zCap: A zero configuration adaptive paging and
mobility management mechanism

Per Kreugerl, Daniel Gillblad!, Ake Arvidsson?

'Swedish Institute of Computer Science (SICS), *Ericsson AB

Abstract

Today, cellular networks rely on fixed collections of cells (tracking areas) for user equipment localisation.
Locating users within these areas involves broadcast search (paging) which consumes radio bandwidth but reduces
the user equipment signalling required for mobility management. Tracking areas are today manually configured,
hard to adapt to local mobility and influence the load on several key resources in the network. We propose a
decentralised and self-adaptive approach to mobility management based on a probabilistic model of local mobility.
By estimating the parameters of this model from observations of user mobility collected on-line, we obtain a
dynamic model from which we construct local neighbourhoods of cells where we are most likely to locate user
equipment. We propose to replace the static tracking areas of current systems with neighbourhoods local to each
cell. The model is also used to derive a multi phase paging scheme, where the division of neighbourhood cells
into consecutive phases balances response times and paging cost. The complete mechanism requires no manual
tracking area configuration and performs localisation efficiently in terms of signalling and response times. Detailed
simulations show that significant potential gains in localisation efficiency are possible while eliminating manual
configuration of mobility management parameters. Variants of the proposal can be implemented within current
(LTE) standards.

Index Terms

Network management, Wireless & mobile networks, Configuration & performance management, Autonomic and
self management, Distributed management, Probabilistic methods, Machine learning, Self-configuration, Mobility
tracking & statistics, Paging procedures

I. INTRODUCTION

Cellular networks need to keep track of where its users are located in order to relay incoming connections
to the most suitable cell. Current implementations of this service use significant amounts of system and
spectrum resources and require extensive manual configuration. We propose a mechanism that implements
this service more efficiently than the current state of the art and autonomously adapts to changes in user
mobility patterns.

A. Mobility management in current cellular networks

In LTE', mobility management is confined to associating terminals with their closest cell, or a small
group of adjacent cells. To this end user terminals, user equipments (UEs), keep track of their closest cell
at all times whereas network nodes, mobility management entities (MMEs), keep track of sets, tracking
areas (TAs), of possible cell associations. Figure 1a shows two typical adjacent and disjoint TAs.

The cells of the network are statically partitioned into TAs. Incoming connections are routed to the
the MME which looks up a list of TAs associated with the requested UE, and initiates the localisation
(paging) process. To find the exact cell at which a UE resides, the network broadcasts page messages
in all cells of all TAs in the list associated with the UE and detects the cell from which a response is

“Long Term Evolution”, the dominant fourth generation cellular network standard.

Disjoint TAs

(a) Two adjacent static tracking areas

Paging all TAs
in Ue's list

(b) On an incoming connection a UE is paged in all cells of all TAs (the 3 leftmost
ones) in its associated TAI list.

TA update

() UE moving between several tracking areas belonging to its TAI list before
detecting movement into a TA outside it, and only then issuing a TA update

Figure 1: Static tracking areas

received. Figure 1b shows an example in which the three TAs to the left belong to the TAI list of the UE
which are paged in parallel.

Cells broadcast their TA identifiers (TAls) which allow the UEs to compare the TAls of nearby cells
to their current TAI lists. If a UE cannot find the TAI of its preferred cell in its TAI list, it performs a
TA update to inform the MME of its new location and to obtain a new TAI list. Figure 1c shows a UE
triggering an TA update as it passes into TA outside its TAI list.

Noting that large TAs and long TAI lists reduce the need for TA update messages while small TAs
and short TAI lists reduce the need for paging messages, it is clear that optimal TAs and TAI lists are
a matter of striking a balance between TA update messages (which imply large TAs and long TAI lists)
and paging messages (which imply small TAs and short TAI lists). As noted by many authors, [1], [2],
[3], these choices can be critical to avoid problems like massive signalling at TA borders.

While the above description applies to LTE systems [4], similar concepts were used in 2G (GSM/GPRS
etc) and 3G (WCDMA/HSPA etc.) systems, where the network nodes and location sets are known as
MSCs (mobile switching centres) and LAs (location areas) for circuit switching and SGSNs (serving
GPRS support nodes) and RAs (routing areas) for packet switching respectively. A major difference,
however, is that the TAI lists in LTE correspond to single LAIs/RAIs in 2G/3G UEs. In our proposal, the
TAI lists (or some similar facility) is essential to represent the dynamic local neighbourhoods we propose
to use instead of static tracking areas for paging.

B. Mobility management overview

To solve the problem of efficiently managing UE mobility, several alternative update schemes and paging
strategies have been proposed, but none takes the actual and dynamic collective mobility as observed on-
line in the network into account as we propose. The updating schemes in [5] and [6] proposes that
networks trace two and three static cell sets respectively for each UE. This is a very useful mechanism
and a variant has been implemented in LTE in the form of TAI lists. We propose a completely self-
organising mechanism that generalises this idea to arbitrary cell sets, construct, update and maintain them
on-line, and a corresponding mechanism to page efficiently within them.

Others e.g. [7], [1], [2], [3] propose static cell set construction from mobility or traffic data collected
off-line, while [8], [9] propose dynamic areas based on detected UE direction and velocity. The former
approach fails to adapt to dynamic changes in mobility patterns while the latter takes no account of the
influence of infrastructure and other geographical elements. Our proposal, in contrast, records the actual
cells where UEs are successfully located, and aggregates these statistics for large number of users.

A different approach is taken by several authors [10], [11], [12], [13], [14], [9], where static cell sets
are replaced by or combined with a maximum allowed distances from the last reported location. This
requires the cells to broadcast global coordinates and modifications of UEs to use this information for
update triggering, and has to our knowledge not been adapted in any current standards. In principle, such
approaches suffer from the fact that distance alone is not always a good indicator of actual mobility, which
is also heavily influenced by e.g. the presence of infrastructure and varying population densities. Also,
any proposal requiring extensive UE modifications will be hard to implement in practice once a system
has gained momentum. There will always be older UEs that do not support the functionality introduced
by such modifications.

Paging strategies based on ranking cells in a cell set has been proposed with various ranking mechanisms.
The authors of [15], [16], [17] propose estimating the likelihood of a page response at a given location
from UE specific statistics. This could be achieved both statically and dynamically, but in both cases
requires large number of UE profiles to be collected and maintained. This type of statistics could also
be considered sensitive w.r.t. privacy. Others, e.g. [18], [19], [20] propose to combine or complement
such profile based approaches with e.g. traffic and network topology data. The effort to collect such data
from other sources and applying them to network management seems wasted when the data needed for
estimating the local mobility patterns relevant to network management can, as we will show, be generated
by the network itself, and with minimal impact on privacy.

In [8], [13], the authors instead estimate the likelihood from current UE speed and/or direction, which
require an on-line collection and dissemination mechanism, but is still based on individual mobility rather
than collective. Such a mechanism could be more precise in some situations, but requires significant
modifications to current protocols and UEs in addition to extensive user modelling. The management
overhead required to implement such such schemes seems prohibitive.

C. Relevance and contribution

The motivation for this work is the increasing amount of work required to configure mobility
management data in cellular networks. In particular we note that, while this is a demanding task already in
2G and 3G networks, it will be even more complex in 4G networks which typically have more cells (due
to smaller coverage), different type of cells (due to heterogeneous networks) and more complex functions
(e.g. the TAI list concept). An equally important motivation is, however, the fact that mobility data seldom
is used in this context although mobility patterns can have a significant influence on resource consumption
and thus, potentially, on performance. We have, e.g., seen cases where attempts of load balancing between
MSCs have resulted in significantly increased load on all MSCs to the extent that almost half the load
was related to location updates and found that the reason for this was that the boundaries between the
resulting, load balanced location areas repeatedly intersected major roads.

The goal of our approach is thus to provide a completely self-organising solution that improves updating
and paging in fourth generation systems with respect to system efficiency and management complexity.
Comparing LTE to the earlier proposals, it is noted that the two or three cell sets discussed in [5] and [6]
have been adopted as the (now up to 16) cell sets allowed by the TAI lists in LTE, while the distance,
direction and velocity based approaches mentioned above, have not been adopted at all. The use of UE
specific information for paging, is not only complex to collect and maintain, but also comes with significant
privacy issues.

Our approach instead constructs dynamic local neighbourhoods based on collective mobility patterns as
observed through successful localisation attempts logged in the mobility management entities (MMEs) of
the network. The neighbourhoods, which can be unique for each cell, are used to form and maintain the TAI
lists distributed to UEs. Aggregated location update rates in this approach depend directly on the the joint
probability represented by the cells denoted by the neighbourhood in our model. For any neighbourhood,
multi phase paging sequences are derived on cell level with the object of balancing the expected number
of page messages against increase in response times. The resulting method, “Zero Configuration Adaptive
Paging” (zCap), is implementable in present standards with no UE modifications, and fairly conservative
changes to the mobility management mechanisms, while offering a self tuning and distributed method to
obtain efficient TAI lists and efficient paging of the cells denoted by the neighbourhoods. Experiments
based on an advanced prototype and mobility simulations shows the potential for a radical reduction of
the number of page messages required to locate UEs. A short outline of the results presented here paper
appears in [21].

D. Presentation layout

Each aspect of the approach will be described in more detail in the following sections. After a brief
overview in section II-A we discuss in section II-B how to maintain distributed traces of cells recently
associated with specific UEs, we describe in II-C how to disseminate information of successful UE
localisations along the traces, and how to update counters to support local estimates of UE mobility,
we show in II-D how such counters can be used to maintain, for each cell and time frame, a Bayesian
estimate of the probability of UEs being localised at other cells, and how to discount older data at
a rate which captures both stable and dynamic properties of local mobility patterns. In II-E we use
the mobility estimates to form local neighbourhoods which are transferred as TAI lists to UEs and
maintained by the MME of the cell. In II-F we show how to compute optimal paging sequences for
any given neighbourhood, time frame, and current estimate. Section II-G, finally details the connection

Location update between local neighborhoods

Figure 2: Overlapping neighbourhoods local to each cell are formed using mobility estimates. Location
updates are triggered when the UE leaves the neighbourhood of its resident cell just as in current system.
No UE modifications are necessary.

set-up and paging mechanism itself. Section III provides a summary of experimental results obtained from
an advanced prototype implementation of the method in two mobility and connection simulations after
which we conclude with a short summary and discussion in section IV.

II. THE zCap APPROACH TO MOBILITY MANAGEMENT
A. Overview

The main components of zCap are the mechanism to collect mobility statistics on-line, the probabilistic
model of the local mobility in the neighbourhood of each cell, and the mechanism to estimate and use it to
efficiently manage the services of the network. The mobility statistics collection mechanism we describe
is fully distributed and scales from managing the statistics on the level of individual cells, up to, and
between, the more centralised mobility management entities (MMEs) of current systems.

The collected statistics consists of, for each cell 7, counters n;; of the number of successful localisations
at cells 7, of UEs associated with ¢ within a certain limited time from the UEs initial association with .
This information is used to estimate the probability of locating a UE in each observed cell and to maintain
a list the most likely UE destinations around each cell. We refer to this list as the local neighbourhood (or
simply neighbourhood) of each cell ¢+ and update it dynamically as the estimate evolves over time using
a Bayesian estimation scheme where the estimates of earlier periods are used as a prior for the current
estimate of the distribution. Scaling the window size of the estimator and updating a small number of
parallel estimators n?J allows us to capture both stable and dynamic aspects of the local mobility, e.g.
variations over the day or week. The stored representation of the estimate is very compact.

We propose to replace the static tracking areas of current systems with these local neighbourhoods, such
that, when a UE registers with the network, it receives the current local neighbourhood of its preferred cell

as a list of identifiers of other cells. The most straightforward way to implement this in current systems
is to use the tracking area identifier (TAI) lists which is already supported by the user equipment[4]. As
the local neighbourhoods evolve and are updated with new statistics, the network nodes need to keep
track of the associations between UEs and neighbourhoods for up to a period as long as the periodic
location update (PLU) timeout (normally a few hours). Figure 2 shows how two neighbourhoods local
to the two central cells R and G overlap and how location updates are triggered when a UE associated
with R leaves its current neighbourhood and becomes associated instead with the cell G and its current
neighbourhood. From the UE perspective the update triggering mechanism remains unchanged compared
to current procedures, but in an LTE implementation, the TAI list will be used to represent our overlapping,
local and dynamically updated neighbourhood.

Figure 3a illustrates how the trace is built up during a sequence of location updates, connections
and handovers and how information about successful localisations is propagated back to cells previously
associated with the UE.

At an incoming connection, when the UE needs to be localised, the network node responsible for the
cell where the UE last resided retrieves the neighbourhood associated with the UE and request the cells in
that neighbourhood to broadcast paging messages just as in current systems. However, since the estimates
of our model also tells us in which cells we are most likely to find the UE, we can choose to try the
most likely cells first.

For this we divide the neighbourhood into a number of phases, the first of which requests paging in only
the most likely cells, and so on in probability order. Since each phase takes a significant amount of time,
we can only afford a small number of phases (2-4) which means that how we partition the cells of the
neighbourhood into phases becomes important for the efficiency of the paging scheme. Different partitions
gives rise to typical expected number of pages and response times for the average UE. However, given a
preferred balance between paging cost and response time, how to partition the cells of the neighbourhood
efficiently becomes an optimisation problem for which we propose a constraint programming solution.
As a refinement, and in order to capture the dependency of UE location on the time since it last resided
at a cell 7, we maintain separate sets of counters nZ for a small number of distinct time frames [. Figure
3b illustrates how the local neighbourhood of a central cell is paged in three phases for a case similar to
what we would expect around a major road.

In summary, to solve the mobility management problem we propose to:

1) Construct and maintain, for each cell, a dynamic local neighbourhood, i.e. a list of cells where
recently registered UEs are most likely to be found
2) Track UEs to the level of recorded neighbourhoods and page efficiently within them using estimates
of local mobility based on mobility statistics collected on-line
To achieve this we:
« Record for each connection, location update and handover of an UE

1) the cell where it occurred,
2) where the UE was previously registered
This constitutes a sparse distributed trace of the movement of each UE
« Record the cells of successful localisations and distribute counts/cell along the trace for a limited
duration, after which the individual trace is purged
» Estimate for each cell, the probability for an arbitrary UE being localised at each observed,
neighbouring cell
« Do this for several disjoint time frames, to approximate the dependency of the distribution on the
time since the UE last resided at some cell of the network
« As the resulting estimates are themselves time dependent, we maintain several parallel and overlapping
estimators to obtain a dynamically updated and self adapting Bayesian estimate for each time frame

The result is an efficient, robust and dynamically self-adaptive approach to mobility management that
solves one of the the most important configuration problems in cellular network management. Only two

Mobility trace and observation propagation

Connections

Disconnection

UE movement —
Trace links —_—

Mobility statisticsS —»

(a) Here the UE first moves east out of the neighbourhood of its registered (red) cell and issues a location
update. It then moves south until, at the border of its second (green) neighbourhood, it receives a connection,
and continues south, generating a handover. After disconnection, it continues further south, before receiving
another connection at the border of its new neighbourhood. Each location update, connection or handover creates
links (orange) to previous cell. The traces are used to disseminate information of successful UE localisations
to relevant parts of the network. Local models of mobility are estimated using such information but do not
require any long term record of individual UE movement.

Incremental paging

(b) Paging the most likely cells first in a sequence of paging phases. Only in the worst case, need we page
all cells in the neighbourhood. For a given neighbourhood, mobility estimate and number of phases, we can
compute the optimal sequence of pages for a given relative cost of page messages and increased response time.
The actual location of the UE in this example belongs to the worst case, and is fairly unlikely.

Figure 3: Mobility trace and incremental paging

Table I: Cell initialisation parameters

| Parameter | Description
PagePhases Number of page phases
PLUtimeOut Interval between periodic location updates (in minutes)
MaxL Number of discrete time frames
t Time frame intervals, i.e. 0..2, 2..5... minutes after a connection
l Time frame index, from 1..MaxL
N Estimator window size (see section II-D)
M Number of parallel estimators employed
n Estimator indices, initialised to 0O
nlm, nfg‘ Counters for observations at cell ¢ for time frame [
(m +1) mod M | refers to the prior of an estimator pZ-”

high level configuration parameters remain. The first is the goal probability mass represented by each
neighbourhood which directly influences average update rates, and the second a weight which expresses
the relative cost of page messages against increases in response time. We expect both of these to be global
parameters for a given network.

We present in the following sections, a detailed, completely general and fully distributed version of our
proposal. We assume for the purpose of the presentation, that we have a single management entity for each
cell. From the point of the proposal, the number of cells managed by any given MME is immaterial, but
assuming that MME and cell can be mapped 1-1, has advantages for generality and clarity of presentation.
In a real implementation, a more efficient algorithm running on MMEs managing many local cells can be
used, and if records of the mobility of UEs between MME:s is desired, the message passing mechanism
between cells presented below, can be implemented between the involved MMEs. One could also choose
to implement the scheme only within each MME, in which case it becomes a centralised solution for
managing standard configuration parameters in LTE which allows mixing nodes implementing the scheme
with older ones that doesn’t.

Due to the limit (of 16), on the size of the TAI list in current versions of LTE [4], we propose that
for a practical implementation, one should use small groups of e.g. adjacent cells as static TAs, and use
TALI lists based on these to represent neighbourhoods. Implemented in this way, our proposal becomes a
way to dynamically configure the TAI lists of LTE. This will yield neighbourhoods consisting of up to a
few hundred cells but which may include some cells with low likelihood if they belong to highly likely
TAs. In future standards, this can be avoided by using longer lists of single cell ids as neighbourhoods.
However, in the following presentation we will, for generality, ignore this complication, and assume that
TAIs corresponds to single cells and that neighbourhoods are directly implemented as TAI lists with no
hard limit on size.

B. Distributed trace and neighbourhood records

In order to maintain the estimates used to compute and update the neighbourhoods we construct a short
distributed trace per UE of the cells with which the UE has been associated through location updates,
connections and hand-overs. At each such event, the time and previous cell of the UE is recorded. The
current neighbourhood of the new cell is also associated with and transferred to the UE as a TAI list.

This “chain” of previous association records constitutes a distributed, short term location trace of the
UE which, after a time related to the periodic location update timeout, can be discarded. From a privacy
(and management overhead) perspective, it is noted that neither long term individual associations nor any
profiling of individual UE behaviour are required in our approach.

Algorithm 1 implements three routines in the cell: “initialise” sets up the cell parameters and statistics
counters. The parameters of the cell initialisation is summarised in table 1. “regRequest” is used by a
UE to register at the cell, which then updates its current local neighbourhood LN, stores the association
of the UE with LN and, if necessary, sets up paging sequences for any previously unknown LN. If the

Algorithm 1 Cell initialisation, registration and de-registration routines

on event < initialise i> do
PagePhases < 3; PLUtimeOut < 120 minutes;
MazL < 5; t < [0,2,5,15,45, PLUtimeOut];
{# paging phases, PLU timeout and time frame parameters in minutes}
N + 200; M < 2; {estimator size & number}
for { =0; ! < MaxL; [++) do
m < 0; nt 1l o 9. findex and zero knowledge prior}
for (k=0; k < M —1; k++) do
nﬁ(mfk mod M) 0: négmfk mod M) 0:
end for {initialise counters}
end for {each time frame [}

end {initialize cell 7}

on event < regRequest Ue PrevTime PrevCell> do
LN <+ < set of most likely destination cells) >; {see section II-E}
RegTime(Ue) < $now;
if PrevCell != “none” then
PrevReg(Ue, PrevTime) < PrevCell; {set up user trace}
trigger < unReg Ue RegTime(Ue) Self > @ PrevCell
end if {re-registration}
if AU Neighbourhoods(U) = LN then
for { =1; 1 < MaxL; [++) do
trigger < pageSequenceUpdate [LN > @ Self {see algorithm 3}
end for {each time frame [}
end if {new neighbourhood}
Neighbourhoods(Ue) <— LN; {store association}
trigger < regAck Self RegTime(Ue)
PLUtimeOut TAIlist(LN) > @ Ue
end {registration of user U}

on event < unReg Ue NextTime NextCell > do
forget RegTime(Ue); forget Neighbourhoods(Ue);
if AU Neighbourhoods(U) = LN then
for (I =1; 1 < MaxL; I++) do
forget PageSequence'(LN);
end for {all time frames}
end if {last user for LN}
end

registration is part of a location update, the previous cell is notified by an “unReg” message and a record

of the transfer is set up before acknowledging the UE of the registration with a copy of LN in the form
a TAI list.

Algorithm 2 shows the corresponding event handlers in the UE: “initialise” initiates the registration
at a given cell Cl. Upon receiving a “regAck” from the MME of PrevCl, it records the connection
data, and the received TAI list 77 as its own. On time-out, or when the UE moves closer to a new cell,
“locationUpdate” is used to initiate a location update on the same criteria as in current implementations.

10

Algorithm 2 UE initialisation, registration and location update routines

on event < initialise ¢« Cell > do
trigger < regRequest Self 0 “none” > @ Cell
end

on event < regAck Cell RegTime PLUtimeOut Tl > do
RegCell < Cell; CellRegTime < RegTime;
ReRegTime < $now + PLUtimeOut;
TAllist < TI; {store registration data}

end

on event < locationUpdate Cell > do
if ((Cell ¢ TAllist) I {neighbourhood exit or time trigger}
($now > ReRegTime) then
trigger < regRequest Self CellRegTime RegCell > @ Cell
end if {initate network location update}
end {UE cell level update}

C. Observation propagation

UE mobility data is collected and distributed through the relevant parts of the network using a distributed
algorithm as follows: At each successful localisation of a UE U at cell C}, each cell C; in the distributed
trace for U starting at C; is recursively informed of the observation. The MME of any cell C; in the trace,
i.e. where U has previously resided at time ¢;, on receiving the observation (¢;,C;) updates, if t; — ¢; <
(PLU time), counters n} and n; for (t; —t;) € I, where I belongs to a partitioning of (0, (PLU time)]
into distinct time frames (duration intervals). ILe. for each cell ¢ we maintain, for each time frame [, one
counter n! and one nﬁj for each (known) cell j, including itself. With a periodic location update timeout
of two hours we may e.g. use, [€ {(0,2],(2,5],(5,15], (15,45],(45,120]} minutes.

Periodic location update timeouts, the number of, and durations of time frames can be local to each cell,
and, if desired, to broad categories of UEs. If periodic location update timeouts differ between cells, some
care need to be taken to account for this when purging cell/UE association records. Otherwise the only
overhead associated with this scheme is memory and fairly minimal and easily automated management.

In more detail, note how in algorithm 1, a distributed “trace” of the movement of each UE is accumulated
in the vectors PrvReg at each re-registration. This trace is used to distribute information of observed
mobility patterns between the cells involved at connections, location updates and during handovers. This
is achieved through recursively triggering an “observe” action at the registered cell on each successful
localisation. The mechanism involved is formalised in algorithm 3 which also gives a high level indication
of the paging sequence update mechanism described in more detail in section II-F. Refer to Figure 3a for
an overview of the mechanism. The trace can also be used, in combination with a time-out mechanism to
safely clear UE data from the MME after its use in constructing the collective mobility patterns is served,
although the exact mechanism could be implemented in several ways and is not shown here.

Algorithm 3 is the core of the prog)osed mechanism since here, first of all, the estimates are evolved,
and the statistics counters nim and n;" for the relevant time frame [and current estimator index 7, are
updated as indicated in section II-D.

The complexity of the estimate update in a single cell is (1), since the counter update operation
is O(M) for small constant A/, and the estimate evolution which is linear in the number of previously
observed cells is performed only once every /N observations, for NV typically larger than the number of
observed cells. The recursion on the PrevReg links does creates small cascade of updates in the cells
recently visited by the UE but in practice these are seldom longer than a few tens.

11

Algorithm 3 Cell mobility statistics gathering routines

on event < observe Ue Cell ObsTime RegTime > do
if ObsTime — RegTime(Ue) < PLUtimeOut then
if n)™ > N(MazL — 1) then
trigger < evolveEstimate 0 > @ Self
end if {observation count reached for LN estimate }
for [s.t. t[l — 1] < ObsTime — RegTime(Ue) < t[l] do
if n/" > N then
trigger < evolveEstimate [> @ Self
end if {observation count reached for [}
for (k=0; k<M —1; k++) do
ni(m_k mod M) 4 igm—k mod M), o fupdate all estimators except prior}
end for {where 1 = Self N\ j = Cell}
for all Ngh s.t. 3(U)Neighbourhoods(U) = Ngh do
if < P'(Ngh) = {pﬁ?l :J € Ngh,i = Self} differs sufficiently from
the support for corresponding stored paging sequence > then
trigger < pageSequenceUpdate [Ngh > @ Self
end if {update paging sequence}
end for {all stored neighbourhoods}
end for {/ in the locally relevant time frame}
end if {within PLU timeout limit}
if 3(PrevTime < RegTime) s.t.
PrevReg(Ue, PrevTime) is recorded then
for the latest such PrevTime do
trigger < observe Ue Cell ObsTime PrevTime > @
PrevReg(Ue, PrevTime)
end for {use only latest to avoid loops}
end if {propagate observation}
end

on event evolveEstimate [do
for all cells j recorded at Self do

nﬁ?l <~ pﬁ?l; ném < 1; {store current estimate as new prior}
é§n1+1 mod M) o, plimtt med M) g (clear old prior}
end for
m < n +1 mod M; {increment estimator index 7}

end

on event < pageSequenceUpdate [N> do
< calculate a new paging sequence PageSequence'(N)
w. support PY(N) = {p{" : j € N,i = Self} >
< replace any sequence stored for N
and time frame I, with PageSequence'(N) >
< store P(N) as the support for PageSequence'(N) >

end {See section II-D for definition of p’}

12

What does effect scalability is the update of the paging sequences for each current neighbourhood in
the relevant time frame which scales with both neighbourhood size and number of phases. The solution
space for this problem is for large parameters huge:

n—1
(")
for environment size n and number of phases k, but the problem is in practise tractable for small n and £,
and with the use of approximations even moderately large ones. In section II-F we present one particular
solution to this problem that gives optimal solutions within a few seconds for k£ = 3 and n < 90 (see
Figure 5b for full scaling results). On the other hand, the mechanism used to maintain the estimates and
neighbourhoods is orthogonal to how well we solve this problem. Almost any partition will result in fewer
pages than most current practices, and if very large neighbourhoods are desired, simple approximations,
or even fixed sized partitions can be used, at the cost of higher expected page counts.

We filter observation events from the paging sequence update mechanism by storing the support with
each computed sequence and requiring that the current estimate has changed sufficiently before re-
triggering the sequence generation. The criterion for a sufficiently large change is checked by measuring
the Kullback-Leibler divergence [22] between the current estimate, and that used as support for the stored
paging sequence. The K-L test has complexity roughly linear in the size of the neighbourhood.

Depending on the duration between the observation and the registration time at the cell, the previous
cell in the user trace is also notified of the observation and so on until the duration between the local
record for the UE at the current cell and the time of observation becomes so long that it is no longer
relevant to the cell, normally after the time at which the periodic location timeout for the UE would have
triggered. At this point the observation propagation is terminated. There are some intricacies involved
here, i.e. when periodic location update times differs between cells, and to take care of situations where
the UE has been registered several times at a single cell.

D. Robust estimation and representation of UE mobility patterns

To create local neighbourhoods and optimal paging sequences (see section II-F below), we estimate
the conditional UE location distribution, given where and when the UE was registered and other locally
available data. The mechanisms for user mobility management and data collection presented above ensures
that each cell is informed about where a previously registered UE is located at the time of a successful
localisation, meaning that both first- and higher order Markov models of user mobility can be estimated
(estimating the location distribution conditional on where the UE is registered and conditional on where
the UE is and has been registered, respectively).

Here, we choose a base model using a first order Markov approximation. To account for the fact that
the distribution over cells typically is also highly dependent on the time since UE registration, we extend
the conditional to account for this. The entropy of this distribution typically increases with time, as it is
more uncertain where the UE is located when it has had longer time to move through the network. To
simplify the representation and estimation of the conditional we introduce a number of fixed time frames
indexed by a variable [. These intervals are fixed for each cell, and can typically be set to e.g. 0-2, 2-5,
5-15 and 45-120 minutes, as in algorithm 1 above. In practice, this means that we estimate and store one
conditional for each time frame at each cell.

Additionally, we need to account for long-term development of usage and mobility patterns. We manage
this by using multiple overlapping estimators ££'n for the UE location distribution, and the latest complete
model as prior to the next model as illustrated in Figure 4. The estimation scheme is circular using
M = N/T models, each based on N observations and degree of overlap 7. The degree of overlap
directly affects the temporal properties, i.e. how fast older historical data is discounted. By using the
previous model as a prior for the following model, a smooth transition between models is achieved while
older mobility patterns have a smaller impact on the current parameter estimates, offering adaptation to

13

Iy o o o
°

(a) Each FE; contains counters for each neighbouring cell, and E; is used as prior for a Bayesian estimate
based on the counters in Ejs. Intermediate estimators E2-FEjs—q are updated in parallel with Eps for a
smooth transition between estimates, performed at each 7" observations. Each estimator contains the statistics
for N = T'M observations.

Figure 4: Overlapping estimators

new network mobility regimes. Note that only M sets of counters need to be kept in memory at any one
time, which means that we in a practical implementation circulate between M model representations as
indicated in Figure 4, and in algorithm 3.

Using Bayesian inference where all probabilities are estimated using means over the posterior, we can
write the 7;:th estimate of the probability that a UE is located at cell 7 given that it was last registered at
cell ¢ in time interval [and for a current estimator index 7 as

m—M
m _ P ig'm a+ nivjn
bij = I (D
a+n;
where pég-m_M) represents our last complete estimate and nﬁ;" the number of successful localisations of a

UE to cell j during the time interval [since this UE resided at cell 7. a controls the equivalent sample
size of the prior, i.e. how much we trust the prior compared to the new observations. Using a prior based
on zero knowledge of the network topology, our initial estimate only includes the current cell and can be
written as
m J1 ifi=y

(V77<M>pij “ o ifi £ (2)
Again, note that although in the expressions above model 7 increases infinitely, only A/ models and sets
of counters need to be kept in memory at once. For smoother transitions between estimates, a larger value
of M can be used, but for most practical purposes M = 2 should give adequate performance. For fast
adaptation, /N can be chosen to be in the order of about 200 samples, but can be set to a larger value
if stability of the estimates is prioritised. To reduce the sensitivity to temporary fluctuations in mobility

patterns, we typically set &« = N. Note also that in the algorithms, pﬁg-m_M is stored as nig-m_M).

E. Local Neighbourhoods

To assign neighbourhoods, we use an estimate of the mobility patterns within all possible time intervals,

pg’fM)oz +nj;

a+n]

3)

no_
Py =

which is similar to the expression above for one time frame, using overlapping models in the same manner.

M
Here, as above pfy) represents our previous estimate and nfj the number of successful localisations of

14

a UE to cell j during any time interval since this UE resided at cell ¢, i.e. nfj =53 & nfj" and similar for
n;. Note that in the algorithms, n; is explicitly represented and updated as ndm.

We can use two parameters to control and limit the size of neighbourhoods created from this distribution
estimate: A maximum size K, which cannot be exceeded, or a cut-off ¢ on the joint probability mass
represented by cells included in the neighbourhood. The TAI list is then created by

1) Sorting the 1-dimensional conditional probability vector over all cells, where UEs once residing at

the current cell have later been observed

2) Starting with the largest probability, adding all corresponding cells/TAs to the TAI list until we

reach size K or c is exceeded
This assignment is performed each time a UE registers with a cell.
The initial prior is, as for each time frame above, set to

1 ifi=y
0 ifi#j
which leads to the expected behaviour for cell neighbourhood construction. The neighbourhoods will
initially only contain the current cell but gradually grow as more statistics are collected. However, if prior
knowledge on network topology and mobility patterns is available, this could be encoded in the prior for
faster convergence.

A possible extended approach to TAI list assignment is to create TAI lists as described above for
each time frame. If the network and handset implementation would allow for multiple TAI lists with
corresponding time frames, these could be sent directly to the handset that would switch between TAI

lists according to the duration since its last TA update, which would allow for greater precision within
UE location management.

(Vn < M) pj; = { “4)

FE. Optimal paging phase partitioning

At an incoming connection, we would like to use the most suitable partitioning of the neighbourhood
associated with the requested UE into a set of consecutive paging phases (a “paging sequence”). “Suitable”
here should be understood in terms of the current estimate of UE mobility and a given relative weight
between the cost of the expected number of page messages per localisation and the disadvantage
represented by increased response times on QoS. In order for the paging sequences to be ready at
connection time, we propose to construct them as soon as we come across an unrecorded neighbourhood,
and recalculate them as required when our estimates evolves.

At connection time, the precomputed paging sequence is thus used to page all the cells of the first phase
in parallel, proceeding with the next phase in the case of no response, and so on. le. upon receiving a
localisation request for a UE U at time ¢ which last resided at cell C; at ¢;, the MME of C; retrieves the
paging sequence SéU for the neighbourhood ny associated with U and [s.t. t — t; € [, then sends page
messages in each cell C; € ny in a sequence of phases P € SLU.

Noting that paging all cells in a single phase would minimise response time (since success in an early
phase eliminates the need for further paging) but would increase the number of page messages broadcast
(since all cells in the neighbourhood are affected). We thus prefer, for any given number H of phases, to
page in the most likely cells first in order to reduce the expected total number of page messages required
for localisation.

For each cell in any given neighbourhood and estimated UE location distribution, there is a trade-
off between paging it in an early phase, thus contributing to the expected page message count for
the connection, and postponing it to a later phase, thereby increasing response time, but reducing the
probability of having to send a page message in that cell at all. These two objectives are encoded in
our set partitioning formulation as delay cost and page cost respectively. This paging phase generation
mechanism produces a partitioning of the cells in the neighbourhood that is optimal w.r.t. a given weighted
sum of these two cost components.

15

In more detail, we note that the probability of success in a phase h € {1,..., H}, is a function of the
probability mass of all cells paged in h and the probability of reaching phase & is the probability mass
of all cells h, ..., H not yet paged. Since we can order the cells of the neighbourhood according to their
individual probability, the mass of each phase depends directly on the number of cells in each phase.

We currently use a constraint programming formulation to solve this optimisation problem, and the
constraints and objectives as they occur in the formulation below are transformed in our model into a
formulation in which the sum of objectives for each phase depend on the probability mass, or equivalently
on the number of cells in that phase. The phase size is captured in our implementation by a global
cardinality constraint [23] that iteratively and efficiently prunes the solution space as we search for
increasingly better and eventually reach an optimal solution.

Associating costs for page messages and response time increases, optimal partitioning of cells into
phases can be formulated as follows: Express the cost of a partition of the cells in an neighbourhood 7y
and time frame [in terms of boolean variables q§h representing the fact that the cell C; is paged in phase
h. Note first of all, that since each cell C; € Lnt; is paged exactly once,

Yo dn=1)

0<h<H

for each 7 and [. We then express the cost of delaying the pages of cells to phase h as
S wndpll 6)

j:C]'GLIfJ

where pi? is the estimated probability that U is in C; at time ¢ and wj, is a weight specific to phase h. wy,
should grow with h to reflect our estimation of the cost increased response times represent in terms of
connection failures and general system latency. The delay cost for a complete partition is the sum over
all phases.

We also express a discounted page cost for a phase h as the number of page messages c;, sent in that
phase minus a discount based on the probability of having successfully located U in an earlier phase:

a- S gl)

1<g<h j:.CjeLnt,

and summed over all phases for the complete partition. The cost function for the set partition problem
is the sum of these two components (equation 6 and 7) under the constraint equation 5 for all j and
booleans qék. This cost can be expressed as a fixed cost for the localisation of a arbitrary UE minus a
sum depending only on probabilities of each cell in the estimate and the number of cells in each phase.

Note that this optimisation problem takes into account only the expected number of page messages
required to locate a user U and the response time increase. The balance between these opposing objectives
is determined by the choice of weights wy, but does not take into account any cost for location updates.
The number of location updates, instead directly depends on the probability mass represented by the cells
in the neighbourhood, which is orthogonal to the optimisation problem.

For a small number of phases and medium sized neighbourhoods the solver provides proven optimal
solutions in reasonable time (see Figure 5b). We note that /7 should in any case be kept small, on the order
of 2—4 say, since each phase takes a significant amount of time, and contributes to the total response time.
For larger neighbourhoods, approximations of the optimal paging sequence can be used. In the paging
stage we are not restricted to paging cells in groups corresponding to any static TAs used to allow larger
neighbourhoods in current LTE standards, but can base the sequence on individual estimates for each cell.

Re-computation of paging sequences is still fairly costly computationally, and for this reason, we filter
triggering events (observations of successful localisation) by requiring a sufficiently large (Kullback-
Leibler) divergence of the current estimate as compared to the estimate supporting the current paging
sequence for each neighbourhood and time frame. Accuracy and timeliness of the estimate can thus be
balanced against computational complexity.

16

G. Connection set up and paging

Algorithm 4 Cell connection set-up and paging routines

on event < connect Ue > do
Location(Ue) < “unknown”;
for (Phase < 0; Phase < PagePhases; Phase++) do
if Location(Ue) = “unknown” then
for the least [s.t. t[l] > $now — RegTime(Ue) do
for all Cell in PageSequence(l, LN(Ue))[Phase] do
trigger < pageRequest Ue Self > @ Cell
end for {all cells in phase}
end for {the relevant time frame [}
else
trigger < locationUpdate Ue Location(Ue) > @ Self
< tell Network to set up connection through Location(Ue) >
trigger < observe Self Cell > @ Location(Ue) {see algorithm 3}
end if {location still unknown}
sleep PhaseTimeQOut;
end for {each phase} {report failure if location still unknown}
end {localisation process}

on event < pageResponse Ue Cell > do
Location(Ue) «+ Cell,
end {response recieved from UE’s current cell}

on event < pageRequest Ue RqCell > do
RqCell(Ue) < RqCell;
repeat
signal page request in cell of Self;
until PgTimeOut
RqCell(Ue) < “none”;
end {broadcast page message in "own" cell}

on event < pageAck Ue > do
trigger < pageResponse Ue Self > @ RqCell(Ue)
end {UE response recieved}

We can now formalise the localisation, connection set-up and paging mechanisms in al-
gorithm 4. Whenever an incoming connection is initiated for a UE Ue, a precomputed sequence
“PageSequence(l, LN(Ue))” of phases associated with the UEs current neighbourhood is applied. Step-
ping through each phase, all its cells are sent “pageRequest” messages. Upon receiving a “pageRequest”,
each cell in that phase broadcasts page messages over the radio network, and awaits a response from
the UE. If the UE is indeed in one of the cells (say C;) of that phase, it acknowledges the page
with a “pageAck” message back to C;, and C; can reply with a “pageResponse” messaged to C'. If
no “pageResponse” is received during a phase, C' continues, after a time out, with the next phase until
a “pageResponse” message is received from C, at which it sets up the connection (through C}) and
initiates a chain of “observe” messages at Cj,.

The UE side of the paging process remains unchanged w.r.t. to current implementations.

17

III. EXPERIMENTAL RESULTS

To verify the correctness and scalability of the proposed method we have undertaken a series of
experiments using a detailed prototype implementation of the method and two different mobility and
call scenarios.

A. The zCap prototype

The zCap prototype as well as the network traffic and the two mobility simulators reported on are
all implemented in SICStus Prolog [24]. The network part of the implementation is very close to the
algorithms presented in section II, with the estimation, neighbourhood and paging sequence creation and
updates all implemented as event handlers and message passing between the nodes, i.e. as a distributed
system.

The neighbourhoods are implemented directly as TAI lists with a cutoff on either size or on probability
mass. The UE part emulates LTE UEs w.r.t. paging and mobility, but without any hard restriction on TAI
list size.

Paging sequences are constructed using a constraint program using primarily global cardinality [23] for
partition size counting and indexing constraints for the assignment problem as implemented in SICStus.
Solutions are produced using branch and bound search with an option to use a limit on execution time
for each sequence computation, providing the best solution found within that limit.

Everything except the optimisation mechanism and the simulator used for the experiments can easily be
ported to any modern programming environment. Porting it to run on MMESs serving many nodes would
allow many code optimisations but also take more serious effort. Restricting the system to run within a
single MME would simplify it.

B. Single cell simulation with constant UE destination distribution

The first scenario is based on UEs registering at a single cell A and then being observed exactly once at
any cell B out of a given number of surrounding nodes according to a given stationary distribution. The
point of this simplified mobility simulation is to study how the proposed mechanism, based on samples
from the stationary distribution, builds up mobility estimates and neighbourhoods up to a first periodic
location update, and using zero prior information of cell proximity and UE mobility.

An example of the type of distributions used is illustrated in Figure Sa where A is in the centre and B
can be anywhere. The stationary distribution is designed to capture the dependence on distance from the
first node A with two directions having a slightly higher probability than others, as expected, e.g., around
a major road. For the sake of simplicity we assume here that all of this happens with in one single time
frame [and that the neighbourhood has a maximum allowed size of 64 cells.

Figure 6a illustrates the convergence of the estimated distribution built up inside the central node where
each UE in the simulation is registered, as compared to the stationary distribution used to generate the
“mobility” of the experiment. The measure used is Kullback-Leibler divergence. The proposed estimation
method converges nicely<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>