulted in four deaths. Thus, these observations could be further used to develop an intelligent system that detects exceptional events in real-time from CDRs data monitoring. Such system could be used in intelligent transportation management, urban planning, emergency situations, network resource allocation and performance optimization, etc

    Predicting User-Cell Association in Cellular Networks from Tracked Data

    Get PDF
    We consider the problem of predicting user location in the form of user-cell association in a cellular wireless network. This is motivated by resource optimization, for example switching base transceiver stations on or off to save on network energy consumption. We use GSM traces obtained from an operator, and compare several prediction methods. First, we find that, on our trace data, user cell sector association can be correctly predicted in ca. 80% of the cases. Second, we propose a new method, called “MARPL”, which uses Market Basket Analysis to separate patterns where prediction by partial match (PPM) works well from those where repetition of the last known location (LAST) is best. Third, we propose that for network resource optimization, predicting the aggregate location of a user ensemble may be of more interest than separate predictions for all users; this motivates us to develop soft prediction methods, where the prediction is a spatial probability distribution rather than the most likely location. Last, we compare soft predictions methods to a classical time and space analysis (ISTAR). In terms of relative mean square error, MARPL with soft prediction and ISTAR perform better than all other methods, with a slight advantage to MARPL (but the numerical complexity of MARPL is much less than ISTAR)

    Querying Spatio-temporal Patterns in Mobile Phone-Call Databases

    Full text link
    Abstract — Call Detail Record (CDR) databases contain millions of records with information about cell phone calls, including the position of the user when the call was made/received. This huge amount of spatiotemporal data opens the door for the study of human trajectories on a large scale without the bias that other sources (like GPS or WLAN networks) introduce in the population studied. Also, it provides a platform for the development of a wide variety of studies ranging from the spread of diseases to planning of public transport. Nevertheless, previous work on spatiotemporal queries does not provide a framework flexible enough for expressing the complexity of human trajectories. In this paper we present the Spatiotemporal Pattern System (STPS) to query spatiotemporal patterns in very large CDR databases. STPS defines a regular-expression query language that is intuitive and that allows for any combination of spatial and temporal predicates with constraints, including the use of variables. The design of the language took into consideration the layout of the areas being covered by the cellular towers, as well as “areas ” that label places of interested (e.g. neighborhoods, parks, etc) and topological operators. STPS includes an underlying indexing structure and algorithms for query processing using different evaluation strategies. A full implementation of the STPS is currently running with real, very large CDR databases on Telefónica Research Labs. An extensive performance evaluation of the STPS shows that it can efficiently find complex mobility patterns in large CDR databases. I

    Relevance of Context for the Temporal Completion of Call Detail Record

    Get PDF
    Call Detail Records (CDRs) are an important source of information in the study of different aspects of human mobility. However, their utility is often limited by spatio-temporal sparsity. In this paper, we first evaluate the effectiveness of CDRs in measuring relevant mobility features. We then investigate whether the information of user's instantaneous whereabouts provided by CDRs enables us to estimate positions over longer time spans. Our results confirm that CDRs ensure a good estimation of radii of gyration and important locations, yet they lose some location information. Most importantly, we show that temporal completion of CDRs is straightforward and efficient: thanks to the fact that they remain fairly static before and after mobile communication activities, the majority of users' locations over time can be accurately inferred from CDRs. Finally, we observe the importance of user's context, i.e., of the size of the current network cell, on the quality of the CDR temporal completion.Les statistiques d’appel (ou en anglais Call Detail Records - CDR) sont une importante source d’information dans l’étude des différents aspects de la mobilité humaine. Cependant,leur utilité est souvent limitée par son spartiété spatio-temporelle. Dans cet article, nous évaluons d’abord l’efficacité de l’utilisation des CDR pour la mesure des caractéristiques de mobilité pertinentes. Nous nous demandons ensuite si les informations de localisation instantanée de l’utilisateur fournies par les CDR nous permettent d’estimer leurs positions sur des périodes longues. Nos résultats confirment que les CDR assurent une bonne estimation des rayons de giration et des emplacements importants, mais ils perdent certaines informations de localisation.Plus important encore, nous montrons que l’achèvement temporel des CDR est simple et efficace:grâce au fait qu’ils restent relativement statiques avant et après les activités de communication mobile, la majorité des emplacements des utilisateurs dans le temps peut être correctement dé-duite des CDR. Enfin, on observe l’importance du contexte de l’utilisateur, c’est-à-dire de la taille de la cellule de réseau actuelle, sur la qualité de l’achèvement temporel des CDR
    corecore